JP6190785B2 - Carbon dioxide recovery device - Google Patents

Carbon dioxide recovery device Download PDF

Info

Publication number
JP6190785B2
JP6190785B2 JP2014179847A JP2014179847A JP6190785B2 JP 6190785 B2 JP6190785 B2 JP 6190785B2 JP 2014179847 A JP2014179847 A JP 2014179847A JP 2014179847 A JP2014179847 A JP 2014179847A JP 6190785 B2 JP6190785 B2 JP 6190785B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
tank
exhaust gas
adsorption
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014179847A
Other languages
Japanese (ja)
Other versions
JP2016052632A (en
Inventor
昇 川口
昇 川口
基一 嶋村
基一 嶋村
喜雄 大友
喜雄 大友
祐樹 高橋
祐樹 高橋
茂島 符
茂島 符
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014179847A priority Critical patent/JP6190785B2/en
Publication of JP2016052632A publication Critical patent/JP2016052632A/en
Application granted granted Critical
Publication of JP6190785B2 publication Critical patent/JP6190785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Description

この発明は二酸化炭素回収装置に関し、より具体的には、コージェネレーション装置の発電機を駆動する内燃機関から排出される二酸化炭素を回収して植物栽培施設に供給する装置に関する。   The present invention relates to a carbon dioxide recovery device, and more specifically to an apparatus that recovers carbon dioxide discharged from an internal combustion engine that drives a generator of a cogeneration device and supplies the carbon dioxide to a plant cultivation facility.

従来から発電所などの大型プラントから排出される排ガスから二酸化炭素を回収することは良く行われているが、近時、特許文献1記載の技術の如く、コージェネレーション装置の発電機を駆動する内燃機関から排出される排ガスに含まれる二酸化炭素を回収して植物栽培施設に供給することでエネルギ効率を高めるようにした二酸化炭素回収装置が提案されている。   Conventionally, carbon dioxide is often recovered from exhaust gas discharged from a large plant such as a power plant. Recently, as in the technique described in Patent Document 1, an internal combustion engine that drives a generator of a cogeneration apparatus is used. A carbon dioxide recovery device has been proposed in which energy efficiency is improved by recovering carbon dioxide contained in exhaust gas discharged from an engine and supplying it to a plant cultivation facility.

特許文献1記載の技術は植物栽培施設において果実などの収穫後の植物残渣をコージェネレーション装置の内燃機関を駆動するエネルギ源として利用し、その燃焼によって生じる排熱を栽培施設の熱源として利用すると共に、内燃機関から排出される排ガスを圧力調整して二酸化炭素貯蔵タンクに貯留した後、植物栽培施設に供給するように構成される。   The technique described in Patent Document 1 uses plant residues after harvesting, such as fruits, in plant cultivation facilities as an energy source for driving the internal combustion engine of the cogeneration apparatus, and uses exhaust heat generated by the combustion as a heat source for the cultivation facility. The exhaust gas discharged from the internal combustion engine is pressure-adjusted and stored in a carbon dioxide storage tank, and then supplied to the plant cultivation facility.

特開2005−341953号公報Japanese Patent Application Laid-Open No. 2005-341953

特許文献1記載の技術にあっては、排ガス冷却装置を通過した排ガスは圧縮装置によって適当な圧力に調整され、一旦、二酸化炭素ガス貯蔵タンクに貯留され、次いで栽培施設に供給されるように構成される。   In the technique described in Patent Document 1, the exhaust gas that has passed through the exhaust gas cooling device is adjusted to an appropriate pressure by a compression device, temporarily stored in a carbon dioxide gas storage tank, and then supplied to a cultivation facility. Is done.

換言すれば、排ガスに含まれる二酸化炭素を吸着剤に吸着させて貯留するのではないことから、回収効率が低く、十分な量の二酸化炭素を回収するためには貯蔵タンクを大型にする必要があって装置が大型化する不都合がある。   In other words, since the carbon dioxide contained in the exhaust gas is not adsorbed and stored by the adsorbent, the recovery efficiency is low, and it is necessary to enlarge the storage tank in order to recover a sufficient amount of carbon dioxide. Therefore, there is a disadvantage that the apparatus becomes large.

また、内燃機関から排出される排ガスには人体に有害な一酸化炭素も含まれることから、それを検出して植物栽培施設への供給を防止することが安全面で望ましい。   Further, since the exhaust gas discharged from the internal combustion engine also contains carbon monoxide that is harmful to the human body, it is desirable in terms of safety to detect it and prevent its supply to the plant cultivation facility.

従って、この発明の目的は上記した課題を解決し、コージェネレーション装置から排出される排ガスの二酸化炭素を回収して植物栽培施設に供給するとき、吸着剤を用いることで装置を大型化することなく二酸化炭素を効率的に回収すると共に、一酸化炭素の植物栽培施設への供給を防止するようにした二酸化炭素回収装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and when collecting the carbon dioxide of the exhaust gas discharged from the cogeneration apparatus and supplying it to the plant cultivation facility, the adsorbent is used without increasing the size of the apparatus. An object of the present invention is to provide a carbon dioxide recovery device that efficiently recovers carbon dioxide and prevents the supply of carbon monoxide to a plant cultivation facility.

上記した課題を解決するために、請求項1にあっては、コージェネレーション装置の発電機を駆動する内燃機関から排出される排ガスに含まれる二酸化炭素を回収して植物栽培施設に供給する回収手段を備えた二酸化炭素回収装置において、前記回収手段が、内部に第1吸着剤が収容される吸着タンクと、内部に第2吸着剤が収容される貯留タンクと、前記内燃機関から排出される排ガスを前記吸着タンクに圧送して前記排ガスに含まれる二酸化炭素を前記第1吸着剤に吸着させる二酸化炭素吸着手段と、前記吸着タンクの内部の圧力を減圧して前記吸着された二酸化炭素を前記第1吸着剤から脱離させ、前記脱離させた二酸化炭素を前記貯留タンクに圧送して前記第2吸着剤に吸着させて貯留する二酸化炭素貯留手段と、前記貯留タンクに貯留された二酸化炭素を前記植物栽培施設に供給する二酸化炭素供給手段と、前記吸着タンクと貯留タンクのうちの少なくともいずれかの下流側に配置されて前記脱離させた二酸化炭素あるいは前記貯留タンクに貯留された二酸化炭素とともに流出する一酸化炭素の濃度を検出する一酸化炭素検出手段と、前記一酸化炭素検出手段によって検出された一酸化炭素の濃度に基づいて前記吸着タンクと貯留タンクの少なくともいずれかの排ガスを大気に放出する排ガス放出手段とからなる如く構成した。 In order to solve the above-mentioned problem, in claim 1, the recovery means for recovering carbon dioxide contained in the exhaust gas discharged from the internal combustion engine that drives the generator of the cogeneration apparatus and supplying it to the plant cultivation facility In the carbon dioxide recovery apparatus, the recovery means includes an adsorption tank in which a first adsorbent is accommodated, a storage tank in which a second adsorbent is accommodated, and exhaust gas discharged from the internal combustion engine. Carbon dioxide adsorbing means for adsorbing carbon dioxide contained in the exhaust gas to the first adsorbent by pumping the adsorbed carbon dioxide to the adsorption tank, and reducing the pressure inside the adsorption tank to reduce the adsorbed carbon dioxide to the first adsorbent. Carbon dioxide storage means for desorbing from one adsorbent and pumping the desorbed carbon dioxide to the storage tank to adsorb and store the carbon dioxide in the storage tank; Carbon dioxide supply means for supplying a fraction carbon dioxide in the plant cultivation facilities, the carbon dioxide or the storage tank which has at least one of disposed on the downstream side the desorbed of adsorbed tank and storage tank carbon monoxide detecting means for detecting the concentration of carbon monoxide you outflow with stored carbon dioxide, at least of the suction tank and the storage tank based on the concentration of the detected carbon monoxide by the carbon monoxide detecting means The exhaust gas discharging means for discharging any of the exhaust gases to the atmosphere is used.

請求項2に係る二酸化炭素回収装置にあっては、前記吸着タンクが複数個設けられると共に、前記二酸化炭素吸着手段と二酸化炭素貯留手段は、前記検出された一酸化炭素の濃度に基づいて前記複数個の吸着タンクにおいて前記二酸化炭素の吸着時間と前記排ガスの掃気時間を制御する如く構成した。   In the carbon dioxide recovery apparatus according to claim 2, a plurality of the adsorption tanks are provided, and the carbon dioxide adsorption means and the carbon dioxide storage means are arranged based on the detected concentration of carbon monoxide. Each adsorption tank is configured to control the adsorption time of the carbon dioxide and the scavenging time of the exhaust gas.

請求項3に係る二酸化炭素回収装置にあっては、前記吸着タンクの下流に配置されるバッファタンクを備えると共に、前記一酸化炭素検出手段は、前記バッファタンクの内部に配置される如く構成した。   The carbon dioxide recovery apparatus according to a third aspect includes a buffer tank disposed downstream of the adsorption tank, and the carbon monoxide detection means is configured to be disposed inside the buffer tank.

請求項1に係る二酸化炭素回収装置にあっては、コージェネレーション装置の発電機を駆動する内燃機関から排出される排ガスに含まれる二酸化炭素を回収して植物栽培施設に供給する回収手段が、内部に第1吸着剤が収容される吸着タンクと、内部に第2吸着剤が収容される貯留タンクと、内燃機関から排出される排ガスを吸着タンクに圧送して排ガスに含まれる二酸化炭素を第1吸着剤に吸着させる二酸化炭素吸着手段と、吸着タンクの内部の圧力を減圧して吸着された二酸化炭素を第1吸着剤から脱離させ、脱離させた二酸化炭素を貯留タンクに圧送して第2吸着剤に吸着させて貯留する二酸化炭素貯留手段と、貯留タンクに貯留された二酸化炭素を植物栽培施設に供給する二酸化炭素供給手段と、吸着タンクと貯留タンクのうちの少なくともいずれかの下流側に配置されて脱離させた二酸化炭素あるいは貯留タンクに貯留された二酸化炭素とともに流出する一酸化炭素の濃度を検出する一酸化炭素検出手段と、一酸化炭素検出手段によって検出された一酸化炭素の濃度に基づいて吸着タンクと貯留タンクの少なくともいずれかの排ガスを大気に放出する排ガス放出手段とからなる如く構成したので、エネルギ効率を高めることができると共に、第1、第2吸着剤を用いて二酸化炭素を吸着・貯留することで装置を大型化することなく二酸化炭素を効率的に回収することができる。さらに、検出された一酸化炭素の濃度に基づいて吸着タンクと貯留タンクの少なくともいずれかの排ガスを大気に放出する如く構成したので、安全性を高めることができる。 In the carbon dioxide recovery device according to claim 1, the recovery means for recovering carbon dioxide contained in the exhaust gas discharged from the internal combustion engine that drives the generator of the cogeneration device and supplying it to the plant cultivation facility is provided inside. An adsorbing tank in which the first adsorbent is accommodated, a storage tank in which the second adsorbent is accommodated, and exhaust gas exhausted from the internal combustion engine is pumped to the adsorption tank so that carbon dioxide contained in the exhaust gas is first Carbon dioxide adsorption means for adsorbing to the adsorbent, and reducing the pressure inside the adsorption tank to desorb the adsorbed carbon dioxide from the first adsorbent, and pumping the desorbed carbon dioxide to the storage tank 2 Carbon dioxide storage means for adsorbing and storing the adsorbent, carbon dioxide supply means for supplying the carbon dioxide stored in the storage tank to the plant cultivation facility, and a small number of the adsorption tank and the storage tank. Ku even carbon monoxide detecting means for detecting the concentration of carbon monoxide you effluent with carbon dioxide stored in the carbon dioxide or storage tank which has desorbed is located either downstream carbon monoxide detector The exhaust gas discharge means for discharging the exhaust gas of at least one of the adsorption tank and the storage tank to the atmosphere based on the concentration of carbon monoxide detected by the above can improve the energy efficiency and the first The carbon dioxide can be efficiently recovered without increasing the size of the apparatus by adsorbing and storing the carbon dioxide using the second adsorbent. Further, since the exhaust gas at least one of the adsorption tank and the storage tank is released to the atmosphere based on the detected concentration of carbon monoxide, safety can be improved.

請求項2に係る二酸化炭素回収装置にあっては、吸着タンクが複数個設けられると共に、二酸化炭素吸着手段と二酸化炭素貯留手段は、検出された一酸化炭素の濃度に基づいて複数個の吸着タンクにおいて二酸化炭素の吸着時間と排ガスの掃気時間を制御する如く構成したので、掃気時間などを適切に制御することで一酸化炭素を減少させることができ、安全性を一層高めることができる。   In the carbon dioxide recovery apparatus according to claim 2, a plurality of adsorption tanks are provided, and the carbon dioxide adsorption means and the carbon dioxide storage means include a plurality of adsorption tanks based on the detected concentration of carbon monoxide. Since the carbon dioxide adsorption time and the exhaust gas scavenging time are controlled in FIG. 1, carbon monoxide can be reduced by appropriately controlling the scavenging time, and the safety can be further enhanced.

請求項3に係る二酸化炭素回収装置にあっては、吸着タンクの下流に配置されるバッファタンクを備えると共に、一酸化炭素検出手段は、バッファタンクの内部に配置される如く構成したので、上記した効果に加え、一酸化炭素検出手段を簡易に配置することができる。また、複数個の吸着タンクの下流に配置する場合、複数個の吸着タンクの動作時間を相違させることで、複数個の吸着タンクのそれぞれに配置することなく、一酸化炭素の濃度を検出することができる。   In the carbon dioxide recovery device according to claim 3, since the buffer tank is disposed downstream of the adsorption tank, and the carbon monoxide detection means is configured to be disposed inside the buffer tank, the above-described configuration is adopted. In addition to the effect, the carbon monoxide detection means can be easily arranged. In addition, when it is arranged downstream of a plurality of adsorption tanks, it can detect the concentration of carbon monoxide without disposing it in each of the plurality of adsorption tanks by making the operation times of the plurality of adsorption tanks different. Can do.

この発明の実施例に係る二酸化炭素回収装置を全体的に示す模式図である。1 is a schematic diagram showing an entire carbon dioxide recovery device according to an embodiment of the present invention. 図1に示す二酸化炭素回収装置のうちのコージェネレーション装置を全体的に示す模式図である。It is a schematic diagram which shows the whole cogeneration apparatus among the carbon dioxide collection apparatuses shown in FIG. 図1に示す装置の一部の拡大説明図である。FIG. 2 is an enlarged explanatory view of a part of the apparatus shown in FIG. 1. 図1に示す装置の動作を示すシーケンス図である。It is a sequence diagram which shows operation | movement of the apparatus shown in FIG. 図1に示す装置の吸着時間と掃気時間に対する一酸化炭素の濃度の変化を示す実験データである。It is an experimental data which shows the change of the density | concentration of carbon monoxide with respect to the adsorption time and scavenging time of the apparatus shown in FIG.

以下、添付図面に即してこの発明に係る二酸化炭素回収装置を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out a carbon dioxide recovery device according to the present invention will be described with reference to the accompanying drawings.

図1はこの発明の実施例に係る二酸化炭素回収装置を全体的に示す模式図、図2は図1に示す二酸化炭素回収装置を構成するコージェネレーション装置を全体的に示す模式図、図3は図1に示す装置の一部の拡大説明図である。
図3は図1に示す装置の一部の拡大説明図である。
FIG. 1 is a schematic diagram generally showing a carbon dioxide recovery device according to an embodiment of the present invention, FIG. 2 is a schematic diagram generally showing a cogeneration device constituting the carbon dioxide recovery device shown in FIG. 1, and FIG. FIG. 2 is an enlarged explanatory view of a part of the apparatus shown in FIG. 1.
FIG. 3 is an enlarged explanatory view of a part of the apparatus shown in FIG.

図1において符号1は二酸化炭素回収装置を示し、二酸化炭素回収装置1はコージェネレーション装置10から排出される二酸化炭素を回収してビニールハウスなどからなる植物栽培施設(以下「ハウス」という)2に供給するように構成される。ハウス2は例えば、野菜などの植物を栽培する施設である。   In FIG. 1, reference numeral 1 indicates a carbon dioxide recovery device. The carbon dioxide recovery device 1 collects carbon dioxide discharged from the cogeneration device 10 and supplies it to a plant cultivation facility (hereinafter referred to as “house”) 2 formed of a greenhouse or the like. Configured to supply. The house 2 is a facility for cultivating plants such as vegetables.

理解の便宜上、図2を参照して先ずコージェネレーション装置10を説明すると、コージェネレーション装置10は、商用電源(商用電力系統)12から電気負荷14(例えばハウス2の照明器具など)に至る交流電力の給電路16に接続可能な発電機(オルタネータ)20と、発電機20を駆動する内燃機関(以下「エンジン」という)22と、エンジン22の冷却水と熱交換可能な熱交換器24などを備える。発電機20とエンジン22などは一体化され、ケース28の内部に収容される。商用電源12は、単相3線からAC100/200Vで50Hzまたは60Hzの交流電力を出力する。   For convenience of understanding, first, the cogeneration apparatus 10 will be described with reference to FIG. 2. The cogeneration apparatus 10 is connected to an AC power from a commercial power source (commercial power system) 12 to an electrical load 14 (for example, a lighting fixture in the house 2). A generator (alternator) 20 that can be connected to the power supply path 16, an internal combustion engine (hereinafter referred to as “engine”) 22 that drives the generator 20, a heat exchanger 24 that can exchange heat with cooling water of the engine 22, and the like. Prepare. The generator 20 and the engine 22 are integrated and housed in the case 28. The commercial power source 12 outputs AC power of 50 Hz or 60 Hz at 100/200 V AC from a single-phase three-wire.

エンジン22は、都市ガスまたはLPガス(以下、単に「ガス」という)を燃料とする水冷4サイクルの単気筒OHV型の火花点火式のエンジンであり、例えば163ccの排気量を備える。エンジン22のシリンダヘッドとシリンダブロック22aはケース28に対して水平方向(横向き)に配置され、その内部に1個のピストンが往復動自在に配置される。   The engine 22 is a water-cooled four-cycle single-cylinder OHV type spark ignition engine that uses city gas or LP gas (hereinafter simply referred to as “gas”) as a fuel, and has a displacement of, for example, 163 cc. The cylinder head of the engine 22 and the cylinder block 22a are arranged in a horizontal direction (lateral direction) with respect to the case 28, and one piston is arranged in the inside thereof so as to be able to reciprocate.

供給された空気(吸気)は吸気サイレンサ30、エアクリーナ32を通ってミキサ34に入り、ガス比例弁ユニット36を介して燃料供給源(図示せず)から供給されるガスと混合させられる。   The supplied air (intake air) enters the mixer 34 through the intake silencer 30 and the air cleaner 32 and is mixed with gas supplied from a fuel supply source (not shown) via the gas proportional valve unit 36.

ミキサ34で生成された混合気はシリンダブロック22aの下部に形成された燃焼室(図示せず)に吸気弁(図示せず)が開弁されるとき流入し、点火プラグ22bによって点火される。点火プラグ22bは、図示しないバッテリの出力がパワートランジスタやイグニッションコイルなどからなる点火装置22cを介して供給されると、燃焼室に臨む電極間に火花放電を生じ、混合気を着火して燃焼させる。   The air-fuel mixture generated by the mixer 34 flows into a combustion chamber (not shown) formed in the lower part of the cylinder block 22a when an intake valve (not shown) is opened, and is ignited by a spark plug 22b. When the output of a battery (not shown) is supplied via an ignition device 22c made up of a power transistor, an ignition coil, or the like, the spark plug 22b generates a spark discharge between the electrodes facing the combustion chamber, and ignites and burns the air-fuel mixture. .

燃焼によって生じた排ガス(排気)は排気弁(図示せず)が開弁されるとき、排気熱交換器22dに流れ、そこでエンジン22の冷却水と熱交換された後、排気管38と排気チャンバ(マフラ)40を通ってケース28の外(庫外)に排出される。   When the exhaust valve (not shown) is opened, the exhaust gas (exhaust) generated by the combustion flows to the exhaust heat exchanger 22d, where it is heat exchanged with the cooling water of the engine 22, and then the exhaust pipe 38 and the exhaust chamber. It passes through the (muffler) 40 and is discharged out of the case 28 (outside of the cabinet).

図3に示す如く、排気チャンバ40は壁面からプレート40aが対向するように交互に突出されて迷路状を呈すると共に、液溜まり40bが形成されて排ガス中の液(水分)はそこで可能な限りトラップされ、後述するように系外に排出されるように構成される。   As shown in FIG. 3, the exhaust chamber 40 protrudes alternately from the wall surface so that the plates 40a face each other and forms a labyrinth, and a liquid pool 40b is formed so that liquid (moisture) in the exhaust gas is trapped as much as possible. As described later, it is configured to be discharged out of the system.

排気熱交換器22dには触媒装置22d1が一体的に配置され、排ガス中の有害成分を除去するように構成される。触媒装置22d1としては、有害成分を除去する特性を備えるものを選択して使用する。   A catalyst device 22d1 is integrally disposed in the exhaust heat exchanger 22d, and is configured to remove harmful components in the exhaust gas. As the catalyst device 22d1, a device having a characteristic of removing harmful components is selected and used.

エンジン22のシリンダブロック22aの下部にはオイルタンク(オイルパン)22fが形成され、そこにエンジン22のエンジンオイル(潤滑油)が貯留される。   An oil tank (oil pan) 22f is formed in the lower part of the cylinder block 22a of the engine 22, and engine oil (lubricating oil) of the engine 22 is stored therein.

発電機20は多極コイルを備え、クランクシャフトの上端に取り付けられるフライホイール(図示せず)の内側のクランクケース上に固定され、フライホイールとの間で相対回転するとき、交流電力を発電する。発電機20は、商用電源12(または図示しないバッテリ)から通電されるとき、エンジン22をクランキングするスタータモータとしても機能する。   The generator 20 includes a multipole coil, is fixed on a crankcase inside a flywheel (not shown) attached to the upper end of the crankshaft, and generates AC power when rotating relative to the flywheel. . The generator 20 also functions as a starter motor that cranks the engine 22 when energized from the commercial power supply 12 (or a battery (not shown)).

発電機20の出力はインバータユニット42に送られ、そこでAC100/200V(単相)に変換される。   The output of the generator 20 is sent to the inverter unit 42 where it is converted to AC100 / 200V (single phase).

インバータユニット42は、発電機20から出力された交流を直流に整流する三相ブリッジ回路42aと、三相ブリッジ回路42aで整流された直流を所定の電圧値まで昇圧する昇圧回路42bと、昇圧された直流を交流に変換するインバータ(INV)ブリッジ回路42cと、インバータユニット42の動作を制御するCPU42dと、電源部42eと、インバータブリッジ回路42cの出力先を商用電源12と停電時の発電出力(停電時に使用される電源コンセント)46との間で切り換えるスイッチ42fと、インバータブリッジ回路42cとスイッチ42fとの間の電圧を検出する電圧センサ42gとを備える。   The inverter unit 42 is boosted by a three-phase bridge circuit 42a that rectifies the alternating current output from the generator 20 to direct current, and a booster circuit 42b that boosts the direct current rectified by the three-phase bridge circuit 42a to a predetermined voltage value. The inverter (INV) bridge circuit 42c that converts the direct current into alternating current, the CPU 42d that controls the operation of the inverter unit 42, the power supply unit 42e, and the output destination of the inverter bridge circuit 42c are the commercial power supply 12 and the power generation output during a power failure ( A switch 42f for switching between the power outlet 46 and a voltage sensor 42g for detecting a voltage between the inverter bridge circuit 42c and the switch 42f.

スイッチ42fの切り換えは、コージェネレーション装置10の動作を制御するECU(Electronic Control Unit。電子制御ユニット)44によって行われる。ECU44は、CPU,ROM,RAM,I/O、カウンタ、インディケータなどを有するマイクロコンピュータからなる。   Switching of the switch 42f is performed by an ECU (Electronic Control Unit) 44 that controls the operation of the cogeneration apparatus 10. The ECU 44 includes a microcomputer having a CPU, ROM, RAM, I / O, counter, indicator, and the like.

インバータユニット42からの出力は配電盤48に送られる。配電盤48は、過電流の通電などを防止する主幹ブレーカ48aと、インバータユニット42の出力に商用電源12の電力を加えて(連系させて)電気負荷14に供給する分電盤48bと、専用ブレーカ48cと、商用電源12から主幹ブレーカ48aに至る給電路16に配置されてそこを流れる交流電力の電流に応じた信号を出力する電流センサ48dなどを備える。   The output from the inverter unit 42 is sent to the switchboard 48. The distribution board 48 includes a main circuit breaker 48a for preventing overcurrent and the like, a distribution board 48b for adding the power of the commercial power supply 12 to the output of the inverter unit 42 (connected to the electric load 14), and a dedicated distribution board 48b. A breaker 48c and a current sensor 48d that is arranged in the power supply path 16 from the commercial power supply 12 to the main breaker 48a and outputs a signal corresponding to the current of the AC power flowing therethrough are provided.

熱交換器24は、ハウス2の熱源50を流れる媒体(水など)をコージェネレーション装置10側の循環路52を流れるエンジン22の冷却水(不凍液)と熱交換させて昇温する。具体的には、熱源50と循環路52とが局部的に接近して熱交換器24を形成し、熱交換器24で冷却水はハウス2の熱源50に熱を伝えて冷却される。   The heat exchanger 24 heats up the medium (water or the like) flowing through the heat source 50 of the house 2 with the cooling water (antifreeze) of the engine 22 flowing through the circulation path 52 on the cogeneration apparatus 10 side, and raises the temperature. Specifically, the heat source 50 and the circulation path 52 approach locally to form the heat exchanger 24, and the cooling water is cooled by transferring heat to the heat source 50 of the house 2 in the heat exchanger 24.

循環路52はエンジン22と熱交換器24を接続し、一端がエンジン22の冷却水出口22hに接続され、他端がエンジン22の冷却水入口22iに接続される。従って、エンジン22のシリンダブロック22aを通って昇温された冷却水は循環路52を流れて熱交換器24で熱交換させられた後、再びエンジン22に戻される。尚、循環路52には、冷却水を循環させるためのポンプ52aが設けられる。   The circulation path 52 connects the engine 22 and the heat exchanger 24, one end is connected to the coolant outlet 22 h of the engine 22, and the other end is connected to the coolant inlet 22 i of the engine 22. Therefore, the cooling water heated through the cylinder block 22a of the engine 22 flows through the circulation path 52 and is heat-exchanged by the heat exchanger 24, and then returned to the engine 22 again. The circulation path 52 is provided with a pump 52a for circulating the cooling water.

上記した電圧センサ42gなどの出力はECU44に送られ、ECU44は入力したセンサ出力に基づいて発電機20とエンジン22などの動作を制御すると共に、後述するように二酸化炭素回収装置1の動作も制御する。   The output of the voltage sensor 42g and the like described above is sent to the ECU 44. The ECU 44 controls the operation of the generator 20 and the engine 22 based on the input sensor output, and also controls the operation of the carbon dioxide recovery device 1 as will be described later. To do.

次いで、図1を参照して二酸化炭素回収装置1の構成を説明する。   Next, the configuration of the carbon dioxide recovery device 1 will be described with reference to FIG.

二酸化炭素回収装置1は、図示の如く、上記したコージェネレーション装置10の発電機20を駆動するエンジン22から排出される排ガスに含まれる二酸化炭素を回収して野菜などの植物を栽培するハウス2に供給するように構成され、2個の吸着タンク60a,60b(「吸着タンク60」と総称する)と、1個の貯留タンク62を備える。   As shown in the figure, the carbon dioxide recovery device 1 is used in a house 2 that cultivates plants such as vegetables by recovering carbon dioxide contained in exhaust gas discharged from the engine 22 that drives the generator 20 of the cogeneration device 10 described above. It is configured to supply, and includes two adsorption tanks 60 a and 60 b (collectively referred to as “adsorption tank 60”) and one storage tank 62.

より具体的には、エンジン22の排気チャンバ40は第1導管64(とその分岐管64a)を介して吸着タンク60に接続され、吸着タンク60は第2導管66(とその分岐管66a)を介して貯留タンク62に接続され、貯留タンク62は第3導管70を介してハウス2に接続される。排ガスあるいは排ガスに含まれていた二酸化炭素はエンジン22の排気チャンバ40から第1導管64、吸着タンク60、第2導管66、貯留タンク62、第3導管70を通ってハウス2に供給される。   More specifically, the exhaust chamber 40 of the engine 22 is connected to the adsorption tank 60 via the first conduit 64 (and its branch pipe 64a), and the adsorption tank 60 connects the second conduit 66 (and its branch pipe 66a). The storage tank 62 is connected to the house 2 via the third conduit 70. The exhaust gas or carbon dioxide contained in the exhaust gas is supplied from the exhaust chamber 40 of the engine 22 to the house 2 through the first conduit 64, the adsorption tank 60, the second conduit 66, the storage tank 62, and the third conduit 70.

このように、吸着タンク60、より詳しくは吸着タンク60a,60bはエンジン22の排気チャンバ40から排出される排ガスの流れにおいて下流に配置されると共に、貯留タンク62は吸着タンク60のさらに下流に配置される。   Thus, the adsorption tank 60, more specifically, the adsorption tanks 60 a and 60 b are arranged downstream in the flow of exhaust gas discharged from the exhaust chamber 40 of the engine 22, and the storage tank 62 is arranged further downstream of the adsorption tank 60. Is done.

吸着タンク60は、図示は省略するが、内部空間が棚で多数の小さな室に分割され、排ガスがそこを通って流れると共に、室のそれぞれには吸着剤(以下「第1吸着剤」という)72が収容されるように構成される。   Although the illustration of the adsorption tank 60 is omitted, the internal space is divided into a number of small chambers by shelves, and the exhaust gas flows therethrough, and each of the chambers has an adsorbent (hereinafter referred to as “first adsorbent”). 72 is accommodated.

第1吸着剤72はハスクレイ(商品名)をペレット化してなると共に、所定のペレット数あるいは重量ごとにネットなどに収容されてなり、室のそれぞれに配置される。   The first adsorbent 72 is formed by pelletizing a clay (trade name), and is accommodated in a net or the like for each predetermined number of pellets or weight, and is disposed in each chamber.

貯留タンク62も内部空間が棚で多数の小さな室に分割され、脱離された二酸化炭素がそこを通って流れると共に、室のそれぞれには吸着剤(以下「第2吸着剤」という)74が収容されるように構成される。第2吸着剤74もハスクレイ(商品名)をペレット化してなると共に、所定のペレット数あるいは重量ごとにネットなどに収容されてなり、室のそれぞれに配置される。尚、第1吸着剤72と第2吸着剤74は、圧力変化に応じて十分に二酸化炭素を吸着するものであれば、どのようなものでも良い。   The internal space of the storage tank 62 is also divided into a number of small chambers by shelves, and the desorbed carbon dioxide flows therethrough, and an adsorbent (hereinafter referred to as “second adsorbent”) 74 is provided in each of the chambers. Configured to be contained. The second adsorbent 74 is also formed by pelletizing Hassley (trade name), and is accommodated in a net or the like for each predetermined number of pellets or weight, and is disposed in each chamber. The first adsorbent 72 and the second adsorbent 74 may be anything as long as they can sufficiently adsorb carbon dioxide in response to a pressure change.

第1導管64(とその分岐管64a)には排ガスの流れにおいて上流側から第1三方弁76と除湿タンク(水分除去手段)78と第1圧縮機80と第2三方弁82と第1乾燥部84と第1、第2開閉弁86,90が配置されると共に、第1乾燥部84はバイパス管(水分除去手段)92で除湿タンク78の上流側に接続される。バイパス管92には第3開閉弁94が配置される。   A first three-way valve 76, a dehumidification tank (moisture removing means) 78, a first compressor 80, a second three-way valve 82, and a first drying are flowed into the first conduit 64 (and its branch pipe 64a) from the upstream side in the flow of exhaust gas. The first drying section 84 is connected to the upstream side of the dehumidification tank 78 by a bypass pipe (moisture removing means) 92 while the section 84 and the first and second on-off valves 86 and 90 are disposed. A third on-off valve 94 is disposed in the bypass pipe 92.

第2導管66(とその分岐管66a)には排ガスの流れにおいて上流側から第4、第5開閉弁96,100とバッファタンク102と第2圧縮機104と第2乾燥部106が配置される。第2導管66とその分岐管66aは、第4、第5開閉弁96,100の上流側で第1、第2リリーフ弁(逆止弁)110,112を介して開放される。   In the second conduit 66 (and its branch pipe 66a), fourth and fifth on-off valves 96 and 100, a buffer tank 102, a second compressor 104, and a second drying unit 106 are arranged from the upstream side in the exhaust gas flow. . The second conduit 66 and its branch pipe 66a are opened via first and second relief valves (check valves) 110 and 112 on the upstream side of the fourth and fifth on-off valves 96 and 100, respectively.

第3導管70には第6開閉弁114が配置されると共に、貯留タンク62の下流側は第6開閉弁114の上流側で第2、第3バイパス管116,120を介して吸着タンク60の上流側に接続される。第2、第3バイパス管116,120には第7、第8開閉弁122,124が配置される。   A sixth open / close valve 114 is disposed in the third conduit 70, and the downstream side of the storage tank 62 is upstream of the sixth open / close valve 114, and the adsorption tank 60 is connected via the second and third bypass pipes 116 and 120. Connected upstream. Seventh and eighth on-off valves 122 and 124 are disposed in the second and third bypass pipes 116 and 120, respectively.

第1、第2三方弁76,82は電磁制御弁からなり、ECU44の指令に応じて動作し、上流から流れる排ガスを下流側と大気とのいずれかに流す、あるいは大気を導入して下流に流すように構成される。第1圧縮機80の下流に第2三方弁82が配置されることで、水分を含む排ガスを、第1乾燥部84を通過させることなく、大気に放出することが可能なように構成される。   The first and second three-way valves 76 and 82 are electromagnetic control valves, which operate in accordance with a command from the ECU 44 and flow exhaust gas flowing from the upstream to either the downstream side or the atmosphere, or introduce the atmosphere downstream. Configured to flow. By disposing the second three-way valve 82 downstream of the first compressor 80, the exhaust gas containing moisture can be discharged to the atmosphere without passing through the first drying unit 84. .

第1、第2、第3、第4、第5、第6、第7、第8開閉弁86,90,94,96,100,114,122,124も電磁制御弁からなり、ECU44の指令に応じて動作して上流から流れる排ガスを下流に流す/流さないように構成される。   The first, second, third, fourth, fifth, sixth, seventh, and eighth on-off valves 86, 90, 94, 96, 100, 114, 122, and 124 are also electromagnetic control valves, and are commanded by the ECU 44. The exhaust gas flowing from the upstream by operating according to the flow is configured to flow / do not flow downstream.

除湿タンク78も吸着タンク60と貯留タンク62と同様、内部空間が棚で多数の小さな室に分割され、排ガスがそこを通って流れると共に、室のそれぞれにはシリカゲル(商品面)などからなる乾燥剤が収容され、排ガスが通過するときに除湿されるように構成される。   Similarly to the adsorption tank 60 and the storage tank 62, the dehumidifying tank 78 is divided into a large number of small chambers by shelves, and exhaust gas flows therethrough, and each chamber is dried with silica gel (product surface) or the like. An agent is accommodated and configured to be dehumidified when exhaust gas passes through.

第1、第2圧縮機80,104はコージェネレーション装置10の発電機20の出力、より具体的にはインバータユニット42で生成された発電機20の出力を供給されて駆動され、上流から供給される排ガスを圧縮して下流に吐出するように構成される。これにより、第1、第2圧縮機80,104は、コージェネレーション装置10のエンジン22の負荷の如何に関わらず、安定した電力を供給されて動作するように構成される。   The first and second compressors 80 and 104 are driven by being supplied with the output of the generator 20 of the cogeneration apparatus 10, more specifically with the output of the generator 20 generated by the inverter unit 42, and supplied from upstream. The exhaust gas is compressed and discharged downstream. As a result, the first and second compressors 80 and 104 are configured to operate while being supplied with stable power regardless of the load of the engine 22 of the cogeneration apparatus 10.

第1、第2乾燥部84,106の内部には不飽和ポリエステル樹脂などに種々の充填剤、硬化開始剤などを混合したものをマット状のガラス繊維に含浸させると共に、それにシリカゲルなどの乾燥剤を混入させたシートが配置され、そこを排ガスが通過して除湿されるように構成される。   The first and second drying sections 84 and 106 have a mat-like glass fiber impregnated with a mixture of various fillers and a curing initiator in an unsaturated polyester resin, and a drying agent such as silica gel. Is arranged so that the exhaust gas passes through the sheet and is dehumidified.

第2導管66に配置されるバッファタンク102は第2圧縮機104が動作するときに上流側が過度の負圧となるのを防止するためのものであり、内部にフィルタや迷路などが設けられて第1吸着剤72が万一破損したとき、破片が第2圧縮機104に吸引されるのを防止すると共に、第2圧縮機104の吸引側の圧力が過度の負圧になるのを防止する。   The buffer tank 102 disposed in the second conduit 66 is for preventing an excessive negative pressure on the upstream side when the second compressor 104 is operated, and is provided with a filter, a maze, and the like. In the unlikely event that the first adsorbent 72 is damaged, the fragments are prevented from being sucked into the second compressor 104, and the suction side pressure of the second compressor 104 is prevented from becoming an excessively negative pressure. .

第2導管66とその分岐管66aに配置される第1、第2リリーフ弁110,112について説明すると、第1、第2リリーフ弁110,112は第2導管66とその分岐管66aからさらに分岐される第2分岐管661,66a1に配置される。   The first and second relief valves 110 and 112 disposed in the second conduit 66 and the branch pipe 66a will be described. The first and second relief valves 110 and 112 further branch from the second conduit 66 and the branch pipe 66a. The second branch pipes 661 and 66a1 are arranged.

第2分岐管661は第1リリーフ弁110の配置位置と先端(開放端)6610との間にベンチュリ部(水分除去手段)6611が形成される。図3に示す如く、ベンチュリ部6611は管6612とそこに配置される開閉弁6613とを介して排気チャンバ40の液溜まり40bに接続される。尚、開閉弁6613は除去しても良い。   In the second branch pipe 661, a venturi portion (moisture removing means) 6611 is formed between the arrangement position of the first relief valve 110 and the tip (open end) 6610. As shown in FIG. 3, the venturi portion 6611 is connected to the liquid reservoir 40b of the exhaust chamber 40 through a pipe 6612 and an on-off valve 6613 disposed therein. Note that the on-off valve 6613 may be removed.

これにより、吸着タンク60aに充填された排ガスの圧力がリリーフ弁110の設定圧を超えると、排ガスの一部はリリーフ弁110を押し開いてベンチュリ部6611に流入する。ベンチュリ部6611においては流速の上昇によって生じた負圧によって液溜まり40bにトラップされていた水が吸引されて第2分岐管661の先端6610から大気に放出される。   Thereby, when the pressure of the exhaust gas filled in the adsorption tank 60a exceeds the set pressure of the relief valve 110, a part of the exhaust gas pushes the relief valve 110 open and flows into the venturi portion 6611. In the venturi portion 6611, the water trapped in the liquid reservoir 40b is sucked by the negative pressure generated by the increase in the flow velocity, and discharged from the tip 6610 of the second branch pipe 661 to the atmosphere.

また、図1に示す如く、分岐管66aの第2分岐管66a1はエンジン22に接続されるように構成される。即ち、吸着タンク60aに充填された排ガスの圧力がリリーフ弁112の設定圧を超えると、排ガスの一部はリリーフ弁112を押し開いて第2分岐管66a1を流れ、エンジン22の吸気サイレンサ30あるいは燃焼室の排気弁下流の排気ポートにEGR(Exhaust Gas Recirculation)、より詳しくは外部EGRあるいは内部EGR(Air Injection)として供給され、エネルギ効率を高めるように構成される。尚、第2分岐管66a1に分岐管66aと同様にベンチュリ部を備える構成としても良い。   As shown in FIG. 1, the second branch pipe 66 a 1 of the branch pipe 66 a is configured to be connected to the engine 22. That is, when the pressure of the exhaust gas filled in the adsorption tank 60a exceeds the set pressure of the relief valve 112, a part of the exhaust gas pushes the relief valve 112 open and flows through the second branch pipe 66a1, and the intake silencer 30 of the engine 22 or The exhaust gas is supplied to the exhaust port downstream of the exhaust valve of the combustion chamber as EGR (Exhaust Gas Recirculation), more specifically, as external EGR or internal EGR (Air Injection), and is configured to increase energy efficiency. In addition, it is good also as a structure provided with a venturi part in the 2nd branch pipe 66a1 similarly to the branch pipe 66a.

また、コージェネレーション装置10とハウス2との間には除湿器(水分除去手段)130が配置される。除湿器130は第1、第2乾燥部84,106と同様の構造を有し、シリカゲルなどの乾燥剤を混入させたシートを備え、そこをハウス2内の湿気を含んだ空気が流れて除湿され、除湿された空気は再びハウス2に戻るように構成される。   Further, a dehumidifier (moisture removing means) 130 is disposed between the cogeneration apparatus 10 and the house 2. The dehumidifier 130 has a structure similar to that of the first and second drying units 84 and 106, and includes a sheet mixed with a desiccant such as silica gel, and air containing moisture in the house 2 flows through the sheet to dehumidify. The dehumidified air is configured to return to the house 2 again.

除湿器130において、除湿後の乾燥剤はエンジン22からの加熱された冷却水あるいは排ガスとの熱交換によって再生される。また、ハウス2の熱源50を流れる媒体(水など)を商用電源12側の循環路52を流れるエンジン22の冷却水と熱交換させて昇温することは先に述べた通りである。   In the dehumidifier 130, the desiccant after dehumidification is regenerated by heat exchange with heated cooling water or exhaust gas from the engine 22. Further, as described above, the temperature of the medium (water or the like) flowing through the heat source 50 of the house 2 is raised by exchanging heat with the cooling water of the engine 22 flowing through the circulation path 52 on the commercial power supply 12 side.

また、吸着タンク60と貯留タンク62のうちの少なくともいずれかの下流側、より具体的にはその両方の下流側には一酸化炭素センサ(検出手段)132,134が配置されて排ガスに含まれる一酸化炭素の濃度を検出する。より詳しくは、一酸化炭素センサ132,134は、排ガス中の一酸化炭素の濃度に応じた出力を生じる。   In addition, carbon monoxide sensors (detection means) 132 and 134 are disposed on the downstream side of at least one of the adsorption tank 60 and the storage tank 62, more specifically on the downstream side of both, and are included in the exhaust gas. Detect the concentration of carbon monoxide. More specifically, the carbon monoxide sensors 132 and 134 generate an output corresponding to the concentration of carbon monoxide in the exhaust gas.

即ち、吸着タンク60a,60bの下流のバッファタンク102の内部には第1一酸化炭素センサ132配置されて吸着タンク60a,60bから流出する排ガスの一酸化炭素の濃度に応じた出力を生じると共に、貯留タンク62の下流の第3導管70の内部の適宜位置には第2一酸化炭素センサ134が配置されて貯留タンク62から流出する排ガスの一酸化炭素の濃度に応じた出力を生じる。第1、第2一酸化炭素センサ132,134の出力はECU44に送られる。 That is, the first carbon monoxide sensor 132 is disposed inside the buffer tank 102 downstream of the adsorption tanks 60a and 60b, and generates an output corresponding to the concentration of carbon monoxide exhaust gas flowing out from the adsorption tanks 60a and 60b. produces an output corresponding to the concentration of carbon monoxide in the exhaust gas flowing from the reservoir tank 62 is disposed a second carbon monoxide Motose capacitors 134 at an appropriate position within the downstream of the third conduit 70 of the storage tank 62 . Outputs of the first and second carbon monoxide sensors 132 and 134 are sent to the ECU 44.

上記した如く、この実施例に係る二酸化炭素回収装置1は、コージェネレーション装置10を備え、そこで生成される電力と排熱をハウス2の電気負荷(照明器具)14、熱源50などに利用すると共に、二酸化炭素回収装置1の第1、第2圧縮機80,104の動力源などに利用するように構成したので、エネルギ効率を高めることができる。   As described above, the carbon dioxide recovery device 1 according to this embodiment includes the cogeneration device 10 and uses the electric power and exhaust heat generated therein for the electrical load (lighting fixture) 14 of the house 2, the heat source 50, and the like. Since it is configured to be used as a power source for the first and second compressors 80 and 104 of the carbon dioxide recovery apparatus 1, energy efficiency can be improved.

また、吸着タンク60と貯留タンク62に吸着剤72,74を用いて二酸化炭素を吸着・貯留するように構成したので、吸着タンク60など装置を大型化することなく、排ガスから二酸化炭素を効率的に回収することができる。   Further, since the adsorbents 72 and 74 are used to adsorb and store the carbon dioxide in the adsorption tank 60 and the storage tank 62, the carbon dioxide can be efficiently removed from the exhaust gas without increasing the size of the adsorption tank 60 or the like. Can be recovered.

また、第1圧縮機80を動作させてエンジン22から排出される排ガスを吸着タンク60に圧送して排ガスに含まれる二酸化炭素を第1吸着剤72に吸着させると共に、第2圧縮機104を動作させて吸着タンク60の内部の圧力を減圧して第1吸着剤72から二酸化炭素を脱離させ、脱離させた二酸化炭素を貯留タンク62に圧送して第2吸着剤74に吸着させて貯留するように構成したので、二酸化炭素を一層効率的に回収することができる。   Further, the first compressor 80 is operated to pump the exhaust gas discharged from the engine 22 to the adsorption tank 60 so that the carbon dioxide contained in the exhaust gas is adsorbed to the first adsorbent 72 and the second compressor 104 is operated. The pressure inside the adsorption tank 60 is reduced to desorb carbon dioxide from the first adsorbent 72, and the desorbed carbon dioxide is pumped to the storage tank 62 and adsorbed to the second adsorbent 74 for storage. Since it comprised so, a carbon dioxide can be collect | recovered more efficiently.

また、吸着タンク60と貯留タンク62の圧力管理にリリーフ弁110,112を用いるように構成したので、簡易な構成でタンク内圧の過度の昇圧も防止することができる。   Further, since the relief valves 110 and 112 are used for pressure management of the adsorption tank 60 and the storage tank 62, an excessive increase in tank internal pressure can be prevented with a simple configuration.

また、ベンチュリ部6611、除湿タンク78、第1、第2乾燥部84,106、バイパス管92、除湿器130など多くの水分除去手段を設けたので、排ガスに含まれる水分を効率的に除去することができ、吸着剤72,74の劣化を防止できると共に、排ガスに含まれる水分の吸着を防止することで二酸化炭素の吸着容量の低下を回避して吸着効率を上げることができる。   In addition, since many moisture removing means such as the venturi unit 6611, the dehumidifying tank 78, the first and second drying units 84 and 106, the bypass pipe 92, and the dehumidifier 130 are provided, the moisture contained in the exhaust gas is efficiently removed. In addition, it is possible to prevent the adsorbents 72 and 74 from deteriorating and to prevent the adsorption of moisture contained in the exhaust gas, thereby avoiding a decrease in the adsorption capacity of carbon dioxide and increasing the adsorption efficiency.

次いで図4シーケンス図を参照して二酸化炭素回収装置1の動作を説明する。この動作は具体的にはコージェネレーション装置10のECU44によって行われる。   Next, the operation of the carbon dioxide recovery apparatus 1 will be described with reference to the sequence diagram of FIG. Specifically, this operation is performed by the ECU 44 of the cogeneration apparatus 10.

以下説明すると、SEQ.1は二酸化炭素回収装置1の始動モード(始動時の運転モード)であり、始動時に、吸着タンク60と貯留タンク62の圧力バランスを整えた上で通常運転モードに切り替えるためのモードである。この間、エンジン22からの排気ガスは系外に排出させるため、第1三方弁76を排ガスを大気に放出するように動作させ、第1圧縮機80をOFF(オフ。停止)する。   In the following, SEQ. Reference numeral 1 denotes a start mode (operation mode at start-up) of the carbon dioxide recovery apparatus 1, which is a mode for switching to the normal operation mode after adjusting the pressure balance between the adsorption tank 60 and the storage tank 62 at start-up. During this time, since the exhaust gas from the engine 22 is discharged outside the system, the first three-way valve 76 is operated so as to release the exhaust gas to the atmosphere, and the first compressor 80 is turned off (off, stopped).

他方、第2三方弁82を大気を導入するように動作させ、第3開閉弁94をCLOSE(閉鎖)し、第1開閉弁86をOPEN(開放)し、第4開閉弁96をOPEN(開放)し、第2開閉弁90をCLOSE(閉鎖)し、第5開閉弁100をCLOSE(閉鎖)し、発電機20の電力を供給して第2圧縮機104をON(オン。駆動)する。   On the other hand, the second three-way valve 82 is operated to introduce the atmosphere, the third on-off valve 94 is closed (CLOSE), the first on-off valve 86 is opened (opened), and the fourth on-off valve 96 is opened (open). The second on-off valve 90 is CLOSEd, the fifth on-off valve 100 is CLOSEd, and the power of the generator 20 is supplied to turn on the second compressor 104.

同時に、第7開閉弁122をCLOSE(閉鎖)し、第8開閉弁124をOPEN(開放)し、第6開閉弁114をCLOSE(閉鎖)して導入された大気を第1乾燥部84で除湿させた後、吸着タンク60、より具体的には次に吸着が予定されている方の吸着タンク60aに導入し、次いで第2圧縮機104によって貯留タンク62および吸着タンク60、より具体的には次に掃気が予定されている方の吸着タンク60bに圧送する。   At the same time, the seventh open / close valve 122 is closed (CLOSE), the eighth open / close valve 124 is opened (OPEN), and the sixth open / close valve 114 is closed (closed) to dehumidify the air introduced by the first drying unit 84. Then, it is introduced into the adsorption tank 60, more specifically, the adsorption tank 60a that is scheduled to be adsorbed next, and then the storage tank 62 and the adsorption tank 60, more specifically, by the second compressor 104. Next, it is pumped to the adsorption tank 60b where scavenging is scheduled.

このように、SEQ.1の始動モードでは吸着タンク60と貯留タンク62の内圧のバランスを取る処理が行われる。即ち、次に吸着が予定されている方の吸着タンク60aの内部の圧力を大気圧に、貯留タンク62および次に掃気が予定されている方の吸着タンク60bの内部の圧力を大気圧よりも第1所定値だけ高いリリーフ弁112の設定圧、例えば0.7MPa程度に加圧する処理が行われる。   Thus, SEQ. In the first start mode, a process of balancing the internal pressures of the adsorption tank 60 and the storage tank 62 is performed. That is, the pressure inside the adsorption tank 60a scheduled for the next adsorption is set to atmospheric pressure, and the pressure inside the storage tank 62 and the adsorption tank 60b scheduled for the next scavenging is set below the atmospheric pressure. A process of increasing the pressure of the relief valve 112 that is higher by the first predetermined value, for example, about 0.7 MPa, is performed.

SEQ.2からSEQ.5は通常運転モードであり、吸着タンク60aと60bについてSEQ.2,3と4,5とを対をなして実行することで吸着、脱離(掃気と脱離)の処理が行われる。尚、通常運転モードは、SEQ.5の後、SEQ.2に戻って、繰り返し実行される。   SEQ. 2 to SEQ. 5 is a normal operation mode, and SEQ. Adsorption and desorption (scavenging and desorption) are performed by executing 2, 3, and 4, 5 in pairs. The normal operation mode is SEQ. 5 and SEQ. Returning to 2, the process is repeatedly executed.

SEQ.2からSEQ.5においては、第1三方弁76を排ガスを下流の除湿タンク78に流すように動作させ、発電機20の電力を供給して第1圧縮機80をON(オン)し、第2三方弁82を排ガスを下流の第1乾燥部84に流すように動作させると共に、第3開閉弁94をCLOSE(閉鎖)して排ガスを下流の吸着タンク60aまたは60bに流す。また、第2圧縮機104をON(オン)し、第6開閉弁114をCLOSE(閉鎖)する。   SEQ. 2 to SEQ. 5, the first three-way valve 76 is operated so as to flow the exhaust gas to the downstream dehumidification tank 78, the electric power of the generator 20 is supplied to turn on the first compressor 80, and the second three-way valve 82. And the third on-off valve 94 is closed to close the exhaust gas to the downstream adsorption tank 60a or 60b. Further, the second compressor 104 is turned on, and the sixth on-off valve 114 is closed.

SEQ.2,SEQ.3においては、さらに、第1開閉弁86をOPEN(開放)し、第4開閉弁96をCLOSE(閉鎖)すると共に、第2開閉弁90をCLOSE(閉鎖)することで、第1乾燥部84などで水分を除去された排ガスを第1圧縮機80で圧送して吸着タンク60aに供給し、第1吸着剤72に吸着させる。   SEQ. 2, SEQ. 3, the first on-off valve 86 is opened (OPEN), the fourth on-off valve 96 is closed (CLOSE), and the second on-off valve 90 is closed (closed), so that the first drying unit 84 is closed. The exhaust gas from which moisture has been removed by, for example, is pumped by the first compressor 80 and supplied to the adsorption tank 60 a and is adsorbed by the first adsorbent 72.

即ち、吸着タンク60aの内部の圧力を大気圧よりも第1所定値だけ高いリリーフ弁110の設定圧、例えば0.7MPa程度になるまで加圧し、その圧力下で二酸化炭素を第1吸着剤72に吸着させる。このとき、排ガスを連続的に供給することから、吸着タンク60a内の二酸化炭素分圧が吸着によって減少することがないため、高効率で二酸化炭素を回収することができる。   That is, the internal pressure of the adsorption tank 60a is increased to a set pressure of the relief valve 110 that is higher than the atmospheric pressure by a first predetermined value, for example, about 0.7 MPa, and carbon dioxide is supplied under the pressure to the first adsorbent 72. Adsorb to. At this time, since the exhaust gas is continuously supplied, the carbon dioxide partial pressure in the adsorption tank 60a is not reduced by the adsorption, so that the carbon dioxide can be recovered with high efficiency.

SEQ.2においては、さらに、第5開閉弁100をCLOSE(閉鎖)し、第7開閉弁122をCLOSE(閉鎖)すると共に、第8開閉弁124をOPEN(開放)する。これにより、貯留タンク62と吸着タンク60bの内部の圧力は第2圧縮機104によって加圧され、リリーフ弁112の設定圧を超えると吸着タンク60bの内部の排ガスの一部がリリーフ弁112から排出されるため、吸着タンク60b内が掃気される。即ち、吸着時に排ガス中の有害成分も混入することから、有害成分の濃度を低減するため、内部の排ガスを掃気する。   SEQ. 2, the fifth on-off valve 100 is further closed (CLOSE), the seventh on-off valve 122 is closed (CLOSE), and the eighth on-off valve 124 is opened (opened). As a result, the pressure inside the storage tank 62 and the adsorption tank 60b is pressurized by the second compressor 104, and when the set pressure of the relief valve 112 is exceeded, part of the exhaust gas inside the adsorption tank 60b is discharged from the relief valve 112. Therefore, the inside of the adsorption tank 60b is scavenged. That is, since harmful components in the exhaust gas are also mixed during adsorption, the internal exhaust gas is scavenged in order to reduce the concentration of the harmful components.

他方、SEQ.3においては、吸着タンク60aについてSEQ.2と同様の吸着処理を行う一方、吸着タンク60bについて第5開閉弁100をOPEN(開放)し、第7開閉弁122、第8開閉弁124をCLOSE(閉鎖)する。   On the other hand, SEQ. 3, SEQ. On the other hand, the fifth on-off valve 100 is opened (opened) for the adsorption tank 60b, and the seventh on-off valve 122 and the eighth on-off valve 124 are closed (closed).

これにより、第2圧縮機104によって吸着タンク60bの内部の圧力は減圧されると共に、貯留タンク62の内部の圧力が加圧され、吸着タンク60bの第1吸着剤72に吸着されていた二酸化炭素が脱離される。脱離された二酸化炭素は第2乾燥部106で除湿された後、第2圧縮機104によって貯留タンク62に圧送され、貯留タンク62の第2吸着剤74に吸着されて貯留される。   As a result, the pressure inside the adsorption tank 60b is reduced by the second compressor 104, and the pressure inside the storage tank 62 is increased, and the carbon dioxide adsorbed by the first adsorbent 72 in the adsorption tank 60b. Is desorbed. The desorbed carbon dioxide is dehumidified by the second drying unit 106 and then pumped to the storage tank 62 by the second compressor 104 and is adsorbed and stored in the second adsorbent 74 of the storage tank 62.

より詳しくは、第2圧縮機104によって吸着タンク60bの内部の圧力を大気圧以下まで減圧することで第1吸着剤72に吸着されていた二酸化炭素を脱離させる。   More specifically, the carbon dioxide adsorbed by the first adsorbent 72 is desorbed by reducing the pressure inside the adsorption tank 60b to below atmospheric pressure by the second compressor 104.

また、貯留タンク62の内部の圧力は前回の掃気処理によってリリーフ弁112の設定圧、即ち、大気圧よりも第1所定値だけ高い圧力になっているため、第2圧縮機104によって脱離された二酸化炭素が供給されることでさらに上昇して大気圧よりも第2所定値だけ高い圧力、例えば1.0MPa程度に加圧される。   Further, the internal pressure of the storage tank 62 is desorbed by the second compressor 104 because it is higher than the set pressure of the relief valve 112 by the previous scavenging process, that is, a first predetermined value higher than the atmospheric pressure. When the carbon dioxide is supplied, the pressure further rises and is pressurized to a pressure higher than the atmospheric pressure by a second predetermined value, for example, about 1.0 MPa.

このように、第2所定値が第1所定値よりも大きい、即ち、貯留タンク62での貯留のときの圧力が吸着タンク60での吸着のときの圧力よりも高い圧力に加圧されるため、脱離された二酸化炭素を貯留タンク62で確実に貯留することができる。尚、貯留タンク62の第2吸着剤74は吸着タンク60の第1吸着剤72よりも十分多く収容しておくのが望ましい。   Thus, the second predetermined value is larger than the first predetermined value, that is, the pressure at the time of storage in the storage tank 62 is increased to a pressure higher than the pressure at the time of adsorption in the adsorption tank 60. The desorbed carbon dioxide can be reliably stored in the storage tank 62. It is desirable that the second adsorbent 74 in the storage tank 62 be accommodated sufficiently more than the first adsorbent 72 in the adsorption tank 60.

SEQ.4,5は吸着タンク60a,60bを交代して行う処理であり、吸着タンク60aで脱離(掃気と脱離)を行い、吸着タンク60bで吸着を行う処理であるが、SEQ.2,3と同様のため、詳細な説明は省略する。   SEQ. Nos. 4 and 5 are processes performed by replacing the adsorption tanks 60a and 60b. The desorption (scavenging and desorption) is performed in the adsorption tank 60a, and the adsorption is performed in the adsorption tank 60b. Since it is the same as 2 and 3, detailed description is omitted.

また、SEQ.2から5において、ECU44は、第1一酸化炭素センサ132の出力に基づき、吸着タンク60a,60bにおける二酸化炭素の吸着時間と掃気時間を制御する。   In addition, SEQ. In 2 to 5, the ECU 44 controls the adsorption time and scavenging time of carbon dioxide in the adsorption tanks 60a and 60b based on the output of the first carbon monoxide sensor 132.

それについて説明すると、図5は吸着時間と掃気時間に対する一酸化炭素の濃度の変化を示す実験データである。   Describing this, FIG. 5 is experimental data showing changes in the concentration of carbon monoxide with respect to the adsorption time and scavenging time.

図5において(a)は掃気時間を60secとしたとき、(b)は掃気時間を120secとしたとき、(c)は掃気時間を180secとしたときの実験データである。尚、図5(a)(b)(c)において吸着時間は全て60secである。   5A is experimental data when the scavenging time is 60 sec, FIG. 5B is experimental data when the scavenging time is 120 sec, and FIG. 5C is the scavenging time is 180 sec. In FIGS. 5A, 5B and 5C, the adsorption time is all 60 sec.

図5に示す如く、掃気時間を長くするほど、一酸化炭素の濃度は短時間にピークに達すると共に、ピーク値も減少する。従って、ECU44は、第1一酸化炭素センサ132によって検出された一酸化炭素の濃度が所定値(適宜設定される)を超えるときは、所定値未満となるまで、掃気時間を延長するように、吸着タンク60a,60bにおける二酸化炭素の吸着時間と掃気時間を制御する。   As shown in FIG. 5, the longer the scavenging time is, the more the carbon monoxide concentration reaches its peak in a short time and the peak value decreases. Therefore, when the concentration of carbon monoxide detected by the first carbon monoxide sensor 132 exceeds a predetermined value (set as appropriate), the ECU 44 extends the scavenging time until it becomes less than the predetermined value. The adsorption time and scavenging time of carbon dioxide in the adsorption tanks 60a and 60b are controlled.

図4の説明に戻ると、SEQ.6は貯留された二酸化炭素をハウス2に放出(供給)する放出モードであり、第2圧縮機104をOFF(オフ)すると共に、第4開閉弁96、第5開閉弁100、第7開閉弁122、第8開閉弁124をCLOSE(閉鎖)し、第6開閉弁114をOPEN(開放)する。それにより、貯留タンク62に第2吸着剤74に吸着・貯留されていた二酸化炭素はハウス2にそのまま流入する。   Returning to the description of FIG. Reference numeral 6 denotes a release mode for releasing (supplying) the stored carbon dioxide to the house 2, turning off the second compressor 104, and the fourth on-off valve 96, the fifth on-off valve 100, and the seventh on-off valve. 122, the eighth on-off valve 124 is closed (CLOSE), and the sixth on-off valve 114 is opened (opened). Thereby, the carbon dioxide adsorbed and stored in the storage tank 62 by the second adsorbent 74 flows into the house 2 as it is.

このとき、貯留タンク62内の二酸化炭素は大気圧よりも第2所定値だけ高い圧力で貯留されているため、第6開閉弁114をOPEN(開放)するのみで、ハウス2に容易に供給することができる。また、適宜な案内パイプを設けることで、ハウス2の植物群のうちで所望の植物にピンポイントで供給することができる。   At this time, since the carbon dioxide in the storage tank 62 is stored at a pressure higher than the atmospheric pressure by a second predetermined value, it is easily supplied to the house 2 simply by opening the sixth on-off valve 114. be able to. Moreover, by providing an appropriate guide pipe, it can be pinpointed to a desired plant in the plant group of the house 2.

SEQ.7は二酸化炭素回収装置1全体の水分を除去するための脱湿モードであり、第1圧縮機80をON(オン)し、第2圧縮機104をOFF(オフ)し、第1、第2三方弁76,82を上流からの排ガスを大気に放出するように動作させると共に、第6開閉弁114を除く全ての開閉弁、即ち、第1、第2、第3、第4、第5、第7、第8開閉弁86,90,94,96,100,122,124をOPEN(開放)する。   SEQ. Reference numeral 7 denotes a dehumidification mode for removing moisture from the entire carbon dioxide recovery device 1. The first compressor 80 is turned on and the second compressor 104 is turned off. The three-way valves 76 and 82 are operated so as to release the exhaust gas from the upstream to the atmosphere, and all the on-off valves except the sixth on-off valve 114, that is, the first, second, third, fourth, fifth, The seventh and eighth on-off valves 86, 90, 94, 96, 100, 122, 124 are opened (opened).

これにより、二酸化炭素回収装置1全体が第1圧縮機80によって減圧され、水分を含んだ残留ガスや減圧によって脱離した吸着成分が第2三方弁82を介して大気に放出されることで、装置全体の脱湿が行われる。ハウス2への二酸化炭素の供給が必要とされるのは日の出から午前中までの時間帯であるので、脱湿モードはそれ以外の時間帯に定期的(あるいは不定期的)に実行される。   As a result, the entire carbon dioxide recovery device 1 is decompressed by the first compressor 80, and the residual gas containing moisture and the adsorbed components desorbed by the decompression are released to the atmosphere via the second three-way valve 82. The entire device is dehumidified. Since the supply of carbon dioxide to the house 2 is required in the time zone from sunrise to morning, the dehumidification mode is executed periodically (or irregularly) in other time zones.

このとき、ECU44は、第2一酸化炭素センサ134によって検出された一酸化炭素の濃度に基づいて吸着タンク60aと貯留タンク62の少なくともいずれかの排ガスを大気に放出する。即ち、ECU44は、第2一酸化炭素センサ134によって検出された一酸化炭素の濃度が規定値(適宜設定される)より高い場合、ハウス2に供給せず、大気に放出する。   At this time, the ECU 44 releases the exhaust gas of at least one of the adsorption tank 60a and the storage tank 62 to the atmosphere based on the concentration of carbon monoxide detected by the second carbon monoxide sensor 134. That is, when the concentration of carbon monoxide detected by the second carbon monoxide sensor 134 is higher than a specified value (which is set as appropriate), the ECU 44 does not supply the house 2 but releases it to the atmosphere.

より具体的には、ECU44は、第2一酸化炭素センサ134によって検出された一酸化炭素の濃度が規定値より高い場合、第2圧縮機104を動作させ、非常弁(図示せず)を介して貯留タンク62の排ガスを大気に放出する。   More specifically, when the concentration of carbon monoxide detected by the second carbon monoxide sensor 134 is higher than a specified value, the ECU 44 operates the second compressor 104 and passes through an emergency valve (not shown). The exhaust gas from the storage tank 62 is released to the atmosphere.

また、ECU44は、第1一酸化炭素センサ132によって検出された一酸化炭素の濃度が規定値より高い場合、上記した掃気を行うことで、その内部に充填されていた排ガスを大気に放出すると共に、SEQ.7の脱湿モードで述べた処理で大気に放出する。   In addition, when the concentration of carbon monoxide detected by the first carbon monoxide sensor 132 is higher than a specified value, the ECU 44 performs the above-described scavenging, thereby releasing the exhaust gas filled therein to the atmosphere. , SEQ. 7 is released into the atmosphere by the treatment described in the dehumidifying mode.

以上の如く、この発明の実施例にあっては、コージェネレーション装置10の発電機20を駆動する内燃機関(エンジン)22から排出される排ガスに含まれる二酸化炭素を回収して植物栽培施設(ハウス)2に供給する回収手段を備えた二酸化炭素回収装置1において、前記回収手段が、前記内燃機関(エンジン)22から排出される排ガスの(第1、第2、第3導管64,66,70に沿う)流れにおいて下流に配置されると共に、内部に第1吸着剤72が収容される吸着タンク60(60a,60b)と、前記吸着タンク60の下流に配置されると共に、内部に第2吸着剤74が収容される貯留タンク62と、前記内燃機関(エンジン)22から排出される排ガスを前記吸着タンク60に圧送して前記排ガスに含まれる二酸化炭素を前記第1吸着剤72に吸着させる二酸化炭素吸着手段(ECU44,SEQ.2,3,4,5)と、前記吸着タンク60の内部の圧力を減圧して前記吸着された二酸化炭素を前記第1吸着剤72から脱離させ、前記脱離させた二酸化炭素を前記貯留タンク62に圧送して前記第2吸着剤74に吸着させて貯留する二酸化炭素貯留手段(ECU44,SEQ.3,5)と、前記貯留タンク62に貯留された二酸化炭素を前記植物栽培施設(ハウス)2に供給する二酸化炭素供給手段(ECU44,SEQ.6)と、前記吸着タンク60と貯留タンク62のうちの少なくともいずれかの下流側、より具体的には両者の下流側に配置されて前記脱離させた二酸化炭素あるいは前記貯留タンク62に貯留された二酸化炭素とともに流出する一酸化炭素の濃度を検出する一酸化炭素検出手段(センサ)132,134と、前記一酸化炭素検出手段によって検出された一酸化炭素の濃度に基づいて前記吸着タンク60と貯留タンク62の少なくともいずれかの排ガスを大気に放出する排ガス放出手段(ECU44,SEQ.2,3,4,5,6,7)とからなる如く構成したので、エネルギ効率を高めることができると共に、第1、第2吸着剤72,74を用いて二酸化炭素を吸着・貯留することで装置を大型化することなく二酸化炭素を効率的に回収することができる。さらに、検出された一酸化炭素の濃度に基づいて吸着タンク60と貯留タンク62の少なくともいずれかの排ガスを大気に放出する如く構成したので、安全性を高めることができる。 As described above, in the embodiment of the present invention, the carbon dioxide contained in the exhaust gas discharged from the internal combustion engine (engine) 22 that drives the generator 20 of the cogeneration apparatus 10 is recovered to obtain a plant cultivation facility (house). ) 2 in the carbon dioxide recovery apparatus 1 provided with the recovery means for supplying to the exhaust gas (first, second and third conduits 64, 66, 70) of the exhaust gas discharged from the internal combustion engine (engine) 22. The adsorbing tank 60 (60a, 60b) in which the first adsorbent 72 is accommodated and the adsorbing tank 60, and the adsorbing tank 60 is disposed in the downstream. The storage tank 62 in which the agent 74 is accommodated and the exhaust gas discharged from the internal combustion engine (engine) 22 are pumped to the adsorption tank 60 to convert carbon dioxide contained in the exhaust gas into front. Carbon dioxide adsorbing means (ECU 44, SEQ. 2, 3, 4, 5) for adsorbing to the first adsorbent 72, and reducing the pressure inside the adsorption tank 60 to adsorb the adsorbed carbon dioxide to the first adsorption. Carbon dioxide storage means (ECU 44, SEQ. 3, 5) for desorbing from the agent 72, pumping the desorbed carbon dioxide to the storage tank 62, and adsorbing the carbon dioxide to the second adsorbent 74 for storage. At least one of carbon dioxide supply means (ECU 44, SEQ. 6) for supplying carbon dioxide stored in the storage tank 62 to the plant cultivation facility (house) 2, and the adsorption tank 60 and the storage tank 62 downstream, carbon monoxide you outflow with more carbon dioxide specifically stored in the carbon dioxide or the reservoir tank 62 which has the desorbed is disposed downstream of the two Carbon monoxide detection means (sensors) 132 and 134 for detecting the degree of exhaust gas, and exhaust gas from at least one of the adsorption tank 60 and the storage tank 62 based on the concentration of carbon monoxide detected by the carbon monoxide detection means. Since the exhaust gas releasing means (ECU 44, SEQ. 2, 3, 4, 5, 6, 7) for releasing to the atmosphere is used, energy efficiency can be improved, and the first and second adsorbents 72, By using 74 to adsorb and store carbon dioxide, carbon dioxide can be efficiently recovered without increasing the size of the apparatus. Further, since the exhaust gas is configured to be discharged to the atmosphere based on the detected concentration of carbon monoxide, at least one of the adsorption tank 60 and the storage tank 62 can be improved.

また、前記吸着タンク60が複数個(60a,60b)設けられると共に、前記排ガス放出手段は、前記検出された一酸化炭素の濃度に基づいて前記複数個の吸着タンク60a,60bにおいて前記二酸化炭素の吸着時間と前記排ガスの掃気時間を制御する如く構成したので、掃気時間などを適切に制御することで一酸化炭素を減少させることができ、安全性を一層高めることができる。   In addition, a plurality (60a, 60b) of the adsorption tanks 60 are provided, and the exhaust gas discharge means is configured to reduce the amount of carbon dioxide in the plurality of adsorption tanks 60a, 60b based on the detected concentration of carbon monoxide. Since the adsorption time and the scavenging time of the exhaust gas are controlled, the carbon monoxide can be reduced by appropriately controlling the scavenging time and the safety can be further enhanced.

また、吸着タンク60の下流に配置されるバッファタンク102を備えると共に、一酸化炭素検出手段(センサ)132は、バッファタンク102の内部に配置される如く構成したので、上記した効果に加え、一酸化炭素検出手段(センサ)132を簡易に配置することができる。また、複数個の吸着タンク60a,60bの下流に配置する場合、複数個の吸着タンク60a,60bの動作時間を相違させることで、複数個の吸着タンク60a,60bのそれぞれに配置することなく、一酸化炭素の濃度を検出することができる。   Further, since the buffer tank 102 disposed downstream of the adsorption tank 60 is provided and the carbon monoxide detection means (sensor) 132 is configured to be disposed inside the buffer tank 102, in addition to the above-described effects, The carbon oxide detection means (sensor) 132 can be easily arranged. Moreover, when arrange | positioning downstream of the some adsorption tank 60a, 60b, by arranging the operation time of the some adsorption tank 60a, 60b, without arrange | positioning to each of the some adsorption tank 60a, 60b, The concentration of carbon monoxide can be detected.

尚、上記において、発電機20の駆動源はガスを燃料とするガスエンジンからなるように構成したが、ガソリン燃料などを使用するエンジンであっても良く、また、エンジン22の排気量などの具体的な値も例示であって限定されるものではない。   In the above, the drive source of the generator 20 is configured to be a gas engine using gas as fuel, but it may be an engine using gasoline fuel or the like. Typical values are also illustrative and are not limited.

1 二酸化炭素回収装置、2 ハウス(植物栽培施設)、10 コージェネレーション装置、14 電気負荷、20 発電機、22 エンジン(内燃機関)、44 ECU(電子制御ユニット。二酸化炭素吸着手段、二酸化炭素貯留手段、二酸化炭素供給手段、排ガス放出手段)、60 吸着タンク、62 貯留タンク、64,66,70 第1、第2、第3導管、6611 ベンチュリ部(水分除去手段)、72,74 吸着剤、76,82 三方弁、78 除湿タンク(水分除去手段)、80,104 圧縮機、84,106 乾燥部、86,90,94,96,100,114,122,124 開閉弁、92,116,120 バイパス管、110,112 リリーフ弁、130 除湿器(水分除去手段)、132,134 第1、第2一酸化炭素センサ(検出手段)
DESCRIPTION OF SYMBOLS 1 Carbon dioxide collection device, 2 House (plant cultivation facility), 10 Cogeneration device, 14 Electric load, 20 Generator, 22 Engine (internal combustion engine), 44 ECU (electronic control unit. Carbon dioxide adsorption means, Carbon dioxide storage means , Carbon dioxide supply means, exhaust gas release means), 60 adsorption tank, 62 storage tank, 64, 66, 70 first, second, third conduit, 6611 venturi (water removal means), 72, 74 adsorbent, 76 , 82 Three-way valve, 78 Dehumidification tank (moisture removal means), 80, 104 compressor, 84, 106 Drying unit, 86, 90, 94, 96, 100, 114, 122, 124 On-off valve, 92, 116, 120 Bypass Pipe, 110, 112 Relief valve, 130 Dehumidifier (moisture removing means), 132, 134 First and second carbon monoxide sensors (detection hand) )

Claims (3)

コージェネレーション装置の発電機を駆動する内燃機関から排出される排ガスに含まれる二酸化炭素を回収して植物栽培施設に供給する回収手段を備えた二酸化炭素回収装置において、前記回収手段が、内部に第1吸着剤が収容される吸着タンクと、内部に第2吸着剤が収容される貯留タンクと、前記内燃機関から排出される排ガスを前記吸着タンクに圧送して前記排ガスに含まれる二酸化炭素を前記第1吸着剤に吸着させる二酸化炭素吸着手段と、前記吸着タンクの内部の圧力を減圧して前記吸着された二酸化炭素を前記第1吸着剤から脱離させ、前記脱離させた二酸化炭素を前記貯留タンクに圧送して前記第2吸着剤に吸着させて貯留する二酸化炭素貯留手段と、前記貯留タンクに貯留された二酸化炭素を前記植物栽培施設に供給する二酸化炭素供給手段と、前記吸着タンクと貯留タンクのうちの少なくともいずれかの下流側に配置されて前記脱離させた二酸化炭素あるいは前記貯留タンクに貯留された二酸化炭素とともに流出する一酸化炭素の濃度を検出する一酸化炭素検出手段と、前記一酸化炭素検出手段によって検出された一酸化炭素の濃度に基づいて前記吸着タンクと貯留タンクの少なくともいずれかの排ガスを大気に放出する排ガス放出手段とからなることを特徴とする二酸化炭素回収装置。 In the carbon dioxide recovery apparatus provided with the recovery means for recovering the carbon dioxide contained in the exhaust gas discharged from the internal combustion engine that drives the generator of the cogeneration apparatus and supplying it to the plant cultivation facility, the recovery means is provided inside. An adsorbing tank in which one adsorbent is accommodated, a storage tank in which a second adsorbent is accommodated, and exhaust gas discharged from the internal combustion engine is pumped to the adsorbing tank to convert carbon dioxide contained in the exhaust gas into A carbon dioxide adsorbing means for adsorbing the first adsorbent; and depressurizing the pressure inside the adsorption tank to desorb the adsorbed carbon dioxide from the first adsorbent; A carbon dioxide storage means for pumping to a storage tank and adsorbing and storing the second adsorbent, and for supplying carbon dioxide stored in the storage tank to the plant cultivation facility. Of a carbon supply unit, at least one of the arranged downstream you outflow with stored carbon dioxide in the carbon dioxide or the reservoir tank desorbed carbon monoxide of the suction tank and the storage tank Carbon monoxide detection means for detecting the concentration, and exhaust gas emission means for releasing the exhaust gas of at least one of the adsorption tank and the storage tank to the atmosphere based on the concentration of carbon monoxide detected by the carbon monoxide detection means; A carbon dioxide recovery device comprising: 前記吸着タンクが複数個設けられると共に、前記排ガス放出手段は、前記検出された一酸化炭素の濃度に基づいて前記複数個の吸着タンクにおいて前記二酸化炭素の吸着時間と前記排ガスの掃気時間を制御することを特徴とする請求項1記載の二酸化炭素回収装置。   A plurality of the adsorption tanks are provided, and the exhaust gas release means controls the carbon dioxide adsorption time and the exhaust gas scavenging time in the plurality of adsorption tanks based on the detected concentration of carbon monoxide. The carbon dioxide recovery device according to claim 1. 前記吸着タンクの下流に配置されるバッファタンクを備えると共に、前記一酸化炭素検出手段は、前記バッファタンクの内部に配置されることを特徴とする請求項1または2記載の二酸化炭素回収装置。   3. The carbon dioxide recovery device according to claim 1, further comprising a buffer tank disposed downstream of the adsorption tank, wherein the carbon monoxide detection unit is disposed inside the buffer tank.
JP2014179847A 2014-09-04 2014-09-04 Carbon dioxide recovery device Expired - Fee Related JP6190785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179847A JP6190785B2 (en) 2014-09-04 2014-09-04 Carbon dioxide recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179847A JP6190785B2 (en) 2014-09-04 2014-09-04 Carbon dioxide recovery device

Publications (2)

Publication Number Publication Date
JP2016052632A JP2016052632A (en) 2016-04-14
JP6190785B2 true JP6190785B2 (en) 2017-08-30

Family

ID=55744107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179847A Expired - Fee Related JP6190785B2 (en) 2014-09-04 2014-09-04 Carbon dioxide recovery device

Country Status (1)

Country Link
JP (1) JP6190785B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037461A1 (en) * 2016-08-22 2018-03-01 フタバ産業株式会社 Carbon dioxide supply device
JP7290099B2 (en) * 2019-10-04 2023-06-13 井関農機株式会社 plant cultivation equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200720A (en) * 1990-11-30 1992-07-21 Sumitomo Chem Co Ltd Carbon oxide removal device
JP3025591U (en) * 1995-08-17 1996-06-21 智 川合 CO2 supply and heating system in the house
JP2005341953A (en) * 2004-06-04 2005-12-15 Mec Engineering Service Co Ltd Greenhouse cultivation plant residue reuse cogeneration system
JP4922010B2 (en) * 2007-02-22 2012-04-25 大阪瓦斯株式会社 CO2 supply device for plant growth using exhaust gas
JP2009269805A (en) * 2008-05-09 2009-11-19 Nippon Steel Corp Method and apparatus for recovering carbon dioxide
JP2010124802A (en) * 2008-11-28 2010-06-10 Soai:Kk System of supplying carbon dioxide for plant cultivation greenhouse, and apparatus for supplying carbon dioxide
JP5578469B2 (en) * 2010-07-09 2014-08-27 独立行政法人産業技術総合研究所 Carbon dioxide supply system for horticultural facilities by pressure swing method using carbon dioxide in combustion exhaust gas

Also Published As

Publication number Publication date
JP2016052632A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
JP6325516B2 (en) Apparatus and method for oxyfuel combustion of fuel in an internal combustion engine
US6755892B2 (en) Carbon dioxide scrubber for fuel and gas emissions
CA1286882C (en) Filtered environmental control system
JP6793052B2 (en) Boil-off gas recovery system
AU2009328855A1 (en) A method for destroying coal mine low concentration methane gas and an apparatus thereof
JP6254917B2 (en) Carbon dioxide recovery device
JP6330205B2 (en) Carbon dioxide recovery device
JP6190784B2 (en) Carbon dioxide recovery device
JP6458318B2 (en) Carbon dioxide recovery device
JP6190785B2 (en) Carbon dioxide recovery device
JP7356344B2 (en) Boiler plant and carbon dioxide removal method
JP6733859B2 (en) Carbon dioxide capture device
CN110124443B (en) Organic waste gas recycling device and method
JP6162087B2 (en) Carbon dioxide recovery device
JP6330204B2 (en) Carbon dioxide recovery device
CN203556266U (en) Dry air generator
JP6190786B2 (en) Carbon dioxide recovery device
CN103725338A (en) Device and method for removing oxosilane gas in combustible gas
CN213202366U (en) Breathe adaptive portable oxygenerator
CN110392596A (en) The method and apparatus destroyed for gas
KR20190073647A (en) Oxygen Generator
CN208426836U (en) Organic waste gas treatment system
CN1686586A (en) Multi function fire fighting mobile aeration and lighting system
JP3830872B2 (en) Mixed gas separator
CN220047622U (en) Organic waste gas purifying system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6190785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees