JP6197454B2 - METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION - Google Patents

METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION Download PDF

Info

Publication number
JP6197454B2
JP6197454B2 JP2013162080A JP2013162080A JP6197454B2 JP 6197454 B2 JP6197454 B2 JP 6197454B2 JP 2013162080 A JP2013162080 A JP 2013162080A JP 2013162080 A JP2013162080 A JP 2013162080A JP 6197454 B2 JP6197454 B2 JP 6197454B2
Authority
JP
Japan
Prior art keywords
metal oxide
conductive agent
oxide nanoparticle
lithium ion
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013162080A
Other languages
Japanese (ja)
Other versions
JP2014053295A (en
Inventor
博昭 川村
博昭 川村
久保田 泰生
泰生 久保田
亨樹 宮園
亨樹 宮園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013162080A priority Critical patent/JP6197454B2/en
Publication of JP2014053295A publication Critical patent/JP2014053295A/en
Application granted granted Critical
Publication of JP6197454B2 publication Critical patent/JP6197454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、金属酸化物ナノ粒子−導電剤複合体とそれを用いてなるリチウムイオン二次電池及びリチウムイオンキャパシタ、ならびに金属酸化物ナノ粒子−導電剤複合体の製造方法に関するものである。より詳しくは、本発明は、リチウムイオン2次電池もしくはリチウムイオンキャパシタの電極の少なくとも一部に用いた際に高容量化と高出力化を共に達成しうる、リチウムイオンの電荷移動特性に適合した金属酸化物ナノ粒子−導電剤複合体と該複合体を用いたリチウムイオン二次電池及びリチウムイオンキャパシタに関するものである。   The present invention relates to a metal oxide nanoparticle-conductive agent composite, a lithium ion secondary battery and a lithium ion capacitor using the same, and a method for producing a metal oxide nanoparticle-conductive agent composite. More specifically, the present invention is adapted to the charge transfer characteristics of lithium ions that can achieve both high capacity and high output when used in at least part of the electrodes of a lithium ion secondary battery or lithium ion capacitor. The present invention relates to a metal oxide nanoparticle-conductive agent composite, a lithium ion secondary battery and a lithium ion capacitor using the composite.

リチウムイオン二次電池は、従来のニッケルカドミウム電池やニッケル水素電池に比べて、高電圧・高エネルギー密度が得られる電池として、携帯電話やラップトップパソコンなど情報関連のモバイル通信電子機器に広く用いられている。今後環境問題を解決する一つの手段として電気自動車・ハイブリッド電気自動車などに搭載する車載用途あるいは電動工具などの産業用途に利用拡大が進むと期待される一方、更なる高容量化と高出力化が切望されている。   Lithium-ion secondary batteries are widely used in information-related mobile communication electronic devices such as mobile phones and laptop computers as batteries that provide higher voltage and higher energy density than conventional nickel cadmium batteries and nickel metal hydride batteries. ing. As one of the means to solve environmental problems in the future, it is expected that the use will be expanded to in-vehicle applications mounted on electric vehicles / hybrid electric vehicles and industrial applications such as electric tools. Longed for.

リチウムイオン二次電池は少なくとも、リチウムイオンを可逆的に脱挿入可能な活物質を有する正極と負極、セパレータ、電池内を充填する非水電解液から構成される。その中でも正極及び負極は、リチウムイオンを蓄える活物質、導電性を向上させる導電剤、及び塗膜形態を維持させる結着剤を含んだペーストを集電体となる金属箔に塗布した後に乾燥して得られるものである。とりわけ活物質は正極、負極のどちらにおいても電池の容量を決める重要な部材である。   The lithium ion secondary battery includes at least a positive electrode and a negative electrode having an active material capable of reversibly inserting and removing lithium ions, a separator, and a non-aqueous electrolyte filling the battery. Among them, the positive electrode and the negative electrode are dried after applying a paste containing an active material for storing lithium ions, a conductive agent for improving conductivity, and a binder for maintaining the form of a coating film to a metal foil as a current collector. Is obtained. In particular, the active material is an important member that determines the capacity of the battery in both the positive electrode and the negative electrode.

従来のリチウムイオン二次電池では正極活物質としてコバルト酸リチウム(LiCoO)、負極活物質としては炭素が用いられることが多かった。しかし、今後の用途拡大を見込み、さらなる高容量化に向けて次世代の活物質の探索が盛んに行われている。 In conventional lithium ion secondary batteries, lithium cobaltate (LiCoO 2 ) is often used as the positive electrode active material, and carbon is often used as the negative electrode active material. However, in anticipation of future expansion of the application, the search for next-generation active materials is being actively pursued for higher capacity.

正極活物質においてはオリビン系材料、すなわちリン酸鉄リチウム(LiFePO)やリン酸マンガンリチウム(LiMnPO)といった金属酸化物が次世代活物質として注目されている。リン酸鉄リチウムやリン酸マンガンリチウムの容量はコバルト酸リチウムに対して2割程度の増加にとどまるため高容量化への効果は限定的であるが、レアメタルであるコバルトを含有しないため、安定供給及び価格の面で大きなメリットを有する。さらに、オリビン系活物質では酸素がリンと共有結合しているため、酸素が放出されにくく、安全性が高いという特徴も併せ持つ。しかし、オリビン系材料、特にリン酸マンガンリチウムについては電気伝導性が低いため本来の性能を引き出すのが難しく、実用化には至っていない。 In the positive electrode active material, olivine-based materials, that is, metal oxides such as lithium iron phosphate (LiFePO 4 ) and lithium manganese phosphate (LiMnPO 4 ) are attracting attention as next-generation active materials. The capacity of lithium iron phosphate and lithium manganese phosphate is limited to about 20% of that of lithium cobaltate, so the effect on increasing the capacity is limited, but it does not contain cobalt, which is a rare metal, so it can be supplied stably. And it has a great merit in terms of price. Furthermore, since the olivine-based active material is covalently bonded to phosphorus, oxygen is not easily released and has a high safety feature. However, olivine-based materials, particularly lithium manganese phosphate, have low electrical conductivity, making it difficult to bring out the original performance, and have not yet been put into practical use.

負極活物質においては金属酸化物系が次世代活物質として近年注目されるようになってきている。酸化マンガン(MnO、Mn)のような金属酸化物をナノ粒子化して負極活物質として用いると、リチウムイオンとコンバージョン反応を起こし、可逆的にリチウムを蓄えることが可能であることが知られている。従来のグラファイトなどの炭素材料を負極活物質として用いた場合と比較すると、金属酸化物は3倍程度の容量増加が見込めるが、酸化マンガンを用いた場合には活物質の導電性が低いため、実用化には導電性の確保が課題となっている。また、リチウムイオン2次電池の負極材料は、導電性を高めることで出力特性を向上させてリチウムイオンキャパシタの充放電速度に追従できるようにできれば、リチウムイオンキャパシタの負極材料としても用いることが可能であることが知られている。 In the negative electrode active material, a metal oxide system has recently attracted attention as a next generation active material. It is known that when a metal oxide such as manganese oxide (MnO, Mn 3 O 4 ) is made into nanoparticles and used as a negative electrode active material, a conversion reaction with lithium ions occurs and lithium can be stored reversibly. It has been. Compared to the case where a conventional carbon material such as graphite is used as the negative electrode active material, the metal oxide can be expected to increase in capacity by about three times. However, when manganese oxide is used, the conductivity of the active material is low. Ensuring conductivity is an issue for practical application. In addition, the negative electrode material of the lithium ion secondary battery can be used as the negative electrode material of the lithium ion capacitor if the output characteristics can be improved by increasing the conductivity so that it can follow the charge / discharge speed of the lithium ion capacitor. It is known that

以上のように、次世代と期待される活物質はその導電性の低さが問題となっている。導電性の低さを補いリチウムイオン二次電池もしくはリチウムイオンキャパシタの活物質として用いるためには、以下の2点について改善していく必要がある。   As described above, the active material expected to be the next generation has a problem of low conductivity. In order to compensate for the low conductivity and use as an active material of a lithium ion secondary battery or a lithium ion capacitor, the following two points need to be improved.

まず、活物質の大きさは粒径が100nm以下のナノ粒子であることが求められる。活物質のナノ粒子化によって活物質内部の抵抗の影響を低減させることで、導電性の低い化合物でも活物質として用いることが可能となる。ただし、活物質の粒径を10nm未満まで小さくするとリチウムイオンを粒子内部へ固定化しにくくなるため好ましくない。   First, the size of the active material is required to be nanoparticles having a particle size of 100 nm or less. By reducing the effect of resistance inside the active material by forming nanoparticles of the active material, even a compound having low conductivity can be used as the active material. However, it is not preferable to reduce the particle size of the active material to less than 10 nm because it is difficult to fix lithium ions inside the particles.

次いで、ナノ粒子化した活物質の各々が導電剤と直接的に広い接触面積をもって接している必要がある。ただし、この条件を満たすために大量の導電剤を用いると、電極重量当たりの容量が低下し、次世代活物質のもつ高容量というメリットを損なってしまう。そこで限られた量での導電剤で活物質の導電性を効果的に補う必要があり、そのための様々な試みがなされてきている。   Next, each of the nanoparticulated active materials needs to be in direct contact with the conductive agent with a wide contact area. However, if a large amount of conductive agent is used to satisfy this condition, the capacity per electrode weight is reduced, and the merit of high capacity of the next generation active material is impaired. Therefore, it is necessary to effectively supplement the conductivity of the active material with a limited amount of conductive agent, and various attempts have been made for that purpose.

その試みの1つは、活物質合成時に糖などの炭素源を添加しておき、加熱時に炭素を得ることによって活物質をカーボンコーティングするという手法である(例えば特許文献1)。 また、活物質と炭素をボールミルなどを用いて物理混合することも検討されている(例えば特許文献2)。   One of the attempts is to add a carbon source such as sugar at the time of active material synthesis and to carbon coat the active material by obtaining carbon during heating (for example, Patent Document 1). Further, physical mixing of an active material and carbon using a ball mill or the like has been studied (for example, Patent Document 2).

さらに、炭素にナノ粒子化させた活物質を担持するという試みもなされている。結晶性の高いカーボンナノチューブやグラフェン上に活物質を担持させることで、理論的には高速充放電にも対応できる導電性を得ることができる。(例えば特許文献3及び非特許文献1、2、3)。一方で、ナノ粒子化した活物質と炭素と混合する手法によって担持体を得る方法も試みられている(例えば非特許文献4)。   Furthermore, an attempt has been made to support an active material that has been nanoparticulated on carbon. By supporting an active material on carbon nanotubes or graphene with high crystallinity, it is theoretically possible to obtain conductivity that can cope with high-speed charge / discharge. (For example, Patent Document 3 and Non-Patent Documents 1, 2, and 3). On the other hand, a method of obtaining a carrier by a technique of mixing nanoparticulate active material and carbon has also been attempted (for example, Non-Patent Document 4).

特開2008−210701号公報JP 2008-210701 A 特開2007−173134号公報JP 2007-173134 A 特開2012−6821号公報JP 2012-6821 A

「Mn3O4−Graphene Hybrid as a High−Capacity Anode Material for Lithium Ion Batteries],Journal of American Chemical Society,2010年,第132号,pp.13978−13980“Mn 3 O 4 -Graphic Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries”, Journal of American Chemical Society, 2010, No. 132, p. 「Ternary Self−Assembly of Ordered Metal Oxide−Graphene Nanocomposites for Electrochemical Energy Storage」ACS Nano、2010年、第4巻3号、pp1587−1595“Ternary Self-Assembly of Ordered Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage” ACS Nano, 2010, Vol. 4, No. 3, pp 1587-15. 「Sol−gel synthesis of multiwalled carbon nanotube−LiMn2O4 nanocomposites as cathode materials for Li−ion batteries」、Journal of Power Sources、2011年、第195号、pp4290−4296"Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cata-materials for Li-ion batteries, 96th, Journal of Power, 19th, 42th, 20th, 42th. 「Self−assembled lithium manganse oxide nanoparticles on carbon nanotube or graphene as high−performance cathode material for lithium−ion batteries」Journal of Materials Chemistry、2011年、第21号、pp17297−17303"Self-assembled lithium manganese oxide nanoparticulate on carbon nanopound 17th, Jr. 17th, Jr., 17th, Jr., 17th, Jr.

本発明者らは鋭意検討を行い、以下の課題があることを見出した。   The present inventors have intensively studied and found that there are the following problems.

特許文献1の方法を用いれば活物質に導電性を付与することは可能であるが、得られるカーボン被膜は結晶性が低く、高速充放電に対応できるものではなかった。また、金属酸化物にカーボンコートをしようとすれば、炭素によって金属酸化物が還元されてしまう場合があるという問題もある。   If the method of Patent Document 1 is used, it is possible to impart conductivity to the active material, but the resulting carbon film has low crystallinity and cannot cope with high-speed charge / discharge. In addition, if the metal oxide is to be carbon coated, there is a problem that the metal oxide may be reduced by carbon.

特許文献2の方法では活物質と炭素の比率を制御しやすいというメリットがある一方で、物理混合であるために各々の活物質が確実にカーボンと接するためにはカーボンの必要量が多くなりやすく、さらにボールミルなどのメディア分散を用いた場合には異種金属混入などのコンタミネーションを引き起こしやすいという問題がある。   While the method of Patent Document 2 has an advantage that it is easy to control the ratio of the active material to carbon, since it is a physical mixture, the required amount of carbon tends to increase in order for each active material to contact carbon reliably. In addition, when media dispersion such as a ball mill is used, there is a problem that contamination such as mixing of different metals is likely to occur.

さらに、特許文献3及び非特許文献1の方法では、結晶性の高いカーボンナノチューブやグラフェン上に活物質を担持させることで、理論的には高速充放電にも対応できる導電性を得ることができるとされる。しかしながら、これまでに報告されている活物質と炭素の複合体は、合成に高圧条件やマイクロ波を必要としたりする場合が多く、その合成手法は煩雑であり、さらに得られる活物質の粒径が10nm以下と小さすぎる。   Furthermore, in the methods of Patent Document 3 and Non-Patent Document 1, it is theoretically possible to obtain conductivity that can cope with high-speed charge / discharge by supporting an active material on carbon nanotubes or graphene with high crystallinity. It is said. However, the active material-carbon composites reported so far often require high-pressure conditions and microwaves for synthesis, and the synthesis method is complicated, and the particle size of the resulting active material Is too small, 10 nm or less.

そして、非特許文献2の方法では、活物質の粒径を10nm以下と小さいだけでなく、ナノ粒子化した活物質を炭素上に均一に担持す炭素の表面積を効率よく活用して活物質を担持しなくては、活物質に対して過剰な炭素が必要となり、結果として電極化したときに電極重量当たりの容量が低下することになる。   In the method of Non-Patent Document 2, not only the particle size of the active material is as small as 10 nm or less, but also the active material is effectively utilized by effectively utilizing the surface area of carbon that uniformly supports the active material that has been nanoparticulated on carbon. If it is not supported, excess carbon is required relative to the active material, and as a result, the capacity per electrode weight is reduced when the electrode is formed.

また、非特許文献3の方法では、粒径を10nm以上にした例においては、ナノ粒子化した活物質を炭素上に均一に担持することが困難であるため、各々の活物質の導電性を確保することはできていない。   Further, in the method of Non-Patent Document 3, in the example where the particle diameter is 10 nm or more, it is difficult to uniformly support the active material that has been made into nanoparticles on carbon, so the conductivity of each active material is set to be low. It cannot be secured.

一方で、活物質と炭素の接着性が問題となることがある。導電剤にカーボンナノチューブやグラフェンといった炭素を用いた場合には、活物質と炭素が接合していても、接合の力が弱いと電極化した際に活物質が結着剤に絡め取られ、炭素から脱離する可能性がある。非特許文献4の手法では、ナノ粒子化した活物質と導電剤を単に混合しただけでは接着力が不十分であり、電極化時には活物質と導電剤が接しているとは限らない。   On the other hand, the adhesion between the active material and carbon may be a problem. When carbon such as carbon nanotube or graphene is used as the conductive agent, even if the active material and carbon are bonded, if the bonding force is weak, the active material is entangled in the binder when the electrode is formed, and carbon May be detached from In the method of Non-Patent Document 4, the adhesive force is insufficient just by mixing the nanoparticulate active material and the conductive agent, and the active material and the conductive agent are not always in contact with each other when forming an electrode.

上述のように、次世代と期待される活物質は導電性が低く、リチウムイオン二次電池に用いた場合にその性能を十分に発揮させるには、導電性の向上が求められる。しかしながら、粒径が15nmから100nmの活物質ナノ粒子を導電剤上に均一に担持させ、かつ活物質ナノ粒子を導電剤と十分な接着力を持って接合させることは困難であった。   As described above, the active material expected to be the next generation has low conductivity, and when used in a lithium ion secondary battery, improvement in conductivity is required in order to sufficiently exhibit its performance. However, it has been difficult to uniformly carry active material nanoparticles having a particle size of 15 nm to 100 nm on a conductive agent and to bond the active material nanoparticles to the conductive agent with sufficient adhesive force.

本発明の目的は、電極中に占める炭素の割合を過剰にすることなく、ナノ粒子化した活物質と導電剤を複合化させ、且つ電極化した際に活物質が導電剤からほとんど脱離することのない金属酸化物ナノ粒子−導電剤複合体、その複合体を用いてなる電極、更には該電極を用いてなるリチウムイオン二次電池及びリチウムイオンキャパシタを提供することである。   An object of the present invention is to make a composite of a nanoparticulate active material and a conductive agent without excessive proportion of carbon in the electrode, and the active material is almost desorbed from the conductive agent when converted into an electrode. An object is to provide a metal oxide nanoparticle-conductive agent composite that does not occur, an electrode using the composite, and a lithium ion secondary battery and a lithium ion capacitor using the electrode.

(1)金属酸化物ナノ粒子と導電剤の複合体であって、該金属酸化物ナノ粒子の最小径の平均が15nm以上100nm以下であり、該金属酸化物ナノ粒子が導電剤表面の60%以上の面積を占めて強接合してなることを特徴とする金属酸化物ナノ粒子−導電剤複合体。
(2)前記導電剤が繊維状またはシート状の炭素である(1)に記載の金属酸化物ナノ粒子−導電剤複合体。
(3)前記金属酸化物ナノ粒子−導電剤複合体に占める前記金属酸化物ナノ粒子の重量割合が80%以上であることを特徴とする前記(2)に記載の金属酸化物ナノ粒子−導電剤複合体。
(4)前記(1)〜(3)のいずれかに記載の金属酸化物ナノ粒子−導電剤複合体を少なくとも一部に用いてなることを特徴とする電極。
(5)前記(4)に記載の電極を少なくとも一部に用いてなることを特徴とするリチウム二次電池。
(6)リチウムイオンがプレドープされた、前記(1)〜(3)のいずれかに記載の金属酸化物ナノ粒子−導電剤複合体。
(7)前記(6)に記載の金属酸化物ナノ粒子−導電剤複合体を負極材料として用いたリチウムイオンキャパシタ。
(8)金属酸化物ナノ粒子原料及び導電剤をアミン系溶媒中にて加熱して金属酸化物ナノ粒子−導電剤複合体を得る製造方法であって、加熱温度が80℃〜240℃であり、加熱時の容器が開放系であり、容器内が常圧であることを特徴とする金属酸化物ナノ粒子−導電剤複合体の製造方法。
(1) A composite of metal oxide nanoparticles and a conductive agent, wherein the average minimum diameter of the metal oxide nanoparticles is 15 nm or more and 100 nm or less, and the metal oxide nanoparticles are 60% of the surface of the conductive agent. A metal oxide nanoparticle-conducting agent composite characterized in that it occupies the above area and is strongly bonded.
(2) The metal oxide nanoparticle-conductive agent composite according to (1), wherein the conductive agent is fibrous or sheet-like carbon.
(3) The weight ratio of the metal oxide nanoparticles in the metal oxide nanoparticle-conductive agent complex is 80% or more, and the metal oxide nanoparticles-conductive as described in (2) above Agent complex.
(4) An electrode comprising at least part of the metal oxide nanoparticle-conductive agent composite according to any one of (1) to (3).
(5) A lithium secondary battery comprising at least part of the electrode according to (4).
(6) The metal oxide nanoparticle-conductive agent composite according to any one of (1) to (3), wherein lithium ions are pre-doped.
(7) A lithium ion capacitor using the metal oxide nanoparticle-conductive agent composite according to (6) as a negative electrode material.
(8) A method for producing a metal oxide nanoparticle-conductive agent composite by heating a metal oxide nanoparticle raw material and a conductive agent in an amine solvent, wherein the heating temperature is 80 ° C to 240 ° C. A method for producing a metal oxide nanoparticle-conductive agent composite, wherein the container during heating is an open system and the inside of the container is at normal pressure.

本発明によれば、次世代と期待されてはいるが導電性が低いために性能を引き出すことが困難だった活物質について、金属酸化物ナノ粒子−導電剤複合体とすることで活物質本来の性能を引き出し、リチウムイオン二次電池の高容量化及び高出力化に寄与できる。すなわち本発明の金属酸化物ナノ粒子−導電剤複合体を用いることで高容量・高出力のリチウムイオン二次電池を提供することができる。   According to the present invention, an active material that is expected to be the next generation but has been difficult to bring out performance due to low conductivity is formed into a metal oxide nanoparticle-conductive agent composite. This can contribute to higher capacity and higher output of the lithium ion secondary battery. That is, a high-capacity, high-power lithium ion secondary battery can be provided by using the metal oxide nanoparticle-conductive agent composite of the present invention.

また、本発明の金属酸化物ナノ粒子−導電助剤複合体は導電性に優れるため、リチウムイオンキャパシタの負極材料として用いることで、高容量・高出力のリチウムイオンキャパシタを提供することができる。   In addition, since the metal oxide nanoparticle-conducting aid composite of the present invention is excellent in conductivity, it can be used as a negative electrode material for a lithium ion capacitor to provide a high capacity / high output lithium ion capacitor.

本発明の金属酸化物とは構成元素として少なくとも1つの金属元素と必須の元素として酸素元素を含む化合物である。金属元素として選ばれる元素はリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、スカンジウム(Sc)、イットリウム(Y),チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)、銅(Cu)、銀(Ag)、金(Au)、亜鉛(Zn)、カドミウム(Cd)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、アンチモン(Sb)、ビスマス(Bi)、セレン(Se)、テルル(Te)等である。   The metal oxide of the present invention is a compound containing at least one metal element as a constituent element and an oxygen element as an essential element. Elements selected as metal elements are lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) ), Scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo) ), Tungsten (W), manganese (Mn), iron (Fe), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu ), Silver (Ag), gold (Au), zinc (Zn), cadmium (Cd), gallium (Ga), indium (In), thallium Tl), germanium (Ge), tin (Sn), lead (Pb), antimony (Sb), bismuth (Bi), selenium (Se), tellurium (Te) and the like.

また、具体的な金属酸化物としては、酸化マンガン(MnO,Mn,MnO)、酸化錫(SnO,SnO、SnO)、酸化鉄(FeO、Fe,Fe)、酸化コバルト(CoO,Co,Co)、酸化ニッケル(NiO,Ni)、酸化銅(CuO、CuO)の他、マンガン酸リチウム(LiMnO、LiMn)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、バナジウム酸リチウム(LiV、LiVO、LiV),ニオブ酸リチウム(LiNb、LiNbO)、鉄酸リチウム(LiFeO、LiFeO)、チタン酸リチウム(LiTi12、LiTiO)、クロム酸リチウム(LiCrO)、ルテニウム酸リチウム(LiRuO)、銅酸リチウム(LiCuO)、亜鉛酸リチウム(LiZnO)、モリブデン酸リチウム(LiMoO)、タンタル酸リチウム(LiTaO)、タングステン酸リチウム(LiWO)等の金属酸リチウム塩およびこれらリチウム塩のリチウムをナトリウムに置き換えたナトリウム塩あるいはリチウムとナトリウムの両方を含む複合塩といったアルカリ金属-金属酸化物複合化合物(以下同様にアルカリ金属はリチウムまたはナトリウムを指す)が挙げられる。これら金属酸化物は単独で用いても複数種を任意の割合で用いても良い。 Specific metal oxides include manganese oxide (MnO, Mn 3 O 4 , MnO 2 ), tin oxide (SnO, SnO 2 , SnO 3 ), iron oxide (FeO, Fe 2 O 3 , Fe 3 O). 4 ), cobalt oxide (CoO, Co 2 O 3 , Co 3 O 4 ), nickel oxide (NiO, Ni 2 O 3 ), copper oxide (Cu 2 O, CuO), lithium manganate (LiMnO 2 , LiMn) 2 O 4), lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium vanadate (LiV 2 O 5, LiVO 2 , LiV 3 O 8), lithium niobate (LiNb 2 O 5, LiNbO 3 ) ferrate lithium (LiFeO 2, Li 2 FeO 4 ), lithium titanate (Li 4 Ti 5 O 12, LiTiO 2), black Lithium acid (LiCrO 2), lithium ruthenate (LiRuO 2), cuprate lithium (LiCuO 2), lithium zincate (LiZnO 2), lithium molybdate (LiMoO 2), lithium tantalate (LiTaO 3), lithium tungstate Alkali metal-metal oxide composite compounds such as lithium salts of metal acids such as (LiWO 2 ) and sodium salts in which lithium of these lithium salts is replaced with sodium, or composite salts containing both lithium and sodium (hereinafter, alkali metal is lithium Or sodium). These metal oxides may be used singly or plural kinds may be used in an arbitrary ratio.

また、金属元素と酸素以外の元素を含んでいても良く、具体的には、LiMnPO、LiFePO、LiCoPO、LiNiPO、LiTi(POなどのリン酸アルカリ金属複合化合物、LiFeSiO、LiMnSiO、LiCoSiO、LiNiSiOなどのケイ酸アルカリ金属複合化合物、LiMnPOF、LiFePOF、LiCoPOF、LiNiPOF、LiTi(PO)F、LiMn(PO)F、LiCo0.75Mg0.25(PO)F、LiVAl(PO)F、LiFeV(PO)F、LiTi(PO)F、Li(PO)、LiTi(PO)F、LiFe(PO)、LiTiFe(PO)F、LiTiCa(PO)F、LiTi0.75Fe1.5(PO)F、LiFeZn(PO)F、LiFeZn(PO)F、Li(PO)、LiMn0.5Al0.5(PO)F3.5や、Li1+y1x2 1−xPOやLi1x2 1−xPO(ここでMとMは同じでも異なってもよくFe,Co,Ni,Mn,Mg、Cu、Sbから選ばれてなる金属で0≦x≦1、0≦y≦2)、などの一般式で表されるハロゲン化リン酸アルカリ金属複合化合物(ここでハロゲンとしてはフッ素原子以外に置換可能なものとして塩素;Cl、臭素;Brも含む)、LiMnSOF、LiFeSiOF、LiCoSiOF、LiNiSiOF、LiMnCo(SiO)F、LiMnNi(SiO)F、LiVAl(SiO)F、LiFeMn(SiO)、LiMn(SiO)F、LiFeAl(SiO)Fなどのハロゲン化ケイ酸アルカリ金属複合化合物、が本発明でのより好ましい金属化合物として挙げられる。 Further, it may contain a metal element and an element other than oxygen. Specifically, an alkali metal phosphate composite compound such as LiMnPO 4 , LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiTi 2 (PO 4 ) 3 , Li 2 FeSiO 4, Li 2 MnSiO 4 , Li 2 CoSiO 4, Li 2 NiSiO 4 alkali metal silicate complex compounds such as, Li 2 MnPO 4 F, Li 2 FePO 4 F, Li 2 CoPO 4 F, Li 2 NiPO 4 F Li 2 Ti 2 (PO 4 ) 3 F, Li 3 Mn 2 (PO 4 ) 3 F, Li 2 Co 0.75 Mg 0.25 (PO 4 ) F, Li 3 VAl (PO 4 ) 3 F, Li 4 FeV (PO 4) 3 F, Li 4 Ti 2 (PO 4) 3 F, Li 3 V 2 (PO 4) 3 F 2, Li 2 Ti 2 (PO 4) 3 F, Li 7 F 2 (PO 4) 3 F 2 , Li 5 TiFe (PO 4) 3 F, Li 4 TiCa (PO 4) 3 F, Li 4 Ti 0.75 Fe 1.5 (PO 4) 3 F, Li 2 FeZn (PO 4) F 2 , Li 2 FeZn (PO 4 ) F 2 , Li 3 V 2 (PO 4 ) 2 F 3 , Li 3 Mn 0.5 Al 0.5 (PO 4 ) F 3.5 , Li 1 + y M 1x M 2 1-x PO 4 F y or Li 3 M 1x M 2 1-x PO 4 F 2 (M 1 and M 2 may be the same or different, and are metals selected from Fe, Co, Ni, Mn, Mg, Cu, and Sb. Halogenated alkali metal phosphate composite compounds represented by general formulas such as 0 ≦ x ≦ 1, 0 ≦ y ≦ 2, etc. (wherein halogen is chlorine as a substitutable substance other than fluorine atoms; Cl, bromine; Br 3 ), Li 3 MnSO 4 F, Li 3 FeSiO 4 F, Li 3 CoSiO 4 F, Li 3 NiSiO 4 F, Li 7 MnCo (SiO 4 ) 3 F, Li 7 MnNi (SiO 4 ) 3 F, Li 7 VAl (SiO 4 ) 3 F, Li 8 FeMn (SiO 4 ) 3 F 2 , Li 4 Mn 2 (SiO 4 ) 3 F, and halogenated silicic acid alkali metal complex compounds such as Li 5 Fe 2 Al (SiO 4 ) 3 F are listed as more preferable metal compounds in the present invention. It is done.

さらにその他にもリン酸・ケイ酸アルカリ金属複合化合物として、例えばリチウム化合物を具体的に記すと、LiFeCo(PO)(SiO)F、LiMnCo(PO)(SiO)F、LiVAl(PO)(SiO)F、LiMnV(PO)(SiO)F、LiCoFe(PO)(SiO)F、LiTi(SiO)(PO)F、などが挙げられる。 Furthermore, as a phosphoric acid / alkali metal silicate composite compound, for example, a lithium compound is specifically described, Li 6 FeCo (PO 4 ) (SiO 4 ) 2 F, Li 4 MnCo (PO 4 ) 2 (SiO 4 ) F, Li 4 VAl (PO 4 ) 2 (SiO 4 ) F, Li 4 MnV (PO 4 ) 2 (SiO 4 ) F, Li 4 CoFe (PO 4 ) 2 (SiO 4 ) F, Li 5 Ti 2 ( SiO 4 ) 2 (PO 4 ) F 2 , etc.

本発明における金属酸化物ナノ粒子と導電剤の複合化とは、導電剤上に金属酸化物ナノ粒子が担持されている状態であり、活物質を糖などと混合・焼成して得られるカーボンコーティングされている状態は含まない。   The composite of the metal oxide nanoparticles and the conductive agent in the present invention is a state in which the metal oxide nanoparticles are supported on the conductive agent, and is a carbon coating obtained by mixing and baking an active material with sugar or the like. It does not include the state that is done.

本発明では活物質として金属酸化物ナノ粒子を用いる。金属酸化物ナノ粒子は多種多様な形状を取り得る。具体的には球状、多面体、ラグビーボール型、棒状、中心から複数本の棒が突出している星型などが挙げられるが、後述する導電剤との接触面積を広げやすく、電極化したときの電極の密度を上げやすいことから、球状、多面体、棒状のいずれかであることが好ましい。   In the present invention, metal oxide nanoparticles are used as the active material. Metal oxide nanoparticles can take a wide variety of shapes. Specific examples include a spherical shape, a polyhedron, a rugby ball shape, a rod shape, a star shape in which a plurality of rods protrude from the center, etc., but it is easy to expand the contact area with a conductive agent, which will be described later. From the viewpoint of easily increasing the density, it is preferably spherical, polyhedral or rod-shaped.

本発明の金属酸化物ナノ粒子は最小径の平均が15nm以上100nm以下であることを特徴とする。本発明の金属酸化物ナノ粒子の最小径とは、金属酸化物ナノ粒子に内接する球の直径である。金属酸化物ナノ粒子の最小径の平均は、下記実施例A.項の方法にて測定して求める。本発明の金属酸化物ナノ粒子−導電剤複合体をリチウムイオン2次電池の電極に用いた場合に、粒子の最小径の平均が15nm以上であるという特徴を有することにより、リチウムイオンの挿入・脱離過程において金属酸化物ナノ粒子の結晶相内にリチウムが固定され、電池を構成する場合の高容量化に寄与しうると考えられる。なぜなら、一般的にリチウムイオン二次電池の活物質の表面から5nmの厚さの領域は、リチウムイオンの挿入・脱離が頻繁に行われるもののリチウムイオンは固定されない領域である。すなわち粒子の最小径の平均が10nm以下の場合には、高容量化の観点で用をなさないことを本発明者らは突き止めた。すなわち、導電剤上に成長した金属酸化物ナノ粒子の大きさを10nm以下とすると、リチウムイオンが自由に出入りできる一方、リチウムイオンが固定化されるはずの結晶相が無いため、結果的に電池の活物質となした場合に容量が小さくなった。そのため、金属酸化物ナノ粒子の最小径の平均は15nm以上である必要があるが、ナノ粒子全体に占めるリチウムイオンが固定化できる領域の割合を大きくできるという点で、該最小径の平均は20nmより大きいのがより好適であり、30nmより大きいのが最も好適である。   The metal oxide nanoparticles of the present invention have an average minimum diameter of 15 nm to 100 nm. The minimum diameter of the metal oxide nanoparticles of the present invention is the diameter of a sphere inscribed in the metal oxide nanoparticles. The average of the minimum diameters of the metal oxide nanoparticles is shown in Example A.5 below. Measured by the method in the section. When the metal oxide nanoparticle-conductive agent composite of the present invention is used for an electrode of a lithium ion secondary battery, the average minimum particle diameter is 15 nm or more. It is considered that lithium is fixed in the crystal phase of the metal oxide nanoparticles during the desorption process, which can contribute to a higher capacity in the case of constituting a battery. This is because, in general, a region having a thickness of 5 nm from the surface of the active material of the lithium ion secondary battery is a region where lithium ions are not fixed but lithium ions are frequently inserted and extracted. That is, the present inventors have found that when the average of the minimum diameter of the particles is 10 nm or less, it is not useful from the viewpoint of increasing the capacity. That is, when the size of the metal oxide nanoparticles grown on the conductive agent is 10 nm or less, lithium ions can freely enter and exit, but there is no crystal phase to which the lithium ions should be fixed. When the active material was used, the capacity was reduced. Therefore, the average of the minimum diameter of the metal oxide nanoparticles needs to be 15 nm or more, but the average of the minimum diameter is 20 nm in that the ratio of the region where lithium ions can be immobilized in the entire nanoparticles can be increased. Larger is more preferred and most preferred is greater than 30 nm.

本発明では金属酸化物ナノ粒子の最小径の平均が15nm以上であることにより、金属酸化物ナノ粒子中にリチウムイオンが固定される領域を設けることとなる。また一方で粒子の最小径の平均が100nm以下であることにより、金属酸化物ナノ粒子の結晶相に固定されたリチウムイオンの挿入・脱離がスムーズに行われ、さらに活物質内の電子導電距離が短くなるために金属酸化物ナノ粒子自身が持つ高い電気抵抗の影響は最小限に抑えられる。   In the present invention, when the average minimum diameter of the metal oxide nanoparticles is 15 nm or more, a region where lithium ions are fixed is provided in the metal oxide nanoparticles. On the other hand, since the average of the minimum diameter of the particles is 100 nm or less, the lithium ions fixed to the crystal phase of the metal oxide nanoparticles are smoothly inserted and desorbed, and the electronic conduction distance in the active material is further increased. Therefore, the influence of the high electrical resistance of the metal oxide nanoparticles themselves can be minimized.

前述のようにリチウムイオンは活物質の表面から5nmよりも奥の結晶相に取り込まれ固定化されるが、粒径が大きすぎると結晶相に取り込まれたリチウムイオンの出入りが容易ではなく、電池の出力特性が悪くなる場合がある。よって最小径の平均は100nm以下、リチウムイオンや電子の活物質内の移動距離を短くし、抵抗を低減できるという点で、より好適には80nm以下、最も好適には60nm以下とすることで電池を構成する場合に高出力化に寄与しうる。粒子径が小さいことはリチウムイオンの挿入・脱離に伴う体積変化が小さいため、充放電を繰り返した場合の劣化が少ない、すなわちサイクル特性にも優れることとなる。   As described above, lithium ions are taken into and fixed in the crystal phase deeper than 5 nm from the surface of the active material. However, if the particle size is too large, the lithium ions taken into the crystal phase are not easily put in and out, and the battery Output characteristics may deteriorate. Therefore, the average of the minimum diameter is 100 nm or less, and the battery can be more preferably set to 80 nm or less, and most preferably 60 nm or less, in terms of shortening the moving distance in the active material of lithium ions and electrons and reducing the resistance. Can contribute to higher output. When the particle size is small, the volume change accompanying the insertion / desorption of lithium ions is small, so that the deterioration when charging / discharging is repeated is small, that is, the cycle characteristics are excellent.

本発明における導電剤は金属微粒子をはじめとして多種多様のものを必要とされる性能や用いられる金属化合物に応じて適宜採用できるが、化学的に安定性が高いという点で炭素微粒子からなる導電剤であることが好ましい。具体的な炭素微粒子として、導電性ファーネスブラック、導電性ケッチェンブラックあるいは導電性アセチレンブラック等のカーボンブラック、単層カーボンナノチューブ(以下カーボンナノチューブをCNTと略記することがある)や2層以上を有する複層CNT、気相成長炭素繊維(以下VGCFと略記することがある)、カップスタック型CNT、カーボンナノホーン等のカーボンチューブ、カーボン六員環が連続してシートを形成した単層グラフェンあるいは複数枚のグラフェンからなる複層グラフェンなどの他、ポリマー繊維を焼成して得られた後に破砕して得られるミルドカーボン繊維やポリマー繊維からなる不織布を焼成して得られるカーボン不織布シートおよび破砕して得られるミルドカーボン不織布、ポリマーシートを焼成して得られた後に破砕して得られるミルドカーボンシート、などが挙げられ好適に用いられるが、導電性発現に関して近隣の導電剤同士の接触頻度が高まり、安定した導電パスが形成され高効率での電子授受がなされることから、繊維状またはシート状の炭素がより好ましい。   The conductive agent in the present invention can be suitably employed according to the performance that requires a wide variety of materials including metal fine particles and the metal compound used, but the conductive agent made of carbon fine particles in terms of high chemical stability. It is preferable that Specific carbon fine particles include carbon black such as conductive furnace black, conductive ketjen black, or conductive acetylene black, single-walled carbon nanotubes (hereinafter, carbon nanotubes may be abbreviated as CNT), and two or more layers. Multi-layer CNT, vapor-grown carbon fiber (hereinafter abbreviated as VGCF), cup-stacked CNT, carbon nanotubes such as carbon nanohorn, single-layer graphene in which a carbon six-membered ring forms a continuous sheet or multiple sheets In addition to multi-layer graphene made of graphene, a carbon non-woven sheet obtained by firing a milled carbon fiber or a non-woven fabric made of polymer fibers obtained by firing polymer fibers and then crushed, and obtained by crushing Fired milled carbon nonwoven fabric and polymer sheet Milled carbon sheet obtained by crushing after being obtained, and the like are preferably used, but the contact frequency between neighboring conductive agents is increased in terms of conductivity expression, and a stable conductive path is formed with high efficiency. Therefore, fibrous or sheet-like carbon is more preferable.

また該繊維状またはシート状の構造であることは、特に本発明の金属酸化物ナノ粒子−導電剤複合体を少なくとも一部に用いてリチウムイオン二次電池の電極となした場合に、繊維状あるいはシート状の導電剤が三次元的なネットワーク構造を形成しやすく、リチウムイオン二次電池中の集電体への電気伝導性がより高まることもあり、好ましい。   Further, the fibrous or sheet-like structure means that when the metal oxide nanoparticle-conductive agent composite of the present invention is used at least in part as an electrode of a lithium ion secondary battery, Or a sheet-like electrically conductive agent is easy to form a three-dimensional network structure, and the electrical conductivity to the electrical power collector in a lithium ion secondary battery may increase more, and it is preferable.

そして高い導電性を有するという点において、単層CNTや複層CNT、VGCF、カップスタック型CNT、カーボンナノホーン等のカーボンチューブや、単層グラフェンや複層グラフェン、ミルドカーボン繊維、ミルドカーボン不織布シート、ミルドカーボンシートが好ましい導電剤であり、更により高い導電性を有するという点で、単層CNTや複層CNT、VGCF、単層グラフェンや複層グラフェン、ミルドカーボン不織布シート、ミルドカーボンシートがより好ましく、比表面積が大きく金属化合物と密着性が高いという点で繊維状である複層CNTやVGCF、シート状である単層グラフェンや複層グラフェン、ミルドカーボン不織布シートが特に好ましい。ここでミルドカーボン不織布シートにおける不織布を形成するカーボン繊維の繊維径は2μm以下であることが好ましく、1μm以下であることがより好ましく、500nm以下であることが特に好ましく、300nm以下であることが最も好ましい。該カーボン繊維は細いほど好ましいものの、高い導電性を有しつつも構造を維持しうる強度を保持するために繊維径は1nm以上であることが好ましく、5nm以上であることがより好ましい。   And in terms of having high conductivity, carbon tubes such as single-wall CNT, double-wall CNT, VGCF, cup-stacked CNT, carbon nanohorn, single-layer graphene, double-layer graphene, milled carbon fiber, milled carbon nonwoven fabric sheet, A milled carbon sheet is a preferred conductive agent, and single-walled CNT, multi-walled CNT, VGCF, single-layered graphene or multilayered graphene, a milled carbon non-woven sheet, and a milled carbon sheet are more preferred in that they have higher conductivity. In particular, fibrous multi-walled CNT and VGCF, sheet-shaped single-layer graphene, multi-layered graphene, and milled carbon non-woven fabric sheet are particularly preferable in that they have a large specific surface area and high adhesion to a metal compound. Here, the fiber diameter of the carbon fiber forming the nonwoven fabric in the milled carbon nonwoven fabric sheet is preferably 2 μm or less, more preferably 1 μm or less, particularly preferably 500 nm or less, and most preferably 300 nm or less. preferable. Although the carbon fiber is preferably as thin as possible, the fiber diameter is preferably 1 nm or more and more preferably 5 nm or more in order to maintain the strength to maintain the structure while having high conductivity.

なお比表面積が大きいという点では繊維状である複層CNTやVGCFの直径は2nm〜300nmであることが好ましく、5nm〜200nmであることがより好ましい。そしてこれら導電剤の導電性(体積抵抗率)は5000[Ω・cm]以下のものが好ましく用いられ、特に好ましい範囲としては、1.0×10−6[Ω・cm]〜500[Ω・cm]である。ここで該体積抵抗率は、下記実施例B.項の方法にて測定して求める。 The diameter of the fibrous multi-walled CNT or VGCF is preferably 2 nm to 300 nm, more preferably 5 nm to 200 nm, in terms of a large specific surface area. The conductivity (volume resistivity) of these conductive agents is preferably 5000 [Ω · cm] or less, and a particularly preferred range is from 1.0 × 10 −6 [Ω · cm] to 500 [Ω · cm. cm]. Here, the volume resistivity was measured according to Example B. below. Measured by the method in the section.

本発明の金属酸化物ナノ粒子−導電剤複合体は金属酸化物ナノ粒子が導電剤表面に60%以上強接合してなる。本発明における強接合とは金属酸化物ナノ粒子が強い力を受けても導電剤上の付いている場所から動くことも離れることもない態様を指す。該強接合していることの判断は下記実施例E.項の方法にてなされる。本発明における強接合が実現するには、ナノ粒子活物質と導電剤を単に混合するだけでは一般には困難であり、金属酸化物ナノ粒子を導電剤表面上で生成させる方法が有用である。そして本発明の金属酸化物ナノ粒子−導電剤複合体は金属酸化物ナノ粒子が導電剤表面の60%以上、より好ましくは70%以上、最も好ましくは80%以上の面積を占めて導電剤と強接合し、金属酸化物ナノ粒子と導電剤との間の電荷の授受がスムーズに達成される。金属酸化物ナノ粒子が導電剤表面の面積に占める割合は下記実施例D.項の方法にて測定される。   The metal oxide nanoparticle-conductive agent composite of the present invention is formed by strongly joining metal oxide nanoparticles to the surface of the conductive agent by 60% or more. The strong bonding in the present invention refers to an embodiment in which the metal oxide nanoparticles do not move or leave the place where the conductive agent is attached even if they are subjected to a strong force. The determination of the strong joint is shown in Example E. below. It is done by the method of the item. In order to realize strong bonding in the present invention, it is generally difficult to simply mix the nanoparticle active material and the conductive agent, and a method of generating metal oxide nanoparticles on the surface of the conductive agent is useful. In the metal oxide nanoparticle-conductive agent composite of the present invention, the metal oxide nanoparticles occupy an area of 60% or more, more preferably 70% or more, most preferably 80% or more of the surface of the conductive agent, Strong bonding is achieved, and transfer of charges between the metal oxide nanoparticles and the conductive agent is smoothly achieved. The proportion of metal oxide nanoparticles in the surface area of the conductive agent is shown in Example D. below. It is measured by the method of item.

本発明における金属酸化物ナノ粒子−導電剤複合体において金属酸化物ナノ粒子が占める重量割合は80%以上であることが好ましく、より好ましくは85%以上、最も好ましくは90%以上である。金属酸化物ナノ粒子に対して導電剤が少なくなると、電極中に占める活物質重量が増加し、電極重量当たりの容量が向上するために好ましい。   In the metal oxide nanoparticle-conductive agent composite in the present invention, the weight ratio of the metal oxide nanoparticles is preferably 80% or more, more preferably 85% or more, and most preferably 90% or more. It is preferable that the conductive agent is reduced with respect to the metal oxide nanoparticles because the weight of the active material in the electrode is increased and the capacity per electrode weight is improved.

以下、本発明の金属化合物−導電剤複合体の好ましい製造方法を例示する。   Hereinafter, preferred methods for producing the metal compound-conductive agent composite of the present invention will be exemplified.

本発明の金属酸化物ナノ粒子−導電剤複合体における金属酸化物ナノ粒子は、該金属を含有する金属化合物(以下、金属酸化物ナノ粒子原料と呼ぶ)の熱分解反応を伴って得ることができる。   The metal oxide nanoparticles in the metal oxide nanoparticle-conductive agent composite according to the present invention can be obtained with a thermal decomposition reaction of a metal compound containing the metal (hereinafter referred to as a metal oxide nanoparticle raw material). it can.

該金属酸化物ナノ粒子原料としては、該金属の塩酸塩、弗酸塩(フッ化物)、硝酸塩、炭酸塩、硫酸塩、リン酸塩、さらにギ酸塩、酢酸塩、シュウ酸塩などのカルボン酸塩、アセチルアセトン化合物、水酸化物が好ましく採用される。特に、熱分解温度が低く扱いやすいという点で、炭酸塩、カルボン酸塩、水酸化物がより好ましく用いられる。その中でもカルボン酸が特に好ましく用いられ、ギ酸塩、シュウ酸塩、酢酸塩、ステアリン酸塩、オレイン酸塩、リノール酸塩が好ましいものとして挙げられる。   Examples of the metal oxide nanoparticle raw material include hydrochloride, fluoride (fluoride), nitrate, carbonate, sulfate, phosphate, and carboxylic acid such as formate, acetate, and oxalate of the metal. Salts, acetylacetone compounds and hydroxides are preferably employed. In particular, carbonates, carboxylates and hydroxides are more preferably used because they have a low thermal decomposition temperature and are easy to handle. Of these, carboxylic acid is particularly preferably used, and formate, oxalate, acetate, stearate, oleate, and linoleate are preferred.

具体的に好ましいとする金属酸化物ナノ粒子原料としては、2価の塩化マンガン、2価の臭化マンガン、2価の炭酸マンガン、2価の硝酸マンガン、2価の硫酸マンガン、2価または3価のリン酸マンガン、二ギ酸マンガン、2価または3価の酢酸マンガン、2価のステアリン酸マンガン、2価または3価のマンガンアセチルアセトナート、2価の乳酸マンガン、シュウ酸マンガン、2価の安息香酸マンガン、3価のトリフルオロ酢酸マンガン等のマンガン化合物およびその水和物、あるいは同様の鉄化合物、コバルト化合物、ニッケル化合物、亜鉛化合物、銅化合物およびそれらの水和物が挙げられ、アルカリ金属の金属酸化物ナノ粒子原料としては、塩化リチウム、臭化リチウム、フッ化リチウム、水酸化リチウム、炭酸リチウム、硝酸リチウム、硫酸リチウム、リン酸リチウム、リン酸二水素リチウム、ギ酸リチウム、酢酸リチウム、ステアリン酸リチウム、リチウムアセチルアセトナート、クエン酸リチウム、乳酸リチウム、シュウ酸リチウム、トリフルオロ酢酸リチウム、メタケイ酸リチウム等のリチウム化合物およびその水和物、あるいは同様のナトリウム化合物およびその水和物が挙げられる。
これら金属酸化物ナノ粒子原料のうち、アミン系溶媒中で加熱した際にアミンとの相互作用により熱分解温度が低下し、より低温で高効率にナノ粒子を生成できるという点で、2価の酢酸マンガンもしくは2価のギ酸マンガン、あるいは同様の鉄化合物、コバルト化合物、ニッケル化合物、亜鉛化合物、銅化合物、リチウム金属化合物が最も好ましい金属酸化物ナノ粒子原料である。
Specific examples of the metal oxide nanoparticle material that is preferably used include divalent manganese chloride, divalent manganese bromide, divalent manganese carbonate, divalent manganese nitrate, divalent manganese sulfate, divalent or 3 Manganese phosphate, manganese diformate, divalent or trivalent manganese acetate, divalent manganese stearate, divalent or trivalent manganese acetylacetonate, divalent manganese lactate, manganese oxalate, divalent Manganese compounds such as manganese benzoate and trivalent manganese trifluoroacetate and hydrates thereof, or similar iron compounds, cobalt compounds, nickel compounds, zinc compounds, copper compounds and hydrates thereof, and alkali metals As metal oxide nanoparticle raw materials, lithium chloride, lithium bromide, lithium fluoride, lithium hydroxide, lithium carbonate, nitric acid Thium, lithium sulfate, lithium phosphate, lithium dihydrogen phosphate, lithium formate, lithium acetate, lithium stearate, lithium acetylacetonate, lithium citrate, lithium lactate, lithium oxalate, lithium trifluoroacetate, lithium metasilicate, etc. Lithium compounds and hydrates thereof, or similar sodium compounds and hydrates thereof.
Among these metal oxide nanoparticle raw materials, when heated in an amine-based solvent, the thermal decomposition temperature decreases due to the interaction with the amine, and it is possible to generate nanoparticles at a lower temperature with high efficiency. Manganese acetate or divalent manganese formate, or similar iron compounds, cobalt compounds, nickel compounds, zinc compounds, copper compounds, and lithium metal compounds are the most preferred metal oxide nanoparticle raw materials.

これら金属酸化物ナノ粒子原料は単独で用いても、また本発明の目的を損ねない範囲で複数種を同時に用いてもよい。   These metal oxide nanoparticle raw materials may be used alone, or plural kinds thereof may be used at the same time as long as the object of the present invention is not impaired.

また、目的とする金属酸化物ナノ粒子の種類に応じて、リン酸やリン酸塩、具体的には、リン酸二水素アンモニウム、リン酸水素二アンモウムといった非金属原料をアミン系溶媒へ加熱の前後にて添加してもよい。   Depending on the type of metal oxide nanoparticles of interest, phosphoric acid and phosphate, specifically, non-metal raw materials such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate are heated to an amine solvent. You may add before and after.

本発明の金属酸化物ナノ粒子−導電剤複合体は、金属酸化物ナノ粒子原料及び導電剤をアミン系溶媒中にて加熱することで得られ、該加熱温度は80℃以上240℃以下であり、加熱時の容器内は常圧である。   The metal oxide nanoparticle-conductive agent composite of the present invention is obtained by heating the metal oxide nanoparticle raw material and the conductive agent in an amine solvent, and the heating temperature is 80 ° C. or higher and 240 ° C. or lower. The inside of the container during heating is at normal pressure.

反応のためのアミン系溶媒の種類としては、N−メチル−2-ピロリドン(NMP)、N,N−ジメチルフォルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デカンアミン、ジオクチルアミン、トリオクチルアミン、ピペラジン等の直鎖状、分岐状あるいは環状の飽和脂肪族1級、2級または3級アミンの他、オレイルアミン、リノールアミン、リノレンアミンなどの直鎖状、分岐状あるいは環状の不飽和脂肪族1級、2級または3級アミンが挙げられ、金属酸化物ナノ粒子原料との反応効率を高めて金属酸化物の微粒子が生成するのに適している点で直鎖状の飽和脂肪族1級または2級アミン、あるいは不飽和脂肪族1級または2級アミンがより好ましい。これらの中でオレイルアミンとオクチルアミンは入手しやすく、金属酸化物ナノ粒子原料の中でもカルボン酸塩とは特に強く相互作用することでカルボン酸塩の熱分解温度を低下させ、より低温で高効率にナノ粒子を生成できるという点で最も好ましい。これらアミン系溶媒は1種類を単独で用いても、複数種を選んで混合して用いてもよいが、副反応が起こることもあり得ることから1種単独で用いることが好ましい。また、アミン系溶媒以外の溶媒も添加し併用してもよいが、アミン化合物による熱分解温度低下の効果を発現させるため、生成する金属酸化物ナノ粒子に対するアミン溶媒のモル比が1以上となることが好ましい。また、金属酸化物ナノ粒子原料を得るための酸化剤として水を添加しても良い。   Examples of the amine solvent for the reaction include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), hexylamine, heptylamine, In addition to linear, branched or cyclic saturated aliphatic primary, secondary or tertiary amines such as octylamine, nonylamine, decaneamine, dioctylamine, trioctylamine, piperazine, oleylamine, linoleamine, linolenic amine, etc. Examples include linear, branched, or cyclic unsaturated aliphatic primary, secondary, or tertiary amines, which are suitable for generating metal oxide fine particles by increasing the reaction efficiency with metal oxide nanoparticle raw materials. In view of this, linear saturated aliphatic primary or secondary amines, or unsaturated aliphatic primary or secondary amines are more preferred. That's right. Among these, oleylamine and octylamine are easy to obtain, and among the metal oxide nanoparticle raw materials, the carboxylic acid salt interacts particularly strongly to lower the thermal decomposition temperature of the carboxylic acid salt, making it more efficient at lower temperatures. Most preferred in that nanoparticles can be produced. These amine solvents may be used singly or may be used as a mixture of plural kinds. However, side reactions may occur, and it is preferable to use one kind alone. In addition, a solvent other than the amine solvent may be added and used in combination, but in order to express the effect of lowering the thermal decomposition temperature by the amine compound, the molar ratio of the amine solvent to the metal oxide nanoparticles to be produced is 1 or more. It is preferable. Moreover, you may add water as an oxidizing agent for obtaining a metal oxide nanoparticle raw material.

混合する導電剤の粒子は一般的に相互作用が強いため凝集し易い傾向にあり、特に前述のように好ましいとする繊維状あるいはシート状の構造を有するカーボン系微粒子の導電剤の場合は微粒子同士が互いに絡み合っていて、より強い力で混合して分散させることが必要な場合がある。その場合は、アミン系溶媒への添加前後において導電剤へ分散処理を加えることが好ましく、その手法としては混練撹拌、メディア分散、超音波混合が好ましく、超音波分散が特に好ましい。超音波分散は、印可周波数と印可出力が高いほど混合する力が強くなり好ましいものの、印可周波数としては20kHz以上が好ましく、30kHz以上がより好ましい。また印可出力は50W以上が好ましく、100W以上がより好ましい。   The conductive agent particles to be mixed generally have a strong interaction and tend to aggregate. In particular, in the case of a carbon-based fine particle conductive agent having a fibrous or sheet-like structure, which is preferable as described above, the fine particles are May be intertwined with each other and need to be mixed and dispersed with a stronger force. In that case, it is preferable to add a dispersion treatment to the conductive agent before and after the addition to the amine solvent, and as the method, kneading and stirring, media dispersion, and ultrasonic mixing are preferable, and ultrasonic dispersion is particularly preferable. The ultrasonic dispersion is preferable as the applied frequency and the applied output become higher because the mixing force becomes stronger. However, the applied frequency is preferably 20 kHz or more, and more preferably 30 kHz or more. The applied output is preferably 50 W or more, more preferably 100 W or more.

本発明では、アミン系溶媒へ金属酸化物ナノ粒子原料と導電剤を添加した後に加熱し、該金属酸化物ナノ粒子原料を熱分解させることで金属酸化物ナノ粒子−導電剤複合体を得る。該加熱時の容器は開放系であり、容器内は常圧とする。本発明における容器内が常圧という状態は、瞬間的に容器内の圧力が上がっても容器が開放系であるために、直ちに常圧にもどるような状態を含む。加圧しないことは粒子の成長を促進し、過度に粒径を小さくしすぎないために好適である。   In this invention, after adding a metal oxide nanoparticle raw material and a electrically conductive agent to an amine solvent, it heats, This metal oxide nanoparticle raw material is thermally decomposed, and a metal oxide nanoparticle-conductive agent composite is obtained. The container during heating is an open system, and the inside of the container is at normal pressure. The state in which the inside of the container in the present invention is at a normal pressure includes a state in which the container returns to the normal pressure immediately because the container is an open system even if the pressure in the container increases instantaneously. Not pressurizing is preferable in order to promote particle growth and not to make the particle size too small.

溶媒を加熱する際には反応を均一にするために撹拌することが好ましいが、過度に撹拌した場合には金属酸化物が導電剤上で粒子が成長しにくく、導電剤表面以外で生成した金属酸化物ナノ粒子は十分な接合力をもって導電剤と接合することが困難であるため、昇温後の撹拌はアミン系溶媒の最大線速が0.1cm/秒以上かつ60cm/秒以下となるような弱い撹拌が好ましい。加熱温度が低すぎると反応が十分には進行しないことがあるため、加熱温度は80℃以上が好ましく、また加熱温度は高すぎると粒子が粗大化しやすいため、240℃以下が好ましい。さらに加熱時の昇温速度が高いほど金属化合物ナノ粒子の大きさが均一化しやすいことから、5℃/分以上の昇温速度であることが好ましい。   When heating the solvent, it is preferable to stir in order to make the reaction uniform, but when it is excessively stirred, the metal oxide is difficult to grow on the conductive agent, and the metal generated on the surface other than the conductive agent surface Since oxide nanoparticles are difficult to bond with a conductive agent with a sufficient bonding force, stirring after heating is performed so that the maximum linear velocity of the amine solvent is 0.1 cm / second or more and 60 cm / second or less. A weak agitation is preferred. If the heating temperature is too low, the reaction may not proceed sufficiently. Therefore, the heating temperature is preferably 80 ° C. or higher, and if the heating temperature is too high, the particles are likely to be coarsened. Furthermore, since the size of the metal compound nanoparticles tends to be uniform as the heating rate during heating increases, the heating rate is preferably 5 ° C./min or more.

得られた金属酸化物ナノ粒子−導電剤複合体は、一例として、n−ヘキサンなどの非極性溶媒で金属酸化物ナノ粒子−導電剤複合体の表面に存在する非水系溶媒を洗浄、分離除去して、エタノールなどの揮発性溶媒でn−ヘキサンを更に除去するなどの操作を繰り返すことによって洗浄でき、さらに乾燥処理することで金属酸化物ナノ粒子−導電剤複合体の粉末が得られる。得られた金属酸化物ナノ粒子−導電剤複合体は200℃〜1200℃の温度で10分〜30時間熱処理する熱処理工程を施し、金属酸化物ナノ粒子の結晶性を向上させてもよい。   As an example, the obtained metal oxide nanoparticle-conductive agent complex is washed with a non-polar solvent such as n-hexane to separate and remove the non-aqueous solvent present on the surface of the metal oxide nanoparticle-conductive agent complex. And it can wash | clean by repeating operation, such as further removing n-hexane with volatile solvents, such as ethanol, and the powder of a metal oxide nanoparticle-conductive agent composite body is obtained by further drying. The obtained metal oxide nanoparticle-conductive agent composite may be subjected to a heat treatment step of heat treatment at a temperature of 200 ° C. to 1200 ° C. for 10 minutes to 30 hours to improve the crystallinity of the metal oxide nanoparticles.

上述のようにして得られた金属酸化物ナノ粒子−導電剤複合体を電極の活物質として用いたリチウムイオン二次電池は、例えば次のようにして製造される。なお本発明の金属酸化物ナノ粒子−導電剤複合体は、電池のイオン源としてナトリウムやマグネシウム、カルシウム、アルミニウムを用いた二次電池にも好ましい材料として採用されうるが、リチウムをイオン源とするリチウム二次電池に最も高効率で適用しうる。   A lithium ion secondary battery using the metal oxide nanoparticle-conductive agent composite obtained as described above as an electrode active material is manufactured, for example, as follows. The metal oxide nanoparticle-conductive agent composite of the present invention can be adopted as a preferable material for a secondary battery using sodium, magnesium, calcium, or aluminum as an ion source of the battery, but uses lithium as an ion source. It can be applied to lithium secondary batteries with the highest efficiency.

金属酸化物が酸化ニッケル(II)(構造式NiO)、導電剤がカーボンナノファイバーである金属酸化物ナノ粒子−導電剤複合体を負極の活物質として用いる場合、まず、該活物質とポリフッ化ビニリデンなどの結着剤とをN−メチル−2−ピロリドンなどの溶媒中に分散させて電極ペーストを調製する。次に該電極ペーストを銅箔などの集電体上に均一に塗布、乾燥して負極活物質層を形成して負極板が作製される。   When a metal oxide nanoparticle-conductive agent complex in which the metal oxide is nickel (II) oxide (structural formula NiO) and the conductive agent is carbon nanofiber is used as the negative electrode active material, first, the active material and polyfluoride An electrode paste is prepared by dispersing a binder such as vinylidene in a solvent such as N-methyl-2-pyrrolidone. Next, the electrode paste is uniformly coated on a current collector such as a copper foil and dried to form a negative electrode active material layer, thereby producing a negative electrode plate.

非水電解液は、LiPFなどの電解質塩をエチレンカーボネートやジエチレンカーボネートなどの非水溶媒中に溶解することにより調製される。 The non-aqueous electrolyte is prepared by dissolving an electrolyte salt such as LiPF 6 in a non-aqueous solvent such as ethylene carbonate or diethylene carbonate.

そしてポリプロピレン製多孔質膜等からなるセパレータを用意し、水分が除去された(露点で−50℃以下)雰囲気下で、絶縁ガスケット中で負極、セパレータ、正極の順に配し、セパレータには前述の非水電解液を注入し、蓋でかしめて固定することによりリチウムイオン二次電池が完成する。   Then, a separator made of a polypropylene porous membrane or the like is prepared, and the negative electrode, the separator, and the positive electrode are arranged in this order in an insulating gasket in an atmosphere from which moisture has been removed (dew point is −50 ° C. or lower). A lithium ion secondary battery is completed by injecting a non-aqueous electrolyte and caulking and fixing with a lid.

該リチウムイオン二次電池における正極あるいは負極中には、必要に応じて、金属酸化物ナノ粒子の性能を更に向上せしめ、あるいは集電体と金属酸化物ナノ粒子−導電剤複合体とを介在して電気的特性を向上せしめるような新たな導電剤を添加しても良い。   In the positive electrode or the negative electrode in the lithium ion secondary battery, if necessary, the performance of the metal oxide nanoparticles is further improved, or a current collector and a metal oxide nanoparticle-conductive agent composite are interposed. Therefore, a new conductive agent that improves the electrical characteristics may be added.

本発明の金属酸化物ナノ粒子−導電剤複合体は、リチウムイオン2次電池の電極材用の素材として好適に用いられる。また、本発明の金属酸化物ナノ粒子−導電剤複合体を少なくとも一部に用いてなる電極は、高容量化、高出力化およびサイクル特性の向上という優れた特性を有することから、リチウムイオン電池の少なくとも一部に用いることで高性能な電池を形成することが可能となる。   The metal oxide nanoparticle-conductive agent composite of the present invention is suitably used as a material for an electrode material of a lithium ion secondary battery. In addition, an electrode formed using at least a part of the metal oxide nanoparticle-conductive agent composite of the present invention has excellent characteristics such as higher capacity, higher output, and improved cycle characteristics. By using it for at least a part of the battery, it is possible to form a high-performance battery.

また、上述のようにして得られた金属酸化物ナノ粒子−導電剤複合体をリチウムイオンキャパシタの電極活物質として用いる場合には、リチウムイオンのプレドープを施す必要がある。プレドープの方法には既知の方法を用いることができるが、例えば金属酸化物ナノ粒子−導電剤複合体を正極、金属リチウムを負極としたリチウムイオン2次電池を構成し、放電させることでドープすることが可能である。得られたプレドープ済みの金属酸化物ナノ粒子−導電剤複合体はリチウムイオンキャパシタの負極材料として用いることが可能で、その場合の正極材料に特に制限はなく、例えばポリアセンや活性炭を用いることができる。同様に電解液、セパレータも既知のものを用いることができ、例えば電解液には1.0モル/リットルのLiPFを電解質とするプロピレンカーボネート、セパレータにはポリプロピレンなどを用いることができる。リチウムイオンキャパシタをコイン電池として構成するには、露点−50℃以下の水分が除去された雰囲気下で、セパレータを挟んで正極と負極が向き合うようになるようにコインケース内で重ねて配置し、電解液を添加後、絶縁ガスケットを介してコインをかしめれば良い。 Moreover, when using the metal oxide nanoparticle-conductive agent composite obtained as described above as an electrode active material of a lithium ion capacitor, it is necessary to pre-dope with lithium ions. A known method can be used as the pre-doping method. For example, a lithium ion secondary battery having a metal oxide nanoparticle-conductive agent composite as a positive electrode and metal lithium as a negative electrode is formed and doped by discharging. It is possible. The obtained pre-doped metal oxide nanoparticle-conductive agent composite can be used as a negative electrode material of a lithium ion capacitor, and the positive electrode material in that case is not particularly limited, and for example, polyacene or activated carbon can be used. . Similarly, known electrolytes and separators can be used. For example, propylene carbonate using 1.0 mol / liter LiPF 6 as an electrolyte can be used as the electrolyte, and polypropylene or the like can be used as the separator. In order to configure the lithium ion capacitor as a coin battery, in an atmosphere from which moisture at a dew point of −50 ° C. or less is removed, the lithium ion capacitor is placed in a coin case so that the positive electrode and the negative electrode face each other with the separator interposed therebetween. After adding the electrolytic solution, the coin may be crimped through an insulating gasket.

以下、実施例により本発明を具体的かつより詳細に説明するが、本発明はこれらの実施例のみに制限されるものではない。なお、実施例中のVGCFには昭和電工株式会社製のVGCF−Hを、ポリ弗化ビニリデンにはアルケマ株式会社 Kynar HSV900を、アセチレンブラックには電気化学工業株式会社製 デンカブラックを用いた。また、実施例中の物性値は、下記の方法によって測定し、実施例中の部は特に具体的な記載のない限り重量部を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely and in detail, this invention is not restrict | limited only to these Examples. In the examples, VGCF-H manufactured by Showa Denko KK was used for VGCF, Arkema Kynar HSV900 was used for polyvinylidene fluoride, and Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd. was used for acetylene black. Moreover, the physical-property value in an Example is measured by the following method, and the part in an Example means a weight part unless there is particular description.

A.金属酸化物ナノ粒子の最小径の平均の算出。   A. Calculation of the average minimum diameter of metal oxide nanoparticles.

解析する試料は窒素雰囲気下80℃で1時間以上乾燥して測定に供した。株式会社日立ハイテクノロジー社製走査型電子顕微鏡S−5500(以下S−5500(SEM)と略記することがある)にて、加速電圧5kV、10万倍にて観察を行った。最小径は、金属酸化物ナノ粒子に内接する最大の大きさの球の直径であり、粒子50個の平均値を算出して最小径の平均とした。   The sample to be analyzed was dried at 80 ° C. for 1 hour or more in a nitrogen atmosphere and used for measurement. Observation was performed at an acceleration voltage of 5 kV and 100,000 times with a scanning electron microscope S-5500 (hereinafter sometimes abbreviated as S-5500 (SEM)) manufactured by Hitachi High-Technology Corporation. The minimum diameter is the diameter of the largest sphere inscribed in the metal oxide nanoparticles, and the average value of 50 particles was calculated as the average of the minimum diameters.

B.導電剤の導電性(体積抵抗率)の測定方法
測定は、温度23℃、湿度55%の大気中で測定すべき試料を少なくとも該雰囲気中に1時間保持した後に行った。導電剤の試料1.0gを直径2cmの円筒管に入れた後、20kNの荷重で試料を圧縮したのち、電極間隔3.0mm、電極半径0.7mmの四探針プローブを用いて、三菱化学アナリテック社製ロレスタGP(MCP−T610)にて体積抵抗率を求めた。そして3つの異なる試料について各々1回ずつ測定して3回の平均値をその導電剤の導電性(体積抵抗率値)とした。
B. Measurement Method of Conductivity (Volume Resistivity) of Conductive Agent The measurement was performed after holding a sample to be measured in the atmosphere at a temperature of 23 ° C. and a humidity of 55% for at least one hour in the atmosphere. After putting 1.0 g of a conductive agent sample into a cylindrical tube with a diameter of 2 cm, compressing the sample with a load of 20 kN, and using a four-probe probe with an electrode spacing of 3.0 mm and an electrode radius of 0.7 mm, Mitsubishi Chemical The volume resistivity was calculated | required in the Analitech Loresta GP (MCP-T610). Each of three different samples was measured once, and the average of the three times was defined as the conductivity (volume resistivity value) of the conductive agent.

C.金属酸化物ナノ粒子−導電剤複合体の複合状態の確認
粉末状態の金属酸化物ナノ粒子−導電剤複合体をS−5500(SEM)を用いて、倍率10万倍で観察し、金属化合物からなる微粒子が導電剤に複合化した状態を観察し、導電剤上にあることを確認した。
C. Confirmation of Compound State of Metal Oxide Nanoparticle-Conducting Agent Complex Powdered metal oxide nanoparticle-conducting agent complex was observed at a magnification of 100,000 times using S-5500 (SEM), and from the metal compound The state that the resulting fine particles were combined with the conductive agent was observed to confirm that the fine particles were on the conductive agent.

D.導電剤表面上の金属酸化物ナノ粒子の占める割合の算出
金属酸化物ナノ粒子−導電剤複合体をエタノールに分散させて銅メッシュに滴下し、S−5500(SEM)にて金属酸化物ナノ粒子−導電剤複合体を10個を観察し、それぞれについて金属酸化物ナノ粒子が導電剤を被覆している面積を算出し、その平均値を導電剤表面上の金属酸化物ナノ粒子の占める割合とした。
D. Calculation of the ratio of metal oxide nanoparticles on the surface of the conductive agent Disperse the metal oxide nanoparticle-conductive agent complex in ethanol and drop it onto the copper mesh, and then use S-5500 (SEM) to form the metal oxide nanoparticles. -Observe 10 conductive agent composites, calculate the area where the metal oxide nanoparticles coat the conductive agent for each, and calculate the average value as the proportion of the metal oxide nanoparticles on the surface of the conductive agent did.

ただし、金属酸化物ナノ粒子とアセチレンブラックのボールミルによる混合においては、金属酸化物ナノ粒子の表面をアセチレンブラックが被覆している面積を、導電剤表面上の金属酸化物ナノ粒子の占める割合とした。   However, in the mixing of metal oxide nanoparticles and acetylene black by a ball mill, the area covered with acetylene black on the surface of the metal oxide nanoparticles was defined as the ratio of the metal oxide nanoparticles on the surface of the conductive agent. .

E.金属酸化物ナノ粒子と導電剤との接合の確認
金属酸化物ナノ粒子−導電剤複合体300mgにポリ弗化ビニリデン30mg及びN−メチル−2−ピロリドン700mgを加えてメノウ製乳鉢で粗撹拌したのちに、自転公転ミキサー(株式会社シンキー製AR−100)を用いて2000rpm、10分間の条件で撹拌処理し、銅箔に乾燥後の平均膜厚が25μmとなるよう塗布し、大気(空気)雰囲気下120℃で20分間乾燥し電極化した。得られた電極を銅箔より剥がして、S−5500(SEM)を用いて金属酸化物ナノ粒子−導電剤複合体を観察し、導電剤表面上の金属酸化物ナノ粒子の占める割合を算出した。金属酸化物ナノ粒子が導電剤から脱離することで該割合が、塗膜化前の粉体状態時の該割合と比較して80%未満まで低下していないことを確認したら強接合とし、80%未満まで低下していれば強接合でないとする。
E. Confirmation of bonding between metal oxide nanoparticles and conductive agent After adding 30 mg of polyvinylidene fluoride and 700 mg of N-methyl-2-pyrrolidone to 300 mg of the metal oxide nanoparticle-conductive agent composite, and roughly stirring in an agate mortar In addition, the mixture was stirred using a rotation and revolution mixer (AR-100, manufactured by Sinky Corporation) at 2000 rpm for 10 minutes, applied to a copper foil so that the average film thickness after drying was 25 μm, and air (air) atmosphere The electrode was dried at 120 ° C. for 20 minutes. The obtained electrode was peeled from the copper foil, the metal oxide nanoparticle-conductive agent composite was observed using S-5500 (SEM), and the proportion of the metal oxide nanoparticles on the surface of the conductive agent was calculated. . When it is confirmed that the metal oxide nanoparticles are desorbed from the conductive agent and the ratio is not reduced to less than 80% compared to the ratio in the powder state before coating, If it is reduced to less than 80%, it is determined that the joint is not strong.

[参考例1](グラフェンの製造方法)
氷冷した500部の98%硫酸を撹拌しながら、平均粒径3μmの天然黒鉛10部、純度99%以上の硝酸ナトリウム5部を加え、更に純度99.3%以上の過マンガン酸カリウム40部を少しずつ添加して加えたのち、20℃で4時間反応させた。反応物は460部の純水で氷冷しながら希釈した後15分間強撹拌し、更に680部の純水で希釈しながら30分間強撹拌したのち、濃度30%の過酸化水素水60部を添加して更に10分間強撹拌して反応を停止した。得られた混合物は実施例1で採用した遠心分離操作で5000×gの遠心力で20分間かけて分離して固体を得た後、pHが6以上となるまで純水での洗浄と20000×gでの遠心分離処理を繰り返して50℃で真空乾燥することで酸化グラフェンを得た。
[Reference Example 1] (Graphene production method)
While stirring ice-cooled 500 parts of 98% sulfuric acid, 10 parts of natural graphite having an average particle diameter of 3 μm, 5 parts of sodium nitrate having a purity of 99% or more are added, and 40 parts of potassium permanganate having a purity of 99.3% or more are further added. Was added little by little, followed by reaction at 20 ° C. for 4 hours. The reaction product was diluted with 460 parts of pure water while cooling with ice, and then vigorously stirred for 15 minutes. Further, the mixture was vigorously stirred for 30 minutes while diluted with 680 parts of pure water, and then 60 parts of hydrogen peroxide solution having a concentration of 30% was added. The reaction was stopped by vigorous stirring for 10 minutes after the addition. The obtained mixture was separated by centrifugation at 5000 × g for 20 minutes in the centrifugation operation employed in Example 1 to obtain a solid, and then washed with pure water and 20000 × until the pH became 6 or more. The graphene oxide was obtained by repeating the centrifugation process by g and vacuum-drying at 50 degreeC.

該酸化グラフェンをアルゴンガス雰囲気下、600℃で5時間、加熱還元することで還元されたグラフェンの粉体を得た。   The graphene oxide was reduced by heating at 600 ° C. for 5 hours in an argon gas atmosphere to obtain reduced graphene powder.

[実施例1](酸化マンガン(II)とVGCF−Hとの複合体の製造)
金属酸化物ナノ粒子原料として無水二酢酸マンガン(II)を150ミリモル、導電剤としてVGCFを1100mg、アミン系溶媒としてオクチルアミン300ミリモルを用いてフラスコ内にて混合し、ヤマト科学株式会社製超音波洗浄器(型式:2510J−DTH、発振周波数42kHz、出力125W)を用いて超音波によるフラスコ内の混合処理を15分間行った。次いでフラスコ内をアルゴンガスに置換し、フラスコの一部を大気開放しながら、アルゴンガスを100cm/分の流量で流しつつ、ポリテトラフルオロエチレン製の撹拌翼型撹拌棒でフラスコ内溶液の最大線速が1m/秒となるように10分間撹拌した。その後、フラスコ内溶液を5℃/分の昇温速度で160℃まで昇温し、160℃到達後はそのまま温度を保持すると同時にフラスコ内溶液の最大線速が25cm/秒となるように撹拌を維持した。該フラスコ内溶液を160℃のまま4時間維持した後、加熱を停止し、空冷にて25℃まで冷却した。
[Example 1] (Production of complex of manganese (II) oxide and VGCF-H)
The mixture was mixed in a flask using 150 mmol of anhydrous manganese (II) diacetate as a metal oxide nanoparticle raw material, 1100 mg of VGCF as a conductive agent, and 300 mmol of octylamine as an amine solvent. Using a washer (model: 2510J-DTH, oscillation frequency 42 kHz, output 125 W), mixing treatment in the flask by ultrasonic waves was performed for 15 minutes. Next, the inside of the flask was replaced with argon gas, and while the part of the flask was opened to the atmosphere, argon gas was allowed to flow at a flow rate of 100 cm 3 / min. The mixture was stirred for 10 minutes so that the linear velocity was 1 m / sec. Thereafter, the temperature of the solution in the flask is increased to 160 ° C. at a temperature increase rate of 5 ° C./min. After reaching 160 ° C., the temperature is maintained as it is and stirred so that the maximum linear velocity of the solution in the flask is 25 cm / sec. Maintained. The solution in the flask was maintained at 160 ° C. for 4 hours, and then the heating was stopped and the solution was cooled to 25 ° C. by air cooling.

得られたフラスコ内容液は株式会社久保田製作所製高速冷却遠心機7780IIを用いて重力の2000倍(2000×g)に相当する遠心力で遠心分離を行い、上澄みを捨てて固形分を抽出した。その後ヘキサンもしくはエタノールを添加し、遠心分離を行って上澄みを捨てるという同様の作業をそれぞれ2回繰り返した後、真空乾燥により灰褐色の粉末を得た。得られた粉末試料を粉末X線回折により同定作業を行ったところ、該粉末試料に含まれるVGCFを除く結晶成分がMnOであることが分かった。また収量が11.0gであったことから、MnOナノ粒子とVGCFの重量比が90:10であることも分かった。   The obtained flask content liquid was centrifuged with a centrifugal force equivalent to 2000 times the gravity (2000 × g) using a high-speed cooling centrifuge 7780II manufactured by Kubota Corporation, and the supernatant was discarded to extract a solid content. Thereafter, hexane or ethanol was added, and the same operation of centrifuging and discarding the supernatant was repeated twice, and then ash-brown powder was obtained by vacuum drying. When the obtained powder sample was identified by powder X-ray diffraction, it was found that the crystal component excluding VGCF contained in the powder sample was MnO. Moreover, since the yield was 11.0g, it turned out that the weight ratio of MnO nanoparticle and VGCF is 90:10.

該試料をS−5500(SEM)にて観察したところ、該試料はVGCFに金属酸化物ナノ粒子であるMnOが担持している形態をしており、MnOナノ粒子の最小径の平均は51nm、導電剤表面上の金属酸化物ナノ粒子の占める割合は88%であった。さらに上記.Eに従い接合状態を確認したところ、MnOナノ粒子がVGCFに強接合していることも分かった。   When the sample was observed with S-5500 (SEM), the sample had a form in which MnO, which is a metal oxide nanoparticle, was supported on VGCF, and the average minimum diameter of MnO nanoparticles was 51 nm. The proportion of the metal oxide nanoparticles on the surface of the conductive agent was 88%. Furthermore, when the joining state was confirmed according to the above-mentioned .E, it was found that MnO nanoparticles were strongly joined to VGCF.

該金属酸化物ナノ粒子−導電剤複合体30部に結着剤としてポリ弗化ビニリデン3部、追加の導電剤としてアセチレンブラック3部、ペースト溶媒としてN−メチル−2−ピロリドン60部を加えてメノウ製乳鉢で粗撹拌したのち、自転公転ミキサーにて撹拌処理を施すことで、電極ペーストを得た。そして厚さ10μmの銅箔に、乾燥後に平均25μmの厚さとなるように該電極ペーストを片面に塗布し、大気(空気)雰囲気下80℃で30分間乾燥し、直径1.6cmの円形に電極を打ち抜いた後に真空乾燥機内で1Paへ減圧後、120℃2時間乾燥させて、アルゴン雰囲気のグローブボックス内へと移した。   To 30 parts of the metal oxide nanoparticle-conductive agent composite, 3 parts of polyvinylidene fluoride as a binder, 3 parts of acetylene black as an additional conductive agent, and 60 parts of N-methyl-2-pyrrolidone as a paste solvent were added. After roughly stirring with an agate mortar, the mixture was stirred with a rotating / revolving mixer to obtain an electrode paste. Then, the electrode paste is applied to one side of a copper foil having a thickness of 10 μm so as to have an average thickness of 25 μm after drying, and dried at 80 ° C. for 30 minutes in an air (air) atmosphere to form a circular electrode having a diameter of 1.6 cm. Then, the pressure was reduced to 1 Pa in a vacuum dryer, dried at 120 ° C. for 2 hours, and transferred to a glove box in an argon atmosphere.

該グローブボックス内は水分露点−76℃以下、酸素濃度1ppm以下に調整されており、該グローブボックス内で、リチウム箔を負極としたコイン型リチウムイオン電池のハーフセルを組み立てた。このときの電解液にはLiPFを1M含有するエチレンカーボネート:ジエチルカーボネート=7:3の溶媒を用いた。 The inside of the glove box was adjusted to a moisture dew point of -76 ° C. or lower and an oxygen concentration of 1 ppm or lower. A half cell of a coin-type lithium ion battery having a lithium foil as a negative electrode was assembled in the glove box. As the electrolytic solution at this time, a solvent of ethylene carbonate: diethyl carbonate = 7: 3 containing 1M of LiPF 6 was used.

該コイン型リチウムイオン電池を用いて、レート0.1C、上限電圧1.5V、下限電圧0.1V、理論容量756mAh/g、測定温度25℃、の条件下で充放電測定を3回行ったところ、充電時に1回目に734mAh/g、2回目に722mAh/g、3回目に712mAh/gの値を得て、本発明の製造方法によって金属酸化物ナノ粒子−導電剤複合体が効率よく得られ、また該複合体がリチウムイオン電池活物質として適用可能であることが示され、更にアルカリ金属二次電池が製造可能であることも示された。結果一覧を表1に示す。   Using the coin-type lithium ion battery, charge / discharge measurement was performed three times under the conditions of a rate of 0.1 C, an upper limit voltage of 1.5 V, a lower limit voltage of 0.1 V, a theoretical capacity of 756 mAh / g, and a measurement temperature of 25 ° C. However, a value of 734 mAh / g for the first time, 722 mAh / g for the second time, and 712 mAh / g for the third time were obtained during charging, and the metal oxide nanoparticle-conductive agent composite was efficiently obtained by the production method of the present invention. It was also shown that the composite can be applied as a lithium ion battery active material, and further that an alkali metal secondary battery can be produced. Table 1 shows the result list.

Figure 0006197454
Figure 0006197454

[実施例2](酸化マンガン(II)とグラフェンとの複合体の製造)
実施例1において導電剤をグラフェンに変更した以外は実施例1と同様の方法で粉末を得て、粉末X線回折にて結晶成分がMnOであることを確認した。また収量が12.5gであったことから、MnOナノ粒子とVGCFの重量比が91:9であることも分かった。
[Example 2] (Manufacture of a complex of manganese (II) oxide and graphene)
A powder was obtained in the same manner as in Example 1 except that the conductive agent was changed to graphene in Example 1, and it was confirmed by powder X-ray diffraction that the crystal component was MnO. Moreover, since the yield was 12.5g, it turned out that the weight ratio of MnO nanoparticle and VGCF is 91: 9.

該試料をS−5500(SEM)にて観察したところ、該試料はグラフェン上に金属酸化物ナノ粒子であるMnOが担持している形態をしており、MnOナノ粒子の最小径の平均は44nm、導電剤表面上の金属酸化物ナノ粒子の占める割合は80%であった。さらに上記.Eに従い接合状態を確認したところ、MnOナノ粒子がグラフェンに強接合していることも分かった。   When the sample was observed with S-5500 (SEM), the sample had a form in which MnO which is a metal oxide nanoparticle was supported on graphene, and the average of the minimum diameter of the MnO nanoparticle was 44 nm. The proportion of the metal oxide nanoparticles on the surface of the conductive agent was 80%. Furthermore, when the bonding state was confirmed according to the above-mentioned .E, it was found that the MnO nanoparticles were strongly bonded to graphene.

該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。充放電測定3回の結果は、充電時に1回目に678mAh/g、2回目に699mAh/g、3回目に672mAh/gの値を得て、本発明の製造方法によって金属酸化物ナノ粒子−導電剤複合体が効率よく得られ、また該複合体がリチウムイオン電池活物質として適用可能であることが示され、更にアルカリ金属二次電池が製造可能であることも示された。   An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed. As a result of the charge / discharge measurement three times, a value of 678 mAh / g at the first time, 699 mAh / g at the second time, and 672 mAh / g at the third time were obtained at the time of charging. It was shown that the agent composite was efficiently obtained, that the composite was applicable as a lithium ion battery active material, and that an alkali metal secondary battery could be manufactured.

[実施例3](酸化ニッケル(II)とVGCFとの複合体の製造)
酢酸ニッケル(II)四水和物を真空乾燥機内で1Paへ減圧後、100℃12時間乾燥させて、無水の酢酸ニッケル(II)を得た。実施例1において金属酸化物ナノ粒子原料を無水酢酸ニッケル(II)に変更した以外は実施例1と同様の方法で粉末を得て、粉末X線回折にて結晶成分がNiOであることを確認した。また収量が10.3gであったことから、NiOナノ粒子とVGCFの重量比が89:11であることも分かった。
該試料をS−5500(SEM)にて観察したところ、該試料はVGCF上に金属酸化物ナノ粒子であるNiOが担持している形態をしており、NiOナノ粒子の最小径の平均は48nm、導電剤表面上の金属酸化物ナノ粒子の占める割合は71%であった。さらに上記.Eに従い接合状態を確認したところ、NiOナノ粒子がVGCFに強接合していることも分かった。
該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。充放電測定3回の結果は、充電時に1回目に638mAh/g、2回目に651mAh/g、3回目に649mAh/gの値を得て、本発明の製造方法によって金属酸化物ナノ粒子−導電剤複合体が効率よく得られ、また該複合体がリチウムイオン電池活物質として適用可能であることが示され、更にアルカリ金属二次電池が製造可能であることも示された。
[Example 3] (Production of composite of nickel oxide (II) and VGCF)
Nickel (II) acetate tetrahydrate was depressurized to 1 Pa in a vacuum dryer and then dried at 100 ° C. for 12 hours to obtain anhydrous nickel (II) acetate. A powder was obtained in the same manner as in Example 1 except that the metal oxide nanoparticle raw material was changed to anhydrous nickel acetate (II) in Example 1, and it was confirmed by powder X-ray diffraction that the crystal component was NiO. did. Moreover, since the yield was 10.3 g, it was also found that the weight ratio of NiO nanoparticles to VGCF was 89:11.
When the sample was observed with S-5500 (SEM), the sample had a form in which NiO, which is a metal oxide nanoparticle, was supported on VGCF, and the average minimum diameter of NiO nanoparticles was 48 nm. The proportion of metal oxide nanoparticles on the surface of the conductive agent was 71%. Further, when the bonding state was confirmed according to the above-mentioned .E, it was found that the NiO nanoparticles were strongly bonded to VGCF.
An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed. As a result of the charge / discharge measurement three times, a value of 638 mAh / g at the first time, 651 mAh / g at the second time, and 649 mAh / g at the third time was obtained at the time of charge. It was shown that the agent composite was efficiently obtained, that the composite was applicable as a lithium ion battery active material, and that an alkali metal secondary battery could be manufactured.

[実施例4](酸化コバルト(II)とVGCFとの複合体の製造)
実施例1において金属酸化物ナノ粒子原料を無水酢酸コバルト(II)に変更した以外は実施例1と同様の方法で粉末を得て、粉末X線回折にて結晶成分がNiOであることを確認した。また収量が11.3gであったことから、CoOナノ粒子とVGCFの重量比が90:10であることも分かった。
[Example 4] (Production of complex of cobalt (II) oxide and VGCF)
A powder was obtained by the same method as in Example 1 except that the metal oxide nanoparticle raw material was changed to anhydrous cobalt (II) in Example 1, and it was confirmed by powder X-ray diffraction that the crystal component was NiO. did. Further, since the yield was 11.3 g, it was found that the weight ratio of CoO nanoparticles to VGCF was 90:10.

該試料をS−5500(SEM)にて観察したところ、該試料はVGCF上に金属酸化物ナノ粒子であるCoOが担持している形態をしており、CoOナノ粒子の最小径の平均は33nm、導電剤表面上の金属酸化物ナノ粒子の占める割合は80%であった。さらに上記.Eに従い接合状態を確認したところ、CoOナノ粒子がVGCFに強接合していることも分かった。   When the sample was observed with S-5500 (SEM), the sample had a form in which CoO, which is a metal oxide nanoparticle, was supported on VGCF, and the average minimum diameter of the CoO nanoparticle was 33 nm. The proportion of the metal oxide nanoparticles on the surface of the conductive agent was 80%. Furthermore, when the bonding state was confirmed according to the above-mentioned .E, it was found that the CoO nanoparticles were strongly bonded to VGCF.

該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。充放電測定3回の結果は、充電時に1回目に698mAh/g、2回目に672mAh/g、3回目に670mAh/gの値を得て、本発明の製造方法によって金属酸化物ナノ粒子−導電剤複合体が効率よく得られ、また該複合体がリチウムイオン電池活物質として適用可能であることが示され、更にアルカリ金属二次電池が製造可能であることも示された。   An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed. The results of the charge / discharge measurement three times were obtained by obtaining a value of 698 mAh / g for the first time, 672 mAh / g for the second time, and 670 mAh / g for the third time. It was shown that the agent composite was efficiently obtained, that the composite was applicable as a lithium ion battery active material, and that an alkali metal secondary battery could be manufactured.

[実施例5](酸化鉄(II)とVGCFとの複合体の製造)
実施例1において金属化合物原料を無水酢酸鉄(II)に変更した以外は実施例1と同様の方法で粉末を得て、粉末X線回折にて結晶成分がFeOであることを確認した。結果一覧を表1に示す。また収量が11.4gであったことから、FeOナノ粒子とVGCFの重量比が90:10であることも分かった。
[Example 5] (Production of complex of iron (II) oxide and VGCF)
A powder was obtained in the same manner as in Example 1 except that the metal compound raw material was changed to anhydrous iron (II) acetate in Example 1, and it was confirmed by powder X-ray diffraction that the crystal component was FeO. Table 1 shows the result list. Moreover, since the yield was 11.4g, it turned out that the weight ratio of FeO nanoparticle and VGCF is 90:10.

該試料をS−5500(SEM)にて観察したところ、該試料はVGCF上に金属酸化物ナノ粒子であるFeOが担持している形態をしており、FeOナノ粒子の最小径の平均は68nm、導電剤表面上の金属酸化物ナノ粒子の占める割合は77%であった。さらに上記.Eに従い接合状態を確認したところ、FeOナノ粒子がVGCFに強接合していることも分かった。   When the sample was observed with S-5500 (SEM), the sample had a form in which FeO, which is a metal oxide nanoparticle, was supported on VGCF, and the average of the minimum diameter of the FeO nanoparticle was 68 nm. The proportion of the metal oxide nanoparticles on the surface of the conductive agent was 77%. Furthermore, when the bonding state was confirmed according to the above-mentioned .E, it was found that the FeO nanoparticles were strongly bonded to VGCF.

該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。充放電測定3回の結果は、充電時に1回目に741mAh/g、2回目に723mAh/g、3回目に722mAh/gの値を得て、本発明の製造方法によって金属酸化物ナノ粒子−導電剤複合体が効率よく得られ、また該複合体がリチウムイオン電池活物質として適用可能であることが示され、更にアルカリ金属二次電池が製造可能であることも示された。   An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed. As a result of the charge / discharge measurement three times, a value of 741 mAh / g at the first time, 723 mAh / g at the second time, 722 mAh / g at the third time was obtained at the time of charging, and metal oxide nanoparticles-conductivity was obtained by the manufacturing method of the present invention. It was shown that the agent composite was efficiently obtained, that the composite was applicable as a lithium ion battery active material, and that an alkali metal secondary battery could be manufactured.

[実施例6](4酸化3マンガン(Mn)とVGCFとの複合体の製造)
金属酸化物ナノ粒子原料として酢酸マンガン(II)の4水和物を100ミリモル、導電剤としてVGCFを600mg、アミン系溶媒としてN−メチル−2−ピロリドン500ミリモルを用いてフラスコ内にて混合し、さらに蒸留水を3g添加し、ヤマト科学株式会社製超音波洗浄器(型式:2510J−DTH、発振周波数42kHz、出力125W)を用いて超音波によるフラスコ内の混合処理を15分間行った。その後非密閉状態で、フラスコ内溶液を5℃/分の昇温速度で90℃まで昇温し、90℃到達後はそのまま温度を保持すると同時にフラスコ内溶液の最大線速が25cm/秒となるように撹拌を維持した。該フラスコ内溶液を90℃のまま4時間維持した後、加熱を停止し、空冷にて25℃まで冷却した。
[Example 6] (Production of complex of trimanganese tetroxide (Mn 3 O 4 ) and VGCF)
100 mmol of manganese (II) acetate tetrahydrate as a metal oxide nanoparticle raw material, 600 mg of VGCF as a conductive agent, and 500 mmol of N-methyl-2-pyrrolidone as an amine solvent were mixed in a flask. Further, 3 g of distilled water was added, and mixing treatment in the flask by ultrasonic waves was performed for 15 minutes using an ultrasonic cleaner (model: 2510J-DTH, oscillation frequency 42 kHz, output 125 W) manufactured by Yamato Scientific Co., Ltd. Thereafter, in a non-sealed state, the temperature of the solution in the flask is increased to 90 ° C. at a temperature increase rate of 5 ° C./min. After reaching 90 ° C., the temperature is maintained as it is and the maximum linear velocity of the solution in the flask is 25 cm / sec. Stirring was maintained as such. After maintaining the solution in the flask at 90 ° C. for 4 hours, the heating was stopped and the solution was cooled to 25 ° C. by air cooling.

得られたフラスコ内容液は株式会社久保田製作所製高速冷却遠心機7780IIを用いて重力の2000倍(2000×g)に相当する遠心力で遠心分離を行い、上澄みを捨てて固形分を抽出した。その後蒸留水しくはエタノールを添加し、遠心分離を行って上澄みを捨てるという同様の作業をそれぞれ2回繰り返した後、真空乾燥により灰褐色の粉末を得た。得られた粉末試料を粉末X線回折により同定作業を行ったところ、該粉末試料に含まれるVGCFを除く結晶成分がMnであることが分かった。また収量が7.4gであったことから、Mnナノ粒子とVGCFの重量比が92:8であることも分かった。 The obtained flask content liquid was centrifuged with a centrifugal force equivalent to 2000 times the gravity (2000 × g) using a high-speed cooling centrifuge 7780II manufactured by Kubota Corporation, and the supernatant was discarded to extract a solid content. Thereafter, distilled water or ethanol was added, and the same operation of centrifuging and discarding the supernatant was repeated twice, and then ash-brown powder was obtained by vacuum drying. When the obtained powder sample was identified by powder X-ray diffraction, it was found that the crystal component excluding VGCF contained in the powder sample was Mn 3 O 4 . From The fact yield was 7.4 g, the weight ratio of Mn 3 O 4 nanoparticles and VGCF is 92: also been found to be eight.

該試料をS−5500(SEM)にて観察したところ、該試料はVGCFに金属酸化物ナノ粒子であるMnが担持している形態をしており、MnOナノ粒子の最小径の平均は33nm、導電剤表面上の金属酸化物ナノ粒子の占める割合は83%であった。さらに上記.Eに従い接合状態を確認したところ、Mnナノ粒子がVGCFに強接合していることも分かった。 When the sample was observed with S-5500 (SEM), the sample had a form in which Mn 3 O 4 which is a metal oxide nanoparticle was supported on VGCF, and the average of the minimum diameters of MnO nanoparticles. Was 33 nm, and the proportion of metal oxide nanoparticles on the surface of the conductive agent was 83%. Furthermore, when the joining state was confirmed according to the above-mentioned .E, it was found that the Mn 3 O 4 nanoparticles were strongly joined to VGCF.

該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。   An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed.

充放電測定3回の結果は、充電時に1回目に855mAh/g、2回目に840mAh/g、3回目に836mAh/gの値を得て、本発明の製造方法によって金属酸化物ナノ粒子−導電剤複合体が効率よく得られ、また該複合体がリチウムイオン電池活物質として適用可能であることが示され、更にアルカリ金属二次電池が製造可能であることも示された。   As a result of the charge / discharge measurement three times, a value of 855 mAh / g at the first time, 840 mAh / g at the second time, 836 mAh / g at the third time was obtained, and the metal oxide nanoparticle-conductivity was obtained by the manufacturing method of the present invention. It was shown that the agent composite was efficiently obtained, that the composite was applicable as a lithium ion battery active material, and that an alkali metal secondary battery could be manufactured.

[比較例1]
実施例1において導電剤をアミン系溶媒へ添加しなかった以外は実施例1と同様の方法で粉末を得て、粉末X線回折にて結晶成分が酸化マンガン(II)であることを確認した。該試料をS−5500(SEM)にて観察したところ、得られた粉末はMnOのナノ粒子であり、その最小径の平均は40nmであった。
[Comparative Example 1]
A powder was obtained in the same manner as in Example 1 except that the conductive agent was not added to the amine solvent in Example 1, and it was confirmed by powder X-ray diffraction that the crystal component was manganese (II) oxide. . When the sample was observed with S-5500 (SEM), the obtained powder was MnO nanoparticles, and the average of the minimum diameters was 40 nm.

該試料とVGCFが重量比90:10となるようにしてエタノールに分散させ、超音波による撹拌処理を施した後、遠心分離にて固形分のみを抽出することでナノ粒子活物質−導電剤複合体を得た。該複合体をS−5500(SEM)にて観察したところ、該複合体はVGCFに金属酸化物ナノ粒子であるMnOが担持している形態をしており、導電剤表面上の金属酸化物ナノ粒子の占める割合は83%であった。しかし、上記.Eに従い接合状態を確認したところ、MnOナノ粒子が結着剤に絡め取られ、導電剤表面上の金属酸化物ナノ粒子の占める割合は11%に低下し、VGCFとは強接合していないことが分かった。   The sample and VGCF are dispersed in ethanol so that the weight ratio is 90:10, and after stirring with ultrasonic waves, only the solid content is extracted by centrifugation, so that the nanoparticle active material-conductive agent composite is obtained. Got the body. When this composite was observed with S-5500 (SEM), the composite had a form in which MnO, which is a metal oxide nanoparticle, was supported on VGCF, and the metal oxide nanoparticle on the surface of the conductive agent was used. The proportion of particles was 83%. However, when the bonding state was confirmed according to the above-mentioned .E, the MnO nanoparticles were entangled in the binder, and the proportion of the metal oxide nanoparticles on the surface of the conductive agent was reduced to 11%. I found out that it was not.

該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。充放電測定3回の結果は、充電時に1回目に251mAh/g、2回目に233mAh/g、3回目に202mAh/gの値をそれぞれ算出して得たが、実施例1よりも低い容量を示し、金属酸化物ナノ粒子と導電剤とをただ単に混合・存在させるだけでは、上記E.に従い電極化した際に導電剤表面上の金属酸化物ナノ粒子の占める割合が電極化前の13%まで低下し、リチウムイオン二次電池活物質としての性能が劣り、適用できないことが示された。   An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed. The results of three charge / discharge measurements were obtained by calculating a value of 251 mAh / g for the first time, 233 mAh / g for the second time, and 202 mAh / g for the third time. In the case where the metal oxide nanoparticles and the conductive agent are simply mixed and present, the above E.E. The ratio of the metal oxide nanoparticles on the surface of the conductive agent was reduced to 13% before the electrode formation, and the performance as a lithium ion secondary battery active material was inferior. .

[比較例2]
比較例1と同様にして得られたMnOナノ粒子を得た後、該MnOナノ粒子とアセチレンブラックを重量比が90:10となるように混合し、ボールミルにてさらに混合することで複合体を得た。該複合体をS−5500(SEM)にて観察したところ、該複合体はVGCFに金属酸化物ナノ粒子であるMnOが担持している形態をしており、導電剤表面上の金属酸化物ナノ粒子の占める割合は57%であった。しかし、上記.Eに従い接合状態を確認したところ、MnOナノ粒子が結着剤に絡め取られ、導電剤表面上の金属酸化物ナノ粒子の占める割合は42%に低下し、強接合していないことがわかった。
[Comparative Example 2]
After obtaining MnO nanoparticles obtained in the same manner as in Comparative Example 1, the MnO nanoparticles and acetylene black were mixed at a weight ratio of 90:10 and further mixed in a ball mill to obtain a composite. Obtained. When this composite was observed with S-5500 (SEM), the composite had a form in which MnO, which is a metal oxide nanoparticle, was supported on VGCF, and the metal oxide nanoparticle on the surface of the conductive agent was used. The proportion of particles was 57%. However, when the bonding state was confirmed according to the above-mentioned .E, the MnO nanoparticles were entangled in the binder, and the proportion of the metal oxide nanoparticles on the surface of the conductive agent was reduced to 42%, which is not strongly bonded. I understood it.

該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。充放電測定3回の結果は、充電時に1回目に488mAh/g、2回目に455mAh/g、3回目に456mAh/gの値をそれぞれ算出して得たが、実施例1よりも低い容量を示し、金属酸化物ナノ粒子と導電剤とをただ単に混合するだけでは、上記E.に従い電極化した際に導電剤表面上の金属酸化物ナノ粒子の占める割合が電極化前の73%まで低下し、金属酸化物ナノ粒子が導電剤表面を占める割合を向上させることが難しく、結果としてリチウムイオン二次電池活物質としての性能が劣り、適用できないことが示された。   An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed. The results of three charge / discharge measurements were obtained by calculating a value of 488 mAh / g for the first time, 455 mAh / g for the second time, 456 mAh / g for the third time, and lower capacity than in Example 1. As described above, the above-mentioned E.I. is merely obtained by mixing the metal oxide nanoparticles and the conductive agent. The proportion of metal oxide nanoparticles on the surface of the conductive agent is reduced to 73% before the electrode formation when the electrode is made according to the above, and it is difficult to improve the proportion of the metal oxide nanoparticles on the surface of the conductive agent. It was shown that the performance as a lithium ion secondary battery active material was inferior and could not be applied.

[比較例3]
金属酸化物ナノ粒子原料として125℃、0.1Paで3時間真空乾燥した純度95%以上の二ぎ酸マンガン(II)二水和物を20ミリモルを純度99%以上のオレイン酸120ミリモルへ室温にてフラスコ内で添加した。次いで、フラスコ内をアルゴンガスに置換し、フラスコの一部を大気開放しながら、アルゴンガスを100cm/分の流量で流しつつ、ポリテトラフルオロエチレン製の撹拌翼型撹拌棒でフラスコ内溶液の最大線速が1m/秒となるように10分間撹拌し、そのまま撹拌を続けながら12℃/分の昇温速度で240℃まで加熱して、240℃に到達後60分間その温度を保持して、極薄く黄色に着色した透明な溶液を得た。該溶液を50℃まで冷却したのち、導電剤としてVGCFを70mgを添加し、再びフラスコ内をアルゴン雰囲気としたのちに、フラスコの一部を大気開放しながら、アルゴンガスを100cm/分の流量で流しつつ、ヤマト科学株式会社製超音波洗浄器(型式:2510J−DTH、発振周波数42kHz、出力125W)で15分間、超音波混合を行った。続いて、該混合物溶液に、アミン系溶媒としてオレイルアミン60ミリモルを室温にて添加し、再びフラスコ内をアルゴン雰囲気としたのちに、フラスコの一部を大気開放しながら、アルゴンガスを100cm/分の流量で流しつつ、ポリテトラフルオロエチレン製の撹拌翼型撹拌棒で撹拌翼最速部が50cm/秒となるように撹拌して混合したのち、そのまま撹拌を続けながら15℃/分の昇温速度で260℃まで加熱した後260℃で5時間保持した。加熱終了後は放冷して濃褐色の不透明な液状の混合物を得た。
[Comparative Example 3]
20 millimoles of manganese (II) diformate dihydrate with a purity of 95% or more, vacuum-dried at 125 ° C. and 0.1 Pa for 3 hours as a metal oxide nanoparticle raw material to 120 millimoles of oleic acid with a purity of 99% or more at room temperature In the flask. Next, the inside of the flask was replaced with argon gas, and while the part of the flask was opened to the atmosphere, the argon gas was allowed to flow at a flow rate of 100 cm 3 / min. Stir for 10 minutes so that the maximum linear velocity is 1 m / sec. While continuing stirring, heat up to 240 ° C. at a rate of 12 ° C./min and hold that temperature for 60 minutes after reaching 240 ° C. A clear solution colored very light yellow was obtained. After cooling the solution to 50 ° C., 70 mg of VGCF was added as a conductive agent, and the inside of the flask was again filled with an argon atmosphere, and then argon gas was flowed at 100 cm 3 / min while part of the flask was opened to the atmosphere. Then, ultrasonic mixing was performed for 15 minutes with an ultrasonic cleaner (model: 2510J-DTH, oscillation frequency 42 kHz, output 125 W) manufactured by Yamato Scientific Co., Ltd. Subsequently, 60 mmol of oleylamine as an amine solvent was added to the mixture solution at room temperature, and after the inside of the flask was again filled with an argon atmosphere, argon gas was added at 100 cm 3 / min while part of the flask was opened to the atmosphere. The mixture was stirred and mixed with a stirring blade type stirring rod made of polytetrafluoroethylene so that the fastest speed of the stirring blade was 50 cm / sec. And heated to 260 ° C. and held at 260 ° C. for 5 hours. After heating, the mixture was allowed to cool to obtain a dark brown opaque liquid mixture.

得られた該液状の混合物に対し、実施例1と同様の方法にて生成物を粉末状態で得た。そして該粉末試料を、アルゴン雰囲気下にて350℃まで昇温して加熱し、そのまま20分間保持する熱処理を行った。熱処理後に得られた粉末試料は粉末X線回折にて、酸化マンガン(II)(化学式:MnO)と炭素のみからなる複合体であることが判明し、S−5500(SEM)にて観察したところ、該試料はVGCFに金属酸化物ナノ粒子であるMnOが担持している形態をしており、MnOナノ粒子の最小径の平均は52nm、導電剤表面上の金属酸化物ナノ粒子の占める割合は52%であった。また収量が777mgであったことから、MnOナノ粒子とVGCFの重量比が91:9であることが分かった。しかし、上記.Eに従い接合状態を確認したところ、MnOナノ粒子が結着剤に絡め取られ、導電剤表面上の金属酸化物ナノ粒子の占める割合は31%に低下し、VGCFとは強接合していないことが分かった。   For the obtained liquid mixture, a product was obtained in a powder state in the same manner as in Example 1. The powder sample was heated to 350 ° C. under an argon atmosphere and heated, and heat treatment was performed for 20 minutes. The powder sample obtained after the heat treatment was found by powder X-ray diffraction to be a complex composed only of manganese (II) oxide (chemical formula: MnO) and carbon, and was observed with S-5500 (SEM). The sample has a form in which MnO, which is a metal oxide nanoparticle, is supported on VGCF, the average of the minimum diameter of MnO nanoparticles is 52 nm, and the ratio of the metal oxide nanoparticles on the surface of the conductive agent is 52%. Moreover, since the yield was 777 mg, it turned out that the weight ratio of MnO nanoparticle and VGCF is 91: 9. However, when the bonding state was confirmed according to the above-mentioned .E, the MnO nanoparticles were entangled in the binder, and the proportion of the metal oxide nanoparticles on the surface of the conductive agent decreased to 31%, which is strongly bonded to VGCF. I found out that it was not.

該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。充放電測定3回の結果は、充電時に1回目に522mAh/g、2回目に512mAh/g、3回目に501mAh/gの値を得て、実施例1よりも低い容量を示し、金属酸化物ナノ粒子と導電剤が強接合していない状態では、上記E.に従い電極化した際に導電剤表面上の金属酸化物ナノ粒子の占める割合が電極化前の60%まで低下し、リチウムイオン二次電池活物質としての性能が劣り、適用できないことが示された。   An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed. The results of the charge / discharge measurement three times showed a capacity of 522 mAh / g at the first time, 512 mAh / g at the second time, 501 mAh / g at the third time, and showed a capacity lower than that of Example 1, and the metal oxide. In the state where the nanoparticles and the conductive agent are not strongly bonded, the above E.E. The proportion of metal oxide nanoparticles on the surface of the conductive agent was reduced to 60% before the electrode formation, and the performance as a lithium ion secondary battery active material was inferior. .

[比較例4]
実施例6において酢酸マンガン(II)4水和物の添加量を10ミリモル、VGCFを60mgとし、90℃到達後の撹拌をフラスコ内溶液の最大線速が1m/秒となるようにした以外は同じ条件にて複合体を合成し、粉末状態で生成物を得た。該粉末飼料を粉末X線回折にて結晶成分がMnであることを確認した。また収量が710mgであったことから、MnとVGCFの重量比が92:8であることも分かった。
[Comparative Example 4]
In Example 6, the addition amount of manganese (II) acetate tetrahydrate was 10 mmol, VGCF was 60 mg, and stirring after reaching 90 ° C. was performed except that the maximum linear velocity of the solution in the flask was 1 m / sec. A composite was synthesized under the same conditions to obtain a product in a powder state. The powdered feed was confirmed by powder X-ray diffraction to have a crystal component of Mn 3 O 4 . From The fact yield was 710 mg, the weight ratio of Mn 3 O 4 and VGCF is 92: also been found to be eight.

該試料をS−5500(SEM)にて観察したところ、該試料はVGCF上に金属酸化物ナノ粒子であるMnが担持している形態をしており、Mnナノ粒子の最小径の平均は12nm、導電剤表面上の金属酸化物ナノ粒子の占める割合は88%であった。さらに上記.Eに従い接合状態を確認したところ、Mnナノ粒子がVGCFが強接合していることも分かった。 When the sample was observed with S-5500 (SEM), the sample had a form in which Mn 3 O 4 which is a metal oxide nanoparticle was supported on VGCF, and Mn 3 O 4 nanoparticle The average of the minimum diameter was 12 nm, and the proportion of metal oxide nanoparticles on the surface of the conductive agent was 88%. Further, when the bonding state was confirmed according to the above-mentioned .E, it was found that Mn 3 O 4 nanoparticles were strongly bonded to VGCF.

該複合体と追加の導電剤及び結着剤をペースト溶媒へ十分に混合した電極ペーストを実施例1と同様の方法、条件により得た。そして実施例1と同様の方法により電極を得てコイン型リチウムイオン二次電池を作製したのちに充放電測定を行った。充放電測定3回の結果は、充電時に1回目に755mAh/g、2回目に734mAh/g、3回目に732mAh/gの値を得て、実施例6よりも低い容量を示し、金属酸化物ナノ粒子が小さすぎるとリチウムイオン二次電池活物質としての性能が劣り、適用できないことが示された。   An electrode paste in which the composite, an additional conductive agent and a binder were sufficiently mixed in a paste solvent was obtained by the same method and conditions as in Example 1. And the electrode was obtained by the method similar to Example 1, and the coin-type lithium ion secondary battery was produced, Then, charge / discharge measurement was performed. The results of the charge / discharge measurement three times showed a capacity of 755 mAh / g at the first time, 734 mAh / g at the second time, 732 mAh / g at the third time, and showed a capacity lower than that of Example 6, and the metal oxide. It was shown that if the nanoparticles are too small, the performance as a lithium ion secondary battery active material is inferior and cannot be applied.

本発明の金属酸化物ナノ粒子−導電剤複合体はリチウム二次電池用電極に適用した際に高容量という非常に高い性能を示すことから、高性能のリチウムイオン二次電池製造に好適に用いることができる。   Since the metal oxide nanoparticle-conductive agent composite of the present invention exhibits a very high performance of high capacity when applied to an electrode for a lithium secondary battery, it is suitably used for the production of a high-performance lithium ion secondary battery. be able to.

Claims (8)

金属酸化物ナノ粒子と導電剤の複合体であって、該金属酸化物ナノ粒子の最小径の平均が15nm以上100nm以下であり、該金属酸化物ナノ粒子が導電剤表面の60%以上の面積を占めて強接合してなることを特徴とする金属酸化物ナノ粒子−導電剤複合体。 A composite of metal oxide nanoparticles and a conductive agent, wherein the average minimum diameter of the metal oxide nanoparticles is 15 nm to 100 nm, and the metal oxide nanoparticles have an area of 60% or more of the surface of the conductive agent A metal oxide nanoparticle-conductive agent composite, characterized in that 前記導電剤が繊維状またはシート状の炭素である請求項1記載の金属酸化物ナノ粒子−導電剤複合体。 The metal oxide nanoparticle-conductive agent composite according to claim 1, wherein the conductive agent is fibrous or sheet-like carbon. 前記金属酸化物ナノ粒子−導電剤複合体に占める前記金属酸化物ナノ粒子の重量割合が80%以上であることを特徴とする請求項2記載の金属酸化物ナノ粒子−導電剤複合体。 The metal oxide nanoparticle-conductive agent composite according to claim 2, wherein a weight ratio of the metal oxide nanoparticles in the metal oxide nanoparticle-conductive agent composite is 80% or more. 請求項1〜3のいずれかに記載の金属酸化物ナノ粒子−導電剤複合体を少なくとも一部に用いてなることを特徴とする電極。 An electrode comprising at least a part of the metal oxide nanoparticle-conductive agent complex according to claim 1. 請求項4記載の電極を少なくとも一部に用いてなることを特徴とするリチウム二次電池。 A lithium secondary battery comprising the electrode according to claim 4 at least in part. リチウムイオンがプレドープされた、請求項1〜3のいずれかに記載の金属酸化物ナノ粒子−導電剤複合体。 The metal oxide nanoparticle-conductive agent composite according to any one of claims 1 to 3, wherein lithium ions are pre-doped. 請求項6記載の金属酸化物ナノ粒子−導電剤複合体を負極材料として用いたリチウムイオンキャパシタ。 A lithium ion capacitor using the metal oxide nanoparticle-conductive agent composite according to claim 6 as a negative electrode material. 金属酸化物ナノ粒子原料及び導電剤をアミン系溶媒中にて加熱して金属酸化物ナノ粒子−導電剤複合体を得る製造方法であって、加熱温度が80℃〜240℃であり、加熱時の容器が開放系であり、容器内が常圧であることを特徴とする金属酸化物ナノ粒子−導電剤複合体の製造方法。 A method for producing a metal oxide nanoparticle-conductive agent composite by heating a metal oxide nanoparticle raw material and a conductive agent in an amine solvent, wherein the heating temperature is 80 ° C. to 240 ° C. A method for producing a metal oxide nanoparticle-conductive agent composite, wherein the container is an open system and the inside of the container is at atmospheric pressure.
JP2013162080A 2012-08-06 2013-08-05 METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION Expired - Fee Related JP6197454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162080A JP6197454B2 (en) 2012-08-06 2013-08-05 METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012173669 2012-08-06
JP2012173669 2012-08-06
JP2013162080A JP6197454B2 (en) 2012-08-06 2013-08-05 METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION

Publications (2)

Publication Number Publication Date
JP2014053295A JP2014053295A (en) 2014-03-20
JP6197454B2 true JP6197454B2 (en) 2017-09-20

Family

ID=50611568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162080A Expired - Fee Related JP6197454B2 (en) 2012-08-06 2013-08-05 METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION

Country Status (1)

Country Link
JP (1) JP6197454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469055B2 (en) 2017-09-25 2022-10-11 Lg Chem, Ltd. Pseudocapacitor anode material and method for preparing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439217B2 (en) * 2014-05-15 2019-10-08 Msmh, Llc Lithium intercalated nanocrystal anodes
JP5971279B2 (en) * 2014-05-30 2016-08-17 エス・イー・アイ株式会社 Method for producing electrode material
KR101587882B1 (en) * 2014-06-11 2016-01-28 순천향대학교 산학협력단 NbO Method for Preparing of Carbon-Coated NbO as Negative Electrode Material for Lithium-ion Secondary Battery
JP6293606B2 (en) * 2014-07-30 2018-03-14 株式会社東芝 Composite, composite manufacturing method, non-aqueous electrolyte battery active material, and non-aqueous electrolyte battery
JP6678012B2 (en) * 2015-11-10 2020-04-08 日本ケミコン株式会社 Electrode material, method for manufacturing electrode material, electrode, and power storage device
EP3943214A4 (en) * 2019-03-20 2022-12-14 Sekisui Chemical Co., Ltd. Composite material, electrode material for electricity storage devices, and electricity storage device
CN113130220A (en) * 2021-04-27 2021-07-16 伊诺福科光学技术有限公司 graphene/MnO electrode, preparation method thereof and high-energy-density supercapacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153480B1 (en) * 2010-06-24 2012-06-11 연세대학교 산학협력단 A lithium manganese oxide-carbon nano composite and a fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469055B2 (en) 2017-09-25 2022-10-11 Lg Chem, Ltd. Pseudocapacitor anode material and method for preparing the same

Also Published As

Publication number Publication date
JP2014053295A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances in electrospun electrode materials for sodium-ion batteries
US11631838B2 (en) Graphene-enhanced anode particulates for lithium ion batteries
Zhu et al. Designed nanoarchitectures by electrostatic spray deposition for energy storage
Sehrawat et al. Carbon nanotubes in Li-ion batteries: A review
JP6197454B2 (en) METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION
JP7195275B2 (en) ROLL-TYPE ALKALI METAL BATTERY AND MANUFACTURING METHOD
Kang et al. Binder-free electrodes and their application for Li-ion batteries
CN107408677B (en) Porous silicon-silicon oxide-carbon composite and method for preparing same
Wang et al. MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage
JP6593330B2 (en) Nanocarbon composite and method for producing the same
Li et al. Growth of ultrafine SnO2 nanoparticles within multiwall carbon nanotube networks: non-solution synthesis and excellent electrochemical properties as anodes for lithium ion batteries
JP5155498B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5664404B2 (en) Metal compound-conductive agent composite, lithium secondary battery using the same, and method for producing metal compound-conductive agent composite
JP5836568B2 (en) Lithium titanate crystal structure and carbon composite, manufacturing method thereof, electrode using the composite, and electrochemical device
KR20130139711A (en) Positive active material, method for preparation thereof and lithium battery comprising the same
JP6093570B2 (en) High performance energy storage and collection device containing exfoliated microtubes and spatially controlled attached nanoscale particles and layers
JP6288257B2 (en) Nanosilicon material, method for producing the same, and negative electrode of secondary battery
JP2013201120A (en) Method of preparing carbon nanotube-olivine type lithium manganese phosphate composites and lithium secondary battery using the same
Auxilia et al. Au@ TiO2/reduced graphene oxide nanocomposites for lithium-ion capacitors
Zhang et al. Mass production of three-dimensional hierarchical microfibers constructed from silicon–carbon core–shell architectures with high-performance lithium storage
Chen et al. Integrated design of hierarchical CoSnO3@ NC@ MnO@ NC nanobox as anode material for enhanced lithium storage performance
Li et al. A 3D heterogeneous FeTiO 3/TiO 2@ C fiber membrane as a self-standing anode for power Li-ion battery
Majeed et al. Silicon-based anode materials for lithium batteries: recent progress, new trends, and future perspectives
KR101256066B1 (en) Electrod and method of manufacturing the same and rechargeable battery including the same
Joshi et al. Perovskite lead zirconate titanate (PbZr0. 52Ti0. 48O3) nanofibers for inhibiting polysulfide shuttle effect in lithium-sulfur batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R151 Written notification of patent or utility model registration

Ref document number: 6197454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees