JP6207326B2 - 被検体情報取得装置 - Google Patents

被検体情報取得装置 Download PDF

Info

Publication number
JP6207326B2
JP6207326B2 JP2013204512A JP2013204512A JP6207326B2 JP 6207326 B2 JP6207326 B2 JP 6207326B2 JP 2013204512 A JP2013204512 A JP 2013204512A JP 2013204512 A JP2013204512 A JP 2013204512A JP 6207326 B2 JP6207326 B2 JP 6207326B2
Authority
JP
Japan
Prior art keywords
light
light amount
holder
photoacoustic probe
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013204512A
Other languages
English (en)
Other versions
JP2015066265A (ja
Inventor
時田 俊伸
俊伸 時田
正人 矢嶋
正人 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013204512A priority Critical patent/JP6207326B2/ja
Priority to PCT/JP2014/074150 priority patent/WO2015045893A1/en
Priority to US15/023,034 priority patent/US20160228009A1/en
Publication of JP2015066265A publication Critical patent/JP2015066265A/ja
Application granted granted Critical
Publication of JP6207326B2 publication Critical patent/JP6207326B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、被検体情報取得装置に関する。
がんに起因して発生する血管新生を特異的に画像化する方法として、光音響トモグラフィ(以下、PAT:Photoacoustic tomography)が注目されている。PATは照明光(近赤外線)を被検体に照明し、被検体内部から発せられる光音響波を超音波探触子で受信して画像化する方式である。
図7に、非特許文献1で述べられているハンドヘルド型光音響装置の模式図を示す。光音響プローブ104は、バンドルファイバ103の出射端103bを含んだ照明光学系に、光音響波を受信するための受信部106が挟まれ固定された構成である。
バンドルファイバ103の入射端103aには、光源101からの照明光が入射する。そして、バンドルファイバ103を経由した照明光は、出射端103bから被検体に照射される。すると光音響効果により被検体から光音響波が発生し、受信部106により受信される。受信信号から変換された電気信号に、超音波装置(US)の処理装置107で増幅やディジタル化、画像再構成が行われる。構成された画像情報(IMG)は、表示装置であるモニタ108に送られ、光音響画像として表示される。
S. A. Ermilov et al., "Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes", Photons Plus Ultrasound: Imaging and Sensing 2009, Proc. of SPIE vol. 7177, 2009.
しかしながら従来の技術では以下のような課題があった。
非特許文献1の光音響プローブ104が、非測定時(すなわち、出射端103bが被検体に接していない時)に照明光を照射すると、空中に比較的大きなエネルギ密度をもった照明光が放出されてしまう。そのため非測定時は、少なくとも光音響プローブの出射端を覆うといった改善の余地が残っていた。
さらに、光音響の測定を繰り返しているうちに、光源の劣化や光伝送系の不具合により光音響プローブ104の出射端から照射される総光量が低下したとしても、そのことを把握できない場合がある。
ここで、光源101の劣化に起因する光量低下に関しては、光源101から入射端103aまでの間に不図示の光量センサを設けることで把握できる。
ところがこの方法では、バンドルファイバ103の一部の断線や、不図示の光学素子の位置ずれといった、光伝送系の不具合による総光量の低下は把握できない。そうすると、実際の総光量が低いにも関わらず、総光量が高いものとして光音響信号を取り扱うことになる。その結果、光音響波の信号源となる吸収体の吸収係数など、光音響信号を光量で補正して得られるデータや画像は、実際のものよりも小さくなるため、データや画像そのものの信頼性を損なうことになる。
これらは光音響だけでなく、DOI(Diffuse Optical Imagin
g)などの比較的大きなエネルギ密度を用いる光イメージングにも共通の課題となっていた。
本発明は上記課題に鑑みてなされたものであり、その目的は、照明光を出射する光音響プローブにおいて、非測定時に外部へ漏れる光量を低下させ、被検者や術者の安全性およびデータの信頼性を向上させることにある。
本発明は、以下の構成を採用する。すなわち、光源と、前記光源からの光を伝送する光伝送系と、前記光を被検体に照射する出射端と、前記光を照射された前記被検体から発生する音響波を受信する受信部を含む光音響プローブと、前記音響波に基づいて前記被検体内の情報を取得する処理装置と、前記被検体内の情報を表示する表示装置と、前記光音響プローブを収納して前記出射端を覆うホルダと、照射された光の光量を測定する光量測定手段と、を有し、前記出射端は、前記ホルダに覆われた状態で光を照射することが可能であることを特徴とする被検体情報取得装置である。
本発明によれば、照明光を出射する光音響プローブにおいて、非測定時に外部へ漏れる光量を低下させ、被検者や術者の安全性およびデータの信頼性を向上させることができる。
本発明の実施の形態における光音響装置の構成を説明する図 本発明の実施例1における光音響プローブを説明する図 本発明の実施例1における動作を説明するフローチャート 本発明の実施例1における動作を説明するフローチャート 本発明の実施例2における光音響プローブを説明する図 本発明の実施例2における動作を説明するフローチャート 本発明の実施例3における光音響プローブを説明する図 本発明の実施例4における光音響プローブを説明する図 本発明の実施例4における光音響プローブを説明する図 本発明の実施例5における光音響装置の使用方法を説明するフローチャート 背景技術の光音響装置の構成を説明する図
以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の記載に限定する趣旨のものではない。
本発明において、音響波とは、音波、超音波、光音響波、光超音波と呼ばれる弾性波あるいは疎密波を含む。本発明の被検体情報取得装置は、被検体に光(電磁波)を照射し、光音響効果に従って被検体内で発生した音響波を受信して、被検体内部の特性情報を取得する光音響トモグラフィ装置である。
光音響トモグラフィにより取得される特性情報は、光照射によって生じた音響波の初期音圧、初期音圧から導かれる光エネルギ吸収密度や吸収係数、組織を構成する物質の濃度等を反映した被検体情報である。
物質の濃度とは例えば、酸素飽和度またはオキシヘモグロビン濃度もしくはデオキシヘモグロビン濃度である。また、生成された特性情報は、数値データ、被検体内の各位置の
分布情報、または画像を表示するための画像データとして保存や利用されても良い。
以下、図面を参照しつつ、本発明を詳細に説明する。なお、同一の構成要素には同一の符号を付して、説明を省略する場合がある。本発明は被検体情報取得装置やその作動方法、制御方法としても捉えられる。本発明はまた、制御方法を情報処理装置等に実施させるプログラムとしても捉えられる。
図1から図3を用いて本発明の実施の形態を説明する。
図1は光音響装置100を模式的に図示したものである。光源1は、照明光(L)を発する。第一の照明光学系2は、照明光を成形してバンドルファイバ3の入射端3aへ入射させる。バンドルファイバ3は、光音響プローブ4まで照明光を伝送し、その出射端3bから照明光を照射させる。
光音響プローブ4は、バンドルファイバ3の出射端3bと、出射端3bから照射した照明光を成形する第二の照明光学系5、ならびに光音響波を受信する受信部6からなる。第二の照明光学系5を介して被検体(OBJ)へ照射されたのち被検体内部で拡散した光を吸収した吸収体(ABS)から、光音響波(PA)が発せられる。
光音響波は受信部6に内蔵されたピエゾ素子やCMUTなどの素子で電気信号(SIG)に変換され、その電気信号が処理装置7へ送られる。処理装置7は電気信号を増幅し、ディジタル変換やフィルタを介して画像情報(IMG)を生成し、表示装置8に表示させる。処理装置7としては、CPUやメモリ、処理回路などを有し、各種の処理を行う情報処理装置などを利用できる。
なお図1中では、バンドルファイバ3を途中で分岐し、その出射端3bと第二の照明光学系5を2箇所設けた。しかし分岐個数はこれに限定されない。また、分岐をせずに受信部6の片面にのみ出射端3bを隣接させてもよい。
また、光音響プローブ4は、図2Aに示すように、ハウジング4aで覆われていることが好ましい。
光源1としては、600nmから1100nm程度の波長の近赤外線を発光するものが好ましい。例えば、Nd:YAGレーザやアレクサンドライトレーザなどのパルスレーザを用いる。また、Nd:YAGレーザ光を励起光とするTi:saレーザやOPOレーザを用いても良い。
図1では、光源1からの光を第一の照明光学系2とバンドルファイバ3を介して伝送した。ただし光伝送系はこれに限定されない。例えば、ミラーやプリズムなどを組み合わせ、その反射や屈折を利用した光伝送系でもよい。さらに、光源1を半導体レーザとし、出射端3bのところに置き換えて、光伝送系としてもよい。
照明光の照射と受信部6による光音響波の受信は同期をとる必要がある。そのために、光源1から第二の照明光学系5の間なるいずれかの経路を一部分岐して不図示のセンサ、例えばフォトダイオードで検出する方法がある。その検出信号をトリガとして受信部6が受信を開始すれば良い。そのほか、不図示のパルス発生器を用いて、光源1の発光タイミングと処理装置7の受信タイミングを同期させてもよい。
第一の照明光学系2には、照明光を成形する光学素子だけでなく、数%の照明光を反射させる反射素子2bと、その反射光を測定する光量センサ2aを設ける。光量センサ2aとしてはフォトダイオードや光電子倍増管などを利用できる。図1では、これらのブロックを第一の照明光学系2の中に設けた。しかし配置場所はこれに限定されず、光源1の中や、光源から光音響プローブ4の出射端までの経路のどこかに設ければ良い。反射素子2bには平行平板グラスやミラーを使用できる。
通常、光量センサ2aの出力値に所定の倍率を乗じた値が、光音響プローブ4の出射端からの総光量とみなされる。所定の倍率は、反射素子2bの反射効率と、反射素子2bから第二の照明光学系5までの光伝送効率から決定される。例えば、反射素子2bの反射効率が5%の場合、95%の照明光は透過されバンドルファイバの入射端3aまで到達する。そして光伝送効率は、バンドルファイバ3への入射効率および出射効率と、第二の照明光学系5に設けた拡散板などの光学素子の透過率により定まり、ここでは仮に60%とする。
この条件下では、光源1から発せられた照明光の57%(=0.95×0.6)が光音響プローブ4の出射端から照射し、これが総光量となる。つまり、総光量に対し光量センサ2aが測定できる光量は約8.8%(=0.05/0.57)となる。すなわち、光量センサ2aが測定した光量に対して、11.4(=1/0.088)を乗じた値を総光量とみなすことができる。このように、光量センサ2aの測定値に所定の倍率を乗じた値を、被検体を測定する際の総光量とする。処理装置7には、この倍率あるいは換算式が保存されている。
なお、換算式として、倍率を単に乗ずる数式(総光量=11.4×光量センサ2aの出力)ではなく、オフセット成分を持たせた式(総光量=11.4×光量センサ2aの出力+オフセット)を使用してもよい。これにより、被検体表面に照射される総光量が分かるので、既知である照射範囲と併せて境界条件にすることによって、被検体内部への光量分布を算出できる。被検体内部の光量分布の算出には、光拡散方程式(輸送方程式)やモンテカルロ法を適用できる。このとき、被検体内部の背景光学定数(μeff:等価減衰係数、μ:吸収係数、μ’:等価散乱係数)には、既知の値か、推定値を用いる。
ここで本発明では、非測定時(被検体を撮像や測定しない時)に光音響プローブ4を収納するための、ホルダ9を設ける。ホルダ9の内部には光量測定手段10を設け、光音響プローブ4から照射される総光量が測定可能としている。
具体的な光量測定手段10について、図2Aを用いて説明する。ホルダ9には、光音響プローブ4の出射端から照射される総光量を測定するためのパワーメータ10a(光量測定手段10)を設ける。パワーメータ10aとしては、フォトダイオードのような光電変換方式のものや、サーモパイルのような熱交換方式のものを使用できる。パワーメータ10aは、光音響プローブ4をホルダ9に収納した状態で、光音響プローブ4の出射端と対向する位置に設けられる。
このような構成により、光音響プローブ4から照射される総光量、すなわち被検体へ照射される総光量を測定できる。光量の測定値(Q)は、記憶部13に送られる。
あるいは、図3Aのように、光音響プローブ4をホルダ9に収納した状態で、光音響プローブ4の出射端と対向する位置に拡散板11を設ける。そして、その拡散板11に照射された光量分布を、NDフィルタ12を介して赤外線カメラ10b(光量測定手段10)で撮影する。このような構成であれば、赤外線カメラ10bが測定した各画素の輝度値(BR)を合計して光音響プローブ4から照射される総光量を測定できるのに加えて、光音響プローブ4の出射端から照射される面内の光量分布も測定可能となる。
なお図2Aおよび図3Aでは、ホルダ9の内側に弾性体9aを設けている。弾性体9aとしては、各種ゴムやウレタンなどの変形しやすい樹脂が好適である。さらに、ホルダ9本体は、金属、プラスチックなどの樹脂、あるいはセラミックスなど、比較的剛性の高い材料で構成した。弾性体9aを設けることによって、光音響プローブ4をホルダ9へ収納した際、両者の隙間を埋めることができる。こうすることで、光音響プローブ4の出射端
からの総光量を光量測定手段10で測定する際に、ホルダ9の外へ漏れる光を低減させられる。その結果、被検者や術者に対する安全性が向上する。
本実施の形態では光音響トモグラフィについて説明した。しかし適用対象はこれに限定されない。例えばDOI(Diffuse Optical Imaging)などの、エネルギ密度が比較的大きい光を用いる光イメージングにも適用することができる。これは、以降の実施例でも同様である。
[実施例1]
続いて、図2Aの構成を用いた具体的な測定などの手順を、図2Bおよび図2Cのフローチャートを参照して説明する。パワーメータ10aの出力は、記憶部13で記憶される。このとき、処理装置7は図2Bのフローの各ステップに従い、光音響プローブ4から照射された総光量が正常か否か判別する。
S21:光音響プローブ4をホルダ9に収納した状態で、出射端から光を照射し、その時の光量をパワーメータ10aで測定する。そして、その測定結果を記憶部13が記憶する。
S22:前回までの測定結果、もしくは基準となる総光量(設定値)との差分を比較する。
S23:S22の差分が所定未満であれば、正常終了とする。
S24:S22の差分が所定以上であれば、非正常終了(異常終了)とする。本実施例では標準的な総光量を50mJとし、差分の閾値を±5mJとした。
このような手順によれば、光音響プローブをホルダに収納することで安全を維持し、さらにその安全な状態で実際の照射光量を計測できる。その結果、装置の不良を早期に検出できる。
なお装置には、S22の判別結果を提示するための提示手段14を設けることが好ましい。提示手段14としては、点灯や点滅で状態を提示するLEDや、音声通知するユニットを利用できる。あるいは提示手段14として表示装置8を利用し、文字や画像で状態を提示しても良い。こうすることで、光音響プローブ4から照射された総光量の変動に術者がいち早く気付くことができるので、不良測定を防止できる。
ここで、パワーメータ10は、実際に被検体に照射される光エネルギを測定できるものである。一方、第一の照明光学系2に内蔵された光量センサ2aは、光源1から照射された光の数%を測定するものであり、被検体に照射する光エネルギは測定できない。ただし、上で説明した通り、これらには比例関係が成り立つ。そのため、それぞれの測定結果から光量センサ2aを較正することも可能である。較正のフローを図2Cに示す。
S21:光音響プローブ4をホルダ9に収納した状態で、出射端から光を照射し、その時の光量をパワーメータ10aで測定する。そして、その測定結果を記憶部13に記憶する(図2BのS21と同じ)。
S25:S21と並行して、光量センサ2aで照明光を測定する。
S26:パワーメータ10と光量センサ2aの出力値から、光量センサ2aから総光量を求めるための較正値(換算式)を算出する。
以上のように、光量センサ2aを較正し、光音響プローブ4から照射された総光量を換算することができれば、実際に光音響測定時の総光量を把握することが可能となる。
[実施例2]
本実施例では、光量測定手段10として、図3Aのような赤外線カメラ10bを用いる。ただし、光音響プローブ4の出射端から照射した照明光を、赤外線カメラ10bで直接
的に撮像することは難しい。そこで、光音響プローブ4の出射端と対向する位置に拡散板11を設け、赤外線カメラ10bの焦点を拡散板11に合わせる。
なお、光音響プローブ4から照射した照明光の光量が強い場合には、赤外線カメラ10bで撮像した各画素の輝度値が飽和したり、赤外線カメラ10bの受像素子が損傷したりする可能性がある。それを防ぐため、拡散板11と赤外線カメラ10bの間にNDフィルタ12を設けることが好ましい。
図3Bのフローチャートを用いて、赤外線カメラ10bで撮像した各画素の輝度値の合計を総光量とする方法について説明する。
S31:赤外線カメラ10bで測定した輝度値の合計を算出する。例えば輝度値を256階調とし、1280×960の画素データの各輝度値を合計する。
S32:光音響プローブ4の出射端からの総光量を求める。総光量の求め方は実施例1で説明した通りである。すなわち、較正された光量センサ2a(図1)を用いて総光量への換算値を求める方法や、パワーメータ10aで直接測定する方法である。
S33:輝度値の合計と総光量から、輝度値の較正、換算式を作成する。
S34:輝度値の合計から総光量を求める。
また、S34では、赤外線カメラ10bの各画素値から、光音響プローブ4の出射端から照射される光の、照射面内での光量分布も求めることができる。これにより被検体表面での光量分布がわかるので、これを被検体内部の光量分布を計算するときの境界条件とすることで、さらにその計算精度を向上させることができる。
以上述べたように、本実施例の方法によっても、プローブに収納された光音響プローブからの総光量を安全に測定できる。
[実施例3]
光音響プローブ4の出射端から照射される光の、照射面内での光量分布を測定する方法は、実施例2で説明したような赤外線カメラ10bを用いる方法に限定されない。本実施例では、パワーメータ10aで光量分布を測定する構成と方法を説明する。
実施例1のパワーメータ10aは、光音響プローブ4の出射端の全体と対向可能となるように、大面積のものを用いた。一方、実施例3では、図4Aのように、小面積のパワーメータ10aを走査して用いる。そのため、小面積のパワーメータ10aをXYステージ15上に搭載している。こうすることで、赤外線カメラ10bを使わなくても、比較的安価な小面積のパワーメータ10aを使用して、光音響プローブ4の出射端から照射される光の照射面内での光量分布を測定できる。
ここで、ANSI Z136.1-2000では、単位面積当たりの照明エネルギが皮膚に対するMPE(最大露光許容量)を超えているか否かを測定する方法として、直径3.5mmの領域で測定する旨定めている。そのため、パワーメータ10aの測定領域を直径3.5mmとするか、パワーメータ10aの上に直径3.5mmの開口を持つアパーチャ10cを設けることで、単位面積当たりの照射エネルギをANSI Z136.1-2000に準拠した方法で測定できる。
処理装置7は、皮膚に対する安全性を確保するために、パワーメータ10aで測定したエネルギ密度が所定値を超えているか否か判断する。この所定値としては、安全率を見込んで、皮膚に対するMPEの0.8倍程度の値を用いた。そして照射エネルギ密度が所定値を超えたと処理装置7が判断した場合は、光源1の照明強度を下げるよう照明強度を調整する(調整指示ADJ)。これにより光エネルギ密度を所定値以下にして、安全性を確保できる。
光エネルギ密度をMPE以下とする方法として他に、光源1から光音響プローブ4の出射端の間にフィルタを挿入する方法や、拡散角度の広い拡散板を第二の照明光学系5に挿入する方法などが適用できる。
図4のXYステージ15は、パワーメータ10aを走査するために設けられた。XYステージ15は処理装置7からの駆動指示(DRV)で動作する。ただし走査機構はこれに限定されない。例えば、上の説明とは逆に、ホルダ9に収納された状態の光音響プローブ4を走査してもよい。すなわち、光音響プローブ4の出射端の面内方向と、パワーメータ10aの測定面が相対的に走査できれば良い。
実施例3ではパワーメータ10aを走査しながら、光音響プローブ4の出射端から光が照射される面内での光量分布を測定した。これにより総光量を安全に測定することに加えて、被検体内部での光量分布の算出が可能となる。また比較的安価なパワーメータを利用することでコストの低減が可能となる。
さらに実施例3の処理装置7は、エネルギ密度が所定値を超えているか判断し、超えている場合はエネルギ密度を調整した。これにより術者や被検者の安全性を確保できるようになる。この目的においては、光量測定手段10として小型のパワーメータ10aを用いることに代えて、実施例2のような赤外線カメラを用いても良い。
[実施例4]
光音響プローブ4の出射端からは、数十mJから百数十mJ程度の高エネルギな照明光が比較的小さな面積から照射される。そのため、実施例3で説明した皮膚に対するMPEを超えないとしても、より基準値の小さい網膜に対するMPEを超える可能性がある。したがって、被検者や術者の安全性の保護のため、光音響プローブ4の出射端近傍に、被検体と非接触の状態では光を照射しないような機構を設けることが好ましい。
本実施例では図5Aのように、光音響プローブ4の出射端の外側に、接触検知センサ16を設けた。接触検知センサ16としては、光学式、静電式または機械式のセンサ、もしくは歪ゲージを使用できる。また、受信部6(図1)で超音波を送受信することで接触判定しても良い。接触検知センサ16は、出射端が被検体に接触している時は接触情報(CONT)、接触していない時は非接触情報(NCNT)を出力する。
制御装置17は、接触/非接触情報に応じてシャッタ開閉指示(OP/CL)を出力する。すなわち制御装置17は、非接触情報が出力されたときは、第一の照明光学系2内のシャッタ2cを閉じたり、光源1内の内部シャッタ(不図示)を閉じたりする制御を行う。あるいは、光源1がQスイッチレーザの場合にはQスイッチを止めるなどの制御を行う。制御装置17は、これらの方法により、光音響プローブ4の出射端から照明光(L)が照射されないようにする。
その反対に、接触情報が出力されたときは、制御装置17は光音響プローブ4の出射端から照明光を照射可能な状態に制御する。すなわち、制御装置17は、シャッタ2cや光源1内の内部シャッタを開ける制御や、光源1がQスイッチレーザの場合にはQスイッチを入れる制御を行う。
上記の構成により、被検体とプローブが接触しない場合の安全性は確保できる。しかし、本発明における、光音響プローブ4のホルダ9への格納時の総光量測定に関しては、ホルダ9の形状によっては問題が起こり得る。
すなわち、ホルダ9内の接触検知センサ16と対向する部分に空間(隙間)があると、接触検知センサ16は非接触情報を出力する。この場合、術者が照射スイッチ19を押し
ても、制御装置17の制御によって、光音響プローブ4の出射端から照明光が照射されない。そのため、光量測定手段10による測定ができない。したがってホルダ9への収納が正常に行われている状態では、接触検知センサ16には接触情報を出力させる必要がある。以下、そのための構成および方法の例を述べる。
最初の例では、ホルダ9内の接触検知センサ16と対向する部分に空間があっても、照射スイッチ19が押されたときは強制的に光を照射するような制御が行われる。すなわち、照射スイッチ19が押されると、照射指示(IRD)が制御装置17に出力される。
ただしこの場合、光音響プローブ4がホルダ9に正常に収納されていなくても、照射スイッチ19を押すと照明光が照射されてしまう。そこで、照射スイッチ19をホルダ9に隣接させ、その収納を術者に注意を促すことが好ましい。
あるいは図5Bのように、光音響プローブ4をホルダ9に収納したときだけ照射スイッチ19を操作できるようにするカバー20を設けるとなお好ましい。カバー20の存在により、光音響プローブ4がホルダ9に収納されていない場合、スイッチ操作は不可能となる。光音響プローブ4がホルダ9に収納されているときは、照射スイッチ19が押されない限り、照明光の照射は不可能となる。
次の例では、接触検知センサ16と対向するホルダ9内部の部分との隙間を、接触検知センサ16が接触と検知できる程度に小さくする。この方法を採る場合、光音響プローブ4とホルダ9との隙間が弾性体9aで塞がれるように、ホルダ内部、プローブのハウジング4aおよび弾性体9aそれぞれの形状を調整する。
そうすれば、光音響プローブ4の収納状態が不十分である場合には接触情報が出力されず、照明光が照射されない。そして、光音響プローブ4の収納が適正であれば、照明光が照射されても、光音響プローブ4とホルダ9との隙間が弾性体9aで塞がれているため、ホルダ9の外部へ漏れる光量は抑制される。
また別の例では、図5Aに示すように、接触検知センサ16と対向するホルダ9内部に可動部18が設けられている。そして、照射スイッチ19が押されたときに接触検知センサ16が接触と検知できる位置まで、可動部18を移動させることができる(可動部動作指示MV)。こうしておけば、光音響プローブ4がホルダ9に収納されているときは、照射スイッチ19が押されない限り、照明光が照射されることはない。
以上の構成や方法により、光音響プローブ4がホルダ9に正常に収納された状態での照明光の照射が可能となる。そして実施例1から実施例3までに説明した通り、光量測定手段10を用いることで、光音響プローブ4の出射端から照射される総光量の測定が可能となる。
また、ホルダ9の内部に、光音響プローブ4がホルダ9に収納されたことを検知すると収納情報(STR)を出力する、収納検知センサ9bを設けても良い。制御装置17は収納情報を受信したら、照明光の照射が可能な状態にする(例えばシャッタ2cを開く)。収納検知センサ9bとしては、機械式のほか、光学式や静電式のスイッチなども使用できる。
こうすることで、光音響プローブ4がホルダ9内の所定位置に収納されたときだけ光量測定手段10で総光量を測定できる。さらに収納検知センサ9bを複数設けることで、光音響プローブ4の出射端と光量測定手段が平行のときにのみその総光量を測定するようにでき、光量測定手段10の測定条件が再現できるとともに、測定精度が向上する。
以上説明した各種の構成や制御方法は、単独でも組み合わせて用いても良い。こうすることで、光音響プローブ4の出射端が被検体に非接触のときには照明光が照射されないの
で、外部への光量を低下させて、被検者や術者の安全性の保護ができる。一方で光音響プローブ4がホルダ9の所定の位置に収納されたときは光を照射し、光量を測定できるようになる。
[実施例5]
実施例4で説明した光音響プローブ4とホルダ9を有する光音響装置100の使用方法について、図6のフローチャートを用いて説明する。なお、本実施例における装置は、図3Aの赤外線カメラ10b(光量測定手段10)、拡散板11およびNDフィルタ12を備え、さらに図5Aの各種スイッチおよびセンサ類を備えている。
装置立上げ時、あるいは非測定時は光音響プローブ4はホルダ9に収納されている。
S61:装置立上げ時、制御装置17は自動照射のシーケンスを行う。あるいは、非測定時に術者が音響プローブ4をホルダ9に収納したときは、術者が照射スイッチ19を押すことで、制御装置17が照射のためのシーケンス(S62)を行う。
S62:光音響プローブ4に接触検知センサ16を設けている場合には、接触検知センサ16が接触と検知できる条件にする。例えば、図5のように可動部18を移動させる。そして、制御装置17は照射条件を整える。また、ホルダ9内に収納検知センサ9bがある場合には、収納検知センサ9aが光音響プローブ4を検知したら制御装置17は照射条件を整える。接触検知センサ16と収納検知センサ9aがいずれもない場合でも、S61の後、制御装置17は照射条件を整える。
制御装置17が整える照射条件とは、光源1内の内部シャッタと第一の光学系2内のシャッタ2cを開け、光源1がQスイッチレーザの場合には、Qスイッチを入れることである。これにより、光音響プローブ4の出射端から照明光が照射される。照射時間や照射回数は制御装置17にプログラムされており、本実施例では100回照射(10秒×10Hz)とした。
S63:光音響プローブ4の出射端から照射された照明光は拡散板11で拡散され、赤外線カメラ10bで撮影される。
S64:S63と並行して第二の光学系2に設けた光量センサ2a(図1)で照明光を測定する。なお、光量センサ2aは予め総光量を換算するための較正がなされているものとする。較正方法は実施例1で説明した方法が適用できる。
S65:処理装置7は、S63で撮影した各画素の輝度値の合計を算出し、S64の光量センサ2aの測定値と併せて、その輝度値を較正する。これにより、赤外線カメラ10bで撮影する輝度の較正ができ、輝度値から光量を算出することが可能となる。そして、光量センサ2aまたは赤外線カメラ10bの輝度値を用いて、光音響プローブ4の出射端からの総光量を求める。
S66:処理装置7は、S65で求めた総光量と被検体に照射される領域に基づき、あるいは較正された輝度値から分かる被検体表面に照射される光量分布に基づき、境界条件を求める。そしてこの境界条件を用いて、吸収、散乱しながら被検体内部に入り込む光量分布を計算し、光量分布補正データを作成する。
S67:総光量や輝度データ、生体内部の光量分布データのいずれかのデータと、前回までの同種のデータ、あるいは設定基準値を比較する。本実施例では設定値として総光量を50mJとし、所定値を50±5mJとした。その差分が所定以上の場合、すなわち総光量が45mJ以下、55mJ以上の場合、非正常終了(異常終了)として提示手段14または表示装置8に提示する。
総光量低下の場合、光音響プローブ4の出射端や拡散板11(光量測定手段10)の汚れで総光量が変化した疑いがあるので、提示内容は、まず「清掃と再測定」の旨、注意を
促す。そして再測定の場合はS61から実施するよう提示する。さらに、光源1やバンドルファイバ3など光伝送にトラブルが生じた場合もあるので、再測定しても改善しない場合は「異常終了」とする。また総光量が所定の範囲より大きい場合も、適切な処置をとる。
いっぽう、差分が所定未満の場合は、術者が光音響プローブ4を把持し、被検体に対して光音響測定を行う。このように、総光量あるいはそれに起因する輝度データや生体内部の光量分布データの変動を小さくすることが可能なため、安定した光音響の測定結果が得られる。
S68:取得した光音響信号から光音響画像を作成し、表示装置8にその画像を示す。そして、光音響信号取得時の総光量は光量センサ2aの測定値から換算する。そして換算された総光量とS66の光量分布補正データから、光音響信号取得時の被検体内部の光量分布を補正して作成する。
なお、光音響は次の式(1)で示される。
p=Γμφ …(1)
ここで、p:光音響の初期音圧、Γ:グリュナイゼン係数、μ:吸収係数、φ:光量で示され、光音響信号(p)と、補正された被検体内部の光量分布(φ)、グリュナイゼン係数Γを0.5程度から、吸収係数μを求めることが可能となる。
そしてさらに、光源1が発光する波長を可変にすると、光音響の音源である吸収体の分光特性がわかる。例えば、吸収体を血液(ヘモグロビン)とした場合には、ヘモグロビンの酸素飽和度も測定できる。こうすることで、被検体内部の光量分布を精度良く求めるための境界条件である被検体表面の光量分布を高精度に測定することができるため、吸収係数μaや酸素飽和度などの測定性能をさらに向上させることができる。
以上のフローは、光量測定手段10としてパワーメータ10aを用いた場合にも適用できる。ただし、パワーメータ10a自身が較正されている場合には、S605で説明した光測定手段10の較正は不要であり、S64と同じく、実施例1で説明した方法で光量センサ2aを較正することができる。
1:光源,3:バンドルファイバ,4:光音響プローブ,5:第二の照明光学系,6:受信部,7:処理装置,8:表示装置,9:ホルダ,10:光測定手段

Claims (15)

  1. 光源と、
    前記光源からの光を伝送する光伝送系と、
    前記光を被検体に照射する出射端と、前記光を照射された前記被検体から発生する音響波を受信する受信部を含む光音響プローブと、
    前記音響波に基づいて前記被検体内の情報を取得する処理装置と、
    前記光音響プローブを収納して前記出射端を覆うホルダと、
    照射された光の光量を測定する光量測定手段と、
    を有し、
    前記出射端は、前記ホルダに覆われた状態で光を照射することが可能である
    ことを特徴とする被検体情報取得装置。
  2. 前記光源と前記光音響プローブの出射端までの間において、前記光の一部を分岐して光量を測定する光量センサを有し、
    前記処理装置は、前記光量測定手段の測定した前記出射端から照射される光の総光量と、前記光量センサの測定値を比較し、前記光量センサの測定値を前記総光量に換算するための較正を行う
    ことを特徴とする請求項1記載の被検体情報取得装置。
  3. 前記光量測定手段はパワーメータである
    ことを特徴とする請求項1または2に記載の被検体情報取得装置。
  4. 前記ホルダの前記出射端と対向する位置に設けた拡散板をさらに有し、
    前記光量測定手段は、前記拡散板により拡散した光を撮影する赤外線カメラであり、
    前記処理装置は、前記赤外線カメラでの撮影により得られた各画素の輝度値から、前記出射端から照射される光の総光量と、前記光が照射される面内の光量分布の少なくともいずれかを求める
    ことを特徴とする請求項1または2に記載の被検体情報取得装置。
  5. 前記処理装置は、前記赤外線カメラの各画素の輝度値を、前記出射端から照射される光の総光量に換算するための較正を行う
    ことを特徴とする請求項4に記載の被検体情報取得装置。
  6. 前記光量測定手段により測定された光量と、前記光量の基準となる所定の値を記憶する記憶部と、
    情報を提示する提示手段と、
    をさらに有し、
    前記処理装置は、前記測定された光量と前記所定の値を比較し、両者の差分に基づいて前記測定された光量が正常であるかどうかを前記提示手段に提示する
    ことを特徴とする請求項1ないし5のいずれか1項に記載の被検体情報取得装置。
  7. 前記ホルダは、前記光音響プローブを収納されたときに隙間を埋めるための弾性体を含む
    ことを特徴とする請求項1ないし6のいずれか1項に記載の被検体情報取得装置。
  8. 前記光量測定手段と前記出射端を相対的に走査させるステージをさらに有する
    ことを特徴とする請求項1ないし7のいずれか1項に記載の被検体情報取得装置。
  9. 前記処理装置は、前記出射端から照射される光のエネルギ密度が所定の値を超えている
    場合に、前記出射端から照射される光のエネルギ密度を低下させる
    ことを特徴とする請求項1ないし8のいずれか1項に記載の被検体情報取得装置。
  10. 術者による光の照射指示を可能にする照射スイッチと、
    前記照射スイッチが押されたときに、前記出射端から光が照射される条件を設定する制御装置と、
    をさらに有することを特徴とする請求項1ないし9のいずれか1項に記載の被検体情報取得装置。
  11. 前記光音響プローブを前記ホルダに収納していない状態では前記照射スイッチの操作を不可能とし、収納した状態では前記照射スイッチの操作を可能とするカバーをさらに有する
    ことを特徴とする請求項10に記載の被検体情報取得装置。
  12. 前記光音響プローブは、当該プローブが前記被検体と接触しているかどうかを検知する接触検知センサを有する
    ことを特徴とする請求項10または11に記載の被検体情報取得装置。
  13. 前記光音響プローブを前記ホルダに収納したときに前記接触検知センサと対向する前記ホルダ内部の位置に設けられた可動部をさらに有し、
    前記制御装置は、前記照射スイッチが押されたときに、前記接触検知センサが接触していると検知できる位置まで前記可動部を移動させる
    ことを特徴とする請求項12に記載の被検体情報取得装置。
  14. 前記ホルダは、前記光音響プローブが当該ホルダに収納されているかどうかを検知する収納検知センサを有し、
    前記制御装置は、前記収納検知センサが、前記光音響プローブが収納されていると検知したときに、前記出射端から光が照射される条件を設定する
    ことを特徴とする請求項10ないし13のいずれか1項に記載の被検体情報取得装置。
  15. 前記被検体内の情報を表示する表示装置をさらに有する
    ことを特徴とする請求項1ないし13のいずれか1項に記載の被検体情報取得装置。
JP2013204512A 2013-09-30 2013-09-30 被検体情報取得装置 Expired - Fee Related JP6207326B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013204512A JP6207326B2 (ja) 2013-09-30 2013-09-30 被検体情報取得装置
PCT/JP2014/074150 WO2015045893A1 (en) 2013-09-30 2014-09-05 Object information acquiring apparatus
US15/023,034 US20160228009A1 (en) 2013-09-30 2014-09-05 Object information acquiring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204512A JP6207326B2 (ja) 2013-09-30 2013-09-30 被検体情報取得装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017171950A Division JP6407379B2 (ja) 2017-09-07 2017-09-07 光音響装置

Publications (2)

Publication Number Publication Date
JP2015066265A JP2015066265A (ja) 2015-04-13
JP6207326B2 true JP6207326B2 (ja) 2017-10-04

Family

ID=51628418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204512A Expired - Fee Related JP6207326B2 (ja) 2013-09-30 2013-09-30 被検体情報取得装置

Country Status (3)

Country Link
US (1) US20160228009A1 (ja)
JP (1) JP6207326B2 (ja)
WO (1) WO2015045893A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126389A (ja) * 2017-02-09 2018-08-16 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム
US20210015368A1 (en) * 2017-07-31 2021-01-21 Wayne State University Omnidirectional photoacoustic tomography system
WO2023069646A1 (en) * 2021-10-20 2023-04-27 Votis Subdermal Imaging Technologies, Ltd. Methods and apparatus for performing diffuse optical imaging

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001261665A1 (en) * 2000-05-17 2001-11-26 Spectronics Corporation Hand-held germicidal lamp with safety features
US20030174329A1 (en) * 2002-03-15 2003-09-18 Kuper Jerry W. System and method for aligning a first optical device with an input port of a second optical device
US20080065175A1 (en) * 2006-09-09 2008-03-13 Redmond Russell J Therapeutic radiation device
JP5538855B2 (ja) * 2009-12-11 2014-07-02 キヤノン株式会社 光音響装置及び該装置の制御方法
JP5693043B2 (ja) * 2010-04-28 2015-04-01 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法
JP5641773B2 (ja) * 2010-04-28 2014-12-17 キヤノン株式会社 測定装置
US8823928B2 (en) * 2011-11-02 2014-09-02 Seno Medical Intruments, Inc. Light output calibration in an optoacoustic system
JP5565278B2 (ja) * 2010-11-10 2014-08-06 ソニー株式会社 配光計測装置、配光計測方法および配光計測プログラム
JP5611859B2 (ja) * 2011-02-24 2014-10-22 富士フイルム株式会社 光音響画像化装置の故障検知方法
JP2012210337A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 光音響画像化装置およびその故障検知方法
US20130116538A1 (en) * 2011-11-02 2013-05-09 Seno Medical Instruments, Inc. Optoacoustic imaging systems and methods with enhanced safety
US9078681B2 (en) * 2012-02-01 2015-07-14 Lumenis Ltd. Reconfigurable handheld laser treatment systems and methods
JP2013183915A (ja) * 2012-03-08 2013-09-19 Canon Inc 被検体情報取得装置
WO2013188714A1 (en) * 2012-06-13 2013-12-19 Seno Medical Instruments, Inc. Interframe energy normalization in an optoacoustic imaging system
EP2967485A4 (en) * 2013-03-15 2016-11-30 Seno Medical Instr Inc PROBE HOLDER

Also Published As

Publication number Publication date
US20160228009A1 (en) 2016-08-11
WO2015045893A1 (en) 2015-04-02
JP2015066265A (ja) 2015-04-13

Similar Documents

Publication Publication Date Title
US9433355B2 (en) Photoacoustic imaging apparatus and photoacoustic imaging method
JP5553672B2 (ja) 音響波測定装置および音響波測定方法
US9883806B2 (en) Light irradiating apparatus, control method therefor, and object information acquiring apparatus
US20180188155A1 (en) Object information acquiring apparatus
US20160073888A1 (en) Photoacoustic apparatus
JP6049293B2 (ja) 音響波取得装置
US9101331B2 (en) Object information acquiring apparatus and calibration device
JP5932243B2 (ja) 装置
US20130237800A1 (en) Object information acquiring apparatus
JP6207326B2 (ja) 被検体情報取得装置
JP2014083195A (ja) 被検体情報取得装置および光音響プローブ用カバー
US20160058295A1 (en) Photoacoustic wave measurement apparatus and photoacoustic wave measurement method
JP6150496B2 (ja) 被検体情報取得装置およびその制御方法
JP6407379B2 (ja) 光音響装置
WO2014203836A1 (en) Object information acquiring apparatus and control method thereof, and acoustic signal acquiring apparatus and control method thereof
JP2013090836A (ja) 被検体情報取得装置
JP2018126669A (ja) 被検体情報取得装置
JP6100322B2 (ja) 音響波測定装置および音響波測定方法
JP5774159B2 (ja) 音響波測定装置および音響波測定方法
JP6463450B2 (ja) 情報取得装置
JP2017087017A (ja) 音響波測定装置および音響波測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R151 Written notification of patent or utility model registration

Ref document number: 6207326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees