JP6210491B2 - Intra-liquid transfer device - Google Patents

Intra-liquid transfer device Download PDF

Info

Publication number
JP6210491B2
JP6210491B2 JP2013273779A JP2013273779A JP6210491B2 JP 6210491 B2 JP6210491 B2 JP 6210491B2 JP 2013273779 A JP2013273779 A JP 2013273779A JP 2013273779 A JP2013273779 A JP 2013273779A JP 6210491 B2 JP6210491 B2 JP 6210491B2
Authority
JP
Japan
Prior art keywords
housing
vibration
elastic plate
swimming
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013273779A
Other languages
Japanese (ja)
Other versions
JP2015116453A (en
Inventor
直行 武居
直行 武居
三喜郎 長澤
三喜郎 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2013273779A priority Critical patent/JP6210491B2/en
Publication of JP2015116453A publication Critical patent/JP2015116453A/en
Application granted granted Critical
Publication of JP6210491B2 publication Critical patent/JP6210491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Endoscopes (AREA)

Description

本発明は、液体内移動装置に関する。特に、本発明は、加振力を利用する液体内移動装置に関する。  The present invention relates to an in-liquid transfer device. In particular, the present invention relates to an in-liquid moving device that uses an excitation force.

従来、ヒレ部と、生体内を泳動する生体内泳動装置における本体部に、ヒレ部を可動に接続する関節部とを備え、関節部が振動することによって生じるヒレ部の振動で、生体内泳動装置を泳動させる生体内泳動装置用ヒレであって、ヒレ部は、関節部よりもヤング率の大きい、または、曲げ剛性の高い物質からなる生体内泳動装置用ヒレが知られている(例えば、特許文献1参照。)。特許文献1に記載の生体内泳動装置用ヒレによれば、生体内泳動装置用ヒレの小型化を実現することができる。  Conventionally, a fin part and a body part in an in-vivo electrophoresis apparatus that migrates in the living body are provided with a joint part that movably connects the fin part. A fin for an in vivo electrophoretic apparatus for migrating an apparatus, wherein the fin portion is made of a substance having a Young's modulus greater than a joint portion or a high bending rigidity (for example, (See Patent Document 1). According to the fin for an in vivo electrophoresis device described in Patent Document 1, it is possible to reduce the size of the fin for an in vivo electrophoresis device.

特開2008−279019号公報JP 2008-279019 A

しかしながら、特許文献1に記載の生体内泳動装置用ヒレは、外部磁場によりヒレを駆動しているので、外部磁場を用いることができる環境下での利用に特化される。  However, the fin for an in vivo electrophoresis apparatus described in Patent Document 1 is specialized for use in an environment where an external magnetic field can be used because the fin is driven by an external magnetic field.

したがって、本発明の目的は、小型化が容易で様々な場所において用いることができる液体内移動装置を提供することにある。  Accordingly, an object of the present invention is to provide an in-liquid transfer device that can be easily miniaturized and can be used in various places.

本発明は、上記目的を達成するため、筐体と、筐体の外部に取り付けられる弾性板と、筐体内に設置され、筐体を振動させる振動部とを備え、筐体の重心位置と振動部の加振位置とが異なる液体内移動装置が提供される。  In order to achieve the above object, the present invention includes a housing, an elastic plate attached to the outside of the housing, and a vibration unit that is installed in the housing and vibrates the housing. There is provided an in-liquid moving device having a different excitation position.

また、上記液体内移動装置は、筐体の内部と弾性板とが隔離されていてもよい。
また、弾性板は筐体側の幅が大きく、筐体と反対側の先端の幅が小さくてもよい。
更に、弾性板は2つ以上取り付けられていてもよい。そして、振動部は2つ以上のモータから構成されていてもよい。
In the in-liquid moving device, the inside of the housing and the elastic plate may be isolated from each other.
The elastic plate may have a large width on the housing side and a small width on the tip opposite to the housing.
Furthermore, two or more elastic plates may be attached. And the vibration part may be comprised from two or more motors.

本発明に係る液体内移動装置によれば、小型化が容易で様々な場所において用いることができる液体内移動装置を提供できる。  According to the in-liquid transfer device of the present invention, it is possible to provide an in-liquid transfer device that can be easily downsized and used in various places.

推進原理の図である。It is a figure of a propulsion principle. 試作機の図である。It is a figure of a prototype. 製作した実験機の図である。It is the figure of the manufactured experimental machine. 加振位置を示す図である。It is a figure which shows an excitation position. 旋回機能を有する小型遊泳ロボットの図である。It is a figure of the small swimming robot which has a turning function.

以下、本発明の実施の形態について説明する。  Embodiments of the present invention will be described below.

近年では水中での活動を目的としたロボットの研究が数多く行われ、人の手が届きにくい水中での探索や作業などに期待されている。推進機に焦点を当てるとプロペラスクリューが主流な一方で、静粛性や効率が優れている等の理由から、魚のひれによる泳ぎを利用したものに関する研究がなされており、水中での移動手段として注目を集めている。特に水道管のような狭所水中での移動が可能なmmスケールでの小型ロボットを設計する場合には、サーボモータなど一般にひれ推進で用いられるアクチュエータを使用することは難しく、また小型化のためできるだけ単純な構造であることが望ましい。  In recent years, a lot of research on robots aimed at underwater activities has been conducted, and it is expected to be underwater search and work that is difficult to reach by human hands. Focusing on propulsion devices, propeller screws are the mainstream, but due to reasons such as quietness and efficiency, research on swimming using fish fins has been conducted, and it has attracted attention as a means of transportation underwater. Collecting. In particular, when designing a small robot on the mm scale that can move in confined water such as a water pipe, it is difficult to use actuators that are generally used for fin propulsion, such as servo motors, and for miniaturization. It is desirable that the structure be as simple as possible.

そこで本実施形態では振動モータをロボット筐体内に内蔵し、その振動による慣性力を水中での推進力として利用したひれ付き小型推進機を考案した。駆動部を筐体内にすべて内蔵するため防水設計が容易で、また筐体やひれなどの外装形状やモータ振動数によって推進力が変化する特徴がある。本実施形態ではその原理を示し、基本特性を実験により検証した。  Therefore, in this embodiment, a small-sized propulsion device with a fin is devised in which a vibration motor is built in a robot casing and the inertia force generated by the vibration is used as a propulsive force in water. Since the drive unit is all built into the housing, waterproof design is easy, and the propulsive force varies depending on the exterior shape of the housing and fins and the motor frequency. In this embodiment, the principle is shown and the basic characteristics are verified by experiment.

機構の推進原理の概要を図1に示す。ロボットの筐体内に振動モータを内蔵し、外装後部にはプラスチック板などの弾性板を尾ひれ部として取り付ける。モータで偏心したおもりを回転させ、ロボット自体を振動させるとその慣性力が尾ひれ部に伝播し、弾性板が揺動運動することで推進する原理となる。  An outline of the mechanism propulsion principle is shown in FIG. A vibration motor is built in the robot casing, and an elastic plate such as a plastic plate is attached as a tail fin at the rear of the exterior. When the eccentric weight is rotated by the motor and the robot itself is vibrated, the inertial force is transmitted to the tail fin portion, and the elastic plate swings and moves.

振動モータによる振動は偏重心を回転させた運動となるため、平面上の単純な往復運動にはならない。そこで我々はまず振動モータの回転軸が遊泳性能にあたえる影響を調べるため、発泡材に弾性板とモータを取り付けた単純な試作機を用いて実験機を製作する前の予備実験を行った。図2に示すようにモータの回転軸をx,y,zの3軸方向でそれぞれ取り付け(図2はx軸の例)、尾ひれであるプラスチック板の配置はxz平面上とする。これを水上で駆動させたところ,x,z軸中心の振動の場合に尾ひれを振るわせ直進遊泳したのに対して、回転軸がy軸方向に向く設置での振動では遊泳しなかった。  Since the vibration generated by the vibration motor is a motion obtained by rotating the eccentric gravity center, it is not a simple reciprocating motion on a plane. Therefore, in order to investigate the influence of the rotating shaft of the vibration motor on swimming performance, we conducted a preliminary experiment using a simple prototype with an elastic plate and a motor attached to a foam material before making the experimental device. As shown in FIG. 2, the motor rotation shafts are attached in the three axial directions of x, y, and z (FIG. 2 shows an example of the x axis), and the arrangement of the plastic plate as the tail fin is on the xz plane. When this was driven on the water, in the case of vibrations centered on the x and z axes, the tail fins were swung and swept straight, whereas in the installation with the rotation axis facing the y axis direction, it did not swim.

以上のことから振動モータの駆動によって引き起こされる揺動運動が弾性板に対して鉛直(y軸)の方向であるとき、振動が弾性振動板に伝わり推進し、振動モータの回転方向が遊泳性能に大きく影響を与えることが分かった。  From the above, when the swinging motion caused by the drive of the vibration motor is in the direction perpendicular to the elastic plate (y-axis), the vibration is transmitted to the elastic vibration plate and propelled, and the rotation direction of the vibration motor improves swimming performance. It turns out that it has a big influence.

次に振動モータの周波数やひれ形状等が推進力に与える影響を調べるため、実験機を製作した(図3)。図4に示すように、振動モータの加振位置を前後・中央で調節することができる。また、充電池と赤外線受信機を内蔵することで、送信機から受ける信号からPWM制御でモータ回転速度をワイヤレスで操作することができる。実際に水上で駆動してみると、尾ひれ形状が0.2mm厚、幅15mm、長さ10mmのプラスチック板を用い、振動モータによる加振位置を前方(または後方)に設置したところ、特定周波数で直進遊泳することが確認できた。  Next, in order to investigate the influence of the vibration motor frequency, fin shape, etc. on the propulsive force, an experimental machine was manufactured (Fig. 3). As shown in FIG. 4, the vibration position of the vibration motor can be adjusted in the front / rear / center. Further, by incorporating the rechargeable battery and the infrared receiver, the motor rotation speed can be operated wirelessly by PWM control from the signal received from the transmitter. When actually driving on the water, a plastic plate with a tail fin shape of 0.2 mm thickness, width 15 mm, and length 10 mm was used, and the excitation position by the vibration motor was set forward (or backward). It was confirmed that they would go straight ahead.

ここで加振位置を中央に設置した場合に泳がなかったのは、ロボット胴体の重心とモータ加振位置の関係が尾ひれを振る力に影響したからと考えられる。また、特定周波数で遊泳したのは尾ひれに用いた弾性素材を片持ち梁とみなしたときの固有振動数が影響していると考えられる。遊泳時の様子を高速度カメラで尾ひれを観察すると、先端部が比較的大きく振られているのを確認できた。  The reason why there was no swimming when the excitation position was set at the center is thought to be because the relationship between the center of gravity of the robot body and the motor excitation position affected the force of shaking the tail fin. In addition, swimming at a specific frequency is considered to be affected by the natural frequency when the elastic material used for the tail fin is regarded as a cantilever beam. When the tail fin was observed with a high-speed camera during swimming, it was confirmed that the tip was swung relatively large.

次に、振動モータの加振位置と胴体の重心位置が遊泳性能に与える影響を調べるため、簡単な検証を行った。重心位置は2gの重りを取り付けることで調整し、簡単のため重りとモータの各設置位置は前方、中央、後方の3段階として、各組み合わせで比較することで定性的な推進力の変化を調べる。弾性板は遊泳試験と同様、0.2mm厚の15mm×10mmのプラスチック板を尾ひれとして用い、遊泳時の様子を高速度カメラで記録することで遊泳速度と振動数を求めた。  Next, in order to investigate the influence of the vibration position of the vibration motor and the position of the center of gravity of the trunk on swimming performance, a simple verification was performed. The position of the center of gravity is adjusted by attaching a 2g weight. For simplicity, the weight and motor are installed in three stages: front, center, and rear, and the change in qualitative propulsive force is examined by comparing each combination. . Similar to the swimming test, the elastic plate was a 0.2 mm thick 15 mm × 10 mm plastic plate used as a tail fin, and the swimming state was recorded with a high-speed camera to obtain the swimming speed and frequency.

遊泳実験の結果を表1に示す。  The results of the swimming experiment are shown in Table 1.

枠内数値は遊泳速度であり括弧内は振動数を表す。重りと振動モータの位置によってはロボットのバランスが傾き、遊泳が不可能であったため表記していない。遊泳時のモータ振動数はいずれも約110Hzであり、その振動数付近を外れるとほとんど遊泳しなかった。加振位置に関してみると、中央設置の場合にはロボット全体が振動していてもほとんど直進遊泳することはなかった。また加振位置が後方のとき、重りを中央よりも前に取り付けた場合には速度が上昇した。一方で重りを取り付けなかった場合、胴体重心はほぼ中央であるが加振位置が後方、次いで前方設置のときに速く泳いだ。  The numerical value in the frame is the swimming speed, and the frequency in the parenthesis is the frequency. Depending on the position of the weight and vibration motor, the balance of the robot is tilted and swimming is impossible, so it is not shown. The motor frequency at the time of swimming was about 110 Hz, and when it deviated from the vicinity of the frequency, it hardly swam. As for the excitation position, in the case of the central installation, even if the entire robot vibrates, there was almost no straight swimming. In addition, when the vibration position was at the rear, the speed increased when the weight was attached in front of the center. On the other hand, when the weight was not attached, the center of gravity of the trunk was almost in the center, but it swam quickly when the excitation position was backward and then forward.

以上のことから、振動モータの設置位置による遊泳性能の変化は、尾ひれへのモータ振動力の伝わりやすさが影響していると考えられる。胴体重心まわりのモーメントは加振位置と重心位置の間隔が離れるほど大きくなる。すなわち、モータの加振位置を前方または後方に設置することで中央設置のときよりも大きな揺動運動が尾ひれに伝わり遊泳することができた。今回の遊泳実験から振動モータの設置位置や振動数等が推進力に与える影響の大まかな傾向を把握することができた。  From the above, it is considered that the change in swimming performance depending on the installation position of the vibration motor is influenced by the ease of transmission of the motor vibration force to the tail fin. The moment around the center of gravity of the trunk increases as the distance between the excitation position and the center of gravity position increases. In other words, by setting the motor excitation position forward or backward, a larger swinging motion was transmitted to the tail fin than when it was centrally installed, and it was possible to swim. From this swimming experiment, it was possible to grasp the general tendency of the influence of the installation position and frequency of the vibration motor on the driving force.

弾性平板である尾ひれには固有振動数があり、特定の振動数付近で推力を発生させることがわかっている。この特性を利用し、固有振動数の異なる弾性板を複数用いることで、振動数制御により異方向への操縦が可能になる。左右方向への旋回が可能なタイプの小型遊泳ロボットの外観と遊泳の様子を図5に示す。尾ひれに用いた厚みが異なる2枚の弾性板はそれぞれの固有振動数をもち、図のように互いに直交するよう取り付けた。振動モータは両方の尾ひれ面に対して鉛直方向に振動するよう設置している。印加電圧を変えることによって振動数を変化させ、1つのアクチュエータだけで左右の旋回が可能である。  It is known that the tail fin, which is an elastic flat plate, has a natural frequency and generates a thrust near a specific frequency. Utilizing this characteristic and using a plurality of elastic plates having different natural frequencies, it becomes possible to steer in different directions by controlling the frequency. FIG. 5 shows the appearance of a small swimming robot of the type that can turn in the left-right direction and the state of swimming. Two elastic plates having different thicknesses used for the tail fins have their respective natural frequencies and are attached so as to be orthogonal to each other as shown in the figure. The vibration motor is installed to vibrate in the vertical direction with respect to both tail fin surfaces. The frequency can be changed by changing the applied voltage, and left and right rotation is possible with only one actuator.

本実施形態では振動モータによって生じる慣性力を尾ひれに伝播させ、推進力として利用する小型水中移動機を考案した。モータによる加振位置や尾ひれ形状、振動数によって推進力は変化し、遊泳実験により以下の知見が得られた。  In the present embodiment, a small underwater mobile device has been devised that propagates the inertial force generated by the vibration motor to the tail fin and uses it as a propulsive force. The propulsive force varied depending on the motor excitation position, tail fin shape, and frequency, and the following knowledge was obtained through swimming experiments.

(1)振動モータの回転軸は、揺動運動が尾ひれの面に対して鉛直の方向に伝わるように設置することで推進力が得られる。
(2)振動モータの加振位置は胴体重心より離して設置することで、大きな揺動運動を生み、より効率的に推進力を得られる。
(3)弾性平板である尾ひれは固有振動数付近で振動させたとき推力を発生する。
(1) The propulsive force can be obtained by installing the rotating shaft of the vibration motor so that the swinging motion is transmitted in a direction perpendicular to the surface of the tail fin.
(2) By placing the vibration position of the vibration motor away from the center of gravity of the body, a large oscillating motion can be produced and a propulsive force can be obtained more efficiently.
(3) The tail fin, which is an elastic flat plate, generates thrust when vibrated in the vicinity of the natural frequency.

今回は簡単な条件で遊泳実験を行ったため、モータの加振位置や重心、振動数等が推進力に与える影響を大まかな傾向として捉えることはできた。  Since the swimming experiment was conducted under simple conditions this time, the influence of the motor's excitation position, center of gravity, and vibration frequency on the propulsive force could be grasped as a rough trend.

本実施の形態に係る液体内移動装置は、筺体内部と弾性板とを隔離できるので筺体を密封できる。これにより、液体内移動装置を水中で使用することができる。また、液体内移動装置は、例えば、筺体内部に撮像部を設けることができるので、液体内移動装置を生体内に導入することで生体内を撮影できる。また、本実施の形態に係る液体内移動装置をルアーとして用いることができる。たとえば、液体内移動装置内に振動部の動作を赤外線や無線等により遠隔操作する遠隔操作部を設け、振動部を遠隔操作することでルアーとしての液体内移動装置の移動を外部から制御できる。  Since the in-liquid moving device according to the present embodiment can isolate the inside of the housing from the elastic plate, the housing can be sealed. Thereby, the in-liquid moving apparatus can be used in water. Moreover, since the in-liquid moving apparatus can provide an imaging part inside a housing, for example, the inside of a living body can be imaged by introducing the in-liquid moving apparatus into the living body. Moreover, the in-liquid moving apparatus which concerns on this Embodiment can be used as a lure. For example, a remote control unit that remotely controls the operation of the vibration unit by infrared rays, wireless, or the like is provided in the liquid transfer device, and the movement of the liquid transfer device as a lure can be controlled from the outside by remotely operating the vibration unit.

さらに、本実施の形態に係る液体内移動装置は、筺体内にGPS装置を設けるか、又は筺体表面に識別マークを付することができる。これにより、複数の液体内移動装置を、例えば、川や湖若しくは海等に放流することで、自然環境の各種データを取得できる。  Furthermore, the in-liquid transfer device according to the present embodiment can be provided with a GPS device in the housing or can be provided with an identification mark on the surface of the housing. Thereby, various data of the natural environment can be acquired by discharging a plurality of in-liquid transfer devices to, for example, a river, a lake, or the sea.

弾性板平面の法線方向に加振力を加えることで、液体内移動装置の推進力が発生する。そして、筺体内部に振動部及び/又は錘を設け、振動部及び/又は錘を振動させることで、弾性板に「ひねり」の動きを実現させる。また、振動部の加振位置を制御することで弾性板の振動の仕方を制御できるので、液体内移動装置の進み方を制御できる。すなわち、筺体内部に設ける振動部(例えば、振動モータ)、及び/又は錘の筺体に対する位置を制御することにより、液体内移動装置の推進力を制御できる。  By applying an excitation force in the normal direction of the elastic plate plane, a propulsive force of the in-liquid moving device is generated. Then, a vibration part and / or weight is provided inside the housing, and the vibration part and / or weight is vibrated to realize a “twist” movement on the elastic plate. In addition, since the manner of vibration of the elastic plate can be controlled by controlling the vibration position of the vibration part, the way in which the in-liquid moving device proceeds can be controlled. That is, the propulsive force of the in-liquid moving device can be controlled by controlling the position of the vibrating portion (for example, vibration motor) provided in the housing and / or the weight relative to the housing.

弾性板は筺体表面に、例えば、接着剤等で取り付けられる。本実施の形態において弾性板は、弾性板全体の剛性が実質的に同一である。また、弾性板の先端部分(すなわち、筺体に取り付けられている側とは反対側部分)の剛性が、筺体に取り付けられている部分の剛性より小さいことが好ましい(すなわち、弾性板の筺体側より先端部分の方が柔らかいことが好ましい。)。更に、弾性板の大きさ、及び/又は厚さを制御することで、液体内移動装置の推進力を制御できる。  The elastic plate is attached to the housing surface with, for example, an adhesive. In the present embodiment, the elastic plate has substantially the same rigidity as the entire elastic plate. Further, the rigidity of the tip portion of the elastic plate (that is, the portion opposite to the side attached to the housing) is preferably smaller than the rigidity of the portion attached to the housing (that is, from the housing side of the elastic plate). It is preferable that the tip portion is softer.) Furthermore, by controlling the size and / or thickness of the elastic plate, the propulsive force of the in-liquid moving device can be controlled.

筺体表面の所定の位置に複数の弾性板を取り付けることができる。複数の弾性板は、筺体内部に設けられた少なくとも1つの振動部により振動させられる。また、筺体内部に複数の振動部を設け、複数の振動部それぞれが複数の振動板のそれぞれに対し、異なる方向に加振力を加えてもよい。なお、弾性板は、振動部から離れるに従って、徐々に幅が狭くなるようにしてもよい。また、振動部の駆動(例えば、振動部が振動モータである場合、振動部のオン/オフや回転数等)は、例えば、赤外線によって制御できる。  A plurality of elastic plates can be attached at predetermined positions on the surface of the housing. The plurality of elastic plates are vibrated by at least one vibrating portion provided inside the housing. Further, a plurality of vibration units may be provided inside the housing, and each of the plurality of vibration units may apply an excitation force in a different direction to each of the plurality of diaphragms. Note that the width of the elastic plate may be gradually narrowed away from the vibrating portion. Further, the driving of the vibration part (for example, when the vibration part is a vibration motor, on / off of the vibration part, the number of rotations, and the like) can be controlled by infrared rays, for example.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せのすべてが発明の課題を解決するための手段に必須であるとは限らない。  While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

Claims (4)

筐体と、
前記筐体の外部に取り付けられる弾性板と、
前記筐体内に設置され、前記筐体を振動させる振動部と
を備え、
前記筐体の重心位置と前記振動部の加振位置とが異なり、
前記振動部は2つ以上のモータからなる液体内移動装置。
A housing,
An elastic plate attached to the outside of the housing;
A vibration unit that is installed in the housing and vibrates the housing;
The housing center of gravity of and the vibration position of the vibrating portion is Ri Do different,
The vibration unit is an in- liquid moving device including two or more motors .
前記筐体の内部と前記弾性板とが隔離されている請求項1に記載の液体内移動装置。   The in-liquid moving device according to claim 1, wherein the inside of the casing and the elastic plate are isolated. 前記弾性板は筐体側の幅が大きく、筐体と反対側の先端の幅が小さい請求項1又は2に記載の液体内移動装置。   The in-liquid transfer device according to claim 1, wherein the elastic plate has a large width on the housing side and a small width on the tip opposite to the housing. 前記弾性板は2つ以上取り付けられている請求項1〜3のいずれか1項に記載の液体内移動装置。
The in-liquid transfer device according to claim 1, wherein two or more elastic plates are attached.
JP2013273779A 2013-12-16 2013-12-16 Intra-liquid transfer device Expired - Fee Related JP6210491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273779A JP6210491B2 (en) 2013-12-16 2013-12-16 Intra-liquid transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013273779A JP6210491B2 (en) 2013-12-16 2013-12-16 Intra-liquid transfer device

Publications (2)

Publication Number Publication Date
JP2015116453A JP2015116453A (en) 2015-06-25
JP6210491B2 true JP6210491B2 (en) 2017-10-11

Family

ID=53529728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273779A Expired - Fee Related JP6210491B2 (en) 2013-12-16 2013-12-16 Intra-liquid transfer device

Country Status (1)

Country Link
JP (1) JP6210491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116293203B (en) * 2023-02-24 2024-02-23 韶关学院 Pipeline robot

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001196A (en) * 1998-06-15 2000-01-07 Toshiyuki Nosaka Underwater propelling equipment and underwater traveling equipment
JP2003310104A (en) * 2002-04-26 2003-11-05 Yoshinokawa Electric Wire & Cable Co Ltd Electric lure
JP2006230236A (en) * 2005-02-23 2006-09-07 Equos Research Co Ltd Lure
US8162821B2 (en) * 2005-12-28 2012-04-24 Olympus Medical Systems Corp. Body-insertable device positioning system and in-vivo observation method
JP5055574B2 (en) * 2007-05-09 2012-10-24 株式会社ミュー Fin for in-vivo electrophoresis apparatus, in-vivo electrophoresis apparatus, AC magnetic field generator, and medical system
JP2011063222A (en) * 2009-09-18 2011-03-31 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Propulsion mechanism for underwater vehicle, and underwater vehicle
JP2011218964A (en) * 2010-04-09 2011-11-04 Hamada Bending Service Co Ltd Rocking propulsion device, catamaran, and fish type robot
JP5916031B2 (en) * 2011-09-05 2016-05-11 株式会社ミュー Medical equipment
WO2014032182A1 (en) * 2012-08-27 2014-03-06 Tsybulnyk Sergiy Fishing lure

Also Published As

Publication number Publication date
JP2015116453A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
CN104015904B (en) Multi-combination push type flexible bionic robotic fish
Wang et al. A novel piezoelectric inertial rotary motor for actuating micro underwater vehicles
US7865268B2 (en) Mechanical fish robot exploiting vibration modes for locomotion
US10967944B2 (en) Robotic eel
Hariri et al. A tether-less legged piezoelectric miniature robot using bounding gait locomotion for bidirectional motion
Shin et al. A miniaturized tadpole robot using an electromagnetic oscillatory actuator
EP2955480A3 (en) Mems sensor with decoupled drive system
Tortora et al. Design of an autonomous swimming miniature robot based on a novel concept of magnetic actuation
Liu et al. A novel 3-DoF piezoelectric robotic pectoral fin: design, simulation, and experimental investigation
JP6210491B2 (en) Intra-liquid transfer device
Wang et al. Dynamic modeling of robotic fish with a flexible caudal fin
JP3989943B2 (en) Flapping levitation moving device
Shin et al. Micro mobile robots using electromagnetic oscillatory actuator
US20130137921A1 (en) Propelling system and capsule applying the same
Nir et al. A jellyfish-like robot for mimicking jet propulsion
JP2006051559A (en) Leg module and leg type robot using it
He et al. Development and motion testing of a robotic ray
Takesue et al. Proposal of miniature aquatic robot utilizing resonance of elastic plate
Liu et al. Design and preliminary evaluation of a biomimetic underwater robot with undulating fin propulsion
Liu et al. Design and development of a novel piezoelectric caudal fin-like underwater thruster with a single vibration mode
Sueoka et al. Design of anisotropic impulse motion based on snap-through buckling for fish-like swimming robot
JP2013095411A (en) Tail fin type vibration propulsion apparatus
RU123754U1 (en) AUTONOMOUS VIBROWORK WITH DEBALANCE MOTOR
JP2007161251A (en) Floating and moving device
WO2017159038A1 (en) Flapping device for work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6210491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees