JP6203415B2 - 半導体試験装置および半導体試験方法 - Google Patents

半導体試験装置および半導体試験方法 Download PDF

Info

Publication number
JP6203415B2
JP6203415B2 JP2016546343A JP2016546343A JP6203415B2 JP 6203415 B2 JP6203415 B2 JP 6203415B2 JP 2016546343 A JP2016546343 A JP 2016546343A JP 2016546343 A JP2016546343 A JP 2016546343A JP 6203415 B2 JP6203415 B2 JP 6203415B2
Authority
JP
Japan
Prior art keywords
time
temperature
data
semiconductor element
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016546343A
Other languages
English (en)
Other versions
JPWO2016035388A1 (ja
Inventor
伸一 木ノ内
伸一 木ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016035388A1 publication Critical patent/JPWO2016035388A1/ja
Application granted granted Critical
Publication of JP6203415B2 publication Critical patent/JP6203415B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

本発明は、半導体試験装置および半導体試験方法に関し、とくにパワーサイクル試験における温度を管理するための構成に関する。
パワーサイクル試験は、モジュール(半導体装置)に組み込まれた半導体素子の電極接合部周辺の信頼性を評価するための装置であり、電流を繰り返し半導体素子に印加し、局所的に発熱させることで、その電極接合部周辺の劣化度合いを評価する。その際、半導体素子の温度が想定した最低温度と最高温度内にあることを確認する必要があり、半導体素子の温度を正確に測定できることが望ましい。
ここで、半導体素子自体に温度センサー機能が備わっていれば、容易に温度を測定することができるが、半導体素子の多くは温度センサー機能を備えていない。しかも、半導体装置内での半導体素子は、その表面がパッケージ材で覆われているため、赤外線カメラのような手段を用いて温度を測定することもできない。
そこで、半導体素子のPN接合部分に、温度測定用の微小電流を通電させ、予め取得した電圧と温度との関係から、半導体素子の温度を推定する方法が提案されている(例えば、特許文献1参照。)。
特開2000−111416号公報(段落0012〜0017、図1〜図5)
しかしながら、温度測定用の微小電流を通電させて温度を推定する方法では、微小電流を安定に供給するための電源や、微小電流とパワーサイクル用の電流とをタイミングよく切替えるための回路構成が必要となる。一方、パワーサイクル試験は、信頼性を評価するための試験であり、数日から数ヶ月にわたる連続運転が実施される場合が多い。この場合、装置構成が複雑化すると試験装置自体の動作が不安定となり、適正な信頼性評価が困難になる。
本発明は、上記のような問題点を解決するためになされたものであり、装置構成を複雑化することなく、適正な温度管理によるパワーサイクル試験が可能な半導体試験装置および半導体試験方法を得ることを目的としている。
本発明にかかる半導体試験装置は、半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験装置であって、前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持部と、前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集部と、前記データ収集部が収集した前記実測データと、前記相関データ保持部が保持する前記相関データに基づき、前記半導体素子の温度を算出する温度算出部と、を備え、前記データ収集部は、前記パワーサイクル試験における各サイクルで、前記半導体素子への通電を開始する通電開始信号を受信すると、前記通電開始信号を受信した後の、それぞれ受信時間からの経過時間が異なる時点での前記実測データとその測定時間とのデータ組を2組以上収集し、前記温度算出部は、前記収集した2組以上のデータ組を時間の関数に近似して算出した前記受信時間における前記半導体素子の温度を前記各サイクルにおける最低温度とすることを特徴とする。

また、本発明にかかる半導体試験方法は、半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験方法であって、前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持工程と、前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集工程と、前記データ収集工程で収集した前記実測データと、前記相関データ保持工程で保持した前記相関データに基づき、前記半導体素子の温度を算出する温度算出工程と、を含み、前記データ収集工程では、前記パワーサイクル試験における各サイクルで、前記半導体素子への通電を開始する通電開始信号を受信すると、前記通電開始信号を受信した後の、それぞれ受信時間からの経過時間が異なる時点での前記実測データとその測定時間とのデータ組を2組以上収集し、前記温度算出工程では、前記収集した2組以上のデータ組を時間の関数に近似して算出した前記受信時間における前記半導体素子の温度を前記各サイクルにおける最低温度とすることを特徴とする。
この発明によれば、パワーサイクルにおいて主電流を流すための半導体素子への印加電圧から素子温度を算出できるので、装置構成を複雑化することなく、適正に温度管理したパワーサイクル試験が可能になる。
本発明の実施の形態1にかかる半導体試験装置の構成を示す図である。 本発明の実施の形態1にかかる半導体試験装置を構成する制御部の構成を示すブロック図である。 パワーサイクル試験での通電電流、印加電圧、および素子温度の経時変化を示す図である。 半導体素子に、一定の電流を通電させたときの素子温度と端子間電圧の関係を示す図である。 本発明の実施の形態1にかかる半導体試験装置、および半導体試験方法において、最低温度を算出するための、電流導通開始直後のデータ収得タイミングを示す電流と端子間電圧の波形図である。 本発明の実施の形態2にかかる半導体試験装置、および半導体試験方法において、最高温度を算出するための、電流停止時のデータ収得タイミングを示す電流と端子間電圧の波形図である。
実施の形態1.
図1〜図5は、本発明の実施の形態1にかかる半導体試験装置および半導体試験方法について説明するためのものであり、図1は半導体試験装置において、試験体である半導体装置との接続を示す電気回路と装置内の各構成部分との関係を示すブロック図、図2は半導体試験装置の部分である制御部の構成を示すブロック図である。また、図3は本試験装置および本試験方法で実施するパワーサイクル試験において繰り返される通電電流、印加電圧、および半導体素子の温度(素子温度)の経時変化を示す図である。
図4は、所定のゲート電圧と通電電流における端子間電圧と素子温度との関係を示す図である。そして、図5はパワーサイクル試験におけるサイクルごとの最低温度を算出するための、電流導通開始直後のデータ収得タイミングを示す電流と端子間電圧の波形図である。
はじめに、本発明の実施の形態1にかかる半導体試験装置および半導体試験方法の詳細な説明の前に、その前提となるパワーサイクル試験について説明する。パワーサイクル試験は、外部から加熱を行うヒートサイクル試験とは異なり、半導体素子に通電することで、半導体素子自身を発熱させて温度を変化させるものである。例えば、図3はMOSFET(Metal Oxide Semiconductor Field Effect Transistor)に、所定の電流を周期的に通電(入/切の繰返し)したときの、電流値(上段)、ドレイン・ソース間電圧(端子間電圧:中段)、MOSFETの温度(素子温度:下段)の経時変化を示すものである。
電流が通電されている通電期間Paでは、素子の発熱により素子温度が上昇し、通電を止めた停止期間Prでは、放熱により素子温度が下降する。そのため、通電期間Paから停止期間Prに切り替わる際に、その周期の最高温度THになり、停止期間Prから通電期間Paに切り替わる際に、その周期の最低温度TLになる。このようなサイクルが十万回のオーダーで繰り返されるが、適正な耐久性評価には、サイクルごとの最高温度THおよび最低温度TLが設定範囲内で管理されることが要求される。
図1に示すように、本発明の実施の形態1にかかる半導体試験装置10は、パワーサイクル試験の対象である半導体装置90(電気回路としては、半導体装置90内の半導体素子91(MOSFET)とその端子部分を記載)のドレイン端子91dとソース端子91sに電気接続され、半導体装置90に電流を通電する電源1と、ゲート端子91gとソース端子91sに接続され、ゲート電圧を印加するゲート電源2と、ソース端子91sとドレイン端子91dにかかる印加電圧(端子間電圧)を計測する電圧計3と、電源1から出力される通電開始信号、あるいは通電停止信号のような半導体装置90(半導体素子91)への通電状態を示す情報や、電圧計3から出力される端子間電圧を示す信号等のデータを時間と関連づけて収集するデータ収集部4と、パワーサイクル試験の動作全体を制御するとともに、データ収集部4からのデータに基づいて上述した最低温度TL、最高温度THを算出する制御部5と、パワーサイクル試験の状態等を表示する表示部6と、を備えている。
データ収集部4は、デジタルオシロスコープなどのような、デジタル化した時間と関連づけたデータを一定期間保持できるものであれば良い。例えば、電圧計3で測定され、出力された信号が、データ収集部4に入力されると、データ収集部4は、端子間電圧とその信号を受けた時の時間データを制御部5に出力する。
制御部5は、いわゆるマイコン等にソフトウェアをインストールすることにより構成され、図2に示すように、後述する端子間電圧と素子温度との相関データが保持されているデータ保持部5bと、データ収集部4からのデータを受け入れるデータ受信部5cと、データ受信部5cが受信したデータとデータ保持部5bに保持された相関データ、および通電状態の情報に基づいて、素子温度、最低温度を算出する温度算出部5aと、を備えている。
なお、制御部5には、パワーサイクル試験自体の動作として、電源1やゲート電源2の動作を制御する機能を有する部分が設けられることもあるが、温度を算出する機能に特化して説明を行うため、それらについての説明は省略する。なお、温度を算出する部分と験自体を制御する部分とが一体であるか否かは、本発明を限定するものではなく、どのように構成してもよい。
データ保持部5bに保持される素子温度と端子間電圧の相関データは、素子温度をパラメータとし、ゲート電圧が一定で、所定のドレイン電流を通電するのに必要な端子間電圧のデータを事前に測定することによって取得する。具体的には、パワーサイクル試験の対象となる半導体装置90を恒温槽中或いはホットプレート上等で一定温度に保持し、ゲート―ソース間電圧(ゲート電圧)を一定とした条件で、所定の電流値のパルス電流を通電し、ドレイン―ソース間電圧(端子間電圧)を計測する。パルス通電時間が長いと自己発熱効果により、素子温度が計測中に保持温度より大きく変化することになる。
そのため、試験対象となる半導体装置90内の半導体素子91の、恒温槽中或いはホットプレート上で保持され、一定となった温度からの変化(上昇)が許容範囲となるように、パルス通電時間が調整される。つまり、端子間電圧と素子温度との相関データは、恒温槽或いはホットプレートの温度をパラメータとして収得されるが、上述したパルス時間の調整により、素子温度をパラメータとして取得したことになる。
このようにして、得られたゲート電圧と、ドレイン電流が一定の場合における、端子間電圧と素子温度との関係は、図4に示すように、一対一の関係になり、端子間電圧が分かれば、素子温度が一意的に定まる。そのため、データ保持部5bには、試験対象となる半導体装置90のパワーサイクル試験に対応するドレイン電流とゲート電圧における、端子間電圧と素子温度との相関データが、例えば、LUT(ルックアップテーブル)のような形で保持されている。これにより、温度算出部5aは、少なくとも通電期間Paにおいては、データ受信部5cが受信した電圧データとデータ保持部5bに保持された相関データに基づいて、その電圧が印加された時の素子温度を算出することができる。
最高温度THは、通電期間Paから停止期間Prに切り替わる際の素子温度であるので、通電期間Paにおける最後の電圧データをもとに容易に算出することができる。一方、最低温度TLは通電されない状態での温度であるので、通電期間Paに切り替わった際の電流導通開始直後における(時間の異なる)2点以上の端子間電圧のデータから、以下のようにして算出する。
原理的には、電流導通開始直後において2点以上の端子間電圧値から求めた2点以上の温度をそれぞれの温度を測定した(電流導通開始時を0とする)時間の2次関数でフィッティングし、2次関数の0次の値を最低温度TLとすることができる。このようにして最低温度TLを演算する場合、電源1の通電開始信号が、最低温度TLを算出するためのデータ収集のトリガ信号となる。このとき、データ収集部4に対しては、(導通開始直後の不安定な期間を除く)電流が一定値となるタイミングでデータを収得するように、トリガ信号に対して遅延時間Δtが設定されている。
そして、本実施の形態1にかかる半導体試験装置10あるいは半導体試験方法では、後述する条件を考慮して、図5に示すように、電流導通開始直後の時間の異なる2点のデータから、最低温度TLを演算するようにした。図において、あるサイクルにおける電源1からの通電開始信号(トリガ信号)が、時間t時にデータ収集部4に入力される。すると、時間tから遅延時間Δt後の時間に第一点目の電圧データVとその測定時間のデータである時間データtがデータ収集部4によって収得される。遅延時間Δtは、上述したように、電流が一定値(一定電流I)となる時間によって決められ、これは電源1と半導体装置90(半導体素子91)の熱的な接続環境に固有な値であり、事前に評価することで決めることができる。
そして、第二点目のデータは、時間tより後の時間t時に収集される。時間tと時間tの間隔t−tは、半導体装置90(半導体素子91)の温度変化時定数τ=R×Cより十分短い時間で設定されることが望ましい。Rは半導体素子91の過渡熱抵抗、Cは半導体素子91周辺の熱容量である。半導体素子91の温度(素子温度)をTmとし、半導体素子91周辺の過渡的な熱抵抗と熱容量が定数とみなせるモデルでは、Tmの時間変化は、以下の式(1)で記述される。
Figure 0006203415
ここで、時間tは、時間t=0秒とした時の値である。Tは時間t時の素子温度、Tは飽和温度である。このとき、間隔t−tが、温度変化時定数τより十分短ければ、式(1)は、以下の式(2)で示す1次近似式となる。
Figure 0006203415
Tmの時間変化が、式(2)で示す線形式で近似されるなら、異なる時間の2点の温度データがあれば、Tを求めることができる。例えば、半導体素子91がMOSFETならば、端子間電圧として時間t、t、t時のドレイン―ソース間電圧V、V、Vが制御部5(データ受信部5c)に出力される。なお、時間t時点では、電流が流れていないので、V=0Vとなり、t時のドレイン―ソース間電圧Vは計測する必要が無い。
そして、時間t、tの電圧データV、Vから、具体的には以下のようにしてTを演算する。制御部5(温度算出部5a)は、電圧データV、Vとデータ保持部5bに保持された相関データから、時間t、tにおける素子温度T、Tをそれぞれ計算する。さらに、式(2)を用い、時差データt−t、t−tと、算出した素子温度T、TからTを計算する。計算されたTがそのサイクルにおける半導体素子91の最低温度TLとなる。算出した最低温度TLは、表示部6に表示される。なお、算出した最低温度TL、最高温度THはパワーサイクル試験の履歴として別途保存するようにしてもよい。
なお、上記では、第二点目のデータ取得時間tとtとの間隔を温度変化時定数τより短くすることで、式(1)を線形近似した式(2)を基に、端子間電圧の測定点数を減らし、単純な計算で最低温度TLを算出する方法を述べた。しかし、式(1)を2次式で近似した式を使用すれば、さらに精度良く最低温度TLを算出する事ができる。但し、この場合は、データ収集部4は、端子間電圧を異なる時間の最低3点計測し、制御部5(温度算出部5a)は、3点それぞれの時間と端子間電圧データを基に、最低温度TLを計算する。
このように、MOSFETのドレイン―ソース間電圧のように、半導体素子91へ主電流を通電した時の端子間電圧を電流導通開始直後の時間の異なる2点以上測定することで、最低温度TLが演算できる。さらに、電流停止直前の1点の端子間電圧を測定することで、最高温度THも簡易に求めることができる。つまり、各サイクルにおける最高温度THと最低温度TLを単純な方法により算出し、管理したパワーサイクル試験が可能な半導体試験装置10あるいは半導体試験方法が得られる。なお、上記例では、素子温度を時間関数に近似する例について説明したが、これに限ることはない。例えば、端子間電圧を時間関数に近似して算出した時間tの端子間電圧に基づいて素子温度を算出するようにしてもよい。
とくに、背景技術で述べたような、PN接合部分に、温度測定用の微小電流を通電させて素子温度を推定する方法では、温度測定用の微小電流を安定に供給するための電源と微小電流を制御するための付加的な回路が必要となる。しかし、本発明の実施の形態1にかかる半導体試験装置10では、微小電流を安定に供給するための電源や微小電流を制御するための付加的な回路は不要であり、装置構成が複雑化することがない。
なお、試験対象となる半導体装置に用いられる半導体素子としては、シリコンウエハを基材とした一般的な素子でも良い。しかし、炭化ケイ素(SiC)や窒化ガリウム系材料(GaN)、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を用いた場合の方が、運転温度が高く、接合部の信頼性が重要になる。本発明の実施の形態1にかかる半導体試験装置10あるいは試験方法を用いれば、耐久性等を適正に評価し、信頼性の高い半導体装置が得られる効果が顕著となる。半導体素子の種類としては、上述したMOSFETやIGBT(Insulated Gate Bipolar Transistor)のようなスイッチング素子、またはダイオードのような整流素子であってもよい。また、半導体素子91としてIGBTを用いた場合、本実施の形態で使用した端子の名称を以下のように置き換えれば良い。ソース(ソース端子91s)→エミッタ、ドレイン(ドレイン端子91d)→コレクタ。
以上のように、本実施の形態にかかる半導体試験装置10によれば、半導体装置90内に実装された半導体素子91に対し、電流Iの通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験装置10であって、半導体素子91の温度を変数としたときの、電流Iの通電に必要な印加電圧(端子間電圧)との相関データを保持する相関データ保持部(データ保持部5b)と、パワーサイクル試験において、半導体素子91に電流Iを通電した際の印加電圧(端子間電圧)の実測データを収集するデータ収集部4と、データ収集部4が収集した実測データと、相関データ保持部(データ保持部5b)が保持する相関データに基づき、半導体素子91の温度を算出する温度算出部5aと、を備えるように構成したので、微小電流を安定に供給するための電源や微小電流を制御するための付加的な回路は不要であり、装置構成が複雑化することがないのに、半導体素子91の温度を適正に管理してパワーサイクル試験を行うことができる。
また、データ収集部4は、パワーサイクル試験における各サイクルで、半導体素子91への通電を開始する通電開始信号を受信すると、通電開始信号を受信した後の、それぞれ受信時間(時間t)からの経過時間が異なる時点での実測データとその測定時間とのデータ組(V,t)、(V,t)を2組以上収集し、温度算出部5aは、収集した2組以上のデータ組を時間の関数に近似して算出した受信時間(時間t)における半導体素子91の温度を各サイクルにおける最低温度TLとするように構成したので、停止期間Prから通電期間Paに切り替わる際の温度であり、パワーサイクル試験の適正さを判断するのに重要な最低温度TLを容易に算出することができる。
とくに、経過時間は、半導体装置90内における半導体素子91の温度変化時定数τより短い時間に設定され、温度算出部5aは、収集した2組以上のデータ組を時間の一次関数に近似するので、例えば、2組のデータ組でも最低温度TLを算出でき、より簡易に最低温度TLを算出することができる。
また、本実施の形態1にかかる半導体試験方法によれば、半導体装置90内に実装された半導体素子91に対し、電流Iの通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験方法であって、(パワーサイクル試験の前に実行される)半導体素子91の温度を変数としたときの、電流Iの通電に必要な印加電圧(端子間電圧)との相関データを保持する(パワーサイクル試験の前に実行される)相関データ保持工程と、パワーサイクル試験において、半導体素子91に電流Iを通電した際の印加電圧(端子間電圧)の実測データを収集するデータ収集工程と、データ収集工程で収集した実測データと、相関データ保持工程で保持した相関データに基づき、半導体素子91の温度を算出する温度算出工程と、を含むように構成したので、微小電流を安定に供給するための電源や微小電流を制御するための付加的な回路は不要であり、装置構成が複雑化することがないのに、半導体素子91の温度を適正に管理してパワーサイクル試験を行うことができる。
また、データ収集工程では、パワーサイクル試験における各サイクルで、半導体素子91への通電を開始する通電開始信号を受信すると、通電開始信号を受信した後の、それぞれ受信時間(時間t)からの経過時間が異なる時点での実測データとその測定時間とのデータ組(V,t)、(V,t)を2組以上収集し、温度算出工程では、収集した2組以上のデータ組を時間の関数に近似して算出した受信時間(時間t)における半導体素子91の温度を各サイクルにおける最低温度TLとするように構成したので、停止期間Prから通電期間Paに切り替わる際の温度であり、パワーサイクル試験の適正さを判断するのに重要な最低温度TLを容易に算出することができる。
とくに、経過時間は、半導体装置90内における半導体素子91の温度変化時定数τより短い時間に設定され、温度算出工程では、収集した2組以上のデータ組を時間の一次関数に近似するので、例えば、2組のデータ組でも最低温度TLを算出でき、より簡易に最低温度TLを算出することができる。
実施の形態2.
上記実施の形態1においては、最高温度については、通電期間の最後の電圧データから算出する旨のみ説明した。本実施の形態2においては、最後の電圧データの取得タイミングを予定された切替タイミングに応じて設定するようにした。図6は、本発明の実施の形態2にかかる半導体試験装置及び半導体試験方法において、最高温度を算出するための電流停止時のデータ収得タイミング、を示すための電流と端子間電圧の波形図である。なお、その他の基本的な構成については、実施の形態1と同様であり、図を援用するとともに、同様部分については説明を省略する。
図において、通電期間Paから停止期間Prに切り替わる際、電源1からの電流停止トリガ信号が、時間tにデータ収集部4に入力される。このとき、理想的には、時間t以前の、電流が一定値(一定電流I)を保持し、かつ時間tに近い時間における端子間電圧を測定することが望ましい。しかし、そのためには、時間tから遡った時間のデータを収集する必要があり、例えば、切替タイミング前の電圧データを細かい測定周期で計測し、FIFO(先入先出)形式で記憶・読み出しが可能な計測・記憶装置等を設ける必要がある。
一方、停止期間Prから通電期間Paに切り替わる場合と異なり、通常のパワーサイクル試験条件においては、時間t付近での素子温度が急激に変化することは無い。そこで、本実施の形態2にかかる半導体試験装置、および半導体試験方法では、実際に電流を停止する際に出力される電流停止トリガ信号ではなく、パワーサイクル試験として計画された切替タイミングtに基づき、最高温度THを算出するための電圧データを取得する取得タイミングtを設定するようにした。取得タイミングtは、計画された切替タイミングtと実際の切り替え時間tがずれた場合でも、tより後になることがなく、かつ電流が一定値(一定電流I)を保持し、かつ時間tに近くなるように、定める。
切替タイミングtの情報は、例えば、予めデータ保持部5b等に保持するようにしてもよいが、例えば、周期ごとにタイミングを調整する場合等は、図示しない試験を制御する制御部等から入手するようにしてもよい。このように構成することで、データ収集部4は、その周期において予定された切替タイミングtに対して、所定期間前の時点を取得タイミングtに設定し、取得タイミングtになると、端子間電圧の電圧データVを収集し、制御部5に出力する。
制御部5(温度算出部5a)では、実施の形態1で説明したのと同様に、入力された電圧データVとデータ保持部5bに保持された相関データに基づいて、取得タイミングtでの素子温度を算出する。算出した素子温度をその周期における最高温度THとすることができ、例えば、算出した最高温度THは表示部6に表示される。本実施の形態2においても、算出した最低温度TL、最高温度THはパワーサイクル試験の履歴として別途保存するようにしてもよい。
つまり、最高温度THを得るのに必要な端子間電圧のデータは1点で済み、例えば、取得タイミングtに該当するかもしれない膨大な数のデータを収集する必要が無い。つまり、高速で記憶容量を要する計測器を用いる必要が無く、単純な計測器を用いて、パワーサイクル試験における周期ごとの最高温度THを管理することができる。つまり、実施の形態1で説明した最低温度TLを算出する方法と組み合わせることで、より単純な装置により、適正な温度管理下でパワーサイクル試験を実行できる半導体試験装置10あるいは半導体試験方法を得ることができる。
以上のように、本実施の形態2にかかる半導体試験装置10によれば、データ収集部4は、パワーサイクル試験における各サイクルで予定された通電を停止する停止予定時間(切替タイミングt)の情報に基づき、停止予定時間(切替タイミングt)から所定時間前の時間(取得タイミングt)における実測データ(電圧データV)を収集し、温度算出部5aは、取得タイミングtにおける実測データ(電圧データV)に基づいて算出された半導体素子91の温度を、各サイクルにおける最高温度THとするように構成したので、通電期間Paから停止期間Prに切り替わる際の温度であり、パワーサイクル試験の適正さを判断するのに重要な最高温度THを容易に算出することができる。
また、本実施の形態にかかる半導体試験方法によれば、データ収集工程では、パワーサイクル試験における各サイクルで予定された通電を停止する停止予定時間(切替タイミングt)の情報に基づき、停止予定時間(切替タイミングt)から所定時間前の時間(取得タイミングt)における実測データ(電圧データV)を収集し、温度算出工程では、取得タイミングtにおける実測データ(電圧データV)に基づいて算出された半導体素子91の温度を、各サイクルにおける最高温度THとするように構成したので、通電期間Paから停止期間Prに切り替わる際の温度であり、パワーサイクル試験の適正さを判断するのに重要な最高温度THを容易に算出することができる。
1:電源、 2:ゲート電源、 3:電圧計、 4:データ収集部、 5:制御部、 5a:温度算出部、 5b:データ保持部、 5c:データ受信部、 6:表示部、 10:半導体試験装置、 90:半導体装置、 91:半導体素子、 91d:ドレイン端子(電力端子)、 91g:ゲート端子(制御端子)、 91s:ソース端子(電力端子)、 I:一定電流、 Pa:通電期間、 Pr:停止期間、 t:時間(通電期間に切替るタイミング)、 t:取得タイミング、 TH:再移行温度、 TL:最低温度、時間t:時間(受信時間)、 t:(予定された)切替タイミング(停止予定時間)、 t:(実際の)切替タイミング、 V,V:電圧データ(実測データ)、 V:(取得タイミングにおける)電圧データ(実測データ)、 Δt:遅延時間。

Claims (6)

  1. 半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験装置であって、
    前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持部と、
    前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集部と、
    前記データ収集部が収集した前記実測データと、前記相関データ保持部が保持する前記相関データに基づき、前記半導体素子の温度を算出する温度算出部と、
    を備え
    前記データ収集部は、前記パワーサイクル試験における各サイクルで、前記半導体素子への通電を開始する通電開始信号を受信すると、前記通電開始信号を受信した後の、それぞれ受信時間からの経過時間が異なる時点での前記実測データとその測定時間とのデータ組を2組以上収集し、
    前記温度算出部は、前記収集した2組以上のデータ組を時間の関数に近似して算出した前記受信時間における前記半導体素子の温度を前記各サイクルにおける最低温度とすることを特徴とする半導体試験装置。
  2. 前記経過時間は、前記半導体装置内における前記半導体素子の温度変化時定数より短い時間に設定され、
    前記温度算出部は、前記収集した2組以上のデータ組を時間の一次関数に近似することを特徴とする請求項に記載の半導体試験装置。
  3. 前記データ収集部は、前記パワーサイクル試験における各サイクルで予定された前記通電を停止する停止予定時間の情報に基づき、前記停止予定時間から所定時間前の時間における前記実測データを収集し、
    前記温度算出部は、前記所定時間前の時間における前記実測データに基づいて算出された前記半導体素子の温度を、前記各サイクルにおける最高温度とすることを特徴とする請求項1または請求項2に記載の半導体試験装置。
  4. 半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験方法であって、
    前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持工程と、
    前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集工程と、
    前記データ収集工程で収集した前記実測データと、前記相関データ保持工程で保持した前記相関データに基づき、前記半導体素子の温度を算出する温度算出工程と、
    を含み、
    前記データ収集工程では、前記パワーサイクル試験における各サイクルで、前記半導体素子への通電を開始する通電開始信号を受信すると、前記通電開始信号を受信した後の、それぞれ受信時間からの経過時間が異なる時点での前記実測データとその測定時間とのデータ組を2組以上収集し、
    前記温度算出工程では、前記収集した2組以上のデータ組を時間の関数に近似して算出した前記受信時間における前記半導体素子の温度を前記各サイクルにおける最低温度とすることを特徴とする半導体試験方法。
  5. 前記経過時間は、前記半導体装置内における前記半導体素子の温度変化時定数より短い時間に設定され、
    前記温度算出工程では、前記収集した2組以上のデータ組を時間の一次関数に近似することを特徴とする請求項に記載の半導体試験方法。
  6. 前記データ収集工程では、前記パワーサイクル試験における各サイクルで予定された前記通電を停止する停止予定時間の情報に基づき、前記停止予定時間から所定時間前の時間における前記実測データを収集し、
    前記温度算出工程では、前記所定時間前の時間における前記実測データに基づいて算出された前記半導体素子の温度を、前記各サイクルにおける最高温度とすることを特徴とする請求項4または請求項5に記載の半導体試験方法。
JP2016546343A 2014-09-01 2015-05-14 半導体試験装置および半導体試験方法 Expired - Fee Related JP6203415B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014176912 2014-09-01
JP2014176912 2014-09-01
PCT/JP2015/063908 WO2016035388A1 (ja) 2014-09-01 2015-05-14 半導体試験装置および半導体試験方法

Publications (2)

Publication Number Publication Date
JPWO2016035388A1 JPWO2016035388A1 (ja) 2017-04-27
JP6203415B2 true JP6203415B2 (ja) 2017-09-27

Family

ID=55439462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016546343A Expired - Fee Related JP6203415B2 (ja) 2014-09-01 2015-05-14 半導体試験装置および半導体試験方法

Country Status (2)

Country Link
JP (1) JP6203415B2 (ja)
WO (1) WO2016035388A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834731B2 (ja) * 2017-04-12 2021-02-24 富士通株式会社 試験制御装置、試験制御システム、及び試験方法
EP3734244B1 (en) * 2019-05-02 2021-11-10 Siemens Aktiengesellschaft Circuit arrangement and method for controlling a power semiconductor switch
CN113939983A (zh) 2019-06-04 2022-01-14 阔智有限公司 半导体元件试验装置以及半导体元件的试验方法
JP7343180B2 (ja) * 2019-08-07 2023-09-12 株式会社クオルテック 電気素子試験装置
CN111024746A (zh) * 2019-11-27 2020-04-17 中山市海明润超硬材料有限公司 一种金刚石复合片耐热性能的测试方法及测试装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832177A (ja) * 1981-08-20 1983-02-25 Nec Corp Mosfetチヤネル部温度測定方法
JP2012098224A (ja) * 2010-11-04 2012-05-24 Renesas Electronics Corp パワーサイクル試験方法、及び、パワーサイクル試験装置

Also Published As

Publication number Publication date
JPWO2016035388A1 (ja) 2017-04-27
WO2016035388A1 (ja) 2016-03-10

Similar Documents

Publication Publication Date Title
JP6203415B2 (ja) 半導体試験装置および半導体試験方法
van der Broeck et al. IGBT junction temperature estimation via gate voltage plateau sensing
Lai et al. Low $\Delta T_ {j} $ Stress Cycle Effect in IGBT Power Module Die-Attach Lifetime Modeling
Ugur et al. Degradation assessment and precursor identification for SiC MOSFETs under high temp cycling
RU2640089C2 (ru) Система и способ контроля рабочего состояния igbt-устройства в реальном времени
US11397209B2 (en) Methods of monitoring conditions associated with aging of silicon carbide power MOSFET devices in-situ, related circuits and computer program products
Zhou et al. High temperature stability and the performance degradation of SiC MOSFETs
JP6221408B2 (ja) 熱抵抗計測方法及び熱抵抗計測装置
Strauss et al. Measuring the junction temperature of an IGBT using its threshold voltage as a temperature sensitive electrical parameter (TSEP)
Górecki et al. The analysis of accuracy of selected methods of measuring the thermal resistance of IGBTs
JP2011196703A (ja) パワーサイクル寿命予測方法、寿命予測装置及び該寿命予測装置を備えた半導体装置
Zhang et al. Online junction temperature monitoring using turn-off delay time for silicon carbide power devices
Bahun et al. Estimation of insulated-gate bipolar transistor operating temperature: simulation and experiment
Sodan et al. Experimental Benchmarking of Electrical Methods and $\mu $-Raman Spectroscopy for Channel Temperature Detection in AlGaN/GaN HEMTs
JP2016142698A (ja) パワー半導体デバイスのスイッチングエネルギー損失評価装置および評価方法
Kempiak et al. Impact of Threshold Voltage Instabilities of SiC MOSFETs on the Methodology of Power Cycling Tests
JP2019027929A (ja) パワーサイクル試験装置およびパワーサイクル試験方法
Davis et al. Methodology and apparatus for rapid power cycle accumulation and in-situ incipient failure monitoring for power electronic modules
JP6616699B2 (ja) 電力変換装置およびパワーモジュールの熱抵抗計測方法
JP5742642B2 (ja) 半導体素子の接合温度の推定方法、推定システムおよび推定プログラム
ten Have et al. An approach to lifetime estimation of SiC MOSFETs subjected to thermal stress
Polom et al. Power device interface characterization with low-cost thermal system identification
JP4373206B2 (ja) 電気的構成素子の動作温度を測定するための装置および方法
RU2240573C1 (ru) Экспресс-метод измерения теплового сопротивления переход-корпус силовых полупроводниковых приборов в корпусном исполнении
Zhou et al. High temperature stability evaluation of SiC MOSFETs

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R151 Written notification of patent or utility model registration

Ref document number: 6203415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees