JP6208450B2 - Aluminum alloy clad material for thin wall heat exchanger excellent in corrosion resistance and method for producing the same, and method for producing heat exchanger using the aluminum alloy clad material - Google Patents

Aluminum alloy clad material for thin wall heat exchanger excellent in corrosion resistance and method for producing the same, and method for producing heat exchanger using the aluminum alloy clad material Download PDF

Info

Publication number
JP6208450B2
JP6208450B2 JP2013073595A JP2013073595A JP6208450B2 JP 6208450 B2 JP6208450 B2 JP 6208450B2 JP 2013073595 A JP2013073595 A JP 2013073595A JP 2013073595 A JP2013073595 A JP 2013073595A JP 6208450 B2 JP6208450 B2 JP 6208450B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
sacrificial material
sacrificial
less
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013073595A
Other languages
Japanese (ja)
Other versions
JP2014196552A (en
Inventor
渉 成田
渉 成田
敦志 福元
敦志 福元
安藤 誠
誠 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2013073595A priority Critical patent/JP6208450B2/en
Publication of JP2014196552A publication Critical patent/JP2014196552A/en
Application granted granted Critical
Publication of JP6208450B2 publication Critical patent/JP6208450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、特にラジエータ、ヒーターコア、コンデンサ、インタークーラなどの熱交換器材用のチューブ材として好適に使用される耐食性に優れた熱交換器用アルミニウム合金クラッド材及びその製造方法に関する。   The present invention relates to an aluminum alloy clad material for heat exchangers excellent in corrosion resistance, which is suitably used as a tube material for heat exchanger materials such as radiators, heater cores, condensers, and intercoolers, and a method for producing the same.

アルミニウム合金は軽量且つ高伝導性を備えている為、自動車用熱交換器、たとえば、ラジエータ、コンデンサ、エバポレータ、ヒーターコア、インタークーラなどに用いられている。
このような熱交換器において、近年、自動車の軽量化の一環としてチューブ材等の薄肉高強度化(たとえば0.3mm以下)が要求されるようになり、その為心材にSiやCu等の合金元素を増量して添加し、心材の強度の向上が図られている。しかしながら、今後更なる薄肉高強度化を要求されたとき、この方策だけでは要求を満足することが困難になる。
この対案として、心材や犠牲材、ろう材にMgを添加することによる強度の向上が挙げられるが、ノコロックろう付法において、材料にMgが添加されているとろう付性が悪くなるという問題が生じる。
そこで、皮材のクラッド厚さを薄肉化することにより心材の厚さを増やし、材料全体の強度の向上を図る手法が重要となる。しかしながら、ただ犠牲材の厚さを薄くしたら、耐食性が低下してしまうと考えられる。
Aluminum alloys are lightweight and have high conductivity, so they are used in automotive heat exchangers such as radiators, condensers, evaporators, heater cores, intercoolers and the like.
In such heat exchangers, in recent years, as a part of weight reduction of automobiles, it has been required to increase the strength of thin tubes (for example, 0.3 mm or less), and as a result, an alloy such as Si or Cu is used as a core material. The element is added in an increased amount to improve the strength of the core material. However, when further thinning and strengthening is required in the future, it will be difficult to satisfy the request only with this measure.
As an alternative, the strength can be improved by adding Mg to the core material, the sacrificial material, and the brazing material. However, in the Nocolok brazing method, there is a problem that the brazing property is deteriorated when Mg is added to the material. Arise.
Therefore, a technique for increasing the thickness of the core material by reducing the cladding thickness of the skin material and improving the strength of the entire material is important. However, if the thickness of the sacrificial material is reduced, it is considered that the corrosion resistance is lowered.

特許文献1には犠牲材のSi、Fe含有量を規制することにより、円相当径が1.0μm以上の第2相粒子を2×10?個以下となる高強度・高耐食性アルミニウム合金クラッド材が提案されている。しかしながら、円相当径が1.0μm以下であればろう付加熱後にカソードとならないわけではなく、またSi、Feの含有量を規制するだけでは析出物を微細に析出させることは困難である。 Si sacrificial material in Patent Document 1, by regulating the Fe content, the circle equivalent diameter is more than the second phase particles 1.0μm and 2 × 10? Pieces following high strength and high corrosion resistance aluminum alloy clad material Has been proposed. However, if the equivalent circle diameter is 1.0 μm or less, it does not become a cathode after brazing addition heat, and it is difficult to deposit fine precipitates only by regulating the contents of Si and Fe.

特許文献2には、犠牲材にMgを添加し、Znの含有量を6〜12%とした高強度・高耐食性アルミニウム合金クラッド材が提案されている。しかしながら先述の通り材料にMgを添加するとろう付性を低下させる恐れがある。更に、犠牲材へのZnの添加量を増量させただけではカソードとなる第2相粒子による腐食が抑制されず、耐食性の向上への効果が薄いと考えられる。   Patent Document 2 proposes a high-strength, high-corrosion-resistant aluminum alloy clad material in which Mg is added to the sacrificial material and the Zn content is 6 to 12%. However, as described above, when Mg is added to the material, the brazing property may be lowered. Furthermore, it is considered that simply increasing the amount of Zn added to the sacrificial material does not suppress the corrosion caused by the second phase particles serving as the cathode, and the effect of improving the corrosion resistance is small.

特許文献3には、心材と犠牲材の電位差を規定することにより耐食性を確保したアルミニウム合金クラッド材の提案がされている。しかしながら、ここでの犠牲材のZn含有量は5.0%以下であり、材料が薄肉化していくにつれ、心材犠牲材間の電位差を確保することができないと考えられる。また、犠牲材に均熱処理を行っているため、犠牲材における析出物の粗大化が起こり、耐食性を低下させる。
特開平11−293372 特開平9−67633 特開平6−212332
Patent Document 3 proposes an aluminum alloy clad material that ensures corrosion resistance by defining a potential difference between a core material and a sacrificial material. However, the Zn content of the sacrificial material here is 5.0% or less, and it is considered that the potential difference between the core material sacrificial materials cannot be secured as the material becomes thinner. In addition, since the sacrificial material is subjected to soaking, the precipitates in the sacrificial material become coarse and the corrosion resistance is lowered.
JP-A-11-293372 JP-A-9-67633 JP-A-6-212332

本発明では、特に薄肉のラジエータチューブ材等として用いるアルミニウム合金クラッド材において、犠牲材を薄肉化しても、ろう付後に高い耐食性を有するアルミニウム合金クラッド材を開発したものである。   In the present invention, an aluminum alloy clad material having high corrosion resistance after brazing is developed even when the sacrificial material is thinned, particularly in an aluminum alloy clad material used as a thin-walled radiator tube material or the like.

本発明者らは上記課題について研究した結果、特定の合金組成を有する犠牲材の金属組織を制御することで、この目的に適合するアルミニウム合金クラッド材が得られることを見出した。
すなわち、請求項1に記載の第1の発明は、心材の両面に犠牲材がクラッドされたクラッド材において、犠牲材厚さをXμm、犠牲材のZn濃度をx%、心材厚さをYμm、心材のCu濃度をy%としたときに

Figure 0006208450
かつ X≦45
を満たし、かつ、ろう付前の犠牲材の金属組織が円相当径0.1μm以上の第二相粒子の密度が1.0×10 個/mm 以下であることを特徴とする熱交換器用アルミニウム合金クラッド材である。
請求項2に記載の第2の発明は、心材の両面に犠牲材がクラッドされたクラッド材において、犠牲材にSi:0.2%以下、Fe:0.2%以下、Mn:0.05〜0.4%のうち1種以上を含有し、且つ犠牲材厚さをXμm、犠牲材のZn濃度をx%、心材厚さをYμm、心材のCu濃度をy%としたときに
Figure 0006208450
かつ X≦45
を満たし、かつ、ろう付前の犠牲材の金属組織が円相当径0.1μm以上の第二相粒子の密度が1.0×10 個/mm 以下であることを特徴とする熱交換器用アルミニウム合金クラッド材である。
請求項3に記載の第3の発明は、請求項1乃至2に記載のアルミニウム合金クラッド材において、ろう付前の犠牲材表面から心材方向へ5μmの深さにおいてのCu濃度がy/10%以下であることを特徴とする熱交換器用アルミニウム合金クラッド材。
請求項4に記載の第4の発明は、請求項1乃至記載のアルミニウム合金クラッド材の犠牲材を鋳造、熱間圧延により製造する方法において、均熱処理を行わないことを特徴とする熱交換器用アルミニウム合金クラッド材の製造方法である。
請求項5に記載の第5の発明は、請求項1乃至記載のアルミニウム合金クラッド材を製造する方法において、クラッド圧延後の最終焼鈍を320℃以下で1〜10時間行うことを特徴とする熱交換器用アルミニウム合金クラッド材の製造方法である。
請求項6に記載の第6の発明は、請求項乃至記載発明で製造されたアルミニウム合金クラッド材を用いて作製したチューブ材をろう付工法により組み付けるアルミニウム合金製熱交換器の製造方法において、ろう付加熱を590〜610℃で保持時間を5分以内の条件で施すことを特徴とするアルミニウム合金製熱交換器の製造方法である。
As a result of studying the above problems, the present inventors have found that an aluminum alloy clad material suitable for this purpose can be obtained by controlling the metal structure of a sacrificial material having a specific alloy composition.
That is, according to a first aspect of the present invention, in the clad material in which the sacrificial material is clad on both sides of the core material, the sacrificial material thickness is X μm, the sacrificial material Zn concentration is x%, the core material thickness is Y μm, When the Cu concentration of the core material is y%
Figure 0006208450
And X ≦ 45
Meets, and heat, wherein the density of the metal structure of the sacrificial material before brazing is not less than the equivalent circle diameter 0.1μm-phase particles is 1.0 × 10 5 cells / mm 2 or less This is an aluminum alloy clad material for an exchanger.
According to a second aspect of the present invention, in the clad material in which the sacrificial material is clad on both sides of the core material, the sacrificial material is Si: 0.2% or less, Fe: 0.2% or less, Mn: 0.05 When the sacrificial material thickness is X μm, the sacrificial material Zn concentration is x%, the core material thickness is Y μm, and the core material Cu concentration is y%.
Figure 0006208450
And X ≦ 45
Meets, and heat, wherein the density of the metal structure of the sacrificial material before brazing is not less than the equivalent circle diameter 0.1μm-phase particles is 1.0 × 10 5 cells / mm 2 or less This is an aluminum alloy clad material for an exchanger.
According to a third aspect of the present invention, in the aluminum alloy clad material according to the first or second aspect , the Cu concentration at a depth of 5 μm from the surface of the sacrificial material before brazing to the core material is y / 10%. An aluminum alloy clad material for a heat exchanger, characterized in that:
According to a fourth aspect of the present invention, in the method for producing the sacrificial material of the aluminum alloy clad material according to the first or second aspect by casting or hot rolling, heat soaking is not performed. It is a manufacturing method of the aluminum alloy clad material for equipment.
According to a fifth aspect of the present invention, in the method for producing the aluminum alloy clad material according to the first or second aspect , the final annealing after the clad rolling is performed at 320 ° C. or lower for 1 to 10 hours. It is a manufacturing method of the aluminum alloy clad material for heat exchangers.
According to a sixth aspect of the present invention, there is provided a method for producing an aluminum alloy heat exchanger in which a tube material produced using the aluminum alloy clad material produced in the fourth to fifth aspects of the invention is assembled by a brazing method. The method for producing an aluminum alloy heat exchanger is characterized in that brazing addition heat is applied at a temperature of 590 to 610 ° C. under a holding time of 5 minutes or less.

本発明のアルミニウム合金クラッド材の構成は、ろう材・心材・犠牲材の三層材、および犠牲材・心材・犠牲材の三層材である。(図1)   The aluminum alloy clad material of the present invention has a three-layer material of a brazing material, a core material, and a sacrificial material, and a three-layer material of a sacrificial material, a core material, and a sacrificial material. (Figure 1)

先ず、本実施形態のアルミニウム合金クラッド材の成分元素の添加理由及び添加範囲について説明する。 First, the reason for addition of component elements and the addition range of the aluminum alloy clad material of the present embodiment will be described.

犠牲材におけるZn、及び心材におけるCuは、犠牲材を心材に比べて電気的に卑にして、犠牲材が心材に対して陰極防食効果を発揮させるものである。
ろう付加熱後の犠牲材表面のZn量について、素板の犠牲材厚さと犠牲材Zn濃度の関係を調べた結果、その値はXx/60で近似することができることを見出した(犠牲材の板厚X[μm]、犠牲材のZn濃度x [%])。
また、ろう付加熱後の犠牲材表面のCu量は素板における心材のCu濃度、心材厚さ及び犠牲材厚さに依存し、さらにCu濃度と心材厚さの関係を表した図2に示されるように領域Aと領域Bの面積が等しくなることからろう付加熱後の犠牲材表面のCu量はy(Y−2X)/(Y+2X)で近似できることを見出した(心材の厚さY[μm]、心材のCu濃度y[%])。
よって、心材犠牲材間の電位差は心材及び犠牲材表面のCu量の差に影響を受け、Cuの電位への寄与はZnに比べて半分であることから、心材と犠牲材間の電位差は

Figure 0006208450
で表すことができると考えた。
ろう付加熱後の心材と犠牲材表面の電位差は80〜300mVであるのが望ましい。これは、電位差が80mV以下では犠牲陽極効果が小さい為防食の効果が低く、また300mV以上あると犠牲材の消耗速度が大きく、長期にわたる犠牲陽極効果が得られない。このろう付加熱後の電位差を得る為の設計として、
Figure 0006208450
という関係で限定した。この関係式の値が2.0よりも小さいとろう付加熱後の心材中央と犠牲材表面の電位差が80mVよりも小さくなる為犠牲陽極効果が小さく、防食ができず、4.2よりも大きいとろう付加熱後の心材中央と犠牲材表面の電位差が300mVを越え、犠牲材の消耗速度が大きくなり、長期にわたる犠牲陽極効果が得られなくなる。より望ましくは、
Figure 0006208450
である。
また、たとえば板厚0.3mm以下の薄肉材において、犠牲材の厚さが45μm以上あると材料強度が顕著に低下してしまう。このため、犠牲材の厚さは45μm以下に規定した。 Zn in the sacrificial material and Cu in the core material cause the sacrificial material to exhibit a cathodic protection effect on the core material by making the sacrificial material electrically lower than the core material.
As a result of investigating the relationship between the sacrificial material thickness of the base plate and the sacrificial material Zn concentration with respect to the Zn amount on the surface of the sacrificial material after brazing heat, it was found that the value can be approximated by Xx / 60 (the sacrificial material Plate thickness X [μm], Zn concentration of sacrificial material x [%]).
Further, the amount of Cu on the surface of the sacrificial material after the brazing heat is dependent on the Cu concentration, the core material thickness and the sacrificial material thickness of the core material in the base plate, and further shows the relationship between the Cu concentration and the core material thickness in FIG. As can be seen from the above, since the areas of the regions A and B are equal, the amount of Cu on the surface of the sacrificial material after the brazing addition heat can be approximated by y (Y-2X) / (Y + 2X) (the thickness Y [ μm], Cu concentration of core material y [%]).
Therefore, the potential difference between the core material sacrificial material is affected by the difference in Cu amount between the core material and the surface of the sacrificial material, and the contribution of Cu to the potential is half that of Zn.
Figure 0006208450
I thought that it can be expressed by.
The potential difference between the core material and the sacrificial material surface after the brazing heat is desirably 80 to 300 mV. This is because the sacrificial anode effect is small when the potential difference is 80 mV or less, and thus the anti-corrosion effect is low. When the potential difference is 300 mV or more, the consumption rate of the sacrificial material is high and the sacrificial anode effect over a long period cannot be obtained. As a design to obtain the potential difference after this brazing heat,
Figure 0006208450
It was limited by the relationship. If the value of this relational expression is smaller than 2.0, the potential difference between the center of the core material after brazing heat addition and the surface of the sacrificial material is smaller than 80 mV, so the sacrificial anode effect is small and the corrosion cannot be prevented, and is larger than 4.2. The potential difference between the center of the core material after the brazing heat and the sacrificial material surface exceeds 300 mV, the consumption rate of the sacrificial material increases, and the sacrificial anode effect over a long period of time cannot be obtained. More preferably,
Figure 0006208450
It is.
Further, for example, in a thin material having a plate thickness of 0.3 mm or less, if the thickness of the sacrificial material is 45 μm or more, the material strength is significantly reduced. For this reason, the thickness of the sacrificial material is regulated to 45 μm or less.

犠牲材
犠牲材において、SiはFeと共にAl−Si−Fe系化合物を形成し、この化合物が腐食反応のカソードとして作用する。このため、Siは0.2%以下であることが望ましい。なお、Siの含有量の一層好ましい範囲は0.1%以下である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。
Sacrificial material In the sacrificial material, Si forms an Al-Si-Fe-based compound together with Fe, and this compound acts as a cathode for the corrosion reaction. For this reason, it is desirable that Si is 0.2% or less. Note that a more preferable range of the Si content is 0.1% or less. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs.

Feは、Siと共にAl−Fe、Al−Si−Fe系化合物を形成し、この化合物が腐食反応のカソードとして作用する。このため、Feは0.2 %以下であることが望ましい。なお、Feの含有量の一層好ましい範囲は0.1%以下である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。   Fe forms Al—Fe and Al—Si—Fe compounds together with Si, and this compound acts as a cathode for the corrosion reaction. For this reason, it is desirable that Fe is 0.2% or less. Note that a more preferable range of the Fe content is 0.1% or less. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs.

Mnは、Si、Feと共にAl−Si−Fe−Mn系化合物を形成し、この化合物はAl−Si−Feによるカソード反応を抑制する作用がある。この化合物の組成はAl12(MnFe)Siである為、0.05%以下ではカソード反応の抑制の効果が小さく、0.4%以上では犠牲材の孔食電位を貴にしてしまう。このためにMnの添加量は0.05〜0.4%に限定した。なお、Mn含有量の一層好ましい範囲は0.05〜0.2%である。 Mn forms an Al—Si—Fe—Mn compound together with Si and Fe, and this compound has an action of suppressing the cathode reaction by Al—Si—Fe. Since the composition of this compound is Al 12 (MnFe) 3 Si, if it is 0.05% or less, the effect of suppressing the cathode reaction is small, and if it is 0.4% or more, the pitting potential of the sacrificial material becomes noble. For this reason, the amount of Mn added is limited to 0.05 to 0.4%. In addition, the more preferable range of Mn content is 0.05 to 0.2%.

心材
心材において、Cu以外の成分は通常の3000系合金であればよく、特に規定するものではないが、より望ましい組成を以下に記す。
Mnは添加することにより耐食性、ろう付性及び強度を向上させることができる。そのためのMn添加量は0.05〜2.0%であることが望ましい。0.05%未満ではその効果が不十分であり、2.0 %を超えて含有すると巨大化合物を生成し加工性の低下を生じるため好ましくない。より好ましいMn含有量は0.3〜1.5 %である。
Core Material In the core material, components other than Cu may be ordinary 3000 series alloys, and are not particularly defined, but more desirable compositions are described below.
By adding Mn, corrosion resistance, brazing property and strength can be improved. Therefore, it is desirable that the amount of Mn added is 0.05 to 2.0%. If the content is less than 0.05%, the effect is insufficient. If the content exceeds 2.0%, a giant compound is formed and processability is deteriorated. A more preferable Mn content is 0.3 to 1.5%.

Siは添加することによりMn−Si系微細析出物による強度向上を見込むことができる。そのためのSi添加量は0.2〜2.5%であることが好ましい。0.2%未満ではその効果が不十分であり、2.5 %を超えて含有すると、心材の融点が低下する為、実用的ではない。より好ましいSi含有量は0.3〜1.0%である。   By adding Si, strength improvement due to Mn-Si fine precipitates can be expected. Therefore, the Si addition amount is preferably 0.2 to 2.5%. If the content is less than 0.2%, the effect is insufficient. If the content exceeds 2.5%, the melting point of the core material is lowered, which is not practical. A more preferable Si content is 0.3 to 1.0%.

Tiは添加することにより、微細化材として働き、心材強度の向上を見込むことができる。そのためのTi添加量は0.05〜0.2 %であることが好ましい。0.05%未満ではその効果が不十分であり、0.2%を超えて含有しても効果の向上は見込めず、コストアップにつながる為望ましくない。より好ましいTi添加量は0.1〜0.15%である。
ろう材としては、Al−Si系合金を用い、従来と同様である。たとえば、A4045合金等が使用できる。
By adding Ti, it can work as a refining material and can be expected to improve core material strength. Therefore, the Ti addition amount is preferably 0.05 to 0.2%. If the content is less than 0.05%, the effect is insufficient, and even if the content exceeds 0.2%, an improvement in the effect cannot be expected, leading to an increase in cost. A more preferable Ti addition amount is 0.1 to 0.15%.
As the brazing material, an Al—Si alloy is used, which is the same as the conventional one. For example, A4045 alloy can be used.

また、本発明に含有される成分は、残部Alと不可避的不純物である。不可避的不純物は各々が0.05%以下であり、総量で0.15%以下が望ましい。   Moreover, the component contained in this invention is remainder Al and an unavoidable impurity. Each of the inevitable impurities is 0.05% or less, and the total amount is preferably 0.15% or less.

ろう材
ろう材に用いられるアルミニウム材は特に限定されるものではないが、通常のろう付において用いられるAl−Si系合金ろう材が好適に用いられる。例えば、JIS4343、4045、4047の各アルミニウム合金(Al−7〜13%Si)を用いるのが好ましい。
Brazing material The aluminum material used for the brazing material is not particularly limited, but an Al-Si alloy brazing material used in normal brazing is preferably used. For example, it is preferable to use each aluminum alloy (Al-7 to 13% Si) of JIS 4343, 4045, and 4047.

心材―犠牲材間の電位差
次に、本発明のアルミニウム合金クラッド材のろう付加熱前の金属組織及び、ろう付加熱後の心材―犠牲材間の電位差について説明する。
Next, the potential difference between the core material and the sacrificial material after brazing heat and the metal structure of the aluminum alloy clad material of the present invention before the brazing heat will be described.

円相当径0.1μm以上の第2相粒子(たとえば、Al−Mn、Al−Mn−Si、Al−Fe−Si、Al−Fe−Mn−Si系化合物)は、比較的サイズが大きいため、ろう付加熱時に固溶して消失しにくい。このため、ろう付加熱後にも犠牲材中に第2相粒子が残存し、これが腐食の起点となってしまう。したがって、本発明における円相当径0.1μm以上の第2相粒子の好ましい密度は5.0×10個/mm以下である。より好ましい密度は、1.0×10個/mm以下である。
円相当径0.1mm以上の第2相粒子の密度は、犠牲材表面のSEM観察によるSEM像を画像解析することで、ろう付過熱前の第2相粒子の密度を求めた。
Second phase particles having an equivalent circle diameter of 0.1 μm or more (for example, Al—Mn, Al—Mn—Si, Al—Fe—Si, Al—Fe—Mn—Si based compounds) are relatively large, Difficult to disappear due to solid solution during brazing heat. For this reason, the second phase particles remain in the sacrificial material even after the brazing heat, and this becomes a starting point of corrosion. Therefore, the preferred density of the second phase particles having an equivalent circle diameter of 0.1 μm or more in the present invention is 5.0 × 10 5 particles / mm 2 or less. A more preferable density is 1.0 × 10 5 pieces / mm 2 or less.
The density of the second phase particles having a circle-equivalent diameter of 0.1 mm or more was obtained by analyzing the image of the SEM image of the sacrificial material surface by SEM observation to obtain the density of the second phase particles before brazing overheating.

また、ラジエータのチューブ材の内面耐食性を向上させるためには、皮材を心材に対して犠牲陽極的に作用させることが最も有効である(犠牲陽極材)。ノコロックろう付は、大気圧下で行われるため、Znの蒸発は殆どないが、ろう付加熱により心材に拡散するため、表面濃度が低下し、犠牲材表面の電位が貴になる。同様に心材のCuはろう付加熱により犠牲材への拡散が起こり、犠牲材の電位を貴にする。以上から、ろう付加熱を行うと、心材と犠牲材の電位差が減少することがわかる。このため、耐食性を確保する為に、ろう付加熱前の焼鈍等の入熱によるZn及びCuの拡散を抑えることが重要である。ろう付加熱前の犠牲材表面から5μm地点でのCu濃度がy/10%以下であればろう付加熱後の心材中央と犠牲材表面でのCu濃度の差をy/3%以上確保することができる。にすることができる。したがって、本発明における犠牲材表面から5μm地点でのCu濃度はy/10%以下である。より好ましい密度はy/15%以下である。   In order to improve the inner surface corrosion resistance of the tube material of the radiator, it is most effective to make the skin material act as a sacrificial anode on the core material (sacrificial anode material). Since Nocolok brazing is performed under atmospheric pressure, there is almost no evaporation of Zn, but since it diffuses into the core material due to brazing additional heat, the surface concentration is lowered and the surface potential of the sacrificial material becomes noble. Similarly, Cu of the core material diffuses into the sacrificial material by the brazing heat and makes the potential of the sacrificial material noble. From the above, it can be seen that when brazing heat is applied, the potential difference between the core material and the sacrificial material decreases. For this reason, in order to ensure corrosion resistance, it is important to suppress the diffusion of Zn and Cu due to heat input such as annealing before the brazing addition heat. If the Cu concentration at the point of 5 μm from the sacrificial material surface before brazing heat is y / 10% or less, the difference in Cu concentration between the center of the core material after brazing heat addition and the sacrificial material surface should be at least y / 3%. Can do. Can be. Therefore, the Cu concentration at a point of 5 μm from the surface of the sacrificial material in the present invention is y / 10% or less. A more preferable density is y / 15% or less.

この材料にろう付加熱を施すと、先述の通りCu及びZnが拡散し、心材と犠牲材間の電位差が減少する。ろう付加熱後の心材と犠牲材間の電位差は80mV以下では犠牲陽極効果が弱い為耐食性が得られず、300mV以上では犠牲材の消耗速度が大きく、長期にわたる犠牲陽極効果が得られない。したがって、本発明における心材中央と犠牲材表面の電位差は80〜300mVである。より好ましくは、100〜200mVである。   When brazing heat is applied to this material, Cu and Zn diffuse as described above, and the potential difference between the core material and the sacrificial material decreases. When the potential difference between the core material and the sacrificial material after brazing heat is 80 mV or less, the sacrificial anode effect is weak, so that the corrosion resistance cannot be obtained. Therefore, the potential difference between the center of the core material and the surface of the sacrificial material in the present invention is 80 to 300 mV. More preferably, it is 100-200 mV.

本発明のアルミニウム合金クラッド材の製造方法について説明する。
まず上述の要件を満たす成分組成を有するアルミニウム合金素材を融解し、DC(Direct Chill)鋳造法により犠牲材の鋳塊を作製する。DC鋳造法では、溶湯の冷却速度が0.5〜20℃/secと非常に速い為、その組織は析出物は微細であり、固溶量は過飽和になっている。この鋳塊に均熱処理を行うと、過飽和に固溶していた元素が析出し、析出物は粗大化する方向に組織が変化する。しかしながら、上述の通り犠牲材に粗大な析出物が多数存在すると、ろう付過熱後に析出物が残存し、そこが腐食の起点となってしまう為望ましくない。そのため、犠牲材には均熱処理を施さないことが重要である。 犠牲材の鋳塊は均熱処理を行わずに加熱し、熱間圧延を行うことにより所定の板厚まで薄くする。この熱間圧延時にも過飽和の固溶元素が析出してしまう恐れがあるため、490℃以下の加熱で熱間圧延を行うことが望ましい。
A method for producing the aluminum alloy clad material of the present invention will be described.
First, an aluminum alloy material having a component composition that satisfies the above requirements is melted, and an ingot of a sacrificial material is produced by a DC (Direct Hill) casting method. In the DC casting method, the cooling rate of the molten metal is as very high as 0.5 to 20 ° C./sec. Therefore, the structure has fine precipitates and the amount of solid solution is supersaturated. When soaking is performed on the ingot, elements that have been dissolved in a supersaturated state are precipitated, and the structure of the precipitate changes in the direction of coarsening. However, if a large number of coarse precipitates are present in the sacrificial material as described above, the precipitates remain after overheating of the brazing, which is not desirable because it becomes a starting point for corrosion. Therefore, it is important that the sacrificial material is not subjected to soaking treatment. The ingot of the sacrificial material is heated without being soaked, and is thinned to a predetermined thickness by hot rolling. It is desirable to perform hot rolling with heating at 490 ° C. or lower because supersaturated solid solution elements may be precipitated during this hot rolling.

同様に、心材についても均熱を行わないことが望ましい。これは、均熱を行うことにより心材中に析出物が生じ、この析出物がCuを多量に含んでしまうため、固溶Cuの量が減少し、Cuの濃度差による心材と犠牲材の電位差が得られなくなってしまう為である。   Similarly, it is desirable not to perform soaking on the core material. This is because a precipitate is generated in the core material by soaking, and this precipitate contains a large amount of Cu, so the amount of solid solution Cu decreases, and the potential difference between the core material and the sacrificial material due to the difference in Cu concentration. It is because it becomes impossible to obtain.

ろう材はの製造方法は特に限定されないが、DC鋳造法によって鋳造し、鋳塊を必要に応じて面削、熱間圧延を施して所定の板厚まで薄くする。   The method for producing the brazing material is not particularly limited, but it is cast by a DC casting method, and the ingot is subjected to face milling and hot rolling as necessary to reduce the thickness to a predetermined thickness.

続いて、得られた板材および鋳塊を多層積層し、最終板厚に圧延加工する工程(クラッド圧延)の最後に最終焼鈍を行う。上述の通り、この焼鈍による心材Cuの拡散は、犠牲材表面から5μmの地点において0.05%以下である必要がある。これはすなわち焼鈍の熱履歴をT(t)とし、温度Tの時のCuの拡散係数をD(T)としたとき、
∫D(T(t))dt≦7.0×10−12
である必要がある。このD(T)は
D(T)=Dexp(−Q/kT)
であり、300℃付近の温度Tに対して指数関数的に増加していく。そのため焼鈍温度が320℃以上では焼鈍時間が短くても
∫D(T(t))dt≦7.0×10−12
となってしまう。
したがって、本発明における焼鈍条件は320℃以下で1〜10時間である必要がある。より好ましい焼鈍条件は320℃以下で1〜6時間である。
Subsequently, final annealing is performed at the end of the step (clad rolling) in which the obtained plate material and the ingot are stacked in layers and rolled to the final plate thickness. As described above, the diffusion of the core material Cu by this annealing needs to be 0.05% or less at a point of 5 μm from the surface of the sacrificial material. That is, when the thermal history of annealing is T (t) and the diffusion coefficient of Cu at temperature T is D (T),
∫D (T (t)) dt ≦ 7.0 × 10 −12
Need to be. This D (T) is D (T) = D 0 exp (−Q / kT)
And increases exponentially with respect to a temperature T near 300 ° C. Therefore, when the annealing temperature is 320 ° C. or higher, even if the annealing time is short, ∫D (T (t)) dt ≦ 7.0 × 10 −12
End up.
Therefore, the annealing conditions in this invention need to be 320 degrees C or less for 1 to 10 hours. More preferable annealing conditions are 320 ° C. or less and 1 to 6 hours.

同様にろう付加熱時にもCu及びZnの拡散を抑える必要があり、ろう付加熱後の心材中央と犠牲材表面の電位差を80〜300mVにしなければならない。ろう付工法での到達温度が590℃以下だとろう材の溶融が不十分であり、満足なろう付が行われない恐れがあり、610℃以上ではCu及びZnの拡散が進み、心材中央と犠牲材表面の電位差を80mV確保することができない。また同様に、保持時間が5分を超えると、Cu及びZnの拡散が進む為、心材中央と犠牲材表面の電位差が80mVを下回ってしまう。
したがって、本発明におけるろう付加熱条件は、到達温度590〜610℃で、保持時間が5分以内である。より好ましくは、到達温度595〜605℃、且つ保持時間が4分以内である。
Similarly, it is necessary to suppress the diffusion of Cu and Zn during brazing addition heat, and the potential difference between the center of the core material and the sacrificial material surface after brazing heating must be 80 to 300 mV. If the reached temperature in the brazing method is 590 ° C. or less, the brazing material may not be sufficiently melted and satisfactory brazing may not be performed. If the temperature reaches 610 ° C. or more, diffusion of Cu and Zn proceeds, The potential difference on the surface of the sacrificial material cannot be secured at 80 mV. Similarly, if the holding time exceeds 5 minutes, the diffusion of Cu and Zn proceeds, so that the potential difference between the center of the core and the surface of the sacrificial material falls below 80 mV.
Therefore, the brazing heat addition conditions in the present invention are an ultimate temperature of 590 to 610 ° C. and a holding time of 5 minutes or less. More preferably, the ultimate temperature is 595 to 605 ° C. and the holding time is within 4 minutes.

次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれに制限されるものではない。
表1に示す合金組成を有する犠牲材を、表2に示す製造方法でそれぞれ製造した。なお、表1の合金組成において、「−」は検出限界以下であることを示すものであり、「残部」は不可避的不純物を含む。
まず、DC鋳造法により表1の犠牲材及び、これと張り合わせる心材(Al−0.7Si−0.6Cu−1.5Mn−0.12Ti)及びろう材(4045)を鋳造した。その後、犠牲材およびろう材の鋳塊を500℃まで加熱を行った後、所定の板厚まで圧延を行い、面削を行った心材鋳塊の両端に組み付けを行った。これを再び500℃まで加熱を行い、熱間圧延により所定の板厚まで圧延し、クラッド材を作製した。続いて、得られた板材を冷間圧延し、表2の構成の板厚において最終焼鈍を行った。(調質:H2n)
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
Sacrificial materials having the alloy compositions shown in Table 1 were produced by the production methods shown in Table 2, respectively. In the alloy composition of Table 1, “−” indicates that it is below the detection limit, and “remainder” includes inevitable impurities.
First, a sacrificial material shown in Table 1, a core material (Al-0.7Si-0.6Cu-1.5Mn-0.12Ti) and a brazing material (4045) bonded to the sacrificial material of Table 1 were cast by a DC casting method. Thereafter, the ingot of the sacrificial material and the brazing material was heated to 500 ° C., then rolled to a predetermined plate thickness, and assembled to both ends of the core material ingot which had been chamfered. This was again heated to 500 ° C. and rolled to a predetermined plate thickness by hot rolling to produce a clad material. Then, the obtained board | plate material was cold-rolled and the final annealing was performed in the board thickness of the structure of Table 2. FIG. (Tone: H2n)

Figure 0006208450
Figure 0006208450

Figure 0006208450
Figure 0006208450

そして、作製した各クラッド材を供試材(試験材No.1〜33)とし、600℃で3minろう付加熱を行った。その後、各供試材に対して、心材−犠牲材間の電位差・犠牲材における円相当径0.1μm以上の第2相粒子の密度・耐食性に関する評価を下記に示す方法で行い、それらの結果を表3・4に示した。 And each produced clad material was made into a test material (test material No. 1-33), and brazing addition heat was performed for 3 minutes at 600 degreeC. Thereafter, for each test material, the evaluation of the potential difference between the core material and the sacrificial material and the density and corrosion resistance of the second phase particles having an equivalent circle diameter of 0.1 μm or more in the sacrificial material were performed by the following methods. Are shown in Tables 3 and 4.

〔a〕ろう付加熱前の犠牲材における第2相粒子密度(個/mm
円相当径0.1μm以上の第2相粒子の密度は、犠牲材表面のSEM観察を行うことで調査した。観察は各サンプル3視野ずつ行い、それぞれの視野のSEM像を画像解析することで、ろう付加熱前の第2相粒子の密度を求めた。表記した密度は、各3視野より求めた値の平均値である。
[A] Second phase particle density in sacrificial material before brazing heat (number / mm 2 )
The density of second phase particles having an equivalent circle diameter of 0.1 μm or more was investigated by SEM observation of the surface of the sacrificial material. Observation was performed for each of the three visual fields of each sample, and the SEM image of each visual field was subjected to image analysis, thereby obtaining the density of the second phase particles before brazing addition heat. The indicated density is an average value of values obtained from the three fields of view.

〔b〕犠牲材表面から心材方向へ5μmの深さにおいてのCu濃度(%)
供試材の断面にEPMA分析を行うことによりCu濃度のラインプロファイルを得た。ここから犠牲材表面から心材方向へ5mmの深さにおけるCuの濃度を見積もった。評価としては、Cu濃度がy/10%以下ならば「○」とし、y/10%以上であれば「×」とした。
[B] Cu concentration (%) at a depth of 5 μm from the surface of the sacrificial material toward the core material
A line profile of Cu concentration was obtained by conducting EPMA analysis on the cross section of the specimen. From this, the concentration of Cu at a depth of 5 mm from the surface of the sacrificial material toward the core was estimated. As evaluation, it was set as "(circle)" when Cu density | concentration was y / 10% or less, and set as "x" when y / 10% or more.

〔c〕心材―犠牲材間の電位差(mV)
供試材を600℃×3minでろう付加熱した後、50℃/minの冷却速度で冷却してサンプルとした。そして各サンプルに対し、25℃の5 %NaCl水溶液中でクラッド材の心材、及び犠牲材の自然電位(vsAg/AgCl)の測定を行った。このとき心材の電位は、NaOHにより犠牲材表面から100 μmエッチングを行った後に測定を行った。評価としては、電位差が80mV以上あれば「○」とし、80mV以下であれば「×」とした。
[C] Potential difference between core material and sacrificial material (mV)
The specimen was subjected to brazing heat at 600 ° C. × 3 min, and then cooled to a sample at a cooling rate of 50 ° C./min. Each sample was measured for the natural potential (vsAg / AgCl) of the core material of the clad material and the sacrificial material in a 5% NaCl aqueous solution at 25 ° C. At this time, the potential of the core material was measured after etching 100 μm from the surface of the sacrificial material with NaOH. As an evaluation, if the potential difference was 80 mV or more, it was “◯”, and if it was 80 mV or less, it was “x”.

〔d〕自己耐食性評価
供試材を600 ℃×3minでろう付加熱した後、50℃/minの冷却速度で冷却してサンプルとした。その後、下記の方法により犠牲材側の腐食試験を行い、内面の耐食性を評価した。
腐食液:OY水(NaCl0.329g、NaSO0.084g、CuCl・2HO 0.0026g、FeCl・6HO 0.142 gに蒸留水を加え1kg・pH 2.9〜3.1)
方法:OY水を88℃の温度に保持し、750時間浸漬試験を行った後、その最大孔食深さの測定を行った。
腐食試験による最大孔食深さが40μm未満を合格、最大孔食深さが40μm以上を不合格とした。
[D] Self-corrosion resistance evaluation The specimen was subjected to brazing addition heat at 600 ° C for 3 minutes, and then cooled to a sample at a cooling rate of 50 ° C / min. Thereafter, a corrosion test on the sacrificial material side was performed by the following method to evaluate the corrosion resistance of the inner surface.
Corrosive solution: OY water (NaCl 0.329 g, Na 2 SO 4 0.084 g, CuCl 2 .2H 2 O 0.0026 g, FeCl 3 .6H 2 O 0.142 g and distilled water added to 1 kg, pH 2.9 to 3.1)
Method: OY water was kept at a temperature of 88 ° C., and after a 750 hour immersion test, the maximum pitting depth was measured.
The maximum pitting corrosion depth by the corrosion test was less than 40 μm, and the maximum pitting corrosion depth was 40 μm or more.

Figure 0006208450
Figure 0006208450

Figure 0006208450
Figure 0006208450

本発明例である、試験材No.1〜13、19〜27は、ろう付加熱前の犠牲材おける円相当径0.1μm以上の第2相粒子の密度が1.0×10個以下であり、またろう付加熱後の心材−犠牲材間の電位差は80mV以上あり、最大孔食深さも40μm以下であり、結果、犠牲防食効果が確保される結果となった。
試験材No.14、15、29〜31は犠牲材のZn量と心材のCu量が発明の範囲外であり、Cu濃度が本発明の範囲外であったため電位差が80mV以下及び/または耐食性が悪かった。
試験材No.16〜18は犠牲材の組成が発明の範囲外であったため電位差が80mV以下であり、耐食性が悪かった。
試験材No.28は犠牲材の金属組織が発明の範囲外であったため耐食性が悪かった。
In this example, the test material No. Nos. 1 to 13 and 19 to 27 have a density of second phase particles having an equivalent circle diameter of 0.1 μm or more in the sacrificial material before brazing heat addition of 1.0 × 10 5 or less, and the core material after brazing heat addition The potential difference between the sacrificial materials is 80 mV or more and the maximum pitting depth is 40 μm or less. As a result, the sacrificial anticorrosive effect is secured.
Test material No. Nos. 14, 15, and 29 to 31 had the Zn content of the sacrificial material and the Cu content of the core material outside the scope of the invention, and the Cu concentration was outside the scope of the present invention, so the potential difference was 80 mV or less and / or the corrosion resistance was poor.
Test material No. In Nos. 16 to 18, the composition of the sacrificial material was outside the range of the invention, so the potential difference was 80 mV or less, and the corrosion resistance was poor.
Test material No. No. 28 was poor in corrosion resistance because the metal structure of the sacrificial material was outside the scope of the invention.

本発明ブレージングシートの構造を示す断面図1 犠牲材2 心材3 ろう材(犠牲材)Cross-sectional view showing the structure of the brazing sheet of the present invention 1 Sacrificial material 2 Core material 3 Brazing material (sacrificial material) Cu濃度と心材厚さの関係を表す略式図Schematic diagram showing the relationship between Cu concentration and core material thickness

Claims (6)

心材の両面に犠牲材がクラッドされたクラッド材において、犠牲材厚さをXμm、犠牲材のZn濃度をx%、心材厚さをYμm、心材のCu濃度をy%としたときに
Figure 0006208450
かつ X≦45
を満たし、かつ、ろう付前の犠牲材の金属組織が円相当径0.1μm以上の第二相粒子の密度が1.0×10 個/mm 以下であることを特徴とする熱交換器用アルミニウム合金クラッド材。
When the sacrificial material is clad on both sides of the core material, the sacrificial material thickness is X μm, the sacrificial material Zn concentration is x%, the core material thickness is Y μm, and the core material Cu concentration is y%.
Figure 0006208450
And X ≦ 45
Meets, and heat, wherein the density of the metal structure of the sacrificial material before brazing is not less than the equivalent circle diameter 0.1μm-phase particles is 1.0 × 10 5 cells / mm 2 or less Aluminum alloy clad material for exchangers.
心材の両面に犠牲材がクラッドされたクラッド材において、犠牲材にSi:0.2%以下、Fe:0.2%以下、Mn:0.05〜0.4%のうち1種以上を含有し、且つ犠牲材厚さをXμm、犠牲材のZn濃度をx%、心材厚さをYμm、心材のCu濃度をy%としたときに

Figure 0006208450
かつ X≦45
を満たし、かつ、ろう付前の犠牲材の金属組織が円相当径0.1μm以上の第二相粒子の密度が1.0×10 個/mm 以下であることを特徴とする熱交換器用アルミニウム合金クラッド材。
In the clad material in which the sacrificial material is clad on both surfaces of the core material, the sacrificial material contains at least one of Si: 0.2% or less, Fe: 0.2% or less, and Mn: 0.05 to 0.4%. When the sacrificial material thickness is X μm, the sacrificial material Zn concentration is x%, the core material thickness is Y μm, and the core material Cu concentration is y%.

Figure 0006208450
And X ≦ 45
Meets, and heat, wherein the density of the metal structure of the sacrificial material before brazing is not less than the equivalent circle diameter 0.1μm-phase particles is 1.0 × 10 5 cells / mm 2 or less Aluminum alloy clad material for exchangers.
請求項1乃至2記載のアルミニウム合金クラッド材において、ろう付前の犠牲材表面から心材方向へ5μmの深さにおいてのCu濃度がy/10%以下であることを特徴とする熱交換器用アルミニウム合金クラッド材。
3. The aluminum alloy clad material according to claim 1, wherein the Cu concentration at a depth of 5 μm from the surface of the sacrificial material before brazing to the core material is y / 10% or less. Clad material.
請求項1乃至記載のアルミニウム合金クラッド材の犠牲材を鋳造、熱間圧延により製造する方法において、均熱処理を行わないことを特徴とする熱交換器用アルミニウム合金クラッド材の製造方法。
3. A method for producing an aluminum alloy clad material for a heat exchanger according to claim 1, wherein the sacrificial material of the aluminum alloy clad material according to claim 1 is produced by casting and hot rolling.
請求項1乃至記載のアルミニウム合金クラッド材を製造する方法において、クラッド圧延後の最終焼鈍を320℃以下で1〜10時間行うことを特徴とする熱交換器用アルミニウム合金クラッド材の製造方法。
The method for producing an aluminum alloy clad material for a heat exchanger according to claim 1 or 2 , wherein the final annealing after clad rolling is performed at 320 ° C or lower for 1 to 10 hours.
請求項乃至記載発明で製造されたアルミニウム合金クラッド材を用いて作製したチューブ材をろう付工法により組み付けるアルミニウム合金製熱交換器の製造方法において、ろう付加熱を590〜610℃で保持時間を5分以内の条件で施すことを特徴とするアルミニウム合金製熱交換器の製造方法。 A method for producing an aluminum alloy heat exchanger in which a tube material produced using the aluminum alloy clad material produced in the invention according to any one of claims 4 to 5 is assembled by a brazing method, wherein the brazing additional heat is maintained at 590 to 610 ° C. Is carried out under conditions of 5 minutes or less. A method for producing an aluminum alloy heat exchanger.
JP2013073595A 2013-03-29 2013-03-29 Aluminum alloy clad material for thin wall heat exchanger excellent in corrosion resistance and method for producing the same, and method for producing heat exchanger using the aluminum alloy clad material Expired - Fee Related JP6208450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073595A JP6208450B2 (en) 2013-03-29 2013-03-29 Aluminum alloy clad material for thin wall heat exchanger excellent in corrosion resistance and method for producing the same, and method for producing heat exchanger using the aluminum alloy clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073595A JP6208450B2 (en) 2013-03-29 2013-03-29 Aluminum alloy clad material for thin wall heat exchanger excellent in corrosion resistance and method for producing the same, and method for producing heat exchanger using the aluminum alloy clad material

Publications (2)

Publication Number Publication Date
JP2014196552A JP2014196552A (en) 2014-10-16
JP6208450B2 true JP6208450B2 (en) 2017-10-04

Family

ID=52357544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073595A Expired - Fee Related JP6208450B2 (en) 2013-03-29 2013-03-29 Aluminum alloy clad material for thin wall heat exchanger excellent in corrosion resistance and method for producing the same, and method for producing heat exchanger using the aluminum alloy clad material

Country Status (1)

Country Link
JP (1) JP6208450B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765327B2 (en) * 1996-04-26 2006-04-12 神鋼アルコア輸送機材株式会社 Brazing aluminum alloy composite member and brazing method
JP4030006B2 (en) * 2002-07-05 2008-01-09 住友軽金属工業株式会社 Aluminum alloy clad material and manufacturing method thereof
JP3910506B2 (en) * 2002-08-13 2007-04-25 住友軽金属工業株式会社 Aluminum alloy clad material and manufacturing method thereof
JP5354590B2 (en) * 2009-08-03 2013-11-27 三菱アルミニウム株式会社 Aluminum alloy brazing sheet with high strength and excellent corrosion resistance
JP5411649B2 (en) * 2009-10-13 2014-02-12 株式会社神戸製鋼所 Aluminum clad material for heat exchanger
JP5498213B2 (en) * 2010-03-19 2014-05-21 株式会社Uacj Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP5913853B2 (en) * 2011-07-25 2016-04-27 株式会社Uacj Aluminum alloy brazing sheet and method for producing the same

Also Published As

Publication number Publication date
JP2014196552A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5602747B2 (en) High corrosion resistance aluminum alloy brazing sheet, method for producing the same, and high corrosion resistance heat exchanger using the same
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5188115B2 (en) High strength aluminum alloy brazing sheet
JP5873343B2 (en) High corrosion resistance aluminum alloy brazing sheet and flow path forming part of automobile heat exchanger using the same
JP5336967B2 (en) Aluminum alloy clad material
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
KR101784581B1 (en) Brazing sheet core alloy for heat exchanger
JP2010270395A (en) Aluminum alloy brazing sheet for thin-wall tube
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP5925022B2 (en) Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing heat exchanger
WO2014157116A1 (en) Brazed structure
JP2009022981A (en) Aluminum alloy brazing sheet having high-strength and production method therefor
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP2014177694A (en) Aluminum alloy heat exchanger excellent in corrosion resistance in strongly acidic environment
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP2019167581A (en) Method for producing aluminum alloy extruded tube
JP5952995B2 (en) Aluminum alloy fin material for heat exchanger
JP2007146264A (en) Aluminum alloy fin material
JP6208450B2 (en) Aluminum alloy clad material for thin wall heat exchanger excellent in corrosion resistance and method for producing the same, and method for producing heat exchanger using the aluminum alloy clad material
JP6970841B2 (en) Aluminum alloy brazing sheet and its manufacturing method
JP2014062296A (en) Aluminum alloy brazing sheet excellent in corrosion resistance
JP5306836B2 (en) Aluminum alloy brazing sheet with excellent strength and corrosion resistance
JP2001226729A (en) Aluminum alloy for heat exchanger excellent in corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170907

R150 Certificate of patent or registration of utility model

Ref document number: 6208450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees