JP6213763B2 - Seismic isolation devices, seismic isolation structures, and methods for adjusting seismic isolation performance in seismic isolation structures - Google Patents

Seismic isolation devices, seismic isolation structures, and methods for adjusting seismic isolation performance in seismic isolation structures Download PDF

Info

Publication number
JP6213763B2
JP6213763B2 JP2013095803A JP2013095803A JP6213763B2 JP 6213763 B2 JP6213763 B2 JP 6213763B2 JP 2013095803 A JP2013095803 A JP 2013095803A JP 2013095803 A JP2013095803 A JP 2013095803A JP 6213763 B2 JP6213763 B2 JP 6213763B2
Authority
JP
Japan
Prior art keywords
seismic isolation
axial force
wedge member
isolation device
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013095803A
Other languages
Japanese (ja)
Other versions
JP2014214867A (en
Inventor
勉 廣谷
勉 廣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2013095803A priority Critical patent/JP6213763B2/en
Publication of JP2014214867A publication Critical patent/JP2014214867A/en
Application granted granted Critical
Publication of JP6213763B2 publication Critical patent/JP6213763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)

Description

本発明は、建物や各種構造物を免震支持するための免震装置、免震構造物、免震構造物における免震性能の調整方法に関する。   The present invention relates to a seismic isolation device for seismic isolation support for buildings and various structures, a seismic isolation structure, and a method for adjusting seismic isolation performance in a seismic isolation structure.

従来一般的な免震構造物は、上部構造としての建物本体の全体を、下部構造としての基礎に対し、免震装置を介して水平方向に相対変位可能に免震支持するものである。免震装置としては、ゴムシートと鉄板とを交互に積層した構造の積層ゴムが一般的に用いられている(例えば、特許文献1、2参照)。
図8に示すように、このような積層ゴムからなる免震装置1は、上部構造物2の下部に複数設けられた上部基台3と、上部基台3と対向するように下部構造物4の上面に設けられた下部基台5との間にそれぞれ設けられている。
A conventional seismic isolation structure generally supports an entire building body as an upper structure with respect to a foundation as a lower structure so as to be capable of relative displacement in a horizontal direction via a seismic isolation device. As the seismic isolation device, laminated rubber having a structure in which rubber sheets and iron plates are alternately laminated is generally used (see, for example, Patent Documents 1 and 2).
As shown in FIG. 8, the seismic isolation device 1 made of such laminated rubber includes a plurality of upper bases 3 provided at the lower part of the upper structure 2 and a lower structure 4 so as to face the upper base 3. And the lower base 5 provided on the upper surface of each.

特開2011−226585号公報JP2011-226585A 特開2012−251352号公報JP 2012-251352 A

ところで、例えば原子力発電所における使用済みキャスクを収容する建屋、固定廃棄物貯蔵建屋、あるいは非常用タービン発電建屋等の建物においては、建物の供用期間中に、建物内部に収容される収容物の量が変動することがある。
これに対し、上記したような従来の免震装置1においては、予め、収容物を含めた上部構造物2の最大重量を想定し、その想定された最大重量に合わせて免震装置1を選定している。
このような免震装置1においては、上部構造物2に収容される収容物7の量が大きく変動して、例えば、上部構造物2の一部に集中して収容物7が収容された場合、想定した単位床面積当たりの最大重量を超えてしまう可能性がある。さらに、上部構造物2の一部に収容物7による大きな荷重が集中して作用すると、地震発生時においては、免震構造物全体にねじれ振動が生じる可能性がある。
そこでなされた本発明の目的は、収容物による荷重が大きく変動した場合においても、十分な免震性能を発揮することのできる免震装置、免震構造物、免震構造物における免震性能の調整方法を提供することである。
By the way, for example, in buildings such as buildings that store used casks at nuclear power plants, fixed waste storage buildings, or emergency turbine power generation buildings, the amount of items stored inside the building during the period of service of the building May fluctuate.
On the other hand, in the conventional seismic isolation device 1 as described above, the maximum weight of the upper structure 2 including the accommodation is assumed in advance, and the seismic isolation device 1 is selected according to the assumed maximum weight. doing.
In such a seismic isolation device 1, when the amount of the accommodation 7 accommodated in the upper structure 2 fluctuates greatly, for example, the accommodation 7 is accommodated in a part of the upper structure 2. The maximum weight per unit floor area may be exceeded. Furthermore, if a large load due to the container 7 is concentrated on a part of the upper structure 2, torsional vibration may occur in the entire base-isolated structure when an earthquake occurs.
The purpose of the present invention made there is a seismic isolation device, a seismic isolation structure, and a seismic isolation structure capable of exhibiting sufficient seismic isolation performance even when the load due to the container greatly fluctuates. It is to provide an adjustment method.

本発明は、上記課題を解決するため、以下の手段を採用する。
すなわち、本発明の免震装置は、構造物を構成する下部構造と上部構造との間に配置され、前記下部構造と前記上部構造の水平面内における相対変位を減衰する免震装置本体と、前記免震装置本体と前記下部構造または前記上部構造との間に着脱可能に設けられ、高さが調整可能とされた軸力導入部材と、を備え、前記軸力導入部材は、水平面に対して傾斜した第一傾斜面を有する上部クサビ部材と、前記上部クサビ部材の下方に配置され、前記第一傾斜面に突き合わされる第二傾斜面を有する下部クサビ部材と、前記上部クサビ部材と前記下部クサビ部材とを、前記第一傾斜面および前記第二傾斜面に沿ってスライドさせることによって該軸力導入部材の高さを調整可能とする高さ調整機構と、を備え、前記高さ調整機構は、前記上部クサビ部材及び前記下部クサビ部材を横方向に貫通する一のネジ棒と前記ネジ棒に回転可能に螺着された一対の雌ネジ部材と、を有し、前記一対の雌ネジ部材は、前記上部クサビ部材の側面及び前記下部クサビ部材の側面に沿って配置されるとともに前記ネジ棒に螺着され、前記雌ネジ部材が前記上部クサビ部材の側面及び前記下部クサビ部材の側面に当接するまで締め込まれることで、前記上部クサビ部材と前記下部クサビ部材との相対的な移動が拘束されるように構成されていることを特徴とする。
The present invention employs the following means in order to solve the above problems.
That is, the seismic isolation device of the present invention is disposed between the lower structure and the upper structure constituting the structure, and the seismic isolation device body that attenuates relative displacement of the lower structure and the upper structure in a horizontal plane; An axial force introducing member that is detachably provided between the seismic isolation device main body and the lower structure or the upper structure, and the height of the axial force introducing member is adjustable. An upper wedge member having an inclined first inclined surface, a lower wedge member having a second inclined surface disposed below the upper wedge member and abutted against the first inclined surface, the upper wedge member, and the lower portion A height adjusting mechanism capable of adjusting the height of the axial force introducing member by sliding the wedge member along the first inclined surface and the second inclined surface, and the height adjusting mechanism The upper wedge And one threaded rod extending through the member and the lower wedge member laterally, have a, a pair of female screw member rotatably screwed into said threaded rod, said pair of female screw member, the upper It is arranged along the side surface of the wedge member and the side surface of the lower wedge member and screwed to the screw rod, and is tightened until the female screw member comes into contact with the side surface of the upper wedge member and the side surface of the lower wedge member. Thus, the relative movement between the upper wedge member and the lower wedge member is constrained .

このような免震装置は、下部構造と上部構造との間に免震装置本体と軸力導入部材とが配置される。つまり、軸力導入部材を、免震装置本体と下部構造または上部構造との間に設置していない状態では、免震装置本体と上部構造との間が切り離され、軸力の伝達は行われない。また、軸力導入部材の高さを低い状態としておいても、免震装置本体と上部構造との間が切り離され、軸力の伝達は行われない。軸力導入部材の高さを大きくすることで、下部構造、免震装置本体、軸力導入部材、上部構造との間で軸力が伝達され、免震装置本体による免震性能が発揮される。
すなわち、軸力導入部材の設置の有無、および軸力導入部材の高さ調整によって、免震装置本体の免震性能の発揮をON/OFFできる。
また、上部クサビ部材と下部クサビ部材とをスライドさせることによって、上部クサビ部材と下部クサビ部材とが重なった状態での軸力導入部材の高さが調整できる。
In such a seismic isolation device, the seismic isolation device main body and the axial force introducing member are disposed between the lower structure and the upper structure. In other words, when the axial force introducing member is not installed between the seismic isolation device main body and the lower structure or the upper structure, the seismic isolation device main body and the upper structure are disconnected, and the axial force is transmitted. Absent. Moreover, even if the height of the axial force introducing member is set to a low state, the seismic isolation device main body is separated from the upper structure, and the axial force is not transmitted. By increasing the height of the axial force introduction member, axial force is transmitted between the lower structure, the base isolation device body, the axial force introduction member, and the upper structure, and the base isolation performance of the base isolation device body is demonstrated. .
In other words, the seismic isolation performance of the seismic isolation device main body can be turned on / off by the presence / absence of installation of the axial force introducing member and the height adjustment of the axial force introducing member.
Further, by sliding the upper wedge member and the lower wedge member, the height of the axial force introducing member in a state where the upper wedge member and the lower wedge member are overlapped can be adjusted.

本発明は、前記下部構造と、前記下部構造の上方に設けられた前記上部構造と、上記したような免震装置と、を備えていることを特徴とする免震構造物とすることもできる。   The present invention may also be a seismic isolation structure comprising the lower structure, the upper structure provided above the lower structure, and the seismic isolation device as described above. .

この免震構造物においては、軸力導入部材の設置の有無、および軸力導入部材の高さ調整によって、免震装置本体の免震性能の発揮をON/OFFできる。   In this seismic isolation structure, the seismic isolation performance of the seismic isolation device main body can be turned on / off by the presence / absence of installation of the axial force introducing member and the height adjustment of the axial force introducing member.

前記軸力導入部材は、前記免震装置本体と前記上部構造との間に間隙を隔てて前記免震装置本体と前記上部構造との間における軸力の伝達を遮断した状態と、前記軸力導入部材の高さを増大させて前記免震装置本体または前記軸力導入部材を前記上部構造に突き当てて、前記免震装置本体と前記上部構造との間で軸力が伝達される状態と、を切り替え可能とされているようにしてもよい。   The axial force introducing member includes a state in which transmission of axial force between the seismic isolation device main body and the upper structure is interrupted with a gap between the seismic isolation device main body and the upper structure, and the axial force A state in which the height of the introduction member is increased and the seismic isolation device main body or the axial force introduction member is abutted against the upper structure, and axial force is transmitted between the seismic isolation device main body and the upper structure; , Can be switched.

本発明は、上記したような免震構造物における免震性能の調整方法であって、前記免震装置本体と前記上部構造との間に間隙を隔てて前記免震装置本体と前記上部構造との間における軸力の伝達を遮断しておき、前記上部構造において前記免震装置本体の上方における荷重が増えた場合に、前記軸力導入部材の高さを増大させて前記免震装置本体または前記軸力導入部材を前記上部構造に突き当てて、前記免震装置本体と前記上部構造との間で軸力を伝達させることを特徴とする。   The present invention is a method for adjusting seismic isolation performance in a seismic isolation structure as described above, wherein the seismic isolation device main body and the upper structure are separated by a gap between the seismic isolation device main body and the upper structure. The transmission of the axial force between them is cut off, and when the load above the seismic isolation device main body increases in the superstructure, the height of the axial force introducing member is increased to The axial force introducing member is abutted against the upper structure, and axial force is transmitted between the seismic isolation device main body and the upper structure.

この方法によれば、当初は免震装置本体と上部構造との間における軸力の伝達を遮断しておく。そして、その後、上部構造において免震装置本体の上方における荷重が増えた場合に、免震装置本体と上部構造との間で軸力を伝達させることによって、免震装置本体による免震性能を発揮させることができる。   According to this method, transmission of the axial force between the seismic isolation device main body and the upper structure is initially blocked. After that, when the load above the seismic isolation device main body increases in the superstructure, the seismic isolation performance of the seismic isolation device body is demonstrated by transmitting axial force between the seismic isolation device main body and the superstructure. Can be made.

本発明によれば、上部構造の収容物による荷重が大きく変動した場合においても、十分な免震性能を発揮することができる。   According to the present invention, sufficient seismic isolation performance can be exhibited even when the load due to the superstructure is greatly varied.

本実施形態にかかる免震構造物の構成を示す断面図である。It is sectional drawing which shows the structure of the seismic isolation structure concerning this embodiment. 免震装置の設置構造図を示す立断面図である。It is an elevational sectional view showing an installation structure diagram of the seismic isolation device. 図2の免震装置の平断面図である。It is a plane sectional view of the seismic isolation device of FIG. 軸力導入部材において下部クサビ部材と上部クサビ部材とをスライドさせて高さを増大させるときの流れを示す図であり、(a)はスライド前の状態、(b)はスライド途中の状態、(c)はスライド後の状態を示す図である。It is a figure which shows the flow when sliding a lower wedge member and an upper wedge member in an axial force introduction member and increasing height, (a) is a state before a slide, (b) is a state in the middle of a slide, ( c) is a diagram showing a state after sliding. 軸力導入部材を設置してない状態を示す立断面図である。It is an elevation sectional view showing the state where the axial force introduction member is not installed. 軸力導入部材を設置した状態を示す図であり、(a)は下部クサビ部材と上部クサビ部材とをスライドさせる前の状態、(b)は下部クサビ部材と上部クサビ部材とを軸力導入部材が最大高さ未満となる状態とした図である。It is a figure which shows the state which installed the axial force introduction member, (a) is a state before sliding a lower wedge member and an upper wedge member, (b) is an axial force introduction member with a lower wedge member and an upper wedge member. It is the figure made into the state which becomes less than maximum height. 軸力導入部材による軸力の導入を解除する状態を示す立断面図である。It is an elevation sectional view showing the state where the introduction of the axial force by the axial force introducing member is released. 従来の免震構造物の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional seismic isolation structure.

以下、添付図面を参照して、本発明による免震装置、免震構造物、免震構造物における免震性能の調整方法を実施するための形態を説明する。しかし、本発明はこれらの実施形態のみに限定されるものではない。   Hereinafter, with reference to an accompanying drawing, a form for carrying out a seismic isolation device, a base isolation structure, and a method for adjusting a base isolation performance in a base isolation structure according to the present invention will be described. However, the present invention is not limited only to these embodiments.

図1は、本実施形態にかかる免震構造物の構成を示す断面図である。図2は、免震装置の設置構造を示す立断面図である。図3は、図2の免震装置の平断面図である。図4は、軸力導入部材において下部クサビ部材と上部クサビ部材とをスライドさせて高さを増大させるときの流れを示す図であり、(a)はスライド前の状態、(b)はスライド途中の状態、(c)はスライド後の状態を示す図である。図5は、軸力導入部材を設置してない状態を示す立断面図である。図6は、軸力導入部材を設置した状態を示す図であり、(a)は下部クサビ部材と上部クサビ部材とをスライドさせる前の状態、(b)は下部クサビ部材と上部クサビ部材とを軸力導入部材が最大高さ未満となる状態とした図である。図7は、軸力導入部材による軸力の導入を解除する状態を示す立断面図である。   FIG. 1 is a cross-sectional view showing the configuration of the seismic isolation structure according to the present embodiment. FIG. 2 is an elevational sectional view showing the installation structure of the seismic isolation device. FIG. 3 is a plan sectional view of the seismic isolation device of FIG. FIGS. 4A and 4B are diagrams illustrating a flow when the lower wedge member and the upper wedge member are slid in the axial force introducing member to increase the height. FIG. 4A is a state before the slide, and FIG. (C) is a figure which shows the state after a slide. FIG. 5 is an elevational sectional view showing a state where the axial force introducing member is not installed. 6A and 6B are views showing a state in which the axial force introducing member is installed. FIG. 6A shows a state before the lower wedge member and the upper wedge member are slid, and FIG. 6B shows the lower wedge member and the upper wedge member. It is the figure made into the state where the axial force introduction member becomes less than the maximum height. FIG. 7 is an elevational sectional view showing a state in which the introduction of the axial force by the axial force introducing member is released.

図1に示すように、免震構造物10は、地盤中に構築された下部構造としての基礎20と、基礎20の上方に形成された上部構造としての建物本体30と、これら基礎20と建物本体30との間に介装されて建物本体30を基礎20上で水平面内において相対変位可能に免震支持する複数の免震装置40,40,…(図1では一の免震装置40のみを示している)と、を備えている。   As shown in FIG. 1, the seismic isolation structure 10 includes a foundation 20 as a lower structure built in the ground, a building body 30 as an upper structure formed above the foundation 20, and the foundation 20 and the building. A plurality of seismic isolation devices 40, 40,... (Only one seismic isolation device 40 in FIG. 1) interposed between the main body 30 and supporting the building main body 30 on the foundation 20 so as to be capable of relative displacement in a horizontal plane. ).

図2に示すように、基礎20の上面には、各免震装置40の設置位置に、鉛直上方に突出して上面21aが水平面とされた下部基台21が形成されている。   As shown in FIG. 2, a lower base 21 is formed on the upper surface of the foundation 20 at the installation position of each seismic isolation device 40. The lower base 21 protrudes vertically upward and the upper surface 21 a is a horizontal plane.

また、建物本体30の下面には、各免震装置40の設置位置に、鉛直下方に突出して下面31aが水平面とされた上部基台31が形成されている。
下部基台21、上部基台31には、それぞれ水平方向に連続する貫通孔22,32が形成されている。
In addition, an upper base 31 is formed on the lower surface of the building main body 30 at a position where each seismic isolation device 40 is installed.
The lower base 21 and the upper base 31 are respectively formed with through holes 22 and 32 that are continuous in the horizontal direction.

また、下部基台21、上部基台31には、それぞれ鉛直方向に沿った複数のアンカーボルト23,33が、周方向に間隔を隔てて円周状に配置されて埋め込まれている。このアンカーボルト23,33の先端部は、下部基台21の上面21a、上部基台31の下面31aにそれぞれ形成された凹部24,34内に露出し、後述する固定ボルトを締結するためのネジ部が形成されている。   In addition, a plurality of anchor bolts 23 and 33 extending in the vertical direction are embedded in the lower base 21 and the upper base 31 so as to be arranged circumferentially at intervals in the circumferential direction. The tip ends of the anchor bolts 23 and 33 are exposed in recesses 24 and 34 formed on the upper surface 21a of the lower base 21 and the lower surface 31a of the upper base 31, respectively, and are screws for fastening a fixing bolt described later. The part is formed.

免震装置40は、基礎20の下部基台21の上面21aと、その鉛直上方に位置する建物本体30の上部基台31との間に介装されている。免震装置40は、免震装置本体45と、軸力導入部材50と、を備えて構成されている。   The seismic isolation device 40 is interposed between the upper surface 21a of the lower base 21 of the foundation 20 and the upper base 31 of the building main body 30 positioned vertically above. The seismic isolation device 40 includes a seismic isolation device main body 45 and an axial force introduction member 50.

この免震装置本体45は、鋼製の下部プレート41および上部プレート42と、これら下部プレート41と上部プレート42との間に、鋼板と天然ゴム、合成ゴム等からなるゴムシートとが上下方向に交互に積層された積層ゴム部43と、を少なくとも備えている。   The seismic isolation device main body 45 includes a steel lower plate 41 and an upper plate 42, and a steel sheet and a rubber sheet made of natural rubber, synthetic rubber or the like between the lower plate 41 and the upper plate 42 in the vertical direction. And at least laminated rubber portions 43 that are alternately laminated.

ここで、免震装置本体45は、いわゆる積層ゴムであれば、本実施形態において具体的な構成を限定する意図はなく、例えば、図2に示すように、積層ゴム部43には、その中心部に、例えば芯材として鉛や錫からなるプラグ44等を設けてもよい。また、プラグ44に代えて、積層ゴム部43のゴムシートとは異なる材質からなる粘弾性体と鋼板とを積層して水平面内の振動を減衰する減衰部材を設けてもよい。
また、積層ゴム部43の構造、例えば鋼板とゴムシートの積層数、鋼板やゴムシートの材質等は、いかなるものとしてもよい。
Here, as long as the seismic isolation device main body 45 is a so-called laminated rubber, there is no intention to limit the specific configuration in the present embodiment. For example, as shown in FIG. For example, a plug 44 made of lead or tin may be provided as a core material. Instead of the plug 44, a damping member that attenuates vibration in a horizontal plane by laminating a viscoelastic body made of a material different from the rubber sheet of the laminated rubber portion 43 and a steel plate may be provided.
Also, the structure of the laminated rubber portion 43, for example, the number of laminated steel plates and rubber sheets, the material of the steel plates and rubber sheets, etc. may be any.

ここで、上部プレート42と、上部基台31との間には上下方向に間隙が形成され、この間隙には、軸力導入部材50が着脱可能とされている。   Here, a gap is formed in the vertical direction between the upper plate 42 and the upper base 31, and the axial force introducing member 50 can be attached to and detached from this gap.

軸力導入部材50は、上面に傾斜面(第二傾斜面)51aを有した下部クサビ部材51と、下部クサビ部材51の傾斜面51aに突き合わされて対向する傾斜面(第一傾斜面)52aを下面に有した上部クサビ部材52と、下部クサビ部材51と上部クサビ部材52とを傾斜面51a,52aに沿って相対的にスライドさせる駆動機構(高さ調整機構)53と、を備えている。   The axial force introducing member 50 has a lower wedge member 51 having an inclined surface (second inclined surface) 51a on the upper surface, and an inclined surface (first inclined surface) 52a that is opposed to the inclined surface 51a of the lower wedge member 51. And a driving mechanism (height adjustment mechanism) 53 that slides the lower wedge member 51 and the upper wedge member 52 relative to each other along the inclined surfaces 51a and 52a. .

下部クサビ部材51は、下面51bが上部プレート42上に載置される平面とされ、上面の傾斜面51aが、水平面(下面51b)に対して例えば1/25程度の傾斜(2.3°)とされた、断面台形状をなしている。   The lower wedge member 51 is a plane on which the lower surface 51b is placed on the upper plate 42, and the inclined surface 51a of the upper surface is inclined by about 1/25 (2.3 °) with respect to the horizontal surface (lower surface 51b). It has a trapezoidal cross section.

上部クサビ部材52も、上面52bが上部基台31の下面31aに沿う平面とされ、下面の傾斜面52aが水平面(上面52b)に対して、例えば1/25程度の傾斜(2.3°)とされた、断面台形状をなしている。   The upper wedge member 52 also has an upper surface 52b which is a flat surface along the lower surface 31a of the upper base 31, and the inclined surface 52a of the lower surface is inclined by about 1/25 with respect to the horizontal surface (upper surface 52b) (2.3 °) It has a trapezoidal cross section.

これら下部クサビ部材51と上部クサビ部材52は、免震装置本体45の中心Cを挟んだ一方の側と他方の側から、下面51bおよび上面52bを上部プレート42および上部基台31の下面31aに沿わせた状態で挿入され、傾斜面51aと傾斜面52aとを突き合わせている。   The lower wedge member 51 and the upper wedge member 52 are arranged such that the lower surface 51b and the upper surface 52b are connected to the upper plate 42 and the lower surface 31a of the upper base 31 from one side and the other side across the center C of the seismic isolation device main body 45. The inclined surface 51a and the inclined surface 52a are brought into contact with each other.

図2、図3、図4に示すように、駆動機構53は、例えば、下部クサビ部材51と上部クサビ部材52とを、横方方向に貫通するネジ棒53aと、下部クサビ部材51および上部クサビ部材52の側面に設けられ、ネジ棒53aに螺着された雌ネジ部材53b,53cと、からなる。   As shown in FIGS. 2, 3, and 4, the drive mechanism 53 includes, for example, a screw rod 53 a that penetrates the lower wedge member 51 and the upper wedge member 52 in the lateral direction, the lower wedge member 51, and the upper wedge member. It comprises female screw members 53b and 53c provided on the side surface of the member 52 and screwed to the screw rod 53a.

図4(a)〜(c)に示すように、この駆動機構53においては、雌ネジ部材53b、53cを回転させて、雌ネジ部材53b、53cどうしを接近させることによって、ネジ棒53aに張力を導入し、これによって、下部クサビ部材51と上部クサビ部材とを水平方向に押圧する。すると、下部クサビ部材51と上部クサビ部材とは、傾斜面51a,52aに沿ってスライドするため、これによって、下部クサビ部材51と上部クサビ部材52が重なった状態での高さが変化する。例えば、傾斜面51a,52aの傾斜が、前記に例示したように1/25程度(2.3°)である場合、図4(a)に示した状態から、図4(b)に示した状態を経て、雌ネジ部材53b、53cどうしの間隔を200mm接近させ、図4(c)に示した状態とすると、下部クサビ部材51と上部クサビ部材52とが重なった軸力導入部材50の高さが10mm増加する。   As shown in FIGS. 4A to 4C, in the drive mechanism 53, the female screw members 53b and 53c are rotated to bring the female screw members 53b and 53c closer to each other, whereby tension is applied to the screw rod 53a. Thus, the lower wedge member 51 and the upper wedge member are pressed in the horizontal direction. Then, since the lower wedge member 51 and the upper wedge member slide along the inclined surfaces 51a and 52a, the height in a state where the lower wedge member 51 and the upper wedge member 52 overlap with each other changes. For example, when the inclination of the inclined surfaces 51a and 52a is about 1/25 (2.3 °) as illustrated above, the state shown in FIG. 4 (a) is changed to that shown in FIG. 4 (b). After the state, when the interval between the female screw members 53b and 53c is brought close to 200 mm and the state shown in FIG. 4C is obtained, the height of the axial force introducing member 50 in which the lower wedge member 51 and the upper wedge member 52 overlap each other is increased. Increases by 10 mm.

このようにして、軸力導入部材50は、下部クサビ部材51と上部クサビ部材52により、上部基台31と上部プレート42との間で上下方向に突っ張る方向の力を付与することができ、これによって、積層ゴム部43に導入する軸力を調整できるようになっている。   In this way, the axial force introducing member 50 can apply a force in the direction of vertically stretching between the upper base 31 and the upper plate 42 by the lower wedge member 51 and the upper wedge member 52. Thus, the axial force introduced into the laminated rubber portion 43 can be adjusted.

図2、図3に示すように、このような免震装置40は、下部プレート41および上部プレート42の外周部には、積層ゴム部43よりも外周側に、周方向に間隔を隔てて複数の貫通孔41a,42aが形成されている。   As shown in FIGS. 2 and 3, the seismic isolation device 40 includes a plurality of seismic isolation devices 40 on the outer peripheral portions of the lower plate 41 and the upper plate 42 on the outer peripheral side with respect to the laminated rubber portion 43 at intervals in the circumferential direction. Through-holes 41a and 42a are formed.

また、下部クサビ部材51,上部クサビ部材52には、上部プレート42の貫通孔42aに対向するよう、複数の固定ボルト60を貫通させるための複数の貫通孔51h、52hが、周方向に間隔を隔てて円周状に配置されている。ここで、各貫通孔51h、52hは、それぞれ、下部クサビ部材51,上部クサビ部材52のスライドを許容するよう、スライド方向を長軸とする断面長円形状に形成しておくのが好ましい。   Further, the lower wedge member 51 and the upper wedge member 52 are provided with a plurality of through holes 51h and 52h for allowing the plurality of fixing bolts 60 to pass therethrough so as to face the through holes 42a of the upper plate 42. They are arranged circumferentially apart. Here, each of the through holes 51h and 52h is preferably formed to have an elliptical cross section with the sliding direction as the long axis so as to allow the lower wedge member 51 and the upper wedge member 52 to slide.

そして、下部プレート41は、各貫通孔41aに固定ボルト61を貫通させ、その先端部がアンカーボルト23に連結される。これによって、免震装置本体45が下部基台32に固定されている。   The lower plate 41 passes through the fixing bolts 61 in the respective through holes 41 a, and the front ends thereof are connected to the anchor bolts 23. Thereby, the seismic isolation device main body 45 is fixed to the lower base 32.

また、上部プレート42,下部クサビ部材51,上部クサビ部材52には、各貫通孔42a,51h,52hに固定ボルト60が貫通され、その先端部がアンカーボルト33に連結可能とされている。これによって、軸力導入部材50を設置した場合には、下部クサビ部材51,上部クサビ部材52、上部プレート42が上部基台31に固定されるようになっている。   The upper plate 42, the lower wedge member 51, and the upper wedge member 52 have a fixing bolt 60 penetrating through the through holes 42a, 51h, and 52h, and their tip portions can be connected to the anchor bolt 33. Thus, when the axial force introducing member 50 is installed, the lower wedge member 51, the upper wedge member 52, and the upper plate 42 are fixed to the upper base 31.

次に、上記したような免震装置40を用いた免震構造物10における免震性能能調整方法について説明する。   Next, a method for adjusting seismic isolation performance in the seismic isolation structure 10 using the seismic isolation device 40 as described above will be described.

免震構造物10においては、当初、免震装置40は、図5に示すように、上部基台31と免震装置本体45の上部プレート42との間に、軸力導入部材50を設置せず、間隙を隔てた状態としておく。また、図6(a)に示すように、軸力導入部材50は、上部プレート42上に設置しておきながら、下部クサビ部材51と上部クサビ部材52との重なりが小さくなるようにして、上部クサビ部材52の上面52bと上部基台31との間に間隙が形成されるようにしてもよい。このようにして、免震装置本体45への軸力の伝達が遮断された状態とされている。   In the seismic isolation structure 10, initially, the seismic isolation device 40 has an axial force introduction member 50 installed between the upper base 31 and the upper plate 42 of the seismic isolation device main body 45 as shown in FIG. 5. Instead, the gap is separated. Further, as shown in FIG. 6A, the axial force introducing member 50 is installed on the upper plate 42 while the overlap between the lower wedge member 51 and the upper wedge member 52 is reduced. A gap may be formed between the upper surface 52 b of the wedge member 52 and the upper base 31. In this way, the transmission of the axial force to the seismic isolation device main body 45 is blocked.

なおこのとき、免震装置本体45は、免震構造物10の供用中に、建物本体30内に収容する収容物100の収容量の大きな増減が予測される位置に配置しておくのが好ましい。また、図1に示したように、免震装置本体45が設置されている場所以外の部位には、基礎20と建物本体30との間に、通常の積層ゴム等の免震装置70を設置しておく。   At this time, it is preferable that the seismic isolation device main body 45 be arranged at a position where a large increase or decrease in the amount of the accommodation 100 accommodated in the building main body 30 is predicted during the use of the seismic isolation structure 10. . In addition, as shown in FIG. 1, an ordinary seismic isolation device 70 such as a laminated rubber is installed between the foundation 20 and the building main body 30 in a portion other than the place where the seismic isolation device main body 45 is installed. Keep it.

その後、建物本体30において、免震装置本体45が設置された部位の上方部分における収容物100の重量が大幅に増加等した場合、軸力導入部材50により軸力を導入する。これには、その時点で、図5に示すように、上部基台31と上部プレート42との間に軸力導入部材50が設置されていなければ、図6(a)に示すように、軸力導入部材50を設置する。   Thereafter, in the building main body 30, when the weight of the storage object 100 in the upper portion of the part where the seismic isolation device main body 45 is installed is significantly increased, the axial force is introduced by the axial force introducing member 50. If the axial force introduction member 50 is not installed between the upper base 31 and the upper plate 42 as shown in FIG. 5 at this time, the shaft as shown in FIG. The force introducing member 50 is installed.

そして、駆動機構53においては、雌ネジ部材53b、53cを回転させることによって、ネジ棒53aに張力を導入し、これによって、下部クサビ部材51と上部クサビ部材52とを、その重なり量が多くなる方向にスライドさせる。すると、図2または図6(b)に示すように、下部クサビ部材51と上部クサビ部材52とが重なった状態での軸力導入部材50の高さが増大する。   In the drive mechanism 53, tension is introduced into the screw rod 53a by rotating the female screw members 53b and 53c, whereby the overlapping amount between the lower wedge member 51 and the upper wedge member 52 increases. Slide in the direction. Then, as shown in FIG. 2 or FIG. 6B, the height of the axial force introducing member 50 in a state where the lower wedge member 51 and the upper wedge member 52 overlap each other increases.

そして、上部クサビ部材52の上面52bを上部基台31に突き当て、さらに下部クサビ部材51と上部クサビ部材52とが重なった状態での高さを増大させることで、上部基台31と上部プレート42との間で上下方向に突っ張る方向の力を付与することができる。これによって、免震装置本体45に導入する軸力を調整する。導入する軸力の調整度合いは、積層ゴム部43のゴムシートのつぶれ具合によって把握することができ、したがって、収容物100の重量によって、図2に示すように、下部クサビ部材51と上部クサビ部材52とが完全に重なり、軸力導入部材50が最大限の高さとされることもあれば、図6(b)に示すように、下部クサビ部材51と上部クサビ部材52とが完全には重ならず、軸力導入部材50の高さが、最大限の高さ未満とされることもある。   Then, the upper base member 31 and the upper plate are formed by abutting the upper surface 52b of the upper wedge member 52 against the upper base 31 and further increasing the height in a state where the lower wedge member 51 and the upper wedge member 52 overlap each other. A force in the direction of stretching in the vertical direction can be applied to the surface 42. Thereby, the axial force introduced into the seismic isolation device main body 45 is adjusted. The degree of adjustment of the axial force to be introduced can be grasped by the degree of collapse of the rubber sheet of the laminated rubber portion 43. Therefore, as shown in FIG. 2, the lower wedge member 51 and the upper wedge member depend on the weight of the container 100. 52 and the axial force introduction member 50 may be at the maximum height. As shown in FIG. 6B, the lower wedge member 51 and the upper wedge member 52 are completely overlapped with each other. Instead, the height of the axial force introducing member 50 may be less than the maximum height.

軸力の調整後には、雌ネジ部材53b、53cを締め込むことによって、下部クサビ部材51と上部クサビ部材52との相対的な移動を拘束するとともに、下部クサビ部材51,上部クサビ部材52に複数の固定ボルト60を貫通させ、その先端部をアンカーボルト33に連結する。これによって、下部クサビ部材51,上部クサビ部材52、上部プレート42が上部基台31に固定される。   After adjusting the axial force, the female screw members 53b and 53c are tightened to restrain the relative movement between the lower wedge member 51 and the upper wedge member 52, and a plurality of lower wedge members 51 and upper wedge members 52 are attached to the lower wedge member 51 and the upper wedge member 52. The fixing bolt 60 is penetrated, and the tip portion thereof is connected to the anchor bolt 33. As a result, the lower wedge member 51, the upper wedge member 52, and the upper plate 42 are fixed to the upper base 31.

このようにして、免震装置本体45による免震効果が発揮できる状態とする。
これにより、収容物100の重量が増加した場合にも、免震効果を建物本体30の全体でバランスよく導入することができる。
In this way, the seismic isolation effect by the seismic isolation device main body 45 can be achieved.
Thereby, even when the weight of the stored item 100 increases, the seismic isolation effect can be introduced in a well-balanced manner in the entire building body 30.

また、その後に、例えば収容物100が撤去される等して、その重量が大幅に減少した場合には、以下のように軸力導入部材50を操作する。   Further, after that, for example, when the weight of the container 100 is removed and the weight thereof is significantly reduced, the axial force introducing member 50 is operated as follows.

すなわち、図7に示すように、下部基台21,上部基台31の貫通孔22、32にそれぞれネジ棒62を挿通させる。そして、上下のネジ棒62,62に、上下方向に延在する反力フレーム63を挿入し、固定ナット64をネジ棒62にねじ込むことで反力フレーム63を固定する。   That is, as shown in FIG. 7, the screw rods 62 are inserted through the through holes 22 and 32 of the lower base 21 and the upper base 31, respectively. Then, the reaction force frame 63 extending in the vertical direction is inserted into the upper and lower screw rods 62 and 62, and the reaction force frame 63 is fixed by screwing the fixing nut 64 into the screw rod 62.

次いで、反力フレーム63に形成されたネジ孔にボルト65をねじ込み、その先端部で上部クサビ部材52を押圧する。これによって、下部クサビ部材51に対して上部クサビ部材52をスライドさせて、下部クサビ部材51と上部クサビ部材52の重なり高さを小さくし、上部クサビ部材52と上部基台31とを切り離す。
これによって、この免震装置本体45への建物本体30からの軸力の導入が解放される。
Next, the bolt 65 is screwed into the screw hole formed in the reaction force frame 63, and the upper wedge member 52 is pressed by the tip portion. Accordingly, the upper wedge member 52 is slid with respect to the lower wedge member 51 to reduce the overlapping height of the lower wedge member 51 and the upper wedge member 52, and the upper wedge member 52 and the upper base 31 are separated.
Thereby, the introduction of the axial force from the building body 30 to the seismic isolation device body 45 is released.

なお、収容物100の重量が減少した場合、上記のように、軸力導入部材50を撤去するのではなく、上記と同様にボルト65によって上部クサビ部材52を押圧して、下部クサビ部材51と上部クサビ部材52との重なり具合を小さくして、軸力導入部材50を低くし、免震装置本体45に導入される軸力を減少させるようにしてもよい。   When the weight of the container 100 decreases, the axial force introduction member 50 is not removed as described above, but the upper wedge member 52 is pressed by the bolt 65 in the same manner as described above, and the lower wedge member 51 and You may make it reduce the axial force introduced into the seismic isolation apparatus main body 45 by making the overlap state with the upper wedge member 52 small, the axial force introduction member 50 low.

上述したようにして、傾斜面51a,52aどうしを突き合わせた下部クサビ部材51と上部クサビ部材52とをスライドさせることによって、軸力導入部材50の高さを変動させて、免震装置本体45への建物本体30からの軸力の導入がON/OFFできるようにした。これにより、免震装置本体45の上方における収容物100による荷重が大幅に増大した場合等においては、収容物100の荷重に対応する軸力を積層ゴム部43に導入して免震装置本体45を有効に機能させて免震効果を発揮させることができる。したがって、免震装置40に導入される軸力を調整することで、地震発生時に免震構造物10の全体にねじれ振動が発生するのを抑えることもできる。
このようにして、収容物の重量が大きく変動した場合においても、十分な免震性能を発揮することが可能となる。
As described above, the height of the axial force introducing member 50 is changed by sliding the lower wedge member 51 and the upper wedge member 52 that face each other between the inclined surfaces 51a and 52a, and the seismic isolation device main body 45 is moved. The axial force from the building body 30 can be turned on / off. Thereby, in the case where the load due to the stored object 100 above the seismic isolation device main body 45 is significantly increased, an axial force corresponding to the load of the stored object 100 is introduced into the laminated rubber portion 43 and the seismic isolation device main body 45. Can function effectively and exhibit the seismic isolation effect. Therefore, by adjusting the axial force introduced into the seismic isolation device 40, it is possible to suppress the occurrence of torsional vibrations throughout the seismic isolation structure 10 when an earthquake occurs.
In this way, sufficient seismic isolation performance can be exhibited even when the weight of the stored item varies greatly.

(その他の実施形態)
なお、本発明は、図面を参照して説明した上述の各実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
(Other embodiments)
The present invention is not limited to the above-described embodiments described with reference to the drawings, and various modifications are conceivable within the technical scope thereof.

例えば、駆動機構53は、例えば油圧シリンダ等によって下部クサビ部材51,上部クサビ部材52を水平方向に相対的にスライドさせるようにしてもよい。
また、軸力導入部材50を、上部プレート42と上部基台31との間に配置する構成としたが、これに限るものではなく、軸力導入部材50を常設するのであれば、下部プレート41と下部基台21との間に軸力導入部材50を配置してもよい。
For example, the drive mechanism 53 may be configured to relatively slide the lower wedge member 51 and the upper wedge member 52 in the horizontal direction using, for example, a hydraulic cylinder.
In addition, the axial force introducing member 50 is arranged between the upper plate 42 and the upper base 31, but the present invention is not limited to this. If the axial force introducing member 50 is permanently installed, the lower plate 41 is used. An axial force introduction member 50 may be disposed between the lower base 21 and the lower base 21.

さらに、上記したような免震装置本体45は、基礎20と建物本体30との間に限らず、建物本体30の中間階に設置するようにしてもよい。その場合も、下部構造と上部構造との間に上記と同様にして免震装置本体45を設置すればよい。   Furthermore, the seismic isolation device main body 45 as described above may be installed not only between the foundation 20 and the building main body 30 but also on an intermediate floor of the building main body 30. In this case, the seismic isolation device main body 45 may be installed between the lower structure and the upper structure in the same manner as described above.

さらに、上記実施形態では、通常の免震装置70を基礎20と建物本体30との間に設けておき、軸力導入部材50を未設置とすることで免震装置本体45を建物本体30から切り離しておく構成としたが、これに限るものではない。例えば、免震装置70を設けずに、複数の免震装置40によって建物本体30を支持、つまり基礎20と建物本体30との間に、複数組の免震装置本体45と軸力導入部材50とを設けておいてもよい。この場合、各免震装置40においては、収容物100の重量変化に応じて、軸力導入部材50の下部クサビ部材51と上部クサビ部材52との重なり具合を調整することによって、免震装置本体45に導入される軸力を調整する。   Furthermore, in the said embodiment, the normal seismic isolation apparatus 70 was provided between the foundation 20 and the building main body 30, and the seismic isolation apparatus main body 45 was removed from the building main body 30 by not installing the axial force introduction member 50. Although it was set as the structure separated, it is not restricted to this. For example, the building main body 30 is supported by the plurality of seismic isolation devices 40 without providing the seismic isolation device 70, that is, a plurality of sets of seismic isolation device main bodies 45 and axial force introducing members 50 are provided between the foundation 20 and the building main body 30. And may be provided. In this case, each seismic isolation device 40 adjusts the overlapping state of the lower wedge member 51 and the upper wedge member 52 of the axial force introducing member 50 in accordance with the change in the weight of the stored item 100, thereby separating the seismic isolation device main body. The axial force introduced into 45 is adjusted.

これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。   In addition to this, as long as it does not depart from the gist of the present invention, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

10 免震構造物
20 基礎
21 下部基台
22,32 貫通孔
23,33 アンカーボルト
24,34 凹部
30 建物本体
31 上部基台
33 アンカーボルト
40 免震装置
41 下部プレート
42 上部プレート
43 積層ゴム部
43a 鋼板
43b ゴムシート
44 プラグ
45 免震装置本体
50 軸力導入部材
51 下部クサビ部材
51a 傾斜面(第二傾斜面)
52 上部クサビ部材
52a 傾斜面(第一傾斜面)
53 駆動機構(高さ調整機構)
53a ネジ棒
53b,53c 雌ネジ部材
DESCRIPTION OF SYMBOLS 10 Base isolation structure 20 Base 21 Lower base 22, 32 Through-hole 23, 33 Anchor bolt 24, 34 Recess 30 Building main body 31 Upper base 33 Anchor bolt 40 Base isolation device 41 Lower plate 42 Upper plate 43 Laminated rubber part 43a Steel plate 43b Rubber sheet 44 Plug 45 Seismic isolation device body 50 Axial force introducing member 51 Lower wedge member 51a Inclined surface (second inclined surface)
52 Upper wedge member 52a Inclined surface (first inclined surface)
53 Drive mechanism (height adjustment mechanism)
53a Screw rod 53b, 53c Female thread member

Claims (4)

構造物を構成する下部構造と上部構造との間に配置され、前記下部構造と前記上部構造の水平面内における相対変位を減衰する免震装置本体と、
前記免震装置本体と前記下部構造または前記上部構造との間に着脱可能に設けられ、高さが調整可能とされた軸力導入部材と、を備え、
前記軸力導入部材は、
水平面に対して傾斜した第一傾斜面を有する上部クサビ部材と、
前記上部クサビ部材の下方に配置され、前記第一傾斜面に突き合わされる第二傾斜面を有する下部クサビ部材と、
前記上部クサビ部材と前記下部クサビ部材とを、前記第一傾斜面および前記第二傾斜面に沿ってスライドさせることによって該軸力導入部材の高さを調整可能とする高さ調整機構と、を備え、
前記高さ調整機構は、
前記上部クサビ部材及び前記下部クサビ部材を横方向に貫通する一のネジ棒と
前記ネジ棒に回転可能に螺着された一対の雌ネジ部材と、を有し、
前記一対の雌ネジ部材は、前記上部クサビ部材の側面及び前記下部クサビ部材の側面に沿って配置されるとともに前記ネジ棒に螺着され、
前記雌ネジ部材が前記上部クサビ部材の側面及び前記下部クサビ部材の側面に当接するまで締め込まれることで、前記上部クサビ部材と前記下部クサビ部材との相対的な移動が拘束されるように構成されていることを特徴とする免震装置。
A seismic isolation device body that is disposed between a lower structure and an upper structure constituting the structure and attenuates relative displacement in a horizontal plane of the lower structure and the upper structure;
An axial force introduction member provided detachably between the seismic isolation device main body and the lower structure or the upper structure, the height of which is adjustable;
The axial force introducing member is
An upper wedge member having a first inclined surface inclined with respect to a horizontal plane;
A lower wedge member disposed below the upper wedge member and having a second inclined surface that is abutted against the first inclined surface;
A height adjusting mechanism that allows the height of the axial force introducing member to be adjusted by sliding the upper wedge member and the lower wedge member along the first inclined surface and the second inclined surface; Prepared,
The height adjustment mechanism is
One screw rod penetrating the upper wedge member and the lower wedge member laterally ;
Have a, a pair of female screw member rotatably screwed into said threaded rod,
The pair of female screw members are disposed along the side surface of the upper wedge member and the side surface of the lower wedge member and screwed to the screw rod,
The relative movement between the upper wedge member and the lower wedge member is constrained by being tightened until the female screw member comes into contact with the side surface of the upper wedge member and the side surface of the lower wedge member. seismic Isolation device characterized in that it is.
前記下部構造と、
前記下部構造の上方に設けられた前記上部構造と、
請求項1に記載の免震装置と、を備えていることを特徴とする免震構造物。
The substructure;
The upper structure provided above the lower structure;
A seismic isolation structure comprising the seismic isolation device according to claim 1.
前記軸力導入部材は、
前記免震装置本体と前記上部構造との間に間隙を隔てて前記免震装置本体と前記上部構造との間における軸力の伝達を遮断した状態と、
前記軸力導入部材の高さを増大させて前記免震装置本体または前記軸力導入部材を前記上部構造に突き当てて、前記免震装置本体と前記上部構造との間で軸力が伝達される状態と、を切り替え可能とされていることを特徴とする請求項2に記載の免震構造物。
The axial force introducing member is
A state in which transmission of axial force between the base isolation device main body and the upper structure is interrupted with a gap between the base isolation device main body and the upper structure;
The axial force is transmitted between the seismic isolation device main body and the upper structure by increasing the height of the axial force introducing member and abutting the seismic isolation device main body or the axial force introducing member against the upper structure. The seismic isolation structure according to claim 2, wherein the seismic isolation structure is switchable.
請求項2または3に記載の免震構造物における免震性能の調整方法であって、
前記免震装置本体と前記上部構造との間に間隙を隔てて前記免震装置本体と前記上部構造との間における軸力の伝達を遮断しておき、
前記上部構造において前記免震装置本体の上方における荷重が増えた場合に、前記軸力導入部材の高さを増大させて前記免震装置本体または前記軸力導入部材を前記上部構造に突き当てて、前記免震装置本体と前記上部構造との間で軸力を伝達させることを特徴とする免震構造物における免震性能の調整方法。
A method for adjusting seismic isolation performance in a seismic isolation structure according to claim 2 or 3,
The transmission of the axial force between the seismic isolation device main body and the upper structure is interrupted with a gap between the seismic isolation device main body and the upper structure,
In the upper structure, when the load above the seismic isolation device main body increases, the height of the axial force introducing member is increased so that the seismic isolation device main body or the axial force introducing member abuts the upper structure. A method for adjusting seismic isolation performance in a seismic isolation structure, wherein axial force is transmitted between the seismic isolation device main body and the upper structure.
JP2013095803A 2013-04-30 2013-04-30 Seismic isolation devices, seismic isolation structures, and methods for adjusting seismic isolation performance in seismic isolation structures Active JP6213763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095803A JP6213763B2 (en) 2013-04-30 2013-04-30 Seismic isolation devices, seismic isolation structures, and methods for adjusting seismic isolation performance in seismic isolation structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095803A JP6213763B2 (en) 2013-04-30 2013-04-30 Seismic isolation devices, seismic isolation structures, and methods for adjusting seismic isolation performance in seismic isolation structures

Publications (2)

Publication Number Publication Date
JP2014214867A JP2014214867A (en) 2014-11-17
JP6213763B2 true JP6213763B2 (en) 2017-10-18

Family

ID=51940826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095803A Active JP6213763B2 (en) 2013-04-30 2013-04-30 Seismic isolation devices, seismic isolation structures, and methods for adjusting seismic isolation performance in seismic isolation structures

Country Status (1)

Country Link
JP (1) JP6213763B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147941A (en) * 1980-04-21 1981-11-17 Masao Akimoto Adjusting device for spring supporter
DE3200816C2 (en) * 1982-01-11 1987-01-15 Gerb Gesellschaft für Isolierung mbH & Co KG, 1000 Berlin Elastic bearing element for a flexible foundation slab
JP2001271868A (en) * 2000-03-24 2001-10-05 Canon Inc Vibration damping device

Also Published As

Publication number Publication date
JP2014214867A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
US11555324B2 (en) Sliding seismic isolator
CN108166380B (en) Hexagon damping device for arch bridge
JP2017503943A (en) Elastic bearing
JP5648821B2 (en) Vibration control mechanism
JP2011256695A (en) Column capital base isolation structure
JP6213763B2 (en) Seismic isolation devices, seismic isolation structures, and methods for adjusting seismic isolation performance in seismic isolation structures
JP2006233488A (en) Seismic response control column base structure and seismic response control structure using this structure
JP4446491B1 (en) Seismic isolation ball bearing device
KR20100086185A (en) Joining construction for pillar and beam of prestressed concrete structure
JPH10184094A (en) Damping mechanism, vibration isolation structure using the damping mechanism, and damping device
JP5363964B2 (en) Seismic isolation device
JP6662514B2 (en) Seismic isolation free access floor
KR20090093233A (en) Damping apparatus for structure
JP2006063766A (en) Building earthquake-proof repairing structure and its method
JP3109877U (en) Base isolation structure
JP6181894B1 (en) Axial force introducing device for seismic retrofitting frame
JP3800339B2 (en) Seismic isolation structure of building
JP2017125519A (en) Dynamic vibration reducer and floor
JP6123014B1 (en) Energy absorption type bearing
JP2006265893A (en) Foundation structure
JP2004316420A (en) Base-isolated structure
JP6379608B2 (en) Damping building and building damping method
JP3184516U (en) Seismic isolation device for building earthquake resistance
JP2016084697A (en) Base-isolation structure for house, and wooden base-isolated house provided with the same
JP2007239967A (en) Vibration control device, unit building and building using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R150 Certificate of patent or registration of utility model

Ref document number: 6213763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150