JP6190687B2 - Liquid filter - Google Patents

Liquid filter Download PDF

Info

Publication number
JP6190687B2
JP6190687B2 JP2013207428A JP2013207428A JP6190687B2 JP 6190687 B2 JP6190687 B2 JP 6190687B2 JP 2013207428 A JP2013207428 A JP 2013207428A JP 2013207428 A JP2013207428 A JP 2013207428A JP 6190687 B2 JP6190687 B2 JP 6190687B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
liquid filter
basis weight
melt blown
blown nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013207428A
Other languages
Japanese (ja)
Other versions
JP2014024061A (en
Inventor
暁雄 松原
暁雄 松原
順 兒玉
順 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2013207428A priority Critical patent/JP6190687B2/en
Publication of JP2014024061A publication Critical patent/JP2014024061A/en
Application granted granted Critical
Publication of JP6190687B2 publication Critical patent/JP6190687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリプロピレン・メルトブロー不織布からなる、柔軟で、均一性に優れ、微粒子の阻止率に優れた液体用フィルタに関する。   The present invention relates to a liquid filter made of a polypropylene meltblown nonwoven fabric, which is flexible, excellent in uniformity, and excellent in fine particle rejection.

メルトブロー不織布は、スパンボンド不織布に比べて極細繊維とすることができることから、柔軟性に優れており、単一で、あるいは他の不織布等と積層して、フィルタ用途を始め、衛生材、衣料、包装材等に用いられている。   Since melt blown nonwoven fabrics can be made into ultrafine fibers compared to spunbond nonwoven fabrics, they are superior in flexibility, and can be used alone, or laminated with other nonwoven fabrics, for filter applications, sanitary materials, clothing, Used for packaging materials.

そして、ポリプロピレンを用いたメルトブロー不織布は、耐薬品性、加工適性に優れ、且つ、微粒子の阻止率に優れることから精密濾過用フィルタに用い得ることが種々提案されている。例えば、平均孔径が0.5〜10μm、空隙率が30〜80%であるポリプロピレン製不織布(メルトブロー不織布)を用いてなる精密濾過用フィルターエレメントが提案されており(特許文献1:特公平5−41284号公報)、特許文献1の実施例1にはポリプロピレン・メルトブロー不織布を3枚積層して、加熱ロールで再ボンディングした最小孔径:1.0μm、最大孔径:4.0μmの複合一体化濾過材を得、球状粒子径1μmのポリスチレンラテックスの阻止率が約90%であることが記載されている。また、特許文献2(国際公開番号:WO2005/084777)には、繊維径が0.3〜50μm、目付が5〜200g/m2のメタロセン触媒で重合されたポリプロピレンを用いた不織布(メルトブロー不織布)からなるフィルターカートリッジが提案されており、特許文献2の実施例1には、平均繊維径:2.0μm、目付:30g/m2の不織布を用いてフィルターカートリッジを得、粒子を99.9%除去し得る粒子の大きさが6μmであることが記載されている。 Various proposals have been made that melt blown nonwoven fabrics using polypropylene can be used for filters for microfiltration because they are excellent in chemical resistance and processability and have a fine particle rejection rate. For example, a filter element for microfiltration using a non-woven fabric made of polypropylene (melt blown non-woven fabric) having an average pore diameter of 0.5 to 10 μm and a porosity of 30 to 80% has been proposed (Patent Document 1: Japanese Patent Publication 5- No. 41284), Example 1 of Patent Document 1 is a composite integrated filter medium having a minimum pore size of 1.0 μm and a maximum pore size of 4.0 μm, which is obtained by laminating three polypropylene meltblown nonwoven fabrics and rebonding them with a heating roll. And the blocking rate of polystyrene latex having a spherical particle diameter of 1 μm is about 90%. Patent Document 2 (International Publication Number: WO2005 / 084777) discloses a nonwoven fabric (melt blown nonwoven fabric) using polypropylene polymerized with a metallocene catalyst having a fiber diameter of 0.3 to 50 μm and a basis weight of 5 to 200 g / m 2. In Example 1 of Patent Document 2, a filter cartridge is obtained using a nonwoven fabric having an average fiber diameter of 2.0 μm and a basis weight of 30 g / m 2 , and the particles are 99.9%. It is described that the size of particles that can be removed is 6 μm.

一方、特許文献3(特開2005−29931号公報)には、メルトブロー不織布は繊維を均一に分散した不織布を得ることが困難であることから、紡糸溶液に電界を作用させて得た不織布を用いる方法が提案されており、特許文献3の比較例5には、平均繊維径:1.6μm、目付:32g/m2のポリプロピレン・メルトブロー不織布からなる平均孔径:2.5μm、最大孔径:13.7μmの濾過材の捕集効率が17.0%であることが記載されている。 On the other hand, Patent Document 3 (Japanese Patent Application Laid-Open No. 2005-29931) uses a nonwoven fabric obtained by applying an electric field to a spinning solution because a melt-blown nonwoven fabric is difficult to obtain a nonwoven fabric in which fibers are uniformly dispersed. In Comparative Example 5 of Patent Document 3, an average fiber diameter: 1.6 μm, a weight per unit area: 32 g / m 2 , an average pore diameter: 2.5 μm, and a maximum pore diameter: 13. It is described that the collection efficiency of a 7 μm filter medium is 17.0%.

論理的には、微粒子の阻止率を増すには、用いる不織布の平均孔径及び最大孔径を小さくすればよいが、平均孔径が小さくなると、濾過時間が長くなると伴に、圧損が増すなどの濾過効率が著しく低下するので、平均孔径を小さくするには限界がある。
かかる状況から明らかなように、ポリプロピレン・メルトブロー不織布を用いた液体用フィルタは、微粒子(1μm)の阻止率に限界があるのが現状である。
Theoretically, in order to increase the rejection rate of fine particles, the average pore size and the maximum pore size of the nonwoven fabric to be used should be reduced. However, if the average pore size is reduced, the filtration efficiency such as the pressure loss increases as the filtration time increases. Is significantly reduced, and there is a limit to reducing the average pore diameter.
As is apparent from this situation, the liquid filter using a polypropylene meltblown nonwoven fabric has a limit in the blocking rate of fine particles (1 μm).

特公平5−41284号公報Japanese Patent Publication No. 5-41284 国際公開WO2005/084777International Publication WO2005 / 084777 特開2005−29931号公報JP 2005-29931 A

本発明は、ポリプロピレン・メルトブロー不織布を用いて、柔軟で、均一性に優れ、しかも流量を然程低下させることなく、微粒子の阻止率に優れた液体用フィルタを開発することを目的として、種々検討した結果である。平均繊維径が1.0μmを超える繊維からなるメルトブロー不織布にカレンダー加工等を施して、最大孔径を5μm以下及び平均孔径を2μm以下にしても、何故か、球状粒子径1.00μmのポリスチレンラテックス粒子の阻止率を100%とすることはできない。本発明は、ポリプロピレン・メルトブロー不織布に用いる繊維の平均繊維径を1.0μm未満にすることにより、球状粒子径1.00μmのポリスチレンラテックス粒子の阻止率が100%の液体用フィルタが得られることを見出したことにある。   The present invention uses a polypropylene meltblown nonwoven fabric, and has been studied in various ways for the purpose of developing a liquid filter that is flexible, excellent in uniformity, and excellent in the rejection rate of fine particles without significantly reducing the flow rate. It is the result. The melt blown nonwoven fabric composed of fibers having an average fiber diameter exceeding 1.0 μm is subjected to calendering or the like so that the maximum pore diameter is 5 μm or less and the average pore diameter is 2 μm or less. For some reason, polystyrene latex particles having a spherical particle diameter of 1.00 μm The blocking rate cannot be 100%. According to the present invention, by setting the average fiber diameter of the fibers used for the polypropylene melt blown nonwoven fabric to less than 1.0 μm, a liquid filter with a 100% rejection of polystyrene latex particles having a spherical particle diameter of 1.00 μm can be obtained. It is in the headline.

本発明は、平均繊維径が0.5以上1.0μm未満のポリプロピレン極細繊維からなり、目付60g/m2で測定した最大孔径が5μm以下及び平均孔径が2μm以下であるメルトブロー不織布からなる液体用フィルタを提供するものである。 The present invention is for a liquid comprising a melt blown nonwoven fabric composed of polypropylene ultrafine fibers having an average fiber diameter of 0.5 or more and less than 1.0 μm and having a maximum pore diameter of 5 μm or less and an average pore diameter of 2 μm or less measured at a basis weight of 60 g / m 2 . It provides a filter.

本発明の液体用フィルタは、流量が然程低くなく、しかも微粒子の阻止率が高く、濾過性能に優れ、且つ、フィルタ寿命、耐薬品性に優れることから低溶出性、リサイクル性に優れる。   The liquid filter of the present invention is not so low in flow rate, has a high particulate rejection rate, has excellent filtration performance, and has excellent filter life and chemical resistance, and therefore has low elution and recyclability.

<ポリプロピレン>
本発明の液体用フィルタに用いるメルトブロー不織布の原料に用いるポリプロピレンは、公知のポリプロピレンを用いることができる。ポリプロピレンとしては、通常、融点(Tm)が155℃以上、好ましくは157〜165℃の範囲にあるプロピレンの単独重合体若しくはプロピレンと極少量のエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン等の炭素数2以上、好ましくは2〜8の1種または2種以上のα−オレフィンとの共重合体であり、プロピレン単独重合体が好ましい。
本発明に係るポリプロピレンは、溶融紡糸し得る限り、メルトフローレート(MFR:ASTM D−1238、230℃、荷重2160g)は特に限定はされないが、通常1〜1000g/10分、好ましくは5〜500g/10分、さらに好ましくは10〜100g/10分の範囲にある。
<Polypropylene>
As the polypropylene used for the raw material of the melt blown nonwoven fabric used in the liquid filter of the present invention, a known polypropylene can be used. The polypropylene usually has a melting point (Tm) of 155 ° C. or higher, preferably a propylene homopolymer in the range of 157 to 165 ° C. or propylene and a very small amount of ethylene, 1-butene, 1-pentene, 1-hexene, It is a copolymer of 2 or more carbon atoms such as 1-octene and 4-methyl-1-pentene, preferably 2 to 8 or more, and a propylene homopolymer is preferable.
As long as the polypropylene according to the present invention can be melt-spun, the melt flow rate (MFR: ASTM D-1238, 230 ° C., load 2160 g) is not particularly limited, but usually 1 to 1000 g / 10 minutes, preferably 5 to 500 g. / 10 minutes, more preferably in the range of 10-100 g / 10 minutes.

<メルトブロー不織布>
本発明に係るメルトブロー不織布は、平均繊維径が0.5以上1.0μm未満のポリプロピレン極細繊維からなり、目付60g/m2で測定した最大孔径が5μm以下、好ましくは4.5μm以下及び平均孔径が2μm以下、好ましくは最小孔径が1.0μm以上の範囲にあるメルトブロー不織布である。
<Melt blown nonwoven fabric>
The melt blown nonwoven fabric according to the present invention is composed of polypropylene ultrafine fibers having an average fiber diameter of 0.5 or more and less than 1.0 μm, and has a maximum pore diameter of 5 μm or less, preferably 4.5 μm or less and an average pore diameter measured at a basis weight of 60 g / m 2. Is a melt blown nonwoven fabric having a minimum pore size of 1.0 μm or more.

平均繊維径が1.0μm以上の繊維からなるメルトブロー不織布あるいは目付60g/m2で測定した平均孔径が2μmを超えるメルトブロー不織布は、液体用フィルタに用いても、球状粒子径1.00μmのポリスチレンラテックスの阻止率を100%とすることができない。 A melt-blown nonwoven fabric comprising fibers having an average fiber diameter of 1.0 μm or more, or a melt-blown nonwoven fabric having an average pore diameter of more than 2 μm measured at a basis weight of 60 g / m 2 is a polystyrene latex having a spherical particle diameter of 1.00 μm even when used for a liquid filter. The rejection rate cannot be 100%.

本発明のメルトブロー不織布は、好ましくは、目付15g/m2で測定した通気度が3〜7cc/cm2/秒の範囲にある。通気度が7cc/cm2/秒を超える不織布は、極細繊維の分散が不均一であり、平均孔径が大きくなったりして、液体フィルタに用いた場合に、微粒子の阻止率が低下する虞がある。一方、通気度が3cc/cm2/秒未満の不織布は、液体フィルタに用いた場合に流量が低下する(濾過時間が多大となる)虞がある。 The melt blown nonwoven fabric of the present invention preferably has an air permeability measured in a basis weight of 15 g / m 2 in the range of 3 to 7 cc / cm 2 / sec. A nonwoven fabric having an air permeability of more than 7 cc / cm 2 / sec has non-uniform dispersion of ultrafine fibers and an increased average pore diameter, which may reduce the particle rejection when used in a liquid filter. is there. On the other hand, when the nonwoven fabric having an air permeability of less than 3 cc / cm 2 / second is used for a liquid filter, the flow rate may decrease (the filtration time will be great).

本発明のメルトブロー不織布は、好ましくは、目付60g/m2で測定した平均孔径は0.01μm以上、好ましくは0.1μm以上であることが好ましい。目付60g/m2で測定した平均孔径が0.01μm未満では、液体用フィルタに用いた場合に、圧損が高く流量が出ない虞がある。 The melt blown nonwoven fabric of the present invention preferably has an average pore diameter measured at a basis weight of 60 g / m 2 of 0.01 μm or more, preferably 0.1 μm or more. When the average pore diameter measured at a basis weight of 60 g / m 2 is less than 0.01 μm, there is a concern that when used in a liquid filter, the pressure loss is high and the flow rate does not come out.

本発明に係るメルトブロー不織布は、好ましくは目付60g/m2で測定した球状粒子径1.00μm及び3.00μmのポリスチレンラテックスの阻止率が100%である。
本発明に係るメルトブロー不織布は、より好ましくは目付60g/m2で測定した球状粒子径0.47μmのポリスチレンラテックスの阻止率が10%以上である。
The melt blown nonwoven fabric according to the present invention preferably has a blocking rate of 100% for polystyrene latex having a spherical particle diameter of 1.00 μm and 3.00 μm, measured at a basis weight of 60 g / m 2 .
In the melt blown nonwoven fabric according to the present invention, the blocking rate of polystyrene latex having a spherical particle diameter of 0.47 μm, more preferably measured at a basis weight of 60 g / m 2 is 10% or more.

本発明に係るメルトブロー不織布の目付は、液体用フィルタの用途により適宜決め得るが、通常、5〜200g/m2、好ましくは10〜150g/m2の範囲にある。 The basis weight of the melt blown nonwoven fabric according to the present invention can be appropriately determined depending on the use of the liquid filter, but is usually in the range of 5 to 200 g / m 2 , preferably 10 to 150 g / m 2 .

<液体用フィルタ>
本発明の液体用フィルタは、前記メルトブロー不織布からなる。本発明の液体用フィルタは、前記メルトブロー不織布の単層からなってもよいし、二層以上のメルトブロー不織布の積層体からなってもよい。液体用フィルタとして、二層以上のメルトブロー不織布の積層体を用いる場合は、単に、二層以上のメルトブロー不織布を重ねてもよい。
<Filter for liquid>
The liquid filter of the present invention comprises the melt blown nonwoven fabric. The liquid filter of the present invention may be composed of a single layer of the melt blown nonwoven fabric or a laminate of two or more melt blown nonwoven fabrics. When a laminate of two or more layers of melt blown nonwoven fabric is used as the liquid filter, two or more layers of melt blown nonwoven fabric may simply be stacked.

本発明の液体フィルタは、例えば、孔径を小さく制御するためにフラットロール間にクリアランスを設けた一対のフラットロールを用いてカレンダー処理を行ってもよい。フラットロール間のクリアランスは、不織布の厚さに応じて、適宜変更して、不織布の繊維間にある空隙がなくならようにすることが必要である。又、カレンダー処理の際に、加熱処理を行う場合、ロール表面温度がポリプロピレン極細繊維の融点より15℃から50℃低い温度の範囲で熱圧接することが望ましい。ロール表面温度がポリプロピレン極細繊維の融点より15℃未満の範囲で低い場合はメルトブロー不織布表面がフィルム化し、フィルタ性能に劣る。   In the liquid filter of the present invention, for example, a calendar process may be performed using a pair of flat rolls provided with a clearance between the flat rolls in order to control the hole diameter to be small. The clearance between the flat rolls needs to be changed as appropriate according to the thickness of the nonwoven fabric so that there are no voids between the fibers of the nonwoven fabric. Further, when performing the heat treatment during the calendering treatment, it is desirable that the roll surface temperature is hot-pressed in a temperature range of 15 ° C. to 50 ° C. lower than the melting point of the polypropylene ultrafine fiber. When the roll surface temperature is lower than the melting point of the polypropylene ultrafine fiber in a range of less than 15 ° C., the surface of the melt blown nonwoven fabric is formed into a film and the filter performance is inferior.

本発明の液体用フィルタは、前記メルトブロー不織布からなるが、目的及び適用する液体に応じて、前記性能を有するメルトブロー不織布(液体用フィルタ)より繊維径が太い不織布、あるいは平均孔径が大きい不織布を積層することにより、液体用フィルタの寿命を長くすることができる。
また、液体用フィルタの強度を強めるために、スパンボンド不織布あるいは、網状物を積層してもよい。
The liquid filter of the present invention is composed of the melt blown nonwoven fabric, and a nonwoven fabric having a fiber diameter larger than that of the melt blown nonwoven fabric (liquid filter) having the above performance or a nonwoven fabric having a large average pore diameter is laminated depending on the purpose and applied liquid. By doing so, the lifetime of the liquid filter can be extended.
In order to increase the strength of the liquid filter, a spunbond nonwoven fabric or a net-like material may be laminated.

<メルトブロー不織布の製造方法>
本発明のメルトブロー不織布は、前記ポリプロピレンを用いて、公知メルトブロー不織布製法によって得られる。例えば、原料となるポリプロピレンを溶融し、紡糸ノズルから吐出するとともに、高温高圧ガスにさらされることにより、細繊維化され、繊維化されたポリプロピレン極細繊維を多孔ベルトまたは多孔ドラムなどのコレクターに捕集して、堆積することによって製造し得る。
<Method for producing melt blown nonwoven fabric>
The meltblown nonwoven fabric of the present invention is obtained by a known meltblown nonwoven fabric manufacturing method using the polypropylene. For example, polypropylene as a raw material is melted, discharged from a spinning nozzle, and exposed to high-temperature and high-pressure gas, so that it is made into fine fibers and collected into a collector such as a porous belt or a porous drum. And can be manufactured by deposition.

各製造条件は、ポリプロピレン極細繊維の平均繊維径が0.5μm以上1.0μm未満及び所望の厚さとなるように、例えば、高温高圧ガスの速度(吐出風量)は4〜30Nmm3/分/mとすればよく、ノズル紡糸の吐出口から捕集面(多孔ベルト)までの距離は3〜55cmとすればよく、多孔ベルトのメッシュ幅は5〜200メッシュにすればよい。 For example, the production conditions are such that the average fiber diameter of the polypropylene ultrafine fibers is 0.5 μm or more and less than 1.0 μm and the desired thickness, for example, the high-temperature and high-pressure gas velocity (discharge air volume) is 4 to 30 Nm 3 / min / m. The distance from the nozzle spinning outlet to the collection surface (perforated belt) may be 3 to 55 cm, and the mesh width of the perforated belt may be 5 to 200 mesh.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例及び比較例における物性値等は、以下の方法により測定した。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.
The physical property values and the like in Examples and Comparative Examples were measured by the following methods.

(1)平均繊維径(μm)
メルトブロー不織布を電子顕微鏡(日立製作所製S-3500N)を用いて、倍率1000倍の写真を撮影し、任意に繊維100本を選び、その繊維の幅(直径)を測定し、得られた測定結果の平均を平均繊維径とした。
(1) Average fiber diameter (μm)
The melt blown non-woven fabric was photographed with an electron microscope (S-3500N manufactured by Hitachi, Ltd.), photographed at a magnification of 1000 times, arbitrarily selected 100 fibers, the width (diameter) of the fibers was measured, and the measurement results obtained Was the average fiber diameter.

(2)目付60g/m2で測定した最大孔径(μm)、最小孔径(μm)及び平均孔径(μm)
目付60g/m2のメルトブロー不織布を調整し、JIS Z8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で、水処理用濾過材となる不織布積層体から採取した試験片をフッ素系不活性液体(3M社製 商品名:フロリナート)に浸漬し、Porous materials,Inc社製のキャピラリー・フロー・ポロメーター(Capillary Flow Porometer)「モデル:CFP-1200AE」を用いて目付60g/m2で測定した最大孔径(μm)、最小孔径(μm)及び平均孔径(μm)を測定した(表中、「最大孔径」、「最小孔径」及び「平均孔径」と示す)。
(2) Maximum pore diameter (μm), minimum pore diameter (μm) and average pore diameter (μm) measured at a basis weight of 60 g / m 2
A nonwoven fabric laminate that is prepared as a water treatment filter medium in a temperature-controlled room with a temperature of 20 ± 2 ° C. and a humidity of 65 ± 2% as defined in JIS Z8703 (standard condition at the test site) by preparing a melt blown nonwoven fabric with a basis weight of 60 g / m 2 Specimens collected from the above are immersed in a fluorine-based inert liquid (trade name: Fluorinert manufactured by 3M), and Capillary Flow Porometer “Model: CFP-1200AE” manufactured by Porous materials, Inc. The maximum pore diameter (μm), the minimum pore diameter (μm) and the average pore diameter (μm) measured with a basis weight of 60 g / m 2 were measured (in the table, indicated as “maximum pore diameter”, “minimum pore diameter” and “average pore diameter”). ).

(3)阻止率(%)及び流量(l/min)
目付60g/m2のメルトブロー不織布を調整し、球状粒子径1.00μmのポリスチレンラテックス粒子を60容量%のIPA水溶液に0.01重量%の濃度で分散した試験液を用い、ろ過装置(ADVANTEC製TSU-90B)で0.3MPaの圧力のもとメルトブロー不織布(液体用フィルタ)を通過した濾液中の濃度:C1と原液の濃度:C0を測定し、次式で阻止率を求めた。
試験液および濾液の濃度は分光光度計(島津製UV3100)を使用し、波長500nmの吸光度を測定し、予め測定した検量線から求めた。
阻止率=〔(C0−C1)/C0〕×100(%)
(3) Blocking rate (%) and flow rate (l / min)
A melt blown nonwoven fabric having a basis weight of 60 g / m 2 was prepared, and a filtration device (manufactured by ADVANTEC) was used using a test solution in which polystyrene latex particles having a spherical particle diameter of 1.00 μm were dispersed in a 60% by volume IPA aqueous solution at a concentration of 0.01% by weight. concentration in the filtrate which has passed through the original melt blown nonwoven fabric (liquid filter) pressure TSU-90B) at 0.3 MPa: concentration of C 1 and stock: measured C 0, was determined rejection by the following equation.
The concentrations of the test solution and the filtrate were obtained from a calibration curve measured in advance using a spectrophotometer (Shimadzu UV3100), measuring the absorbance at a wavelength of 500 nm.
Blocking rate = [(C 0 −C 1 ) / C 0 ] × 100 (%)

また、上記方法で、各々、球状粒子径3.00μm及び球状粒子径0.47μmのポリスチレンラテックス粒子を用い、阻止率を求めた。
流量(l/min)は、上記ろ過装置(ADVANTEC製TSU-90B)を用い0.3MPaの圧力のもと500ccの60容量%IPA水溶液がメルトブロー不織布(液体用フィルタ)を通過したときの時間を測定し求めた。
Moreover, the blocking rate was calculated | required by the said method using the polystyrene latex particle of spherical particle diameter 3.00micrometer and spherical particle diameter 0.47micrometer, respectively.
The flow rate (l / min) was measured using the above filtration device (AD-VANTEC's TSU-90B) when 500cc of 60% IPA aqueous solution passed through the melt blown nonwoven fabric (liquid filter) under a pressure of 0.3MPa. I asked.

(4)通気度(cc/cm2/秒)
目付15g/m2のメルトブロー不織布を調整し、JIS L1096(8.27.1 A法;フラジール形法)に準拠して、JIS Z8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で水処理用濾過材となる不織布積層体から採取した20×20cmの試験片5枚を採取しフラジール形試験機を用いて試験片を通過する空気量(cm3/cm2・秒)を測定しその平均値を求めた。
(4) Air permeability (cc / cm 2 / sec)
A melt blown nonwoven fabric having a basis weight of 15 g / m 2 was prepared, and in accordance with JIS L1096 (8.27.1 A method; Frazier type method), the temperature specified in JIS Z8703 (standard state of test place) 20 ± 2 ° C., Five test pieces of 20 × 20 cm collected from a nonwoven fabric laminate as a water treatment filter medium in a constant temperature room with a humidity of 65 ± 2%, and the amount of air (cm 3) passing through the test piece using a Frazier type tester / Cm 2 · sec) was measured and the average value was determined.

実施例1
メルトブロー不織布製造装置を用い、プロピレン単独重合体(MFR:25g/10分)をダイに供給し、設定温度:300℃のダイから、ノズル単孔あたりの吐出量:0.08g/分でノズルの両側から吹き出す加熱エアー(300℃、700Nm3/時/m)と伴に吐出し、DCD(紡糸口金の表面からコレクターまでの距離):150mmでコレクターに吹き付けて、目付:15g/m2のメルトブロー不織布を得た。
次いで、得られたメルトブロー不織布を4枚重ねて液体用フィルタとした。
得られた液体用フィルタの物性を上記記載の方法で測定した。結果を表1に示す。
Example 1
Using a melt blown nonwoven fabric manufacturing apparatus, a propylene homopolymer (MFR: 25 g / 10 min) is supplied to a die, and a discharge temperature per nozzle single hole: 0.08 g / min from a die having a set temperature: 300 ° C. Discharged with heated air (300 ° C, 700 Nm 3 / hour / m) blown from both sides, DCD (distance from spinneret surface to collector): 150 mm, sprayed to collector, basis weight: 15 g / m 2 melt blow A nonwoven fabric was obtained.
Subsequently, four sheets of the obtained melt-blown nonwoven fabric were stacked to form a liquid filter.
The physical properties of the obtained liquid filter were measured by the method described above. The results are shown in Table 1.

比較例1
メルトブロー不織布製造装置を用い、プロピレン単独重合体(MFR:25g/10分)をダイに供給し、設定温度:300℃のダイから、ノズル単孔あたりの吐出量:0.1g/分でノズルの両側から吹き出す加熱エアー(300℃、700Nm3/時/m)と伴に吐出し、DCD(紡糸口金の表面からコレクターまでの距離):150mmでコレクターに吹き付けて、目付:15g/m2のメルトブロー不織布を得た。
次いで、得られたメルトブロー不織布を4枚重ねて液体用フィルタとした。
得られた液体用フィルタの物性を上記記載の方法で測定した。結果を表1に示す。
Comparative Example 1
Using a melt blown nonwoven fabric manufacturing apparatus, a propylene homopolymer (MFR: 25 g / 10 min) is supplied to a die, and a discharge temperature per nozzle single hole: 0.1 g / min from a die having a set temperature: 300 ° C. Discharged with heated air (300 ° C, 700 Nm 3 / hour / m) blown from both sides, DCD (distance from spinneret surface to collector): 150 mm, sprayed to collector, basis weight: 15 g / m 2 melt blow A nonwoven fabric was obtained.
Subsequently, four sheets of the obtained melt-blown nonwoven fabric were stacked to form a liquid filter.
The physical properties of the obtained liquid filter were measured by the method described above. The results are shown in Table 1.

比較例2
メルトブロー不織布製造装置を用い、プロピレン単独重合体(MFR:25g/10分)をダイに供給し、設定温度:300℃のダイから、ノズル単孔あたりの吐出量:0.15g/分でノズルの両側から吹き出す加熱エアー(300℃、700Nm3/時/m)と伴に吐出し、DCD(紡糸口金の表面からコレクターまでの距離):350mmでコレクターに吹き付けて、目付:15g/m2のメルトブロー不織布を得た。
次いで、得られたメルトブロー不織布を4枚重ねて液体用フィルタとした。
得られた液体用フィルタの物性を上記記載の方法で測定した。結果を表1に示す。
Comparative Example 2
Using a melt blown nonwoven fabric manufacturing apparatus, a propylene homopolymer (MFR: 25 g / 10 min) is supplied to a die, and a discharge temperature per nozzle single hole: 0.15 g / min from a die having a set temperature: 300 ° C. Discharged with heated air (300 ° C, 700 Nm 3 / hour / m) blown from both sides, DCD (distance from the spinneret surface to the collector): 350 mm, sprayed to the collector, basis weight: 15 g / m 2 melt blow A nonwoven fabric was obtained.
Subsequently, four sheets of the obtained melt-blown nonwoven fabric were stacked to form a liquid filter.
The physical properties of the obtained liquid filter were measured by the method described above. The results are shown in Table 1.

比較例3
メルトブロー不織布製造装置を用い、プロピレン単独重合体(MFR:25g/10分)をダイに供給し、設定温度300℃のダイから、ノズル単孔あたりの吐出量:0.5g/分でノズルの両側から吹き出す加熱エアー(300℃、700Nm3/時/m)と伴に吐出し、DCD(紡糸口金の表面からコレクターまでの距離):250mmでコレクターに吹き付けて、目付:15g/m2のメルトブロー不織布を得た。
次いで、得られたメルトブロー不織布を4枚重ねて液体用フィルタとした。
得られた液体用フィルタの物性を上記記載の方法で測定した。結果を表1に示す。
Comparative Example 3
Propylene homopolymer (MFR: 25 g / 10 min) is supplied to the die using a melt blown nonwoven fabric manufacturing device, and the discharge rate per nozzle single hole: 0.5 g / min from the die at a set temperature of 300 ° C. It is discharged with heated air (300 ° C., 700 Nm 3 / hour / m) blown out from the nozzle, DCD (distance from the spinneret surface to the collector): 250 mm, sprayed onto the collector, and a basis weight: 15 g / m 2 melt blown nonwoven fabric Got.
Subsequently, four sheets of the obtained melt-blown nonwoven fabric were stacked to form a liquid filter.
The physical properties of the obtained liquid filter were measured by the method described above. The results are shown in Table 1.

比較例4
比較例1で得られたメルトブロー不織布原反を4枚重ねた不織布積層体をカレンダーロール加工装置を用いて、熱接合に用いる第二段目のカレンダーロールを金属ロールの組合せを使用して、カレンダーロール温度:50℃、線圧:10kg/cmに設定し、液体フィルタを得た。
得られた液体フィルタの物性を上記記載の方法で測定した。測定結果を表1に示す。
Comparative Example 4
Using a calender roll processing apparatus, the second layer calender roll used for thermal bonding was calendered using a combination of metal rolls and the calender roll processing apparatus for the nonwoven fabric laminate obtained by stacking the four melt blown nonwoven fabrics obtained in Comparative Example 1. The roll temperature was set to 50 ° C. and the linear pressure was set to 10 kg / cm to obtain a liquid filter.
The physical properties of the obtained liquid filter were measured by the method described above. The measurement results are shown in Table 1.

Figure 0006190687
Figure 0006190687

表1から明らかなように、平均繊維径が0.8μmのポリプロピレン極細繊維からなり、目付60g/m2で測定した最大孔径が3.85μm及び平均孔径が1.58μmのメルトブロー不織布からなる液体用フィルタは、球状粒子径1.00μm及び3.00μmのポリスチレンラテックス粒子の阻止率が100%であり、且つ、球状粒子径0.47μmのポリスチレンラテックス粒子は12%であり、流量は0.47l/min(実施例1)と、微粒子の阻止率に優れる。 As can be seen from Table 1, for liquids comprising a polypropylene ultrafine fiber having an average fiber diameter of 0.8 μm, and comprising a melt blown nonwoven fabric having a maximum pore diameter of 3.85 μm and an average pore diameter of 1.58 μm measured at a basis weight of 60 g / m 2 . The filter has a blocking rate of 100% for polystyrene latex particles having a spherical particle diameter of 1.00 μm and 3.00 μm, 12% for polystyrene latex particles having a spherical particle diameter of 0.47 μm, and a flow rate of 0.47 l / It is excellent in min (Example 1) and fine particle rejection.

それに対して、平均繊維径が1.1μm(比較例1)、1.5μm(比較例2)及び3.0μm(比較例3)と平均繊維径が1.0μmを超えるポリプロピレン繊維からなるメルトブロー不織布は、平均孔径及び最大孔径が大きく、球状粒子径1.00μmポリスチレンラテックス粒子の阻止率は、90%、64%及び2%と100%と、微粒子の阻止率が劣る。   On the other hand, melt blown nonwoven fabrics comprising polypropylene fibers having an average fiber diameter of 1.1 μm (Comparative Example 1), 1.5 μm (Comparative Example 2) and 3.0 μm (Comparative Example 3) and an average fiber diameter exceeding 1.0 μm. Has a large average pore size and maximum pore size, and the rejection rate of polystyrene latex particles having a spherical particle size of 1.00 μm is 90%, 64%, 2% and 100%, and the rejection rate of fine particles is inferior.

また、平均繊維径が1.1μmのポリプロピレン繊維からなるメルトブロー不織布をカレンダー加工して平均孔径及び最大孔径を実施例1と同じ程度にした液体用フィルタ(比較例4)は、球状粒子径1.00μm及び3.00μmのポリスチレンラテックス粒子の阻止率が97%及び99%と100%にはならず、しかも、流量は低くなり、濾過効率が劣る。   Further, a liquid filter (Comparative Example 4) in which an average pore size and a maximum pore size are set to the same level as in Example 1 by calendering a melt blown nonwoven fabric made of polypropylene fibers having an average fiber size of 1.1 μm has a spherical particle size of 1. The blocking rate of polystyrene latex particles of 00 μm and 3.00 μm is not 97% and 99% and 100%, and the flow rate is low and the filtration efficiency is inferior.

本発明のメルトブロー不織布からなる液体用フィルタは、均一性に優れており、しかも1μmの微粒子の阻止率に優れるので、精密濾過用液体フィルタに使用し得る。   The liquid filter comprising the melt blown nonwoven fabric of the present invention is excellent in uniformity and excellent in the blocking rate of fine particles of 1 μm, and therefore can be used as a liquid filter for microfiltration.

Claims (2)

ポリプロピレンを溶融し、紡糸ノズルから吐出するとともに細繊維化してポリプロピレン極細繊維とし、コレクターに捕集してメルトブロー不織布を得る工程と、
前記メルトブロー不織布を二層以上積層する工程と
を有し、実質的にカレンダー加工を行わずに、
メルトブロー不織布からなる液体用フィルタを製造する方法であって、
前記メルトブロー不織布が、平均繊維径が0.5μm以上1.0μm未満のポリプロピレン極細繊維からなり、かつ、
前記メルトブロー不織布からなる液体用フィルタが、目付60g/m2で測定した最大孔径が5μm以下及び平均孔径が2μm以下であり、目付15g/m2で測定した通気度が3〜7cc/cm2/秒であり、目付60g/m2で測定した球状粒子径1.00μmのポリスチレンラテックス粒子の阻止率が100%であり、目付60g/m2で測定した球状粒子径0.47μmのポリスチレンラテックス粒子の阻止率が10%以上であり、かつ、目付が5〜200g/m2であ
ことを特徴とする液体用フィルタの製造方法。
Melting polypropylene, discharging it from a spinning nozzle and making it into a fine fiber to make a polypropylene ultrafine fiber, and collecting it in a collector to obtain a melt blown nonwoven fabric;
Laminating two or more layers of the melt blown nonwoven fabric; and
Without substantially calendering,
A method for producing a liquid filter comprising a melt blown nonwoven fabric ,
The meltblown nonwoven fabric, the average fiber diameter Ri Do polypropylene ultrafine fiber of less than 1.0μm or 0.5 [mu] m, and,
The liquid filter consisting of meltblown nonwoven fabric, a maximum pore size of 5μm or less and an average pore size determined by the basis weight 60 g / m 2 is at 2μm or less, air permeability measured in basis weight 15 g / m 2 is 3~7cc / cm 2 / The blocking rate of polystyrene latex particles having a spherical particle diameter of 1.00 μm measured at a basis weight of 60 g / m 2 is 100%, and polystyrene latex particles having a spherical particle diameter of 0.47 μm measured at a basis weight of 60 g / m 2 are 100%. rejection is 10% or more, and Ru basis weight 5 to 200 g / m 2 der
A method for producing a liquid filter.
メルトブロー不織布からなる液体用フィルタが、目付60g/m2で測定した最小孔径が1.0μm以上である請求項1記載の液体用フィルタの製造方法The method for producing a liquid filter according to claim 1, wherein the liquid filter comprising a melt blown nonwoven fabric has a minimum pore diameter of 1.0 µm or more measured at a basis weight of 60 g / m 2 .
JP2013207428A 2013-10-02 2013-10-02 Liquid filter Active JP6190687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013207428A JP6190687B2 (en) 2013-10-02 2013-10-02 Liquid filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013207428A JP6190687B2 (en) 2013-10-02 2013-10-02 Liquid filter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008303809A Division JP2010125404A (en) 2008-11-28 2008-11-28 Liquid filter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016023896A Division JP6534942B2 (en) 2016-02-10 2016-02-10 Melt blow non-woven fabric and use thereof

Publications (2)

Publication Number Publication Date
JP2014024061A JP2014024061A (en) 2014-02-06
JP6190687B2 true JP6190687B2 (en) 2017-08-30

Family

ID=50198236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013207428A Active JP6190687B2 (en) 2013-10-02 2013-10-02 Liquid filter

Country Status (1)

Country Link
JP (1) JP6190687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943655A4 (en) * 2019-03-29 2022-06-15 Kaneka Corporation Melt-blown nonwoven fabric manufacturing method and melt-blown nonwoven fabric

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102471365B1 (en) 2015-03-16 2022-11-28 도오레 화인케미칼 가부시키가이샤 Non-woven fabric and its manufacturing method
JP2016174106A (en) * 2015-03-17 2016-09-29 旭化成株式会社 Separator for electric double layer capacitor, and electric double layer capacitor arranged by use thereof
DE102019006765A1 (en) * 2019-09-28 2021-04-01 Hydac Process Technology Gmbh Method for producing a multi-layer filter medium and a filter medium produced according to this method
CN113329803B (en) * 2019-12-30 2022-03-25 前沿新材料研究院(深圳)有限公司 Wet nonwoven fabric, preparation method thereof and water treatment membrane comprising same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811167B2 (en) * 1986-06-30 1996-02-07 旭化成工業株式会社 Method for treating waste liquid in which inorganic particles are dispersed
JPS6422315A (en) * 1987-07-16 1989-01-25 Asahi Chemical Ind Air cleaning filter
JP3134964B2 (en) * 1992-07-14 2001-02-13 東洋紡績株式会社 Ultrafine fiber nonwoven fabric and method for producing same
JPH08144166A (en) * 1994-11-21 1996-06-04 Toyobo Co Ltd Polyamide ultrafine fiber nonwoven fabric and its production
JP2000218113A (en) * 1999-01-29 2000-08-08 Toyobo Co Ltd Laminated nonwoven fabric for filter and filtration method using the same
JP2002201560A (en) * 2000-12-28 2002-07-19 Mitsui Chemicals Inc Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom
AU2003284534A1 (en) * 2002-12-02 2004-06-23 Asahi Medical Co., Ltd. Method of removing leukocytes, leukocyte-removing filter and utilization thereof
JP4209734B2 (en) * 2003-07-08 2009-01-14 日本バイリーン株式会社 Nonwoven fabric and method for producing the same
JP2007152769A (en) * 2005-12-06 2007-06-21 Konica Minolta Holdings Inc Inkjet image recording method and inkjet printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943655A4 (en) * 2019-03-29 2022-06-15 Kaneka Corporation Melt-blown nonwoven fabric manufacturing method and melt-blown nonwoven fabric

Also Published As

Publication number Publication date
JP2014024061A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP2010125404A (en) Liquid filter
JP6190687B2 (en) Liquid filter
EP3067196B1 (en) Fibrous laminate containing ultrafine fibers and filter comprising same
KR101989914B1 (en) Filter assembly, method for manufacturing thereof and Filter module comprising the same
EP1932575B1 (en) Nonwoven fabric for filters
JP5784458B2 (en) Air filter media
US11364470B2 (en) Filter medium, manufacturing method therefor, and filter unit comprising same
JP5823205B2 (en) Cartridge filter
JP2013147771A (en) Melt-blown nonwoven fabric, application thereof and production method thereof
JP2015097979A (en) Filter
CN110087754B (en) Filter medium, method for producing same, and filter unit including same
KR20220151632A (en) Transparent composite nano-fiber based multilayer textile
KR102064359B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
JP2019118907A (en) Substrate for semipermeable membrane
JP7299316B2 (en) Meltblown nonwoven fabric, filter, and method for producing meltblown nonwoven fabric
JP2014180638A (en) Method for manufacturing semipermeable membrane
JP6511595B1 (en) Meltblown non-woven fabric and filter
JP6534942B2 (en) Melt blow non-woven fabric and use thereof
KR102064920B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
JP2014030785A (en) Filter
JP2019000793A (en) Filter medium for dust collector filter
KR101386424B1 (en) Filter for removing a white corpuscle and method of manufacturing the same
JPH05295645A (en) Nonwoven fabric and its production
JP4839709B2 (en) Filter and manufacturing method thereof
KR102109454B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6190687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250