JP6209145B2 - Hydrogen production catalyst and method for producing the same - Google Patents

Hydrogen production catalyst and method for producing the same Download PDF

Info

Publication number
JP6209145B2
JP6209145B2 JP2014189331A JP2014189331A JP6209145B2 JP 6209145 B2 JP6209145 B2 JP 6209145B2 JP 2014189331 A JP2014189331 A JP 2014189331A JP 2014189331 A JP2014189331 A JP 2014189331A JP 6209145 B2 JP6209145 B2 JP 6209145B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
titanium oxide
metal species
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014189331A
Other languages
Japanese (ja)
Other versions
JP2016059868A (en
Inventor
西村 直之
直之 西村
大西 一広
一広 大西
東條 正弘
正弘 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2014189331A priority Critical patent/JP6209145B2/en
Publication of JP2016059868A publication Critical patent/JP2016059868A/en
Application granted granted Critical
Publication of JP6209145B2 publication Critical patent/JP6209145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭化水素の脱水素による水素生成反応のための水素生成触媒、及びその製造方法に関する。   The present invention relates to a hydrogen generation catalyst for a hydrogen generation reaction by dehydrogenation of hydrocarbons, and a method for producing the same.

水素は、化学製品の原料やクリーンなエネルギー媒体であるため、水素を得る方法の開発は重要である。炭化水素の構成水素原子を利用することで水素を製造する方法が幾つか知られており、そのうちの一つである炭化水素のみを原料とする水素の製造方法は、以下の二つの長所を有する。一つ目は、導入する原料に酸素を有する物質を含まないために原料同士の反応による人体に有害な一酸化炭素を生成しない点である。二つ目は、原料ガスを他のガスと混合する必要がないため、反応器までの原料導入がシンプルなプロセスとすることができる点である。前記長所を有するため、炭化水素のみを原料とする水素の製造方法が鋭意研究されている。   Since hydrogen is a raw material for chemical products and a clean energy medium, development of a method for obtaining hydrogen is important. Several methods for producing hydrogen by utilizing the constituent hydrogen atoms of hydrocarbons are known, and the method for producing hydrogen using only hydrocarbons as one of them has the following two advantages. . The first is that carbon monoxide that is harmful to the human body due to the reaction between the raw materials is not generated because the raw material to be introduced does not contain a substance having oxygen. Secondly, since it is not necessary to mix the raw material gas with other gases, the introduction of the raw material to the reactor can be a simple process. Due to the above advantages, hydrogen production methods using only hydrocarbons as raw materials have been intensively studied.

非特許文献1には、炭化水素のみを原料とした水素生成反応の触媒として金属種を金属酸化物からなる様々な担体に担持した触媒が記載されている。しかしながら、非特許文献1に記載された触媒は、水素生成に対する活性の改善が求められているのが現状である。   Non-Patent Document 1 describes a catalyst in which a metal species is supported on various carriers made of a metal oxide as a catalyst for a hydrogen generation reaction using only hydrocarbons as a raw material. However, the catalyst currently described in the nonpatent literature 1 is the present condition that the improvement of the activity with respect to hydrogen production is calculated | required.

Applied Catalysis A: General 217 (2001) 101-110Applied Catalysis A: General 217 (2001) 101-110

前記した従来技術の状況下、本発明が解決しようとする課題は、炭化水素の脱水素による水素生成反応において、水素生成の高活性化を発現することができる水素生成触媒、及びその製造方法を提供することである。   Under the circumstances of the prior art described above, the problem to be solved by the present invention is to provide a hydrogen generation catalyst capable of expressing high hydrogen generation in a hydrogen generation reaction by dehydrogenation of hydrocarbons, and a method for producing the same. Is to provide.

本発明者らは、前記課題を解決すべく鋭意研究し実験を重ねた結果、金属担持触媒の担体として用いる酸化チタンの結晶構造において、アナタース相よりもルチル相を多く含む材料を用いることで、炭化水素の脱水素による水素生成反応を高活性化できることを、予想外に見出し、これに基づき、本発明を完成するに至ったものである。   As a result of diligent research and experiments to solve the above problems, the present inventors have used a material containing more rutile phase than anatase phase in the crystal structure of titanium oxide used as a support for a metal-supported catalyst. The inventors have unexpectedly found that the hydrogen production reaction by dehydrogenation of hydrocarbons can be highly activated, and based on this, the present invention has been completed.

すなわち、本発明は書きの通りのものである。
[1]担体と該担体に担持されるNi、Co、及びFeからなる群から選ばれる金属種とからなる水素生成触媒であって、該担体に含まれる酸化チタンの結晶構造のルチル型の比率が50wt%以上であることを特徴とする前記水素生成触媒。
[2]前記金属種の担持量が0.01wt%以上60wt%以下である、前記[1]に記載の水素生成触媒。
[3]前記担体の比表面積が0.1m/g以上100m/g以下である、前記[1]又は[2]に記載の水素生成触媒。
[4]前記金属種を含浸法によって前記担体に担持する工程を含む、前記[1]〜[3]のいずれかに記載の水素生成触媒の製造方法。
[5]前記[1]〜[3]のいずれかに記載の水素生成触媒の存在下で炭化水素の脱水素反応を行う工程を含む、水素の製造方法。
[6]前記炭化水素の炭素数が1〜10である、前記[5]に記載の方法。
That is, the present invention is as written.
[1] A hydrogen generation catalyst comprising a carrier and a metal species selected from the group consisting of Ni, Co, and Fe supported on the carrier , wherein the rutile type has a crystal structure of titanium oxide contained in the carrier. The hydrogen generating catalyst, wherein the ratio is 50 wt% or more.
[2] The hydrogen generation catalyst according to [1], wherein the supported amount of the metal species is 0.01 wt% or more and 60 wt% or less.
[3] The hydrogen generation catalyst according to [1] or [2] , wherein the support has a specific surface area of 0.1 m 2 / g or more and 100 m 2 / g or less.
[4] The method for producing a hydrogen generation catalyst according to any one of [1] to [3], including a step of supporting the metal species on the support by an impregnation method.
[5] A method for producing hydrogen, comprising a step of performing a hydrocarbon dehydrogenation reaction in the presence of the hydrogen generation catalyst according to any one of [1] to [3].
[6] The method according to [5], wherein the hydrocarbon has 1 to 10 carbon atoms.

本発明に係る水素生成触媒は、炭化水素の脱水素による水素生成反応において、水素生成の高活性化を発現することができる。   The hydrogen production catalyst according to the present invention can exhibit high activation of hydrogen production in a hydrogen production reaction by dehydrogenation of hydrocarbons.

以下、本発明を実施するための形態を詳細に述べる。なお、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
<水素生成触媒>
本実施形態は、担体と該担体に担持される金属種とからなる水素生成触媒であって、該担体に含まれる酸化チタンの結晶構造のルチル型の比率が50wt%以上であることを特徴とする前記水素生成触媒である。
本実施形態の「担体」は、該担体に含まれる酸化チタンの結晶構造のルチル型の比率が50wt%以上であることを特徴とする。かかるルチル型の比率は、水素生成活性の観点から、65wt%以上が好ましく、75wt%以上がより好ましく、85wt%以上がさらに好ましい。また、該ルチル型の比率は、TiO結晶相の精製コストの観点から、99.999wt%以下が好ましく、99.99wt%以下がより好ましく、99.95wt%以下がさらに好ましい。
担体は、ルチル型の酸化チタン以外に、アモルファス、ブルッカイト型、及びアナタース型酸化チタンを含有してもよい。調製の容易さの観点から、ルチル型の酸化チタン以外としては、アナタース型酸化チタンが好ましい。
本発明者らは、ルチル型が水素生成において高活性である理由として特定の理論に拘束されることを欲しないが、ルチル型は高温で安定な相であるため、ルチル型酸化チタンの表面はアナタース型酸化チタンの表面よりもより安定となる結果、担持した金属種の活性点が失活されにくくなり高活性化するものと推測する。
Hereinafter, embodiments for carrying out the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, In the range of the summary, various deformation | transformation can be implemented.
<Hydrogen production catalyst>
This embodiment is a hydrogen generation catalyst comprising a support and a metal species supported on the support, wherein the ratio of the rutile type of the crystal structure of titanium oxide contained in the support is 50 wt% or more. The hydrogen generation catalyst.
The “carrier” of this embodiment is characterized in that the ratio of the rutile type of the crystal structure of titanium oxide contained in the carrier is 50 wt% or more. The rutile-type ratio is preferably 65 wt% or more, more preferably 75 wt% or more, and further preferably 85 wt% or more from the viewpoint of hydrogen production activity. The rutile-type ratio is preferably 99.999 wt% or less, more preferably 99.99 wt% or less, and even more preferably 99.95 wt% or less from the viewpoint of the purification cost of the TiO 2 crystal phase.
The carrier may contain amorphous, brookite type, and anatase type titanium oxide in addition to the rutile type titanium oxide. From the viewpoint of ease of preparation, anatase type titanium oxide is preferred as a material other than rutile type titanium oxide.
The inventors do not want to be bound by a specific theory as to why the rutile type is highly active in hydrogen production, but since the rutile type is a stable phase at high temperatures, the surface of the rutile type titanium oxide is As a result of being more stable than the surface of anatase-type titanium oxide, it is assumed that the active sites of the supported metal species are less likely to be deactivated and become highly activated.

酸化チタンの純度は、75.0%以上99.999%以下であり、不純物による活性点の不活性化を低減する観点から、85.0%以上がより好ましく、90.0%以上がさらに好ましい。また、酸化チタンの工業的調製の容易さの観点から、より好ましくは99.995%以下、さらに好ましくは99.990%以下である。
ここで、「純度」とは、担体材料中の酸化チタンの割合であり、不純物とは、酸化チタンの結晶構造中にドープ又は置換という形式で含まれ物理的に分離できないもの、物理的に分離できる粉体などである。
The purity of titanium oxide is 75.0% or more and 99.999% or less, and is preferably 85.0% or more, more preferably 90.0% or more from the viewpoint of reducing the deactivation of active sites due to impurities. . Moreover, from a viewpoint of the ease of industrial preparation of a titanium oxide, More preferably, it is 99.995% or less, More preferably, it is 99.990% or less.
Here, “purity” is the ratio of titanium oxide in the carrier material, and impurities are those that are contained in the crystal structure of titanium oxide in the form of doping or substitution and cannot be physically separated, and are physically separated. Such as powder that can be produced.

担体に含まれる酸化チタンの結晶構造のルチル型の比率とは、以下の様に定義される。
(担体に含まれる酸化チタンの結晶構造のルチル型の比率)=(酸化チタン中のルチル型の重量(g))/((酸化チタン中のルチル型の重量(g))+(酸化チタン中のアナタース型の重量(g))×100
前記式における酸化チタン中のルチル型の重量は、X線回折パターンの内部標準法により求められる。酸化チタン中のアナタース型の重量も同様に求めることができる。
The ratio of the rutile type of the crystal structure of titanium oxide contained in the carrier is defined as follows.
(Rutyl type ratio of crystal structure of titanium oxide contained in support) = (Rutyl type weight in titanium oxide (g)) / ((Rutyl type weight in titanium oxide (g)) + (in titanium oxide) Anatase weight (g)) x 100
The weight of the rutile type in the titanium oxide in the above formula is determined by the internal standard method of the X-ray diffraction pattern. The weight of the anatase type in titanium oxide can be determined in the same manner.

前記金属種を構成する元素は、新IUPAC表記の3族から12族までの金属元素の少なくとも一つを含むことが好ましい。水素生成反応活性の観点から、より好ましくは6族から11族まで、さらに好ましくは8族から10族までの金属元素である。より具体的には、Ni、Co、Fe、Pt、Mo、W、Cr、V、Ru、Re、Pd、Ir、Rh、Cu、Agが好ましく、Ni、Co、Fe、Ptがさらに好ましく、Niが最も好ましい。
前記金属種の化学状態としては、金属に限らず、化合物、錯体などでも構わないが、吸着基質への電子供与に寄与する電荷密度が高い材料である程高活性化に有利であるため、金属状態であることが好ましい。
The element constituting the metal species preferably includes at least one of metal elements from Group 3 to Group 12 of the new IUPAC notation. From the viewpoint of hydrogen production reaction activity, metal elements from Group 6 to Group 11, more preferably from Group 8 to Group 10, are more preferable. More specifically, Ni, Co, Fe, Pt, Mo, W, Cr, V, Ru, Re, Pd, Ir, Rh, Cu, and Ag are preferable, Ni, Co, Fe, and Pt are more preferable, and Ni Is most preferred.
The chemical state of the metal species is not limited to a metal, but may be a compound, a complex, or the like. However, a material having a higher charge density that contributes to donating electrons to the adsorption substrate is advantageous for higher activation. The state is preferable.

前記担体に担持する金属種の担持量は、好ましくは0.01wt%以上60wt%以下であり、担持量が多いほど担体を含む触媒の重量当たりの活性は増加する観点から、0.05wt%以上がより好ましく、0.1wt%以上がさらに好ましい。また、担持量が少ないことにより金属種の凝集を防げるために、担持金属種について担持重量当たりの比表面積が高くなる観点から、50wt%以下がより好ましく、40wt%以下がさらに好ましい。上記担持量は、担持金属種が金属状態であると仮定することで、算出することができる。   The supported amount of the metal species supported on the support is preferably 0.01 wt% or more and 60 wt% or less, and 0.05 wt% or more from the viewpoint of increasing the activity per weight of the catalyst including the support as the supported amount increases. Is more preferable, and 0.1 wt% or more is more preferable. Further, in order to prevent the aggregation of the metal species due to the small amount of support, 50 wt% or less is more preferable, and 40 wt% or less is further preferable from the viewpoint of increasing the specific surface area per weight of the support metal species. The supported amount can be calculated by assuming that the supported metal species is in a metal state.

前記担体の比表面積は、0.1m/g以上100m/g以下であることが好ましい。単位重量あたりの活性に対して比表面積は高いほど好ましく、より好ましくは2〜100m/g、さらに好ましくは5〜100m/gである。 The specific surface area of the carrier is preferably 0.1 m 2 / g or more and 100 m 2 / g or less. The specific surface area is preferably as high as possible with respect to the activity per unit weight, more preferably 2 to 100 m 2 / g, still more preferably 5 to 100 m 2 / g.

<水素生成触媒の製造方法>
前記水素生成触媒の製造方法としては、金属種の担持方法として、担持金属種を溶解させた溶液と懸濁させた担体からなるスラリーを用いて、溶媒を除去する含浸法などの方法、pHなどを変化させることによって溶液の溶解度を変化させ担持する方法、担体の前駆体と担持金属種が溶解した溶液から金属種がドープされた担体材料又は複合金属化合物を合成する方法などが挙げられる。中でも、溶媒を除去する含浸法などの方法、pHなどを変化させることによって溶液の溶解度を変化させ担持する方法が好ましく、さらに好ましくは含浸法である。
<Method for producing hydrogen production catalyst>
As a method for producing the hydrogen generation catalyst, as a method for supporting a metal species, a method such as an impregnation method in which a solvent is removed using a slurry composed of a solution in which a supported metal species is dissolved and a suspended carrier, pH, etc. For example, a method of changing the solubility of the solution by changing the carrier, and a method of synthesizing a carrier material or a composite metal compound doped with a metal species from a solution in which the precursor of the carrier and the supported metal species are dissolved. Among them, a method such as an impregnation method for removing the solvent, a method for changing the solubility of the solution by changing pH and the like, and a support method are more preferable, and an impregnation method is more preferable.

<水素の製造方法>
本実施形態の水素の製造方法とは、前記水素生成触媒の存在下で炭化水素の脱水素反応を行うことで水素を製造する方法である。
炭化水素のみを原料とした水素生成は触媒を用いることで促進でき、この反応過程は以下のように推測される。まず、炭化水素を触媒上に吸着させ、触媒上に炭化水素が脱水素した活性種(例えば、炭化水素がメタンである際は、CH4−x(1≦x≦4))と解離水素を生成する。この炭化水素の吸着から活性種生成の過程を、以降、炭化水素の活性化と記載する。この活性化過程を経て触媒上の解離水素から水素分子を形成し、この水素分子の触媒からの脱着を経て水素を生成する。
<Method for producing hydrogen>
The method for producing hydrogen according to the present embodiment is a method for producing hydrogen by performing a hydrocarbon dehydrogenation reaction in the presence of the hydrogen generation catalyst.
Hydrogen production using only hydrocarbons can be accelerated by using a catalyst, and this reaction process is presumed as follows. First, the hydrocarbon is adsorbed on the catalyst, and the active species (for example, when the hydrocarbon is methane, CH 4-x (1 ≦ x ≦ 4)) and dissociated hydrogen are adsorbed on the catalyst. Generate. This process of generating active species from the adsorption of hydrocarbons is hereinafter referred to as hydrocarbon activation. Through this activation process, hydrogen molecules are formed from dissociated hydrogen on the catalyst, and hydrogen is generated through desorption of the hydrogen molecules from the catalyst.

炭化水素の活性化過程での炭素原子と水素原子の結合解離のためには100kJ/mol程度の大きな吸熱が必要であるため、この活性化過程が炭化水素からの水素生成総反応の反応速度に大きな影響を与える。本実施形態の水素生成触媒は、主にこの炭化水素の活性化過程を促進することによって、炭化水素の脱水素による水素生成反応を高活性化するものである。
本実施形態の水素の製造方法の一例を示す。気体の導入部と抜出部を有する反応相に触媒を固定する。反応相の温度や圧力を所定の値に保ち、水素などを導入することで触媒の前処理を行う。その後、原料である気体を反応相へ導入し、触媒上で反応させた後、生成した水素を含む気体を抜き出すことで水素を得る。
Since a large endotherm of about 100 kJ / mol is required for the bond dissociation of carbon and hydrogen atoms during the activation process of hydrocarbons, this activation process contributes to the reaction rate of the total hydrogen production reaction from hydrocarbons. It has a big impact. The hydrogen generation catalyst of the present embodiment enhances the hydrogen generation reaction by hydrocarbon dehydrogenation mainly by accelerating the hydrocarbon activation process.
An example of the manufacturing method of hydrogen of this embodiment is shown. The catalyst is fixed to a reaction phase having a gas introduction part and an extraction part. Pretreatment of the catalyst is performed by maintaining the temperature and pressure of the reaction phase at predetermined values and introducing hydrogen or the like. Then, after introducing the gas which is a raw material into the reaction phase and reacting on the catalyst, hydrogen is obtained by extracting the gas containing generated hydrogen.

前記炭化水素の炭素数は1〜10であることが好ましい。前記のとおり、炭化水素は触媒上で活性化されるため、炭素数が少ないほど触媒上での炭化水素吸着のための立体障害が小さくなる。よって、炭化水素の炭素数は、より好ましくは1〜6、さらに好ましくは1〜3である。
本実施形態の炭化水素としては、具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、エチレン、プロピレン、1−ブテン、2−ブテン、ペンテン、ヘキセン、アセチレン、及びこれらの異性体などが挙げられる。前記の観点から、炭化水素は、メタン、エタン、プロパン、エチレン、プロピレンであることが好ましく、最も好ましくはメタンである。
本発明の水素の製造方法の原料である炭化水素は、気体で導入されることが好ましい。
The hydrocarbon preferably has 1 to 10 carbon atoms. As described above, since the hydrocarbon is activated on the catalyst, the smaller the number of carbon atoms, the smaller the steric hindrance for hydrocarbon adsorption on the catalyst. Therefore, the carbon number of the hydrocarbon is more preferably 1-6, and still more preferably 1-3.
Specific examples of the hydrocarbon of the present embodiment include methane, ethane, propane, butane, pentane, hexane, ethylene, propylene, 1-butene, 2-butene, pentene, hexene, acetylene, and isomers thereof. Is mentioned. From the above viewpoint, the hydrocarbon is preferably methane, ethane, propane, ethylene or propylene, and most preferably methane.
The hydrocarbon which is a raw material of the method for producing hydrogen of the present invention is preferably introduced in the form of a gas.

触媒上で活性化した炭化水素は、この炭化水素活性種同士の反応によるホモロゲーションや、二酸化炭素との反応によるカルボン酸合成などの他の分子との反応など、活性化後に続く反応に利用することができる。   Hydrocarbons activated on the catalyst are used for subsequent reactions after activation, such as homologation by reaction between these hydrocarbon active species and reaction with other molecules such as carboxylic acid synthesis by reaction with carbon dioxide. be able to.

反応温度としては、反応速度の観点から、250℃以上が好ましく、300℃以上がより好ましく、350℃がさらに好ましい。一方で、反応器の温度耐性の設備の観点から1000℃以下が好ましく、900℃以下がより好ましく、800℃以下がさらに好ましい。   The reaction temperature is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 350 ° C. from the viewpoint of the reaction rate. On the other hand, 1000 degreeC or less is preferable from a viewpoint of the temperature tolerance equipment of a reactor, 900 degreeC or less is more preferable, and 800 degreeC or less is further more preferable.

反応相に導入する気体の炭化水素の分圧は、0.005〜20MPaであることが好ましい。分圧が低いほど水素の脱着には有利であるが、分圧を低くすると、反応装置の大型化などの短所を生じるため、より好ましくは0.01〜10MPa、さらに好ましくは0.02〜5MPaである。
本実施形態の水素生成触媒は、反応相に、固定床、流動床、移動床又は疑似移動床として充填することができる。
反応相に導入する炭化水素の総容積流量は、反応相に充填された触媒量1g当たり0.001〜100,000L/hが好ましく、より好ましくは0.01〜1,000,000L/hである。触媒量とは、反応器に充填した触媒金属種と触媒担体の重量の和であり、反応器に触媒を固定する場合には、固定した反応器の重量を含めない。
The partial pressure of gaseous hydrocarbon introduced into the reaction phase is preferably 0.005 to 20 MPa. A lower partial pressure is advantageous for desorption of hydrogen. However, lowering the partial pressure causes disadvantages such as an increase in the size of the reaction apparatus. Therefore, it is more preferably 0.01 to 10 MPa, more preferably 0.02 to 5 MPa. It is.
The hydrogen generation catalyst of this embodiment can be filled into the reaction phase as a fixed bed, a fluidized bed, a moving bed, or a simulated moving bed.
The total volume flow rate of hydrocarbons introduced into the reaction phase is preferably 0.001 to 100,000 L / h, more preferably 0.01 to 1,000,000 L / h, per gram of catalyst charged in the reaction phase. is there. The catalyst amount is the sum of the weight of the catalyst metal species and the catalyst carrier charged in the reactor. When the catalyst is fixed to the reactor, the weight of the fixed reactor is not included.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
<評価方法>
以下、特に断りのない場合は、25℃、湿度45%の条件で評価を行った。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
<Evaluation method>
Hereinafter, unless otherwise specified, evaluation was performed under conditions of 25 ° C. and humidity 45%.

(水素生成の活性)
本実施例、及び比較例において、水素生成の活性は、反応器下流に設置したオンラインのガスクロマトグラフィー(アジレント社製、490GC)を用いて評価した。カラム種類はMolsieve 5A PLOT、カラム温度は40℃、キャリアガスはアルゴン、キャリア導入圧力は0.55MPaであった。
なお、実施例、及び比較例における水素生成の活性は、以下のように定義する。
(水素生成の活性(mol min−1−2))=(生成水素量(mol min−1))÷{(触媒重量(g))×(触媒担体の比表面積(m−1))}
(Activity of hydrogen generation)
In this example and comparative example, the activity of hydrogen generation was evaluated using an on-line gas chromatography (490 GC manufactured by Agilent) installed downstream of the reactor. The column type was Molsieve 5A PLOT, the column temperature was 40 ° C., the carrier gas was argon, and the carrier introduction pressure was 0.55 MPa.
In addition, the activity of hydrogen generation in Examples and Comparative Examples is defined as follows.
(Hydrogen production activity (mol min −1 m −2 )) = (Amount of produced hydrogen (mol min −1 )) ÷ {(Catalyst weight (g)) × (Specific surface area of catalyst support (m 2 g −1 )) )}

(担体の比表面積)
触媒担体の比表面積は、窒素吸着によるBET比表面積により求めた。測定装置は、Quantachrome社製、AUTOSORB3MPを用いて、−196℃の温度条件の下、吸着特性を評価した。
(Specific surface area of carrier)
The specific surface area of the catalyst support was determined from the BET specific surface area by nitrogen adsorption. The measuring apparatus evaluated the adsorption | suction characteristic under the temperature conditions of -196 degreeC using Quantachrome company make and AUTOSORB3MP.

(金属種の担持量)
金属種の担持量は、担持金属種の化学状態が金属であると仮定して、以下のように算出した。
(金属種の担持量(wt%))={(担持金属種の金属の質量数(g/mol))×(前駆体金属種のモル数(mol))×100}/(担体の質量(g))
(Amount of supported metal species)
The supported amount of the metal species was calculated as follows assuming that the chemical state of the supported metal species is metal.
(Supported amount of metal species (wt%)) = {(Mass number of supported metal species (g / mol)) × (Mole number of precursor metal species (mol)) × 100} / (Mass of support ( g))

(酸化チタンの結晶構造の同定)
結晶構造の同定は、X線結晶構造回折により行った。装置には、Bruker社製、D8ADVANCEを使用し、X線源はCu Kα線、出力は40kV、40mAの条件の下、測定を行った。
(Identification of crystal structure of titanium oxide)
The crystal structure was identified by X-ray crystal structure diffraction. A Bruker D8ADVANCE was used as the apparatus, the X-ray source was Cu Kα ray, the output was 40 kV, and 40 mA.

[実施例1]
酸化チタン担体に、金属塩を溶解させた水溶液を、以下の様に含浸させることにより、触媒を調製した。ルチル型の酸化チタン(99.9%、和光化学、7m/g)10.0gを100mLの25mmol/L硝酸ニッケル水溶液に懸濁後、蒸発乾固させることで、ニッケル種を担持させた。その後、500℃、大気中で焼成した粉末を得た。この粉末に20MPaの圧力をかけることでペレットとし、これを粉砕後、0.25〜0.50mmに分級することで触媒を得た。この触媒のニッケルの担持量は2wt%であった。
SUS管(外径1/4インチ、肉厚0.5 mm)の中央部に1.0gの触媒を石英ウールに触媒をはさみ込むことで充填した流通系の反応器を用いた。
400℃にて、100mL/minの水素流通条件の下、1時間還元処理、Arにて反応管をパージ後、400℃の温度条件でCH流通下(10mL/min)での水素生成活性は、3.0 μmol min−1−2であった。結果を以下の表1に示す。
[Example 1]
A catalyst was prepared by impregnating a titanium oxide carrier with an aqueous solution in which a metal salt was dissolved as follows. Rutile-type titanium oxide (99.9%, Wako Chemical, 7 m 2 / g) 10.0 g was suspended in 100 mL of a 25 mmol / L nickel nitrate aqueous solution and then evaporated to dryness to support nickel species. Thereafter, a powder fired in the air at 500 ° C. was obtained. A pellet was obtained by applying a pressure of 20 MPa to this powder, and after pulverizing, the powder was classified to 0.25 to 0.50 mm to obtain a catalyst. The amount of nickel supported on this catalyst was 2 wt%.
A flow reactor was used in which 1.0 g of catalyst was inserted into quartz wool in the center of an SUS tube (outer diameter 1/4 inch, wall thickness 0.5 mm) and the catalyst was sandwiched between quartz wool.
After 400 hours at 100 ° C. under hydrogen flow conditions of 100 mL / min, reduction treatment for 1 hour, after purging the reaction tube with Ar, hydrogen production activity under 400 ° C. temperature conditions with CH 4 flow (10 mL / min) is 3.0 μmol min −1 m −2 . The results are shown in Table 1 below.

[比較例1]
実施例1のルチル型の酸化チタン(99.9%、和光化学、7m/g)を、アナタース型の酸化チタン(99.5%、和光化学、11m/g)に変更した以外は、実施例1と同様に行った。結果を以下の表1に示す。
[Comparative Example 1]
Except for changing the rutile type titanium oxide (99.9%, Wako Chemical, 7 m 2 / g) of Example 1 to anatase type titanium oxide (99.5%, Wako Chemical, 11 m 2 / g), The same operation as in Example 1 was performed. The results are shown in Table 1 below.

[比較例2]
実施例1のルチル型の酸化チタン(99.9%、和光化学、7m/g)を、ルチル相とアナタース相混相(ルチル:アナタース=約3:7)の酸化チタン(99.0%、アエロゾル社製、51m/g)に変更した以外は、実施例1と同様に行った。結果を以下の表1に示す。
[Comparative Example 2]
The rutile type titanium oxide of Example 1 (99.9%, Wako Chemical, 7 m 2 / g) was mixed with a rutile phase and an anatase phase mixed phase (rutile: anaters = about 3: 7) titanium oxide (99.0%, The procedure was the same as in Example 1 except that the change was made to 51 m 2 / g) manufactured by Aerosol. The results are shown in Table 1 below.

[実施例2]
実施例1の25mmol/L硝酸ニッケル水溶液を、25mmol/L硝酸コバルト水溶液に変更した以外は、実施例1と同様に行った。この触媒のコバルト種の担持量は2wt%であった。結果を以下の表1に示す。
[Example 2]
The same procedure as in Example 1 was performed except that the 25 mmol / L nickel nitrate aqueous solution of Example 1 was changed to a 25 mmol / L cobalt nitrate aqueous solution. The amount of cobalt species supported on this catalyst was 2 wt%. The results are shown in Table 1 below.

[比較例3]
実施例2のルチル型の酸化チタン(99.9%、和光化学、7m/g)を、アナタース型の酸化チタン(99.5%、和光化学、11m/g)に変更した以外は、実施例2と同様に行った。結果を以下の表1に示す。
[Comparative Example 3]
Except for changing the rutile type titanium oxide of Example 2 (99.9%, Wako Chemical, 7 m 2 / g) to anatase type titanium oxide (99.5%, Wako Chemical, 11 m 2 / g), The same operation as in Example 2 was performed. The results are shown in Table 1 below.

[実施例3]
実施例1の25mmol/L硝酸ニッケル水溶液を、100mmol/L硝酸鉄水溶液に変更した以外は、実施例1と同様に行った。この触媒の鉄種の担持量は8wt%であった。結果を以下の表1に示す。
[Example 3]
The same operation as in Example 1 was performed except that the 25 mmol / L nickel nitrate aqueous solution of Example 1 was changed to a 100 mmol / L iron nitrate aqueous solution. The amount of iron species supported on this catalyst was 8 wt%. The results are shown in Table 1 below.

[比較例4]
実施例3のルチル型の酸化チタン(99.9%、和光化学、7m/g)を、アナタース型の酸化チタン(99.5%、和光化学、11m/g)に変更した以外は、実施例3と同様に行った。結果を以下の表1に示す。
[Comparative Example 4]
Except for changing the rutile type titanium oxide (99.9%, Wako Chemical, 7 m 2 / g) of Example 3 to anatase type titanium oxide (99.5%, Wako Chemical, 11 m 2 / g), The same operation as in Example 3 was performed. The results are shown in Table 1 below.

参考例4]
実施例1の25mmol/L硝酸ニッケル水溶液を、25mmol/L塩化白金酸水溶液に変更した以外は、実施例1と同様に行った。この触媒の白金種の担持量は10wt%であった。結果を以下の表1に示す。
[ Reference Example 4]
The same procedure as in Example 1 was performed except that the 25 mmol / L nickel nitrate aqueous solution of Example 1 was changed to a 25 mmol / L chloroplatinic acid aqueous solution. The amount of platinum species supported on this catalyst was 10 wt%. The results are shown in Table 1 below.

[比較例5]
参考例4のルチル型の酸化チタン(99.9%、和光化学、7m/g)を、アナタース型の酸化チタン(99.5%、和光化学、11m/g)に変更した以外は、参考例4と同様に行った。結果を表1に示す。
[Comparative Example 5]
Except for changing the rutile type titanium oxide (99.9%, Wako Chemical, 7 m 2 / g) of Reference Example 4 to anatase type titanium oxide (99.5%, Wako Chemical, 11 m 2 / g), It carried out similarly to the reference example 4. The results are shown in Table 1.

Figure 0006209145
Figure 0006209145

上記表1から分かるように、担体に含まれる酸化チタンの結晶構造のルチル型の比率が50wt%以上であることにより、いずれの担持金属種においても水素生成活性が2〜47倍に上昇した。   As can be seen from Table 1 above, when the ratio of the rutile type of the crystal structure of titanium oxide contained in the support is 50 wt% or more, the hydrogen generation activity increased 2-47 times in any supported metal species.

本発明に係る水素生成触媒は、炭化水素の脱水素による水素生成反応において、水素生成の高活性化を発現することができるため、化学製品の原料やクリーンなエネルギー媒体である水素を炭化水素から得る方法において、好適に利用可能である。   Since the hydrogen production catalyst according to the present invention can exhibit high activation of hydrogen production in the hydrogen production reaction by dehydrogenation of hydrocarbons, the raw material for chemical products and the clean energy medium hydrogen from hydrocarbons. In the method to obtain, it can utilize suitably.

Claims (6)

担体と該担体に担持されるNi、Co、及びFeからなる群から選ばれる金属種とからなる水素生成触媒であって、該担体に含まれる酸化チタンの結晶構造のルチル型の比率が50wt%以上であることを特徴とする前記水素生成触媒。 A hydrogen generation catalyst comprising a carrier and a metal species selected from the group consisting of Ni, Co, and Fe supported on the carrier , wherein the rutile type ratio of the crystal structure of titanium oxide contained in the carrier is 50 wt. % Of the hydrogen generating catalyst, wherein the hydrogen generating catalyst is at least%. 前記金属種の担持量が0.01wt%以上60wt%以下である、請求項に記載の水素生成触媒。 The hydrogen generation catalyst according to claim 1 , wherein the supported amount of the metal species is 0.01 wt% or more and 60 wt% or less. 前記担体の比表面積が0.1m/g以上100m/g以下である、請求項1又は2に記載の水素生成触媒。 The hydrogen generation catalyst according to claim 1 or 2 , wherein the specific surface area of the support is 0.1 m 2 / g or more and 100 m 2 / g or less. 前記金属種を含浸法によって前記担体に担持する工程を含む、請求項1〜のいずれか1項に記載の水素生成触媒の製造方法。 The method for producing a hydrogen generation catalyst according to any one of claims 1 to 3 , comprising a step of supporting the metal species on the support by an impregnation method. 請求項1〜のいずれか1項に記載の水素生成触媒の存在下で炭化水素の脱水素反応を行う工程を含む、水素の製造方法。 A method for producing hydrogen, comprising a step of performing a hydrocarbon dehydrogenation reaction in the presence of the hydrogen generation catalyst according to any one of claims 1 to 3 . 前記炭化水素の炭素数が1〜10である、請求項に記載の方法。 The method according to claim 5 , wherein the hydrocarbon has 1 to 10 carbon atoms.
JP2014189331A 2014-09-17 2014-09-17 Hydrogen production catalyst and method for producing the same Active JP6209145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189331A JP6209145B2 (en) 2014-09-17 2014-09-17 Hydrogen production catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189331A JP6209145B2 (en) 2014-09-17 2014-09-17 Hydrogen production catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016059868A JP2016059868A (en) 2016-04-25
JP6209145B2 true JP6209145B2 (en) 2017-10-04

Family

ID=55796563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189331A Active JP6209145B2 (en) 2014-09-17 2014-09-17 Hydrogen production catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP6209145B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312302A (en) * 1989-06-07 1991-01-21 Mitsubishi Heavy Ind Ltd Methanol reformer
JP2002355562A (en) * 2001-03-29 2002-12-10 Ecodevice Co Ltd Photoresponsive material and its manufacturing method
JP2007244996A (en) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd Catalyst for converting/supplying fuel, apparatus for converting/supplying fuel, and method for converting/supplying fuel by using the apparatus
JP2011241122A (en) * 2010-05-20 2011-12-01 Sumitomo Chemical Co Ltd Method for producing synthesis gas
US8946458B2 (en) * 2012-08-15 2015-02-03 Virent, Inc. Catalysts for hydrodeoxygenation of oxygenated hydrocarbons

Also Published As

Publication number Publication date
JP2016059868A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
Masuda et al. PdAg nanoparticles supported on functionalized mesoporous carbon: promotional effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO2
Ball et al. AgPd and CuPd catalysts for selective hydrogenation of acetylene
Chai et al. Boosting CO2 methanation activity on Ru/TiO2 catalysts by exposing (001) facets of anatase TiO2
Guo et al. CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study
Masoud et al. Superior stability of Au/SiO2 compared to Au/TiO2 catalysts for the selective hydrogenation of butadiene
US10647621B2 (en) Photocatalytic conversion of carbon dioxide and water into substituted or unsubstituted hydrocarbon(s)
Hong et al. A new synthesis of carbon encapsulated Fe 5 C 2 nanoparticles for high-temperature Fischer–Tropsch synthesis
Chen et al. Study in support effect of In2O3/MOx (M= Al, Si, Zr) catalysts for dehydrogenation of propane in the presence of CO2
McKenna et al. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO 2
Roldán et al. Origin of the Excellent Performance of Ru on Nitrogen‐Doped Carbon Nanofibers for CO2 Hydrogenation to CH4
Moogi et al. Effect of La2O3 and CeO2 loadings on formation of nickel-phyllosilicate precursor during preparation of Ni/SBA-15 for hydrogen-rich gas production from ethanol steam reforming
Conesa et al. Comparative study of Cu, Ag and Ag-Cu catalysts over graphite in the ethanol dehydrogenation reaction: Catalytic activity, deactivation and regeneration
Yao et al. Hierarchical MnO x/Co3O4 Nanoarrays on Ni Foam for Catalytic Oxidation of Volatile Organic Compounds
Fu et al. Pt loaded manganese oxide nanoarray-based monolithic catalysts for catalytic oxidation of acetone
US20110112205A1 (en) Iron- and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen
Park et al. Promotional effect of Al addition on the Co/ZrO2 catalyst for dry reforming of CH4
Zhang et al. Factors influencing the activity of SiO2 supported bimetal Pd-Ni catalyst for hydrogenation of α-angelica lactone: Oxidation state, particle size, and solvents
Brijaldo et al. Effect of support on acetic acid decomposition over palladium catalysts
Hua et al. Catalytic combustion of vinyl chloride emissions over Co 3 O 4 catalysts with different crystallite sizes
KR20150062248A (en) Storage method of activated catalysts for Fischer-Tropsch synthesis
Chetty et al. Continuous flow preferential hydrogenation of an octanal/octene mixture using Cu/Al2O3 catalysts
Wang et al. Ni single atoms confined in nitrogen-doped carbon nanotubes for active and selective hydrogenation of CO2 to CO
Bordeiasu et al. Catalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid by Co-based MOFs
Bian et al. Promoting propane dehydrogenation over PtFe bimetallic catalysts by optimizing the state of Fe species
JP6209145B2 (en) Hydrogen production catalyst and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170908

R150 Certificate of patent or registration of utility model

Ref document number: 6209145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350