JP6190914B1 - Electric equipment with refrigerant flow path - Google Patents

Electric equipment with refrigerant flow path Download PDF

Info

Publication number
JP6190914B1
JP6190914B1 JP2016076299A JP2016076299A JP6190914B1 JP 6190914 B1 JP6190914 B1 JP 6190914B1 JP 2016076299 A JP2016076299 A JP 2016076299A JP 2016076299 A JP2016076299 A JP 2016076299A JP 6190914 B1 JP6190914 B1 JP 6190914B1
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
refrigerant flow
cooling
side refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016076299A
Other languages
Japanese (ja)
Other versions
JP2017188570A (en
Inventor
省吾 三木
省吾 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016076299A priority Critical patent/JP6190914B1/en
Application granted granted Critical
Publication of JP6190914B1 publication Critical patent/JP6190914B1/en
Publication of JP2017188570A publication Critical patent/JP2017188570A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】比熱容量の小さい空気を冷媒とする電気機器において、同一平面上を一方方向に冷媒が流れることで空気の顕熱上昇が生じ、吸気口から排気口に向けて冷却能力に分布が生じることで部品レイアウトに制約が発生する課題に対し、冷却性能の均一化、部品レイアウト自由度向上、冷媒流路の圧力損失低減が可能な冷媒流路付き電気機器を提供する。【解決手段】冷媒流路付き電気機器において、電気部品などの発熱体が取り付けられた第1の冷却面に対し、仕切り板により冷媒入口側と冷媒出口側に分離された冷媒流路が第1の冷却面と同一方向に積み重なる構成をもち、冷媒入口側と冷媒出口側の接続部に設置されたファンによって冷媒流れを折り返し、第1の冷却面から冷媒入口側及び冷媒出口側の冷媒流路を遮るように冷却フィンを設置することで、第1の冷却面の冷却性能の分布を抑制する。【選択図】 図2In an electrical device that uses air with a small specific heat capacity as a refrigerant, the flow of the refrigerant in one direction on the same plane causes an increase in sensible heat of the air, and distribution of cooling capacity occurs from the inlet to the outlet. Thus, there is provided an electric device with a refrigerant flow path capable of equalizing cooling performance, improving the degree of freedom of component layout, and reducing the pressure loss of the refrigerant flow path, in response to the problem that the component layout is restricted. In an electric device with a refrigerant flow path, a refrigerant flow path separated into a refrigerant inlet side and a refrigerant outlet side by a partition plate with respect to a first cooling surface to which a heating element such as an electrical component is attached is first. The refrigerant flow is folded back by a fan installed in the connection portion on the refrigerant inlet side and the refrigerant outlet side, and stacked from the first cooling surface to the refrigerant inlet side and the refrigerant outlet side. By installing the cooling fins so as to block the cooling, the distribution of the cooling performance of the first cooling surface is suppressed. [Selection] Figure 2

Description

本発明は、電気部品で発生する熱を冷却するための冷却器及びファンを有する電気機器の冷却構造に関するものである。   The present invention relates to a cooling structure for an electric device having a cooler and a fan for cooling heat generated in the electric component.

電気機器において、電気部品などの発熱体を冷却する場合、その多くが冷却器に取り付けられ、ポンプと液体冷媒を用いて冷却される。これら冷却専用のポンプを含む液体冷媒流路は、機器の搭載レイアウトを制限するため、一部製品では、ファンなどを用いた専用液体冷媒流路を持たない空冷式冷却器が必要とされている。   In an electric device, when a heating element such as an electric component is cooled, most of the heating element is attached to a cooler and is cooled using a pump and a liquid refrigerant. Since the liquid refrigerant flow path including these cooling-dedicated pumps limits the mounting layout of the equipment, some products require an air-cooled cooler that does not have a dedicated liquid refrigerant flow path using a fan or the like. .

従来、例えば発熱性部品とその周辺の部品が実装された基板の上部に、発熱性部品と熱的に接続されたヒートスプレッダを備え、基板とヒートスプレッダで形成された冷媒流路、または、ヒートスプレッダ内に形成された冷媒流路にファンが設置された冷却構造がある。この構造は吸気口から排気口に向けて、同一平面上を一方方向に冷媒が流れる冷媒流路構成である(例えば特許文献1参照)。   Conventionally, for example, a heat spreader that is thermally connected to a heat generating component is provided on the top of a substrate on which a heat generating component and its peripheral components are mounted, and the refrigerant flow path formed by the substrate and the heat spreader or the heat spreader is provided. There is a cooling structure in which a fan is installed in the formed refrigerant flow path. This structure is a refrigerant flow path configuration in which the refrigerant flows in one direction on the same plane from the intake port to the exhaust port (see, for example, Patent Document 1).

特許第4735528号公報Japanese Patent No. 4735528

特許文献1のように、同一平面上を一方方向に冷媒が流れる冷却器では、空気の顕熱上昇により、吸気口から排気口に向けて空気温度が上昇することで冷却能力が低下し、冷却能力に分布が生じるために部品レイアウトに制約が発生するという課題がある。これは、水あるいは不凍液などの液体冷媒に比べて比熱容量の小さい空気を冷媒とする空冷式冷却器で特に顕著となる。   As in Patent Document 1, in a cooler in which refrigerant flows in one direction on the same plane, the cooling capacity decreases due to the increase in air temperature from the intake port toward the exhaust port due to the increase in sensible heat of the air. There is a problem that the component layout is restricted due to the distribution of the capability. This is particularly noticeable in an air-cooled cooler that uses air having a smaller specific heat capacity as compared to liquid refrigerants such as water or antifreeze.

そこで、本発明は、気体冷媒を用いたファン内装空冷式冷却器をもつ電気機器において、冷却性能の均一化、搭載電気部品のレイアウト自由度向上、冷媒流路の圧力損失低減、および電気機器の小型化を目的としている。   Therefore, the present invention provides an electric device having a fan-internal air-cooled cooler using a gaseous refrigerant, uniform cooling performance, improved layout flexibility of mounted electric components, reduced pressure loss in the refrigerant flow path, and electric device It is aimed at miniaturization.

この発明に係る冷媒流路付き電気機器は、
電気部品が取り付けられた第1の冷却面をもつ筐体と、
前記筐体に取付けられ、前記筐体とともに、前記電気部品を冷却する冷媒を流す冷媒流路を形成する流路カバーと、
前記冷媒流路内に設けられ、前記冷媒流路を、冷媒入口を有する入口側冷媒流路と冷媒出口を有する出口側冷媒流路に分割する仕切り板と、
前記入口側冷媒流路及び前記出口側冷媒流路の接続部に設置されるとともに、前記仕切り板により、吸気口側が前記入口側冷媒流路に、排気口側が出口側冷媒流路に分離されたファンと、
前記第1の冷却面に立設され、前記入口側冷媒流路および前記出口側冷媒流路を貫通して設置された冷却フィンと、
を備え
記冷却フィンの少なくとも一部が、前記入口側冷媒流路および前記出口側冷媒流路の両方を遮るように設置され
前記仕切り板を前記冷媒流路の一部に限定して設けることにより、
前記入口側冷媒流路と前記出口側冷媒流路が、前記第1の冷却面に対し、同一方向に積み重なるように分割された部分と、積み重ならずに前記入口側冷媒流路または前記出口側冷媒流路のみが接するようにされている部分とで構成されていることを特徴とするものである。
The electrical equipment with a refrigerant flow path according to the present invention is
A housing having a first cooling surface to which electrical components are attached;
A flow path cover that is attached to the casing and forms a refrigerant flow path for flowing a refrigerant that cools the electrical component together with the casing;
A partition plate provided in the refrigerant channel, and dividing the refrigerant channel into an inlet side refrigerant channel having a refrigerant inlet and an outlet side refrigerant channel having a refrigerant outlet;
The inlet side is provided in the connecting portion of the refrigerant passage and the outlet side refrigerant passage Rutotomoni, by the partition plate, the air inlet side the inlet side refrigerant passage, the exhaust port side is separated into the outlet side refrigerant passage With fans,
Cooling fins erected on the first cooling surface and installed through the inlet-side refrigerant channel and the outlet-side refrigerant channel ;
Equipped with a,
At least part of the previous SL cooling fins, is provided to intercept both said inlet-side refrigerant flow path and the outlet side refrigerant passage,
By limiting the partition plate to a part of the refrigerant flow path,
The inlet side refrigerant flow path and the outlet side refrigerant flow path are divided so as to be stacked in the same direction with respect to the first cooling surface, and the inlet side refrigerant flow path or the outlet without being stacked. It is comprised by the part by which only the side refrigerant | coolant flow path contacts .

この発明によれば、冷媒出入口付近に設置された冷却フィンに、冷媒入口から取り込んだ低温冷媒が、冷却フィンの冷媒入口側に露出した部分に流れ、冷媒出口付近の発熱体より受熱し顕熱上昇した高温冷媒が、冷却フィンの冷媒出口側に露出した部分に流れることで、冷却フィン全体としては、低温側冷媒と高温側冷媒の中間温度の冷媒が流れた場合と同等の温度となる。また、冷媒入口側と冷媒出口側の接続部付近に設置された冷却フィンは、冷媒入口から上記接続部、すなわち中間地点まで、発熱体により顕熱上昇した冷媒が冷却フィンの冷媒入口側に露出した部分に流れ、ファンを通して折り返し、そのまま冷却フィンの冷媒出口側に露出した部分に流れるため、冷媒入口温度から冷媒出口温度の中間温度の冷媒が流れ、冷媒出入口付近の冷却フィンと同等の温度となる。これらの関係は、冷却フィンが設置された各場所で同様であり、冷却フィンが設置された第1の冷却面での
冷却性能の均一性を確保でき、部品レイアウト自由度が向上することで電気機器の小型化が可能である。また、仕切り板の形状のみで冷媒流路の形状を変更でき、この変更に伴い冷却フィンに流れる冷媒の温度、流速が変化することにより、冷媒流れ方向に沿って、第1の冷却面を、均一な冷却性能を有する部分と、冷却性能に分布を持たせた部分とに分割することができ、搭載する電気部品の発熱量に大きく差がある場合でも、レイアウトが可能となる。
According to the present invention, the low-temperature refrigerant taken from the refrigerant inlet flows into the cooling fins installed near the refrigerant inlet / outlet through the portion exposed to the refrigerant inlet side of the cooling fins, receives heat from the heating element near the refrigerant outlet, and sensible heat The rising high-temperature refrigerant flows to the portion exposed to the refrigerant outlet side of the cooling fin, so that the cooling fin as a whole has a temperature equivalent to that when the intermediate temperature refrigerant between the low-temperature side refrigerant and the high-temperature side refrigerant flows. In addition, the cooling fins installed near the connection between the refrigerant inlet side and the refrigerant outlet side are exposed to the refrigerant inlet side of the cooling fin from the refrigerant inlet to the connection part, i.e., the intermediate point. The refrigerant flows from the refrigerant inlet temperature to the part exposed at the refrigerant outlet side of the cooling fin, and the refrigerant flows at an intermediate temperature from the refrigerant inlet temperature to the refrigerant outlet temperature. Become. These relationships are the same at each location where the cooling fins are installed. The uniformity of the cooling performance on the first cooling surface where the cooling fins are installed can be ensured, and the degree of freedom in component layout improves. Equipment can be downsized. In addition, the shape of the refrigerant flow path can be changed only by the shape of the partition plate, and the temperature and flow velocity of the refrigerant flowing through the cooling fins change with this change, so that the first cooling surface is changed along the refrigerant flow direction, It can be divided into a portion having a uniform cooling performance and a portion having a distribution in the cooling performance, and a layout is possible even when there is a large difference in the amount of heat generated by the mounted electrical components.

さらに、冷媒流れ方向の折り返しにファンを使用することで、折り返し部の圧力損失が低減し、ファンの小型化あるいは冷却性能向上も可能である。   Furthermore, by using the fan for folding in the refrigerant flow direction, the pressure loss at the folded portion is reduced, and the fan can be downsized or the cooling performance can be improved.

本発明の実施の形態1に係る冷媒流路付き電気機器を示す斜視図である。It is a perspective view which shows the electric equipment with a refrigerant | coolant flow path which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒流路付き電気機器を示す図1のΙ-Ι断面図である。FIG. 2 is a cross-sectional view taken along the line Ι in FIG. 1 illustrating the electric device with a refrigerant flow path according to the first embodiment of the present invention. 本発明の実施の形態1に係る冷媒流路付き電気機器を示す図1のΙΙ-ΙΙ断面図である。FIG. 2 is a cross-sectional view taken along the line ΙΙ in FIG. 1 illustrating the electric device with a refrigerant flow path according to the first embodiment of the present invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の冷媒流路の変形例1を示す図1のΙ-Ι断面図である。FIG. 6 is a cross-sectional view taken along line IV-IV in FIG. 1 showing Modification 1 of the refrigerant flow path of the electric device with a refrigerant flow path according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る冷媒流路付き電気機器の冷媒流路の変形例2を示す図1のΙΙ-ΙΙ断面図である。FIG. 6 is a cross-sectional view taken along line IV-IV in FIG. 1 showing Modification 2 of the refrigerant flow path of the electric device with the refrigerant flow path according to the second embodiment of the present invention. 本発明の実施の形態2に係る冷媒流路付き電気機器の冷媒流路の変形例3を示す図1のΙΙ-ΙΙ断面図である。FIG. 6 is a cross-sectional view taken along line IV-IV in FIG. 1 showing Modification 3 of the refrigerant flow path of the electric device with the refrigerant flow path according to the second embodiment of the present invention. 本発明の実施の形態2に係る冷媒流路付き電気機器の冷媒流路の変形例4を示す図1のΙΙ-ΙΙ断面図である。FIG. 6 is a cross-sectional view taken along line IV-IV in FIG. 1 showing Modification 4 of the refrigerant flow path of the electric device with the refrigerant flow path according to the second embodiment of the present invention. 本発明の実施の形態2に係る冷媒流路付き電気機器の冷媒流路の変形例5を示す図1のΙΙ-ΙΙ断面図である。FIG. 6 is a cross-sectional view taken along line IV-IV in FIG. 1 showing Modification 5 of the refrigerant flow path of the electric device with the refrigerant flow path according to the second embodiment of the present invention. 本発明の実施の形態2に係る冷媒流路付き電気機器の冷媒流路の変形例6を示す図1のΙΙ-ΙΙ断面図である。FIG. 6 is a cross-sectional view taken along the line ΙΙ- FIG. 1 showing a sixth modification of the refrigerant flow path of the electric device with the refrigerant flow path according to the second embodiment of the present invention. 本発明の実施の形態3に係る冷媒流路付き電気機器の冷媒流路の変形例7を示す図1のΙ-Ι断面図である。FIG. 9 is a cross-sectional view taken along the line Ι- FIG. 1 showing Modification 7 of the refrigerant flow path of the electric device with the refrigerant flow path according to the third embodiment of the present invention. 本発明の実施の形態4に係る冷媒流路付き電気機器の冷媒流路の変形例8を示す図1のΙΙ-ΙΙ断面図である。FIG. 10 is a cross-sectional view taken along the line ΙΙ- FIG. 1 showing Modification 8 of the refrigerant flow path of the electric device with the refrigerant flow path according to the fourth embodiment of the present invention. 本発明の実施の形態5に係る冷媒流路付き電気機器の冷媒流路の変形例9を示す図1のΙ-Ι断面図である。FIG. 10 is a cross-sectional view taken along line IV-IV in FIG. 1 showing Modification 9 of the refrigerant flow path of the electric device with the refrigerant flow path according to the fifth embodiment of the present invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の冷媒流路の変形例10を示す図1のΙΙ-ΙΙ断面図である。FIG. 9 is a cross-sectional view taken along the line ΙΙ- FIG. 1 showing Modification 10 of the refrigerant flow path of the electric device with the refrigerant flow path according to the first embodiment of the present invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の冷媒流路の変形例11を示す図1のΙΙ-ΙΙ断面図である。FIG. 6 is a cross-sectional view taken along line IV-IV in FIG. 1 showing Modification 11 of the refrigerant flow path of the electric device with a refrigerant flow path according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の冷却フィンの変形例1を示す図1の流路カバーを除いた図である。It is the figure except the flow path cover of FIG. 1 which shows the modification 1 of the cooling fin of the electric equipment with a refrigerant flow path which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の冷却フィンの変形例2を示す図1の流路カバーを除いた図である。It is the figure except the flow path cover of FIG. 1 which shows the modification 2 of the cooling fin of the electric equipment with a refrigerant flow path which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の冷却フィンの変形例3を示す図1の流路カバーを除いた図である。It is the figure except the flow path cover of FIG. 1 which shows the modification 3 of the cooling fin of the electric equipment with a refrigerant flow path which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の冷却フィンの変形例4を示す図1の流路カバーを除いた図である。It is the figure except the flow path cover of FIG. 1 which shows the modification 4 of the cooling fin of the electric equipment with a refrigerant flow path which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の仕切り板構造の変形例1を示す図1のΙΙ-ΙΙ断面図である。FIG. 6 is a cross-sectional view taken along the line ΙΙ- FIG. 1 showing a first modification of the partition plate structure of the electric device with a refrigerant flow path according to the first embodiment of the present invention. 本発明の実施の形態1に係る冷媒流路付き電気機器の仕切り板構造の変形例2を示す図1のΙΙ-ΙΙ断面図である。FIG. 6 is a cross-sectional view taken along the line ΙΙ- FIG. 1 showing a second modification of the partition plate structure of the electric device with a refrigerant channel according to the first embodiment of the present invention.

実施の形態1.
図1は、本発明の実施の形態1に係わる冷媒流路付電気機器を示すもので、図2、3はそれぞれ、図1の互いに異なる指定された線に沿って切断したときの断面図である。具体的には、図2は図1のΙ-Ι断面図、図3は図1のΙΙ-ΙΙ断面図である。なお、本発明で用いられる冷媒は気体冷媒である。
Embodiment 1 FIG.
1 shows an electrical apparatus with a refrigerant flow path according to Embodiment 1 of the present invention, and FIGS. 2 and 3 are cross-sectional views taken along different designated lines in FIG. 1, respectively. is there. Specifically, FIG. 2 is a cross-sectional view taken along the line Ι- FIG. 1, and FIG. 3 is a cross-sectional view taken along the line ΙΙ-- FIG. The refrigerant used in the present invention is a gas refrigerant.

実施の形態1に係る冷媒流路付き電気機器は、筐体1の第1の冷却面9に設置された電気部品2と、電気部品2を筐体1の内部に内装するために取り付ける部品カバー3と、筐体1に設置され、筐体1とともに囲んだ領域に、電気部品2を冷却する冷媒を流す冷媒流路を形成する流路カバー4と、冷媒流路を、電気部品2が取り付けられた筐体1の第1の冷却面9に対して同一方向に積み重なるように分割する仕切り板5と、仕切り板5により分割された冷媒入口6aを持つ入口側冷媒流路6と冷媒出口7aを持つ出口側冷媒流路7の接続部に設置されたファン8と、第1の冷却面9に立設され、入口側冷媒流路6及び出口側冷媒流路7を貫通して設置される冷却フィン10とで構成される。   The electrical apparatus with a refrigerant flow path according to the first embodiment includes an electrical component 2 installed on the first cooling surface 9 of the housing 1 and a component cover that is attached to mount the electrical component 2 inside the housing 1. 3 and a flow path cover 4 that forms a refrigerant flow path for flowing a refrigerant that cools the electrical component 2 in a region that is installed in the housing 1 and enclosed with the housing 1, and the refrigerant flow path is attached to the electrical component 2. The partition plate 5 that is divided so as to be stacked in the same direction with respect to the first cooling surface 9 of the casing 1 that is formed, the inlet-side refrigerant flow path 6 having the refrigerant inlet 6a divided by the partition plate 5, and the refrigerant outlet 7a The fan 8 installed at the connection portion of the outlet side refrigerant flow path 7 having the above and the first cooling surface 9 is installed and penetrates the inlet side refrigerant flow path 6 and the outlet side refrigerant flow path 7. The cooling fin 10 is used.

電気部品2は、たとえば基板、ダイオードチップ、パワーモジュール、リアクトル、トランス、フィルター回路、バスバー、コネクタ、ハーネスなどにより構成される。   The electrical component 2 includes, for example, a substrate, a diode chip, a power module, a reactor, a transformer, a filter circuit, a bus bar, a connector, a harness, and the like.

冷媒流路には、電気部品2を効率よく冷却するための冷却フィン10が、入口側冷媒流路6と出口側冷媒流路7を、冷媒の流れる主方向に沿って、各流路を分割し遮るように設置されている。なお、図2中の矢印Aは、冷媒の流れ方向を示す。冷却フィン10は、図3に示すように、第1の冷却面9より流路カバー4までのサイズを有することが望ましいが、圧力損失の調整、あるいは一部の第1の冷却面9の冷却能力に分布を持たせるなどの目的のために、図13、14に示すように、種々のサイズを取りえる。   A cooling fin 10 for efficiently cooling the electrical component 2 is divided into the refrigerant flow path, dividing the inlet-side refrigerant flow path 6 and the outlet-side refrigerant flow path 7 along the main direction in which the refrigerant flows. It is installed so as to block it. Note that an arrow A in FIG. 2 indicates the flow direction of the refrigerant. As shown in FIG. 3, the cooling fin 10 preferably has a size from the first cooling surface 9 to the flow path cover 4, but adjustment of pressure loss or cooling of a part of the first cooling surface 9 is performed. As shown in FIGS. 13 and 14, various sizes can be used for the purpose of providing a distribution of capabilities.

ファン8は、形体により取り付け位置が異なるが、ファン8の吸気口、ファン8の排気口が、筐体1、あるいは冷却フィン10によって塞がれないように設置されている。また、筐体1、仕切り板5、流路カバー4などにより、ファン8の吸気口は、入口側冷媒流路6側に、ファン8の排気口は、出口側冷媒流路7側に分離して設けられている。なお、ファン8は、筐体1、流路カバー4、仕切り板5の何れかにねじ止めなどにより固定される。   Although the mounting position of the fan 8 differs depending on the shape, the fan 8 is installed so that the intake port of the fan 8 and the exhaust port of the fan 8 are not blocked by the casing 1 or the cooling fins 10. Further, the housing 1, the partition plate 5, the flow path cover 4, and the like separate the intake port of the fan 8 on the inlet side refrigerant flow path 6 side and the exhaust port of the fan 8 on the outlet side refrigerant flow path 7 side. Is provided. The fan 8 is fixed to any one of the housing 1, the flow path cover 4, and the partition plate 5 by screwing or the like.

仕切り板5は、筐体1と別体で作られることが望ましいが、筐体1、冷却フィン10などと一体成型で作られていてもよい。筐体1と仕切り板5が別体で作られる場合、仕切り板5には、冷却フィン10を貫通させるための穴、および冷却フィン10に仕切り板5をはめ込むことで仕切り板5を挟むように構成される入口側冷媒流路6、出口側冷媒流路7が形成される。また、この仕切り板5は、ねじ止め、カシメなどの種々の方法により筐体1に固定される。なお、仕切り板5は流路カバー4と一体成型で作られていてもよい。   The partition plate 5 is preferably made separately from the housing 1, but may be made by integral molding with the housing 1, the cooling fins 10, and the like. When the housing 1 and the partition plate 5 are made separately, the partition plate 5 is sandwiched between the holes for penetrating the cooling fins 10 and the partition plates 5 fitted into the cooling fins 10. An inlet side refrigerant flow path 6 and an outlet side refrigerant flow path 7 are formed. Further, the partition plate 5 is fixed to the housing 1 by various methods such as screwing and caulking. The partition plate 5 may be made by integral molding with the flow path cover 4.

筐体1は、冷却フィン10と一体成型するために、ダイカストなどの金型鋳造法で成型されることが望ましいが、筐体1と冷却フィン10を別体で成型した後、ねじ、ボルト、溶接、ろう付けなど、種々の方法により固定されてもよい。   The casing 1 is preferably molded by a die casting method such as die casting in order to be integrally molded with the cooling fin 10, but after the casing 1 and the cooling fin 10 are molded separately, screws, bolts, It may be fixed by various methods such as welding and brazing.

このような構造によれば、第1の冷却面9に接続され、仕切り板5により分割された入口側冷媒流路6と出口側冷媒流路7を遮るように設置された冷却フィン10に対し、冷却フィン10の入口側冷媒流路6に露出した部分に、入口側冷媒すなわち低温側冷媒が流れ、冷却フィン10の出口側冷媒流路7に露出した部分に出口側冷媒すなわち高温側冷媒が流れることで、冷却フィン10全体が低温側冷媒と高温側冷媒の中間温度の冷媒が流れる状態と同等の影響を受け、第1の冷却面9の全面で均一な冷却性能を有することができ、第1の冷却面9上での電気部品2のレイアウト自由度が向上する。さらに、入口側冷媒流路6と出口側冷媒流路7の接続部にファン8を配置することで、冷媒入口、もしくは冷媒出口にファン8を設置する構成に対し、折り返し部の圧力損失を低減することができ、ファン8の小型、低コスト化もしくは、風量増加による冷却性能の向上が可能となる。   According to such a structure, the cooling fin 10 connected to the first cooling surface 9 and installed so as to block the inlet side refrigerant flow path 6 and the outlet side refrigerant flow path 7 divided by the partition plate 5 is used. The inlet-side refrigerant, that is, the low-temperature side refrigerant flows through the portion exposed to the inlet-side refrigerant flow path 6 of the cooling fin 10, and the outlet-side refrigerant, that is, the high-temperature side refrigerant flows through the portion exposed to the outlet-side refrigerant flow path 7 of the cooling fin 10. By flowing, the entire cooling fin 10 is affected by the same effect as a state in which a refrigerant having an intermediate temperature between the low temperature side refrigerant and the high temperature side refrigerant flows, and can have uniform cooling performance over the entire first cooling surface 9, The degree of freedom of layout of the electrical component 2 on the first cooling surface 9 is improved. Further, by disposing the fan 8 at the connection portion between the inlet side refrigerant flow path 6 and the outlet side refrigerant flow path 7, the pressure loss at the folded portion is reduced compared to the configuration in which the fan 8 is installed at the refrigerant inlet or the refrigerant outlet. Therefore, it is possible to reduce the size and cost of the fan 8 or to improve the cooling performance by increasing the air volume.

ここで、入口側冷媒流路6と出口側冷媒流路7は、図2、図4に示すように、どちらが第1の冷却面9側に配置されていてもよい。なお、図4中の矢印Bは、冷媒の流れ方向を示す。また、ファン8の種類などにより、入口側冷媒流路6と出口側冷媒流路7は、種々の形体を取りえる。   Here, either the inlet side refrigerant flow path 6 or the outlet side refrigerant flow path 7 may be arranged on the first cooling surface 9 side, as shown in FIGS. In addition, the arrow B in FIG. 4 shows the flow direction of a refrigerant | coolant. Further, depending on the type of the fan 8, the inlet side refrigerant flow path 6 and the outlet side refrigerant flow path 7 can take various shapes.

実施の形態2.
図5、6、7、8、9は、本発明の実施の形態2に係る冷媒流路付き電気機器を示すものである。なお、実施の形態2は、仕切り板5の形状のみが実施の形態1と異なるため、異なる部分についてのみ説明し、他の部分については説明を省略する。
Embodiment 2. FIG.
5, 6, 7, 8, and 9 show an electrical apparatus with a refrigerant flow path according to Embodiment 2 of the present invention. In the second embodiment, only the shape of the partition plate 5 is different from that of the first embodiment. Therefore, only different parts will be described, and description of the other parts will be omitted.

実施の形態2は、仕切り板5によってファン8の吸気口側が入口側冷媒流路6に、ファン8の排気口側が出口側冷媒流路7に分離されている。また、仕切り板5を冷媒流路全面ではなく部分的に限定することで、入口側冷媒流路6と出口側冷媒流路7が第1の冷却面9に対して同一方向に積み重なるように分割された部分と、積み重ならずに入口側冷媒流路6または出口側冷媒流路7のみが接するようにされている部分とで構成されている。   In the second embodiment, the partition plate 5 separates the inlet side of the fan 8 into the inlet side refrigerant flow path 6 and the exhaust port side of the fan 8 into the outlet side refrigerant flow path 7. Further, the partition plate 5 is partially limited rather than the entire surface of the refrigerant flow path, so that the inlet side refrigerant flow path 6 and the outlet side refrigerant flow path 7 are stacked in the same direction with respect to the first cooling surface 9. And a portion where only the inlet side refrigerant flow path 6 or the outlet side refrigerant flow path 7 is in contact with each other without being stacked.

このような構成によれば、筐体1、あるいは冷却フィン10の形状を変更せずに、仕切り板5の形状のみで冷媒流路の入口側冷媒流路6の形状、あるいは出口側冷媒流路7の形状を変更できる。   According to such a configuration, without changing the shape of the casing 1 or the cooling fin 10, only the shape of the partition plate 5 is used, or the shape of the inlet-side refrigerant channel 6 of the refrigerant channel or the outlet-side refrigerant channel. 7 shape can be changed.

これらの冷媒流路形状変更に伴い、冷却フィン10に流れる冷媒の温度、冷媒の流速が変化することで、冷媒流れ方向に沿って、第1の冷却面9を均一な冷却性能を有する第1の冷却面9と、冷却性能に分布を持たせた第1の冷却面9とに分割することができ、搭載する電気部品2の発熱量に大きく差がある場合でも、レイアウトが可能となる。   As the refrigerant flow path shape changes, the temperature of the refrigerant flowing through the cooling fin 10 and the flow velocity of the refrigerant change, so that the first cooling surface 9 has uniform cooling performance along the refrigerant flow direction. The cooling surface 9 can be divided into the first cooling surface 9 having a distribution of cooling performance, and a layout is possible even when there is a large difference in the amount of heat generated by the mounted electrical component 2.

仕切り板5の形状により、搭載される電気部品2のうち、最も発熱量の大きい部品を冷媒入口付近の第1の冷却面9に配置し、その第1の冷却面9の下部には入口側冷媒流路6のみを配置し、その他の部品が配置される第1の冷却面9下部に、入口側冷媒流路6と出口側冷媒流路7を配置する構成とすることで、発熱量が大きい一部の電気部品2が搭載される第1の冷却面9の領域のみ冷却性能を向上させ、その他の領域は均一な冷却性能を持つ第1の冷却面9に配置してもよい。   Due to the shape of the partition plate 5, among the mounted electrical components 2, the component having the largest heat generation amount is disposed on the first cooling surface 9 near the refrigerant inlet, and the lower part of the first cooling surface 9 has an inlet side. Only the refrigerant flow path 6 is disposed, and the inlet side refrigerant flow path 6 and the outlet side refrigerant flow path 7 are disposed below the first cooling surface 9 where other components are disposed. The cooling performance may be improved only in the region of the first cooling surface 9 where a large part of the electrical component 2 is mounted, and the other regions may be arranged on the first cooling surface 9 having uniform cooling performance.

さらに、このように仕切り板5の形状のみで、冷媒流路の形状を変更できるため、電気機器設計後に、仕様変更などで電気部品2に係る各部品の発熱量が変更になった場合でも、筐体1を作り直すことなく、容易に冷却性能を調整することができる。ここで、冷媒流れ方向と直交する流路断面において、仕切り板面に垂直方向の冷媒流路のサイズを流路高さ、水平方向の冷媒流路のサイズを流路幅と呼ぶ(以下同様)。   Furthermore, since the shape of the refrigerant flow path can be changed only by the shape of the partition plate 5 in this way, even when the calorific value of each component related to the electrical component 2 is changed due to a specification change after the electrical equipment design, The cooling performance can be easily adjusted without recreating the housing 1. Here, in the channel cross section orthogonal to the refrigerant flow direction, the size of the refrigerant channel perpendicular to the partition plate surface is referred to as channel height, and the size of the horizontal refrigerant channel is referred to as channel width (the same applies hereinafter). .

また、図示しないが、仕切り板5は第1の冷却面9に対し、平行でなくても良い。   Although not shown, the partition plate 5 may not be parallel to the first cooling surface 9.

実施の形態3.
図10は、本発明の実施の形態3に係る冷媒流路付き電気機器を示すものである。なお、実施の形態3の冷媒流路付き電気機器は、仕切り板5の形状のみが実施の形態1と異なるため、異なる部分についてのみ説明し、他の部分については説明を省略する。
Embodiment 3 FIG.
FIG. 10 shows an electric device with a refrigerant flow path according to the third embodiment of the present invention. In addition, since only the shape of the partition plate 5 is different from that of the first embodiment, the electric device with a refrigerant flow channel according to the third embodiment will be described only with respect to different parts, and description of the other parts will be omitted.

実施の形態3では、仕切り板5の形状により、第1の冷却面9と仕切り板5との距離と、仕切り板5と流路カバー4との距離が場所によって異なるよう構成されている。   In Embodiment 3, according to the shape of the partition plate 5, the distance between the first cooling surface 9 and the partition plate 5 and the distance between the partition plate 5 and the flow path cover 4 are different depending on the location.

このような構成によれば、筐体1、あるいは冷却フィン10の形状を変更せずに、仕切り板5の形状のみで、冷媒流路の入口側冷媒流路6の形状、出口側冷媒流路7の形状を変更できる。これらの冷媒流路の形状変更に伴い、冷却フィン10に流れる冷媒の流速を調整することができ、第1の冷却面9全体ではなく、部分的に冷却性能を向上させることができる。すなわち、特定領域の冷却性能を向上させることができる。   According to such a configuration, the shape of the inlet side refrigerant flow path 6 of the refrigerant flow path, the shape of the outlet side refrigerant flow path, only the shape of the partition plate 5 without changing the shape of the housing 1 or the cooling fin 10. 7 shape can be changed. Along with the change in the shape of these refrigerant flow paths, the flow rate of the refrigerant flowing through the cooling fins 10 can be adjusted, and the cooling performance can be partially improved rather than the entire first cooling surface 9. That is, the cooling performance of a specific area can be improved.

発熱量の大きい電気部品2を冷媒流れに直交する方向に沿って第1の冷却面9に搭載し、第1の冷却面9側を入口側冷媒流路6、流路カバー4側を出口側冷媒流路7とし、仕切り板5の形状によって、冷媒流れに直交する方向に沿って、出口側冷媒流路7の断面積に対して、入口側冷媒流路6の断面積を小さくすることで、入口側冷媒流路6の低温冷媒の冷媒の流速を速くすることで、冷却フィン10との熱伝達を向上させ、出口側冷媒流路7の断面積に対して入口側冷媒流路6の断面積が小さい冷媒流路に接する第1の冷却面9の冷却能力を向上させてもよい。   The electric component 2 having a large calorific value is mounted on the first cooling surface 9 along the direction orthogonal to the refrigerant flow, the first cooling surface 9 side being the inlet side refrigerant flow path 6 and the flow path cover 4 side being the outlet side. By reducing the cross-sectional area of the inlet-side refrigerant flow path 6 relative to the cross-sectional area of the outlet-side refrigerant flow path 7 along the direction orthogonal to the refrigerant flow, depending on the shape of the partition plate 5 as the refrigerant flow path 7. By increasing the flow rate of the low-temperature refrigerant in the inlet-side refrigerant flow path 6, heat transfer with the cooling fin 10 is improved, and the inlet-side refrigerant flow path 6 has a cross-sectional area with respect to the outlet-side refrigerant flow path 7. You may improve the cooling capacity of the 1st cooling surface 9 which contact | connects a refrigerant | coolant flow path with a small cross-sectional area.

実施の形態4.
図11は、本発明の実施の形態4に係る冷媒流路付き電気機器を示すものである。なお、実施の形態4では、冷媒流路形状が実施の形態1の場合とは異なるため、異なる部分についてのみ説明し、他の部分については説明を省略する。
Embodiment 4 FIG.
FIG. 11 shows an electric device with a refrigerant flow path according to the fourth embodiment of the present invention. In the fourth embodiment, the shape of the refrigerant flow path is different from that in the first embodiment, so only the different parts will be described and the description of the other parts will be omitted.

実施の形態4の冷媒流路付き電気機器は、第1の冷却面9と仕切り板5によって構成される冷媒流路と、仕切り板5と流路カバー4によって構成される冷媒流路の流路幅が異なる。すなわち、図11に示すように、入口側冷媒流路6と出口側冷媒流路7が一方方向に積み重なる第1の冷却面9と、入口側冷媒流路6または出口側冷媒流路7のどちらか一方と一方方向に積み重なる第2の冷却面11とで構成されている。   The electric device with a refrigerant flow path according to the fourth embodiment includes a refrigerant flow path configured by the first cooling surface 9 and the partition plate 5, and a flow path of the coolant flow path configured by the partition plate 5 and the flow path cover 4. The width is different. That is, as shown in FIG. 11, the first cooling surface 9 in which the inlet-side refrigerant flow path 6 and the outlet-side refrigerant flow path 7 are stacked in one direction, and either the inlet-side refrigerant flow path 6 or the outlet-side refrigerant flow path 7 These are composed of one and a second cooling surface 11 stacked in one direction.

このような構成によれば、発熱密度の低い電気部品2を第2の冷却面11に配置し、発熱密度の高い電気部品2を第1の冷却面9に配置することで、発熱密度の低い電気部品2が設置された第2の冷却面11は、冷媒流れ方向に向かって冷媒の顕熱上昇の影響を受け冷却性能に分布を持つが、発熱密度の高い電気部品2が配置された第1の冷却面9は、低温冷媒と高温冷媒の双方が冷却フィン10に流れ、かつそのどちらか一方が、流路断面積減少により冷媒流速が大きくなることで、冷却性能の向上かつ、冷却能力の分布の抑制をすることで電気部品2のレイアウト自由度が向上する。   According to such a configuration, the electric component 2 having a low heat generation density is arranged on the second cooling surface 11, and the electric component 2 having a high heat generation density is arranged on the first cooling surface 9, so that the heat generation density is low. The second cooling surface 11 on which the electric component 2 is installed has a cooling performance distribution due to the influence of the sensible heat rise of the refrigerant in the refrigerant flow direction, but the second cooling surface 11 on which the electric component 2 having a high heat generation density is arranged. 1 has a cooling surface 9 that has both a low-temperature refrigerant and a high-temperature refrigerant flowing through the cooling fins 10, and one of the cooling surfaces 9 has an increased cooling flow rate due to a reduction in the cross-sectional area of the flow path. The degree of freedom in the layout of the electrical component 2 is improved by suppressing the distribution of.

また、第1の冷却面9と第2の冷却面11の実装面の高さの違いを利用して、高さなどのサイズが違う電気部品2をそれぞれの面に搭載することで、レイアウト自由度を向上させることも可能となる。   In addition, by using the difference in height between the mounting surfaces of the first cooling surface 9 and the second cooling surface 11, the electrical components 2 having different sizes such as height can be mounted on the respective surfaces, thereby allowing freedom in layout. It is also possible to improve the degree.

実施の形態5.
図12は、本発明の実施の形態5に係る冷媒流路付き電気機器を示すものである。なお、実施の形態5では、電気部品2の第1の冷却面9、冷媒流路形状が実施の形態1と異なるため、異なる部分についてのみ説明し、他の部分については説明を省略する。
Embodiment 5. FIG.
FIG. 12 shows an electric device with a refrigerant flow path according to the fifth embodiment of the present invention. In the fifth embodiment, since the first cooling surface 9 and the refrigerant flow path shape of the electrical component 2 are different from those in the first embodiment, only different portions will be described, and description of other portions will be omitted.

実施の形態5は、電気部品2を実装する筐体1の第1の冷却面9に加え、冷媒流路を挟んで対向する第3の冷却面12にも電気部品2を実装されている。   In the fifth embodiment, in addition to the first cooling surface 9 of the housing 1 on which the electrical component 2 is mounted, the electrical component 2 is also mounted on the third cooling surface 12 that faces the refrigerant flow path.

このような構成によれば、電気部品2を第1の冷却面9のみならず、第3の冷却面12にも実装することが出来るため、高密度な実装が可能となり、電気機器の小型化などが可能となる。   According to such a configuration, since the electrical component 2 can be mounted not only on the first cooling surface 9 but also on the third cooling surface 12, high-density mounting is possible, and downsizing of the electrical equipment is possible. It becomes possible.

冷却フィンは、第1の冷却面9と第3の冷却面12の双方に接続されていることが望ましいが、発熱密度が高い電気部品2が実装された第1の冷却面9のみに冷却フィン10が設けられ、冷却フィン10を必要としない発熱密度が低い電気部品2をフィンが接続されていない第3の第1の冷却面9に搭載してもよい。   The cooling fins are preferably connected to both the first cooling surface 9 and the third cooling surface 12, but only the first cooling surface 9 on which the electrical component 2 having a high heat generation density is mounted is provided. 10 may be mounted on the third first cooling surface 9 to which the fins are not connected.

以上、本発明の各実施の形態について順に説明したが、各図は、各実施の形態に係る冷媒流路付き電気機器の一例を示したものであり、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   As mentioned above, although each embodiment of this invention was described in order, each figure shows an example of the electric equipment with a refrigerant flow path concerning each embodiment, and this invention is within the scope of the invention. The embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

例えば、各図中の冷却フィン10はストレートで図示したが、図15、16、17、18に示すように、ピンフィン、オフセットフィン、ウェーブフィンなどは、種々の形状をとりえる。   For example, although the cooling fin 10 in each drawing is illustrated as being straight, as shown in FIGS. 15, 16, 17, and 18, pin fins, offset fins, wave fins, and the like can take various shapes.

また、流路の入口、出口は、各図中では、同一平面で図示したが、それぞれが異なる面に配置されていてもよい。   Moreover, although the inlet and outlet of the flow path are shown in the same plane in each drawing, they may be arranged on different planes.

また、仕切り板5は、冷却フィン10形状に対してクリアランスを設けた形状、あるいは冷却フィン10が先端に向けて細くなる形状を持つことで、仕切り板5の位置決め機構を持つ構成、あるいは図19、20に示すように、冷却フィン10が段付き形状を持つことで、仕切り板5の位置決め機構と冷却フィン10と仕切り板5の接触面積の増加による空気抜け防止機構を兼ねる構成など、種々の形状を取りえる。   Further, the partition plate 5 has a configuration in which a clearance is provided with respect to the shape of the cooling fin 10 or a shape in which the cooling fin 10 becomes narrower toward the tip, so that the partition plate 5 has a positioning mechanism, or FIG. 20, since the cooling fin 10 has a stepped shape, various configurations such as a positioning mechanism for the partition plate 5 and an air escape prevention mechanism by increasing the contact area between the cooling fin 10 and the partition plate 5 are provided. Take shape.

さらに、各図で図示した流路カバー4は板状であるが、升状のカバーになっていてもよい。また、筐体1は、図3に示した断面において、電気部品2側の部品カバー3として升状の部品カバー3としたが、例えば筐体1の壁面を電気部品2の高さ以上とし、板状の部品カバー3を取り付けてもよい。   Furthermore, although the flow path cover 4 illustrated in each drawing is plate-shaped, it may be a bowl-shaped cover. Further, in the cross section shown in FIG. 3, the casing 1 is a bowl-shaped component cover 3 as the component cover 3 on the electric component 2 side. For example, the wall surface of the casing 1 is set to be equal to or higher than the height of the electric component 2. A plate-shaped component cover 3 may be attached.

1 筐体、2 電気部品、3 部品カバー、4 流路カバー、5 仕切り板、6 入口側冷媒流路、6a 冷媒入口、7 出口側冷媒流路、7a 冷媒出口、8 ファン、9 第1の冷却面、10 冷却フィン、11 第2の冷却面、12 第3の冷却面   DESCRIPTION OF SYMBOLS 1 Case, 2 Electrical components, 3 Parts cover, 4 Flow path cover, 5 Partition plate, 6 Inlet side refrigerant | coolant flow path, 6a Refrigerant inlet, 7 Outlet side refrigerant | coolant flow path, 7a Refrigerant outlet, 8 Fan, 9 1st Cooling surface, 10 Cooling fin, 11 Second cooling surface, 12 Third cooling surface

Claims (4)

電気部品が取り付けられた第1の冷却面をもつ筐体と、
前記筐体に取付けられ、前記筐体とともに、前記電気部品を冷却する冷媒を流す冷媒流路を形成する流路カバーと、
前記冷媒流路内に設けられ、前記冷媒流路を、冷媒入口を有する入口側冷媒流路と冷媒出口を有する出口側冷媒流路に分割する仕切り板と、
前記入口側冷媒流路及び前記出口側冷媒流路の接続部に設置されるとともに、前記仕切り板により、吸気口側が前記入口側冷媒流路に、排気口側が出口側冷媒流路に分離されたファンと、
前記第1の冷却面に立設され、前記入口側冷媒流路および前記出口側冷媒流路を貫通して設置された冷却フィンと、
を備え
記冷却フィンの少なくとも一部が、前記入口側冷媒流路および前記出口側冷媒流路の両方を遮るように設置され
前記仕切り板を前記冷媒流路の一部に限定して設けることにより、
前記入口側冷媒流路と前記出口側冷媒流路が、前記第1の冷却面に対し、同一方向に積み重なるように分割された部分と、積み重ならずに前記入口側冷媒流路または前記出口側冷媒流路のみが接するようにされている部分とで構成されていることを特徴とする冷媒流路付き電気機器。
A housing having a first cooling surface to which electrical components are attached;
A flow path cover that is attached to the casing and forms a refrigerant flow path for flowing a refrigerant that cools the electrical component together with the casing;
A partition plate provided in the refrigerant channel, and dividing the refrigerant channel into an inlet side refrigerant channel having a refrigerant inlet and an outlet side refrigerant channel having a refrigerant outlet;
The inlet side is provided in the connecting portion of the refrigerant passage and the outlet side refrigerant passage Rutotomoni, by the partition plate, the air inlet side the inlet side refrigerant passage, the exhaust port side is separated into the outlet side refrigerant passage With fans,
Cooling fins erected on the first cooling surface and installed through the inlet-side refrigerant channel and the outlet-side refrigerant channel ;
Equipped with a,
At least part of the previous SL cooling fins, is provided to intercept both said inlet-side refrigerant flow path and the outlet side refrigerant passage,
By limiting the partition plate to a part of the refrigerant flow path,
The inlet side refrigerant flow path and the outlet side refrigerant flow path are divided so as to be stacked in the same direction with respect to the first cooling surface, and the inlet side refrigerant flow path or the outlet without being stacked. An electric device with a refrigerant flow path , characterized in that it is configured with a portion that is in contact with only the side refrigerant flow path .
前記冷媒の流れ方向と直交する前記冷媒流路の流路断面の、前記第1の冷却面に対して垂直な方向のサイズである流路高さが、前記仕切り板により、入口側冷媒流路と出口側冷媒流路で異なるように構成されていることを特徴とする請求項1に記載の冷媒流路付き電気機器。 The flow path height, which is the size in the direction perpendicular to the first cooling surface, of the cross section of the refrigerant flow path orthogonal to the flow direction of the refrigerant is determined by the partition plate so that the inlet side refrigerant flow path The electrical apparatus with a refrigerant flow path according to claim 1, wherein the electric apparatus is configured so as to be different from each other at the outlet side refrigerant flow path. 前記冷媒の流れ方向と直交する前記冷媒流路の流路断面の、前記第1の冷却面に対して垂直な方向に直交する方向のサイズである流路幅が、前記筐体により、前記入口側冷媒流路と前記出口側冷媒流路で異なるように設定され、
前記入口側冷媒流路と前記出口側冷媒流路の両方と同一方向に積み重なる前記第1の冷却面と、
前記入口側冷媒流路と前記出口側冷媒流路のうち、どちらか一方と同一方向に積み重なる第2の冷却面を持つことを特徴とする請求項1に記載の冷媒流路付き電気機器。
A flow path width that is a size in a direction orthogonal to a direction perpendicular to the first cooling surface of a cross section of the refrigerant flow path orthogonal to the flow direction of the refrigerant is determined by the housing. The side refrigerant flow path and the outlet side refrigerant flow path are set differently,
The first cooling surface stacked in the same direction as both the inlet-side refrigerant flow path and the outlet-side refrigerant flow path;
The electrical apparatus with a refrigerant flow path according to claim 1, further comprising a second cooling surface that is stacked in the same direction as one of the inlet-side refrigerant flow path and the outlet-side refrigerant flow path.
前記筐体は、前記第1の冷却面に対し前記冷媒流路を挟んで対向する第3の冷却面を有し、
前記第3の冷却面に電気部品が取り付けられていることを特徴とする請求項1からのいずれか1項に記載の冷媒流路付き電気機器。
The housing has a third cooling surface facing the first cooling surface across the refrigerant flow path,
The electrical device with a refrigerant flow path according to any one of claims 1 to 3 , wherein an electrical component is attached to the third cooling surface.
JP2016076299A 2016-04-06 2016-04-06 Electric equipment with refrigerant flow path Active JP6190914B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076299A JP6190914B1 (en) 2016-04-06 2016-04-06 Electric equipment with refrigerant flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076299A JP6190914B1 (en) 2016-04-06 2016-04-06 Electric equipment with refrigerant flow path

Publications (2)

Publication Number Publication Date
JP6190914B1 true JP6190914B1 (en) 2017-08-30
JP2017188570A JP2017188570A (en) 2017-10-12

Family

ID=59720392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076299A Active JP6190914B1 (en) 2016-04-06 2016-04-06 Electric equipment with refrigerant flow path

Country Status (1)

Country Link
JP (1) JP6190914B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115462188A (en) * 2020-04-28 2022-12-09 日立安斯泰莫株式会社 Electronic control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200116815A (en) 2019-04-02 2020-10-13 엘지이노텍 주식회사 Converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142114B2 (en) * 1996-06-05 2001-03-07 株式会社ピーエフユー Heating element cooling structure
JP5052422B2 (en) * 2008-06-20 2012-10-17 三菱電機株式会社 Electronic equipment and heat sink
JP5428968B2 (en) * 2010-03-16 2014-02-26 株式会社デンソーウェーブ Cooling system
JP2013251371A (en) * 2012-05-31 2013-12-12 Toyota Industries Corp Cooler
JP6238855B2 (en) * 2014-08-07 2017-11-29 三菱電機株式会社 Electronics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115462188A (en) * 2020-04-28 2022-12-09 日立安斯泰莫株式会社 Electronic control device

Also Published As

Publication number Publication date
JP2017188570A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
US11474574B2 (en) Cooling apparatus
KR101459204B1 (en) Cooler
US11248848B1 (en) Liquid-cooling heat dissipation apparatus
JP5488599B2 (en) heatsink
JP7238400B2 (en) Cooling system
US20160313072A1 (en) Heat sink for cooling plurality of heat generating components
JP2016219572A (en) Liquid cooling cooler
JP2017050375A (en) Electrical apparatus with coolant passage
JP2003008264A (en) Cooling device of electronic component
JP6190914B1 (en) Electric equipment with refrigerant flow path
US20160360641A1 (en) Electronic device
CN115051531A (en) Power conversion device and method for manufacturing same
JP2019013111A (en) Electric power conversion device
JP5117287B2 (en) Electronic equipment cooling system
JP2019054224A (en) Liquid-cooled type cooling device
JP4517962B2 (en) Cooling device for electronic equipment
JP2007335624A (en) Liquid-cooled cooler for electronic appliance
KR20120107867A (en) Heat pump system
JP5153275B2 (en) Fan motor with heat sink
WO2017046986A1 (en) Cooling device and electronic device equipped with same
JP2019079836A (en) Liquid-cooled cooler
JP7124929B1 (en) Inverter device
WO2016208180A1 (en) Cooling device and electronic apparatus having same mounted thereon
WO2023181481A1 (en) Cooling device
WO2023092326A1 (en) Heat dissipation plate, electronic assembly, and terminal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R151 Written notification of patent or utility model registration

Ref document number: 6190914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250