JP6202327B2 - Mass flow meter and static pressure measurement method - Google Patents

Mass flow meter and static pressure measurement method Download PDF

Info

Publication number
JP6202327B2
JP6202327B2 JP2013255778A JP2013255778A JP6202327B2 JP 6202327 B2 JP6202327 B2 JP 6202327B2 JP 2013255778 A JP2013255778 A JP 2013255778A JP 2013255778 A JP2013255778 A JP 2013255778A JP 6202327 B2 JP6202327 B2 JP 6202327B2
Authority
JP
Japan
Prior art keywords
static pressure
flow rate
mass flow
strain gauge
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013255778A
Other languages
Japanese (ja)
Other versions
JP2015114191A (en
JP2015114191A5 (en
Inventor
亮 小阪
亮 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013255778A priority Critical patent/JP6202327B2/en
Publication of JP2015114191A publication Critical patent/JP2015114191A/en
Publication of JP2015114191A5 publication Critical patent/JP2015114191A5/en
Application granted granted Critical
Publication of JP6202327B2 publication Critical patent/JP6202327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、質量流量計に関し、特に、小型・軽量な流量計で圧力と流量計測が必要な分野、例えば、人工心臓などの医療用流量計や、石油、石油化学、化学などのプラントの配管を流れる流体やガス、ビンの洗浄水、ウェハや基板の洗浄液、薬剤などの圧力・流量計測計、あるいは、管路内のフィルタの目詰まりを検出するための管路内抵抗の計測等に使用するものである。   The present invention relates to a mass flow meter, and particularly, to a field where pressure and flow measurement are required with a small and lightweight flow meter, for example, a medical flow meter such as an artificial heart, or a piping of a plant such as petroleum, petrochemical, or chemical. Used for measuring pressure and flow rate of fluid and gas flowing through the bottle, cleaning water for bottles, cleaning liquid for wafers and substrates, chemicals, etc., or resistance in pipes to detect clogging of filters in pipes, etc. To do.

本出願人は、既に、小型・軽量な流量計として、硬質の曲がり管単体で流量を計測する質量流量計(特許文献1)、弾性の曲がり管で流量を計測する質量流量計(特許文献2)を出願しているが、いずれも圧力に関する記載は無い。
さらに、本出願人は、脈波伝搬速度より圧力計測を実施する質量流量計(特許文献3)も既に出願しているが、この場合には脈波伝搬速度を測定するための構成が必要となる。
The present applicant has already used a mass flow meter (Patent Document 1) that measures a flow rate with a single rigid bent pipe as a small and lightweight flow meter (Patent Document 1), and a mass flow meter that measures a flow rate with an elastic bent pipe (Patent Document 2). ), But there is no description about pressure.
Furthermore, the present applicant has already applied for a mass flow meter (Patent Document 3) that performs pressure measurement based on the pulse wave velocity, but in this case, a configuration for measuring the pulse wave velocity is required. Become.

特開2007−218775号公報JP 2007-218775 A 特開2009−150671号公報JP 2009-150671 A 特願2012−234891号Japanese Patent Application No. 2012-234891

例えば、病院外使用の体内埋め込み人工心臓では、病態管理のため血圧と血流量の計測が重要であるが、埋め込みできる小型の血圧計と血流量計が実用化されていない。実用化されている産業用の圧力計としては、ダイヤフラム式の圧力センサや、流量計としては、渦流量計、抵抗流量計、フロート式流量計など様々な方式はあるが、超軽量でシンプルな計測方式の圧力計と流量計が求められている。本出願人が従来提案してきた曲がり管を用いた質量流量計(特許文献1、2等)では、計測方法はシンプルで小型化が可能だが、質量流量のみの計測を行い、表示機器に質量流量のみを表示していた。   For example, in an in-vivo implantable artificial heart used outside a hospital, measurement of blood pressure and blood flow is important for pathological management, but a small sphygmomanometer and blood flow meter that can be implanted have not been put into practical use. There are various types of industrial pressure gauges that are in practical use, such as diaphragm pressure sensors, and flowmeters such as vortex flowmeters, resistance flowmeters, and float flowmeters. There is a need for measurement-type pressure gauges and flow meters. The mass flow meter using a bent tube that has been proposed by the present applicant (Patent Documents 1, 2, etc.) is simple and can be reduced in size, but it measures only the mass flow rate and displays the mass flow rate on the display device. Was only showing.

上記問題点を解決するために、本発明の質量流量計では、内部を流体が流通する管路内の流体の遠心力ないし向心力が作用する部分に遠心力ないし向心力検出用歪ゲージと、遠心力ないし向心力が作用しない位置に静圧・温度補償用の歪ゲージを貼り付け、その出力差から質量流量を計測する質量流量計において、計測された質量流量と歪ゲージの出力から管路内の静圧を計測する質量流量計を提供する。
上記静圧の計測については、遠心力ないし向心力検出用歪ゲージの出力から計測した質量流量を元に算出した流量による歪ゲージの変化を補償することで、管路内の静圧の計測が可能であり、或いはまた、静圧・温度補償用の歪ゲージの出力から計測した質量流量を元に算出した流量による歪ゲージの変化を補償することで、管路内の静圧を計測することも可能である。
また、上記管路内の遠心力ないし向心力が作用する部分は、管路形状が曲がり管形状である。
また、計測された静圧と質量流量とから管路抵抗(=静圧/質量流量)を計測することも出来る。
In order to solve the above problems, in the mass flowmeter of the present invention, the centrifugal force or the centripetal force detecting strain gauge is applied to the portion where the centrifugal force or centripetal force of the fluid in the pipeline through which the fluid flows, and the centrifugal force In addition, a strain gauge for static pressure / temperature compensation is attached to a position where no centripetal force is applied, and a mass flow meter that measures mass flow from the output difference. From the measured mass flow and strain gauge output, A mass flow meter for measuring pressure is provided.
For the above static pressure measurement, it is possible to measure the static pressure in the pipeline by compensating for the strain gauge change due to the flow rate calculated from the mass flow rate measured from the output of the strain gauge for detecting centrifugal force or centripetal force. Alternatively, it is also possible to measure the static pressure in the pipeline by compensating for the change of the strain gauge due to the flow rate calculated from the mass flow rate measured from the output of the strain gauge for static pressure / temperature compensation. Is possible.
Further, the portion of the pipe where the centrifugal force or centripetal force acts has a curved pipe shape.
Further, the pipe resistance (= static pressure / mass flow rate) can be measured from the measured static pressure and mass flow rate.

本発明の質量流量計においては、質量流量の計測に加えて、管路内の静圧の計測を可能とする。そのため、質量流量計とは別の圧力計を使用せずに、曲がり管の管路内の静圧を計測可能な質量流量計を実現することが出来、装置の小型が実現出来る。
また、静圧と流量の計測結果から、管路内抵抗を求めることが出来る。そのため、管路の詰まり具合や狭窄などの管路異常を検知することが出来る。
In the mass flow meter of the present invention, it is possible to measure the static pressure in the pipeline in addition to the measurement of the mass flow rate. Therefore, it is possible to realize a mass flow meter that can measure the static pressure in the pipe line of the bent pipe without using a pressure gauge different from the mass flow meter, and to realize a small apparatus.
Further, the resistance in the pipeline can be obtained from the measurement results of the static pressure and the flow rate. For this reason, it is possible to detect abnormalities in the pipeline such as clogging or narrowing of the pipeline.

図1は、本発明の一実施例である曲がり管を用いた質量流量計の実施例1の全体構成図であり、静圧計測は、遠心力計測用の歪ゲージを使用して実施している。FIG. 1 is an overall configuration diagram of Example 1 of a mass flow meter using a bent tube according to an embodiment of the present invention, and static pressure measurement is performed using a strain gauge for centrifugal force measurement. Yes. 図2は、本発明の一実施例である曲がり管を用いた質量流量計の実施例2の全体構成図であり、静圧計測は、静圧・温度補償用の歪ゲージを使用して実施している。FIG. 2 is an overall configuration diagram of Example 2 of a mass flow meter using a bent pipe according to an embodiment of the present invention, and static pressure measurement is performed using a strain gauge for static pressure / temperature compensation. doing. 図3は、本発明の一実施例である曲がり管を用いた質量流量計の実施例3の全体構成図であり、図1で示した実施例1においてさらに管路抵抗を測定出来るようにし、測定結果から管路内のフィルタの詰まりなどの異常検知機能を付与したものである。FIG. 3 is an overall configuration diagram of Example 3 of a mass flow meter using a bent pipe according to an embodiment of the present invention, which enables the pipe resistance to be further measured in Example 1 shown in FIG. An abnormality detection function such as clogging of the filter in the pipe line is given from the measurement result. 図4は、本発明の曲がり管を用いた実機を用いて市販流量計との流量の計測性能の比較試験を実施した測定結果を示す。FIG. 4 shows a measurement result obtained by conducting a comparison test of a flow rate measurement performance with a commercially available flow meter using an actual machine using the bent pipe of the present invention. 図5は、本発明の曲がり管を用いた実機を用いて市販圧力計との静圧の計測性能の比較試験を実施した測定結果を示す。FIG. 5 shows the measurement results of a comparison test of the measurement performance of static pressure with a commercially available pressure gauge using an actual machine using the bent pipe of the present invention.

本発明の遠心力ないし向心力の作用する管(例えば曲がり管)を用いた質量流量計において、質量流量と静圧は下記のように得られる。
まず、流量が0[L/min]の時、管路に静圧Psを加えると、遠心力ないし向心力の作用する部位(例えば、図1の遠心力計測用歪ゲージの貼り付け部位)の静圧と歪εsAの関係式と、遠心力ないし向心力の作用しない部位(例えば、図1の静圧・温度補償用歪ゲージの貼り付け部位)の静圧と歪εsBの関係式は、下記の式(1)(2)として得られる。
s=αsA×εsA+βsA (1)
s=αsB×εsB+βsB (2)
ここで、αsA,βsA,αsB,βsBは定数であり、事前の校正で得られる。
一方、流体が流れたとき、遠心力ないし向心力の作用する部位の圧力PAと流量による静圧変化PDA、歪εAの関係式と、遠心力ないし向心力の作用しない部位の圧力PBと流量による静圧変化PDB、歪εBの関係式は、下記の式(3)(4)として得られる。
A=PDA+Ps=αA×εA+βA (3)
B=PDB+Ps=αB×εB+βB (4)
ここで、αA,βA,αB,βBは定数であり、事前の校正で得られる。なお、上記式(1)〜(4)において、「εsA,εA」は、例えば、流体の遠心力ないし向心力が作用する部分に貼り付けた遠心力ないし向心力検出用歪ゲージの出力として得られ、「εsB,εB」は、例えば、遠心力ないし向心力の作用しない位置に貼り付けた静圧・温度補償用歪ゲージの出力として得られる。
曲がり管内の質量流量と遠心力ないし向心力の関係を一次近似と仮定すると、曲がり管内の質量流量Flowと、遠心力ないし向心力の作用する部位と作用しない部位の差圧ΔPは下記の式(5)として得られる。
Flow=α×ΔP+β=α(PA−PB)+β (5)
ここで、α,βは定数であり、事前の校正で得られる。
次に、遠心力ないし向心力の作用する部位に着目すると、流量による静圧変化PDAと質量流量Flowの関係を一次近似と仮定すると、上記式(5)で計測された質量流量Flowを用いて、流量による静圧変化PDAは、下記の式(6)で得られる。
DA=αDA×Flow+βDA (6)
ここで、αDA,βDAは定数であり、事前の校正で得られる。
そして、上記式(3)を変形して下記の式(7)が得られ、
s=αA×εA+βA−PDA (7)
式(7)中のαA,βAは事前の校正で得られている定数であるから、遠心力ないし向心力検出用歪ゲージの出力として得られる歪量εAと式(6)で算出される流量による静圧変化PDAを用いて、式(7)より静圧Psを求めることが出来る。
なお、遠心力ないし向心力の作用しない部位に着目した場合には、上記遠心力ないし向心力の作用する部位に着目した場合と同様にして、流量による静圧変化PDBと質量流量Flowの関係を一次近似と仮定すると、上記式(5)で計測された質量流量Flowより、流量による静圧変化PDBは、下記の式(6’)で得られる。
DB=αDB×Flow+βDB (6’)
ここで、αDB,βDBは定数であり、事前の校正で得られる。
そして、上記式(4)を変形すると下記の式(7’)が得られ、
s=αB×εB+βB−PDB (7’)
式(7’)中のαB,βBは事前の校正で得られている定数であるから、静圧・温度補償用歪ゲージの出力として得られる歪量εBと式(6’)で算出される流量による静圧変化PDAを用いて、式(7’)より静圧Psを求めることが出来る。
In the mass flowmeter using a tube (for example, a bent tube) on which centrifugal force or centripetal force acts according to the present invention, the mass flow rate and the static pressure are obtained as follows.
First, when a static pressure P s is applied to a pipe line when the flow rate is 0 [L / min], a site where centrifugal force or centripetal force acts (for example, a site where a strain gauge for centrifugal force measurement in FIG. 1 is attached). and a strain epsilon sA relationship static pressure, sites that are not the action of centrifugal force or centripetal force (e.g., pasting part of the hydrostatic-temperature compensation strain gauges in Figure 1) relationship of the static pressure and strain epsilon sB of, It is obtained as the following formulas (1) and (2).
P s = α sA × ε sA + β sA (1)
P s = α sB × ε sB + β sB (2)
Here, α sA , β sA , α sB , and β sB are constants and are obtained by prior calibration.
On the other hand, when fluid flows, the relationship between the pressure P A at the site where the centrifugal force or centripetal force acts and the static pressure change P DA , strain ε A due to the flow rate, and the pressure P B at the site where the centrifugal force or centripetal force does not act Relational expressions of the static pressure change P DB and the strain ε B with the flow rate are obtained as the following expressions (3) and (4).
P A = P DA + P s = α A × ε A + β A (3)
P B = P DB + P s = α B × ε B + β B (4)
Here, α A , β A , α B , and β B are constants and are obtained by prior calibration. In the above formulas (1) to (4), “ε sA , ε A ” is obtained, for example, as the output of the centrifugal force or centripetal force detection strain gauge attached to the portion where the centrifugal force or centripetal force of the fluid acts. For example, “ε sB , ε B ” is obtained as an output of a strain gauge for static pressure / temperature compensation attached to a position where centrifugal force or centripetal force is not applied.
Assuming that the relationship between the mass flow rate in the bending tube and the centrifugal force or centripetal force is a first order approximation, the mass flow rate Flow in the bending tube and the differential pressure ΔP between the portion where the centrifugal force or centripetal force acts and the portion where it does not act are expressed by the following equation (5) As obtained.
Flow = α × ΔP + β = α (P A −P B ) + β (5)
Here, α and β are constants and are obtained by prior calibration.
Next, focusing on the site of action of the centrifugal force or centripetal force, when the relationship between the static pressure change P DA and mass flow Flow by the flow assuming first-order approximation, using a mass flow Flow measured by the above formula (5) , the static pressure change P DA by the flow is obtained by the following equation (6).
P DA = α DA × Flow + β DA (6)
Here, α DA and β DA are constants and are obtained by prior calibration.
And the following formula (7) is obtained by modifying the above formula (3),
P s = α A × ε A + β A −P DA (7)
Since α A and β A in equation (7) are constants obtained in advance calibration, the strain amount ε A obtained as the output of the strain gauge for detecting centrifugal force or centripetal force and equation (6) are calculated. The static pressure P s can be obtained from the equation (7) using the static pressure change P DA due to the flow rate.
Incidentally, when attention is focused on sites that are not the action of centrifugal force or centripetal force, as in the case of focusing on the site of action of the centrifugal force or centripetal force, primary relationships of static pressure change P DB mass flow Flow by the flow assuming approximation, than the mass flow rate flow was measured by the above formula (5), the static pressure change P DB by the flow rate obtained by the following formula (6 ').
P DB = α DB × Flow + β DB (6 ')
Here, α DB and β DB are constants and are obtained by prior calibration.
And when the above equation (4) is modified, the following equation (7 ′) is obtained,
P s = α B × ε B + β B −P DB (7 ′)
Since α B and β B in the equation (7 ′) are constants obtained in advance calibration, the strain amount ε B obtained as the output of the static pressure / temperature compensation strain gauge and the equation (6 ′) using static pressure change P DA by the flow rate to be calculated, the formula (7 ') than can be obtained static pressure P s.

以上説明したとおり、本発明では、流体の遠心力ないし向心力が作用する部分(図1の例では曲がり管の部分)に遠心力ないし向心力検出用歪ゲージを貼り付け、遠心力ないし向心力が作用しない部分(図1の例では直管の部分)に静圧・温度補償用の歪ゲージを貼り付けることにより、これら二つの歪みゲージの出力差から式(5)を元に質量流量Flowを計測することが出来る(なお、式(5)のPA−PBは、式(3)でPAを式(4)でPBを算出してその差から求まる)。そして、求めた質量流量Flowを用いて式(6)(或いは式(6’))から流量による静圧変化PDA(或いはPDB)を算出し、歪ゲージの出力εA(或いはεB)と算出した流量による静圧変化PDA(或いはPDB)を用いて式(7)(或いは式(7’))を元に静圧Psを算出するものである。なお、式(7)(或いは式(7’))において、右辺の最終項の「−PDA」(或いは「−PDB」)は、質量流量による歪ゲージの出力変化を補償する項ということも出来る。
したがって、本発明の質量流量計では、別の圧力計を用意することなくあるいは静圧計測のための別の歪みゲージ等を用意することなく静圧の計測が出来る。
As described above, in the present invention, the centrifugal force or the centripetal force detection strain gauge is attached to the portion where the centrifugal force or centripetal force of the fluid acts (the bent tube portion in the example of FIG. 1), and the centrifugal force or centripetal force does not act. By attaching a strain gauge for static pressure / temperature compensation to the part (straight pipe part in the example of FIG. 1), the mass flow rate Flow is measured based on the equation (5) from the output difference between these two strain gauges. (Note that P A -P B in equation (5) is obtained from the difference between P A in equation (3) and P B in equation (4)). Then, the static pressure change P DA (or P DB ) due to the flow rate is calculated from the equation (6) (or equation (6 ′)) using the obtained mass flow rate Flow, and the strain gauge output ε A (or ε B ). The static pressure P s is calculated based on the equation (7) (or the equation (7 ′)) using the static pressure change P DA (or P DB ) due to the calculated flow rate. In equation (7) (or equation (7 ′)), the last term “−P DA ” (or “−P DB ”) on the right side is a term that compensates for the output change of the strain gauge due to mass flow rate. You can also.
Therefore, in the mass flow meter of the present invention, it is possible to measure static pressure without preparing another pressure gauge or preparing another strain gauge or the like for measuring static pressure.

(実施例1)
図1は、本発明の一実施例である曲がり管を用いた実施例1を示したものである。図1に示した実施例1では、曲がり管の曲がりの外側の遠心力が作用する部分に遠心力計測用歪ゲージを貼り付け(なお、向心力が作用する部分に歪みゲージを貼り付けるには曲がり管の曲がりの内側に貼り付ければよい)、遠心力(ないし向心力)検出用歪ゲージとは異なる位置、すなわち遠心力(ないし向心力)の作用しない部分である直管に静圧・温度補償用歪ゲージを貼り付ける。なお、図では歪ゲージ貼り付け部分の管壁は薄肉にして感度を上げている。
この実施例1では、それぞれの歪ゲージの検出信号はブリッジ回路アンプを介して出力され、両出力を用いて式(5)から質量流量Flowを算出するとともに、求めた質量流量Flowを元に式(6)から流量による静圧変化PDAを算出し、歪みゲージの出力εAと求めた流量による静圧変化PDAを元に式(7)から静圧Psを算出するものである。算出した質量流量と静圧とを出力装置で表示・印刷・記憶等する。
Example 1
FIG. 1 shows an embodiment 1 using a bent pipe, which is an embodiment of the present invention. In Example 1 shown in FIG. 1, a strain gauge for centrifugal force measurement is pasted on the portion where the centrifugal force outside the bend of the bent tube acts (note that the strain gauge is stuck on the portion where the centripetal force acts) Static pressure / temperature compensation strain on a straight pipe where the centrifugal force (or centripetal force) is not applied, that is, a position different from the strain gauge for detecting centrifugal force (or centripetal force). Affix the gauge. In the figure, the sensitivity is improved by thinning the tube wall where the strain gauge is attached.
In the first embodiment, the detection signals of the respective strain gauges are output via the bridge circuit amplifier, and the mass flow rate Flow is calculated from the equation (5) using both outputs, and the equation is based on the obtained mass flow rate Flow. The static pressure change P DA due to the flow rate is calculated from (6), and the static pressure P s is calculated from the equation (7) based on the output ε A of the strain gauge and the static pressure change P DA due to the obtained flow rate. The calculated mass flow rate and static pressure are displayed / printed / stored in the output device.

(実施例2)
図2は、本発明の一実施例である曲がり管を用いた実施例2を示したものである。実施例2では、上記実施例1と同様に、曲がり管の曲がりの外側の遠心力が作用する部分に遠心力計測用歪ゲージを貼り付け、遠心力検出用歪ゲージとは異なる位置として直管の部分に静圧・温度補償用歪ゲージを貼り付ける。そして、それぞれの歪ゲージの検出信号はブリッジ回路アンプを介して出力され、両出力を用いて式(5)から質量流量Flowを算出するとともに、求めた質量流量Flowを元に式(6’)から流量による静圧変化PDBを算出し、歪みゲージの出力εBと求めた流量による静圧変化PDBを元に式(7’)から静圧Psを算出するものである。算出した質量流量と静圧とを出力装置で表示・印刷・記憶等する。
この実施例2を上記実施例1と比較すると、流量による静圧変化の算出が上記実施例1では式(6)を用いているのに対して、実施例2では式(6’)を用いる点、及び、静圧の算出が上記実施例1では式(7)を用いているのに対して、実施例2では式(7’)を用いる点で異なるだけでその他の構成は同じである。
(Example 2)
FIG. 2 shows a second embodiment using a bent pipe, which is an embodiment of the present invention. In the second embodiment, as in the first embodiment, a centrifugal force measuring strain gauge is attached to a portion where the centrifugal force on the outside of the bend of the bent tube is applied, and the straight pipe is located at a position different from the centrifugal force detecting strain gauge. Attach a static pressure / temperature compensation strain gauge to the part. Then, the detection signals of the respective strain gauges are output via the bridge circuit amplifier, and the mass flow rate Flow is calculated from the formula (5) using both outputs, and the formula (6 ′) based on the obtained mass flow rate Flow. The static pressure change P DB according to the flow rate is calculated from the flow rate, and the static pressure P s is calculated from the equation (7 ′) based on the output ε B of the strain gauge and the static pressure change P DB due to the obtained flow rate. The calculated mass flow rate and static pressure are displayed / printed / stored in the output device.
Comparing Example 2 with Example 1 above, calculation of the static pressure change due to the flow rate uses Equation (6) in Example 1 above, whereas Equation 2 uses Equation (6 ′). The point and the calculation of the static pressure use the formula (7) in the first embodiment, whereas the second embodiment has the same configuration except that the formula (7 ') is used in the second embodiment. .

(実施例3)
図3は、本発明の一実施例である第3実施例を示したものであって、質量流量と静圧の他に、さらに管路抵抗を求め、管路内のフィルタの詰まりなどの異常検知機能を備えたものである。図3の実施例3では、上記図1に示した実施例1を基本構成としており、質量流量計算と静圧計算については図1で示した上記実施例1と同じである。実施例3が実施例1と異なるところは、求めた質量流量と静圧とから、さらに管路抵抗を計算し、この管路抵抗を用いて管路の詰まり具合や狭窄などの管路の異常を検知し出力装置で表示・音・光等の異常を出力するものである。なお、図3に示した実施例3では、図1の実施例1を基本構成としているが、図2の実施例2を基本構成としても同様に構成できることはもちろんである。
ここで、管路抵抗とは、質量流量と静圧から
管路抵抗=静圧/質量流量
により算出して求めた量であり、電気系の抵抗(=電圧/電流)と機械系のアナロジーからすれば、管路抵抗が過大であるときに管路の詰まりや狭窄あるいは管路内のフィルタの目詰まりなどの異常が発生していると判断することが出来る。
(Example 3)
FIG. 3 shows a third embodiment which is an embodiment of the present invention. In addition to the mass flow rate and the static pressure, the pipe resistance is further obtained and abnormalities such as clogging of the filter in the pipe are shown. It has a detection function. 3 is based on the basic configuration of the first embodiment shown in FIG. 1, and the mass flow rate calculation and the static pressure calculation are the same as those of the first embodiment shown in FIG. The difference between Example 3 and Example 1 is that the pipe resistance is further calculated from the obtained mass flow rate and static pressure, and the pipe resistance is used to abnormalize the pipe line such as clogging or stenosis. Is detected, and the output device outputs abnormalities such as display, sound, and light. In addition, in Example 3 shown in FIG. 3, Example 1 of FIG. 1 is used as a basic configuration, but it is needless to say that Example 2 of FIG.
Here, the pipe resistance is an amount obtained by calculating from the mass flow rate and the static pressure by the pipe resistance = static pressure / mass flow rate, and from the electrical system resistance (= voltage / current) and the analogy of the mechanical system. In this case, when the pipe resistance is excessive, it can be determined that an abnormality such as clogging or narrowing of the pipe or clogging of the filter in the pipe has occurred.

図4に、本発明の質量流量計の実機と、市販の流量計とを用いて流量の計測性能の比較試験を行った結果を示す。図4において、横軸は時間(単位[s])、縦軸は流量(単位[L/min])を表し、黒い実線が曲がり管を用いた本発明の実機による流量の測定結果であり、薄い灰色の実線が市販の流量計による流量の測定結果である。図4によれば、本発明の実機の測定結果は、市販の流量計の測定結果とほぼ一致しており、本発明の実機で流量が正確に測定されていることが確認できた。   In FIG. 4, the result of having performed the comparison test of the measurement performance of flow volume using the actual machine of the mass flowmeter of this invention and a commercially available flowmeter is shown. In FIG. 4, the horizontal axis represents time (unit [s]), the vertical axis represents the flow rate (unit [L / min]), and the black solid line is the measurement result of the flow rate using the actual apparatus of the present invention using a curved pipe. The light gray solid line is the measurement result of the flow rate with a commercially available flow meter. According to FIG. 4, the measurement result of the actual machine of the present invention almost coincides with the measurement result of the commercially available flow meter, and it was confirmed that the flow rate was accurately measured by the actual machine of the present invention.

図5に、本発明の質量流量計の実機と、市販の圧力計とを用いて静圧の計測性能の比較試験を行った結果を示す。図5において、横軸は時間(単位[s])、縦軸は静圧(単位[mmHg])を表し、黒い実線が曲がり管を用いた本発明の実機による静圧の測定結果であり、薄い灰色の実線が市販の圧力計による圧力の測定結果である。図5によれば、本発明の実機による圧力の測定結果は、市販の圧力計の測定結果と一致しており、本発明の実機で圧力が正確に測定されていることが確認できた。   In FIG. 5, the result of having done the comparative test of the measurement performance of static pressure using the actual machine of the mass flowmeter of this invention, and a commercially available pressure gauge is shown. In FIG. 5, the horizontal axis represents time (unit [s]), the vertical axis represents static pressure (unit [mmHg]), and the black solid line is the measurement result of the static pressure by the actual machine of the present invention using a bent pipe, The light gray solid line is the measurement result of pressure with a commercially available pressure gauge. According to FIG. 5, the measurement result of the pressure by the actual machine of the present invention is consistent with the measurement result of the commercially available pressure gauge, and it was confirmed that the pressure was accurately measured by the actual machine of the present invention.

本発明は小型・軽量な流量計での圧力と流量計測が必要な分野に利用することが出来、例えば、人工心臓などの医療用流量計や、石油、石油化学、化学などのプラントの配管を流れる流体やガス、ビンの洗浄水、ウェハや基板の洗浄液、薬剤などの圧力・流量計測として利用でき、また、管路内のフィルタの目詰まりを検出するための管路内抵抗の計測に使用することも出来る。   The present invention can be used in fields where pressure and flow measurement with a small and lightweight flow meter is required. For example, a medical flow meter such as an artificial heart or a piping of a plant such as petroleum, petrochemical, chemical, etc. It can be used to measure the pressure and flow rate of flowing fluids and gases, bottle cleaning water, wafer and substrate cleaning liquids, chemicals, etc., and also used for measuring resistance in pipelines to detect clogging of filters in pipelines. You can also

Claims (5)

連続した直管部及び曲がり管部を含みこの内部を流体の流通する管路の該曲がり管位置に力検出用歪ゲージを与え、直管位置に静圧・温度補償用歪ゲージを与えた質量流量計で該管路内の静圧の計測を与える静圧計測方法であって、Mass that includes a continuous straight pipe section and a curved pipe section, and a strain gauge for force detection is applied to the position of the bent pipe of the pipe through which the fluid flows, and a strain gauge for static pressure and temperature compensation is applied to the straight pipe position. A static pressure measuring method for measuring a static pressure in the pipe line with a flow meter,
計測された質量流量に対応する静圧変化について、前記力検出用歪ゲージ又は前記静圧・温度補償用歪ゲージのいずれか一方から得られる流量に対応する静圧変化で補償して前記静圧の計測を与えることを特徴とする静圧計測方法。  About the static pressure change corresponding to the measured mass flow rate, the static pressure is compensated by the static pressure change corresponding to the flow rate obtained from either the force detection strain gauge or the static pressure / temperature compensation strain gauge. A static pressure measuring method characterized by giving a measurement of.
前記質量流量は、前記曲がり管位置での遠心力又は向心力、及び、前記静圧変化との間で一次近似することを特徴とする請求項1記載の静圧計測方法。2. The static pressure measuring method according to claim 1, wherein the mass flow rate is linearly approximated between a centrifugal force or an centripetal force at the bent tube position and the static pressure change. 連続した直管部及び曲がり管部を含みこの内部を流体流通する管路の該曲がり管位置に力検出用歪ゲージを与え直管位置に静圧・温度補償用歪ゲージを与えて該管路内の静圧の計測を与える質量流量計であって
計測された質量流量に対応する静圧変化について、前記力検出用歪ゲージ又は前記静圧・温度補償用歪ゲージのいずれか一方から得られる流量に対応する静圧変化で補償して前記静圧計測を与えることを特徴とする質量流量計。
Continuous empowered sensing strain gages The internal include straight pipe portion and a bent pipe portion curved rising tube position of the conduit to fluid flow therethrough, said giving strain gauges for static pressure and temperature compensation in a straight tube position a mass flow meter Ru gives the measurement of static pressure in the line,
About the static pressure change corresponding to the measured mass flow rate, the static pressure is compensated by the static pressure change corresponding to the flow rate obtained from either the force detection strain gauge or the static pressure / temperature compensation strain gauge. mass flowmeter according to claim Rukoto given measurement.
前記質量流量は、前記曲がり管位置での遠心力又は向心力、及び、前記静圧変化との間で一次近似することを特徴とする請求項3記載の質量流量計。4. The mass flow meter according to claim 3, wherein the mass flow rate is approximated first by a centrifugal force or centripetal force at the bent tube position and the static pressure change. 前記静圧を前記質量流量で除算することにより管路抵抗計測を与えることを特徴とする請求項3又は4に記載の質量流量計。 Mass flowmeter according to claim 3 or 4, characterized in Rukoto give measurement of pipeline resistance by dividing the static pressure in the mass flow rate.
JP2013255778A 2013-12-11 2013-12-11 Mass flow meter and static pressure measurement method Active JP6202327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013255778A JP6202327B2 (en) 2013-12-11 2013-12-11 Mass flow meter and static pressure measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013255778A JP6202327B2 (en) 2013-12-11 2013-12-11 Mass flow meter and static pressure measurement method

Publications (3)

Publication Number Publication Date
JP2015114191A JP2015114191A (en) 2015-06-22
JP2015114191A5 JP2015114191A5 (en) 2017-01-19
JP6202327B2 true JP6202327B2 (en) 2017-09-27

Family

ID=53528117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013255778A Active JP6202327B2 (en) 2013-12-11 2013-12-11 Mass flow meter and static pressure measurement method

Country Status (1)

Country Link
JP (1) JP6202327B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587129B2 (en) * 2015-09-02 2019-10-09 国立研究開発法人産業技術総合研究所 Flowmeter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641915A (en) * 1995-02-03 1997-06-24 Lockheed Idaho Technologies Company Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
JPH10132676A (en) * 1996-11-01 1998-05-22 Mitsubishi Heavy Ind Ltd Dynamic pressure measuring apparatus in piping
JP4761134B2 (en) * 2006-02-17 2011-08-31 独立行政法人産業技術総合研究所 Mass flow meter
JP2010066184A (en) * 2008-09-12 2010-03-25 National Institute Of Advanced Industrial Science & Technology Mass flowmeter

Also Published As

Publication number Publication date
JP2015114191A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6239727B2 (en) Main components of a flow meter with multiple sensors
JP5999725B2 (en) Mass flow meter
JP5147844B2 (en) Process equipment with density measurement
JP2001519910A (en) Vortex flow meter with signal processor
JP2016511412A (en) Pitot tube crossing assembly
WO2019000258A1 (en) Gas turbine flowmeter detection device and detection method
Beaulieu et al. A flowmeter for unsteady liquid flow measurements
EP3488192A1 (en) Vortex flowmeter with reduced process intrusion
JP4936392B2 (en) Mass flow meter
JP6202327B2 (en) Mass flow meter and static pressure measurement method
JP2007051913A (en) Correction method for ultrasonic flowmeter
KR100937472B1 (en) Differential pressure flowmeter
JP2013142539A (en) Mass flowmeter
CN105698877A (en) System and method for measuring flow velocity and flow of fluid in pipe
JP6418936B2 (en) Flowmeter
JP2020532721A (en) Conductive polymer reference connection for magnetic flowmeter
WO2016004684A1 (en) Differential pressure type bend pipe flow meter
JP2010066184A (en) Mass flowmeter
JP6587129B2 (en) Flowmeter
CN211373738U (en) Mass flowmeter
WO2022070239A1 (en) Flow rate measurement device
CN104280076A (en) High-precision large-diameter vortex flowmeter
JP2012159484A (en) Mass flowmeter
WO2019237170A1 (en) Assembly and method for measuring a fluid flow in pipes
RU2641505C1 (en) Information and measuring system for measurement of flow and quantity of gas

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170816

R150 Certificate of patent or registration of utility model

Ref document number: 6202327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250