JP6187243B2 - Drainage device for internal combustion engine - Google Patents

Drainage device for internal combustion engine Download PDF

Info

Publication number
JP6187243B2
JP6187243B2 JP2013265984A JP2013265984A JP6187243B2 JP 6187243 B2 JP6187243 B2 JP 6187243B2 JP 2013265984 A JP2013265984 A JP 2013265984A JP 2013265984 A JP2013265984 A JP 2013265984A JP 6187243 B2 JP6187243 B2 JP 6187243B2
Authority
JP
Japan
Prior art keywords
exhaust
condensed water
pipe
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265984A
Other languages
Japanese (ja)
Other versions
JP2015121171A (en
Inventor
雄輔 磯部
雄輔 磯部
洋之 木村
洋之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013265984A priority Critical patent/JP6187243B2/en
Publication of JP2015121171A publication Critical patent/JP2015121171A/en
Application granted granted Critical
Publication of JP6187243B2 publication Critical patent/JP6187243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Description

本発明は車両の内燃機関に関し、詳しくは吸排気中から水分を排水する排水装置に関する。   The present invention relates to an internal combustion engine of a vehicle, and more particularly to a drainage device that drains moisture from intake and exhaust.

ディーゼルエンジンの排気ガス浄化方法として、NOxトラップ触媒を用いたものが知られている。NOxトラップ触媒は、排気中のNOxを酸化雰囲気中で捕捉し、捕捉したNOxを還元雰囲気中で放出してN等に還元することでNOxの排出濃度を低減している。また、ディーゼルエンジン搭載車には、排気中の粒子状物質を除去するフィルタ装置が設けられており、NOxトラップ触媒はその耐熱性や配置スペースの観点から、一般的にフィルタ装置の下流側に配置されている。 As an exhaust gas purification method for a diesel engine, a method using a NOx trap catalyst is known. The NOx trap catalyst captures NOx in exhaust gas in an oxidizing atmosphere, releases the trapped NOx in a reducing atmosphere, and reduces it to N 2 or the like, thereby reducing the NOx emission concentration. In addition, diesel-equipped vehicles are equipped with a filter device that removes particulate matter in the exhaust, and the NOx trap catalyst is generally arranged downstream of the filter device from the viewpoint of heat resistance and arrangement space. Has been.

さらに、排気の一部を吸気側に戻すことで燃焼室の燃焼温度を下げ、排気中のNOxを低減させる排気再循環(EGR)方式が知られている。EGR方式には、過給機のタービン上流側排気通路からコンプレッサ下流側吸気通路に排気を戻す高圧EGR方式と、タービン下流側で酸化触媒及びフィルタ装置下流側の排気通路からコンプレッサ上流側吸気通路に排気を戻す低圧EGR方式とがある。低圧EGR装置及びインタークーラ等の冷却手段を備えた内燃機関では、排気を含む吸気が冷却手段を通過して冷却される際に結露して凝縮水が発生する。この凝縮水が吸気と共に吸気通路から燃焼室に送られると、ウォータハンマを引き起こしてしまう虞がある。   Furthermore, an exhaust gas recirculation (EGR) system is known in which part of the exhaust gas is returned to the intake side to lower the combustion temperature of the combustion chamber and reduce NOx in the exhaust gas. The EGR system includes a high-pressure EGR system for returning exhaust gas from the turbine upstream exhaust passage of the turbocharger to the compressor downstream intake passage, and an oxidation catalyst and filter device downstream exhaust passage downstream from the turbine to the compressor upstream intake passage. There is a low pressure EGR system that returns exhaust gas. In an internal combustion engine having a cooling means such as a low-pressure EGR device and an intercooler, condensation is generated by condensation when intake air including exhaust gas passes through the cooling means and is cooled. If this condensed water is sent together with the intake air from the intake passage to the combustion chamber, there is a risk of causing a water hammer.

上述の問題を解決すべく、インタークーラで発生した凝縮水を貯留する貯留タンクと、凝縮水を加熱して水蒸気とする加熱装置と、貯留タンクと触媒上流側の排気通路とに接続された水蒸気供給路とを有し、凝縮水を水蒸気に変えて触媒の上流側排気通路に供給する内燃機関が、例えば「特許文献1」に開示されている。   In order to solve the above-mentioned problems, a storage tank that stores condensed water generated in the intercooler, a heating device that heats the condensed water into steam, and water vapor that is connected to the storage tank and an exhaust passage on the upstream side of the catalyst An internal combustion engine having a supply path and supplying condensed water to steam upstream of the catalyst is disclosed in, for example, “Patent Document 1”.

特開2013−124563号公報JP 2013-124563 A

上述の技術では、凝縮水が燃焼室に送られてウォータハンマを引き起こすことが防止されているが、凝縮水を過熱して水蒸気に変化させる加熱装置が必要となり、コストアップすると共にスペース確保等の問題が生じる。そこで、発生した凝縮水をNOxトラップ触媒の上流側に位置する排気管へ排出するための排水路を設けることが考えられる。しかしこの場合、排水路より排出された凝縮水がNOxトラップ触媒に流動し、凝縮水によって触媒が急冷されることにより熱応力により担体割れが生じ易くなり、排気ガスが悪化してしまうという問題点がある。
本発明は上述の問題点を解決し、排水路より排出された凝縮水がNOxトラップ触媒を急冷することなく、かつ排気管への凝縮水の排出を常時可能な内燃機関の排水装置の提供を目的とする。
In the above-described technique, it is prevented that the condensed water is sent to the combustion chamber and causes water hammer, but a heating device that superheats the condensed water and changes it to steam is necessary, which increases costs and secures space. Problems arise. Therefore, it is conceivable to provide a drainage channel for discharging the generated condensed water to an exhaust pipe located upstream of the NOx trap catalyst. However, in this case, the condensed water discharged from the drainage channel flows into the NOx trap catalyst, and the catalyst is rapidly cooled by the condensed water, so that the carrier is easily cracked due to thermal stress, and the exhaust gas is deteriorated. There is.
The present invention solves the above-described problems, and provides a drainage device for an internal combustion engine in which the condensed water discharged from the drainage channel does not rapidly cool the NOx trap catalyst and can always discharge the condensed water to the exhaust pipe. Objective.

請求項1記載の発明は、内燃機関の吸気通路に一端が、排気通路に他端がそれぞれ接続されて前記吸気通路内の凝縮水を前記排気通路に排出する排水路を備え、前記排水路の他端は前記排気通路内に排気方向の下流に向かって螺旋形状に延出形成されると共に、前記螺旋形状の先端に開口部が形成され、前記螺旋形状は前記先端に向かうに連れて径が小さくなるように形成され、前記開口部は排気方向上流側に向けて開口することを特徴とする。 The invention according to claim 1 is provided with a drainage path, one end of which is connected to the intake passage of the internal combustion engine and the other end is connected to the exhaust path, and discharges condensed water in the intake path to the exhaust path. The other end is formed in the exhaust passage so as to extend in a spiral shape downstream in the exhaust direction , and an opening is formed at the tip of the spiral shape, and the diameter of the spiral shape increases toward the tip. The opening is formed to be smaller, and the opening opens toward the upstream side in the exhaust direction .

本発明によれば、排気管の内部に延出形成された排水路の他端に流入した凝縮水は排気管内の高温の排気によって加熱されて気化が促進され、開口部から排気管内に排出された凝縮水は、螺旋形状部に当たり一部は螺旋形状に付着し滞留することで高温の排気に晒されてさらに気化が促進される。または、螺旋形状に付着しなかった凝縮水も螺旋形状に当たることで飛散し微粒子化した状態で排気と共に排気通路下流へ流下される。これにより、凝縮水は内燃機関の燃焼室を通過することなく排気通路を通じて車外に排出される。さらに、気化または飛散して微粒子化した状態で排気通路を通過するため、排気管内に多量の凝縮水が滞留し排気管の目詰まりや排気通路の排気後処理装置の不具合の発生を低減することができる。   According to the present invention, the condensed water that has flowed into the other end of the drainage channel that extends inside the exhaust pipe is heated by the high-temperature exhaust in the exhaust pipe to promote vaporization, and is discharged from the opening into the exhaust pipe. The condensed water hits the spiral portion, and a part of the condensed water adheres and stays in the spiral shape, so that it is exposed to high-temperature exhaust and further vaporization is promoted. Alternatively, the condensed water that has not adhered to the spiral shape also flows down to the downstream of the exhaust passage together with the exhaust gas in a state of being scattered and atomized by hitting the spiral shape. Thereby, the condensed water is discharged out of the vehicle through the exhaust passage without passing through the combustion chamber of the internal combustion engine. Furthermore, since it passes through the exhaust passage while being vaporized or scattered to form fine particles, a large amount of condensed water stays in the exhaust pipe, reducing the occurrence of clogging of the exhaust pipe and malfunction of the exhaust aftertreatment device in the exhaust passage. Can do.

本発明の一実施形態を適用した内燃機関の排水制御装置の概略図である。1 is a schematic view of a drainage control device for an internal combustion engine to which an embodiment of the present invention is applied. 本発明の一実施形態に用いられる排水装置の概略図である。It is the schematic of the drainage apparatus used for one Embodiment of this invention. 本発明の一実施形態における排水装置の作動状態を説明する概略図である。It is the schematic explaining the operation state of the drainage device in one embodiment of the present invention.

本発明の一実施形態を示す図1において、内燃機関である車載用ディーゼルエンジン(以下エンジンという)1のシリンダブロック2の上部にはシリンダヘッド3が設けられており、シリンダヘッド3の吸気側には吸気通路を構成する吸気管4が、排気側には排気通路を構成する排気管5がそれぞれ接続されている。またシリンダヘッド3には、コモンレール13を介して燃料噴射ポンプ14が接続されている。さらにシリンダヘッド3には、一端をエアフィルタ6よりも下流側の吸気管4に接続されたブローバイガスを排出するブローバイガス通路21の他端が接続されている。   In FIG. 1 showing an embodiment of the present invention, a cylinder head 3 is provided on an upper portion of a cylinder block 2 of an in-vehicle diesel engine (hereinafter referred to as an engine) 1 that is an internal combustion engine. Is connected to an intake pipe 4 constituting an intake passage, and an exhaust pipe 5 constituting an exhaust passage is connected to the exhaust side. A fuel injection pump 14 is connected to the cylinder head 3 via a common rail 13. Further, the cylinder head 3 is connected to the other end of a blow-by gas passage 21 for discharging blow-by gas having one end connected to the intake pipe 4 on the downstream side of the air filter 6.

吸気管4には、吸気の上流側からエアフィルタ6、低圧スロットル弁7、低圧EGRバルブ8、過給機であるターボチャージャ9の図示しないコンプレッサ、インタークーラ10、高圧スロットル弁11、高圧EGRバルブ12等が設けられている。   The intake pipe 4 includes an air filter 6, a low-pressure throttle valve 7, a low-pressure EGR valve 8, a turbocharger 9 (not shown), an intercooler 10, a high-pressure throttle valve 11, and a high-pressure EGR valve from the upstream side of the intake air. 12 etc. are provided.

排気管5には、シリンダブロック2側からターボチャージャ9の図示しないタービン、酸化触媒15及び排気フィルタとしてのフィルタ装置16が設けられている。酸化触媒15は、例えば白金のような貴金属触媒を担持しており、排気中のNOをNOに転換する作用と、排気中のHCやCO等の有害成分を酸化させる作用とを有している。NOはNOよりも酸化作用が強く、NOによってフィルタ装置16に捕獲された粒子状物質の酸化反応が促進され、また後述するNOxトラップ触媒で還元される。フィルタ装置16は排気中の粒子状物質を捕獲するフィルタ装置であり、捕獲された粒子状物質はNOの強力な酸化作用で燃焼除去される。 The exhaust pipe 5 is provided with a turbine (not shown) of the turbocharger 9, an oxidation catalyst 15, and a filter device 16 as an exhaust filter from the cylinder block 2 side. The oxidation catalyst 15 carries a noble metal catalyst such as platinum, and has an action of converting NO in the exhaust into NO 2 and an action of oxidizing harmful components such as HC and CO in the exhaust. Yes. NO 2 has a stronger oxidizing action than NO, and the oxidation reaction of the particulate matter captured by the filter device 16 is promoted by NO 2 and is reduced by a NOx trap catalyst described later. The filter device 16 is a filter device that captures particulate matter in the exhaust gas, and the captured particulate matter is burned and removed by the strong oxidizing action of NO 2 .

フィルタ装置16の下流側には、排気中の酸素濃度量を検知する酸素濃度センサ(LAFS)17が設けられており、その下流側に触媒であるNOxトラップ触媒18を内蔵した触媒コンバータ19が、さらにその下流側に酸素濃度センサ20が設けられている。NOxトラップ触媒18は、酸化雰囲気においてNOxを捕捉し、捕捉したNOxを例えばHCやCO等を含む還元雰囲気中で放出してN等に還元する浄化装置である。つまり、酸化触媒15で生成されたNO及び酸化触媒15で酸化されずに排気ガス中に残存するNOを捕捉し、N等に還元して放出する。 An oxygen concentration sensor (LAFS) 17 that detects the amount of oxygen concentration in the exhaust gas is provided on the downstream side of the filter device 16, and a catalytic converter 19 that incorporates a NOx trap catalyst 18 that is a catalyst on the downstream side is provided. Further, an oxygen concentration sensor 20 is provided on the downstream side. The NOx trap catalyst 18 is a purification device that traps NOx in an oxidizing atmosphere, releases the trapped NOx in a reducing atmosphere containing, for example, HC, CO, and the like and reduces it to N 2 or the like. That is, NO 2 generated by the oxidation catalyst 15 and NO remaining in the exhaust gas without being oxidized by the oxidation catalyst 15 are captured, reduced to N 2 and released.

高圧EGRバルブ12の下方には、高圧EGR管23と高圧EGRクーラ24とを有する高圧EGR装置22が配設されている。高圧EGR管23は、その一端を高圧スロットル弁11とシリンダヘッド3との間の吸気管4に、その他端をシリンダヘッド3とターボチャージャ9のタービンとの間の排気管5にそれぞれ接続されており、その途中には高圧EGRクーラ24が設けられている。高圧EGR管23の一端は、高圧EGRバルブ12によって開閉される。   A high pressure EGR device 22 having a high pressure EGR pipe 23 and a high pressure EGR cooler 24 is disposed below the high pressure EGR valve 12. One end of the high-pressure EGR pipe 23 is connected to the intake pipe 4 between the high-pressure throttle valve 11 and the cylinder head 3, and the other end is connected to the exhaust pipe 5 between the cylinder head 3 and the turbine of the turbocharger 9. A high-pressure EGR cooler 24 is provided in the middle. One end of the high pressure EGR pipe 23 is opened and closed by the high pressure EGR valve 12.

低圧EGRバルブ8の下方には、低圧EGR管26と低圧EGRクーラ27とを有する排気再循環装置としての低圧EGR装置25が配設されている。低圧EGR管26は、その一端を低圧スロットル弁7とターボチャージャ9のコンプレッサとの間の吸気管4に、その他端をフィルタ装置16とNOxトラップ触媒18との間の排気管5にそれぞれ接続されており、その途中には低圧EGRクーラ27が設けられている。低圧EGR管26の一端は、低圧EGRバルブ8によって開閉される。   Below the low pressure EGR valve 8, a low pressure EGR device 25 is disposed as an exhaust gas recirculation device having a low pressure EGR pipe 26 and a low pressure EGR cooler 27. One end of the low-pressure EGR pipe 26 is connected to the intake pipe 4 between the low-pressure throttle valve 7 and the compressor of the turbocharger 9, and the other end is connected to the exhaust pipe 5 between the filter device 16 and the NOx trap catalyst 18. In the middle, a low pressure EGR cooler 27 is provided. One end of the low pressure EGR pipe 26 is opened and closed by the low pressure EGR valve 8.

次に、吸気管4内に生じた凝縮水を、排水路を形成する排水管28を介して排気管5内に流出させる、本発明の一実施形態に用いられる内燃機関の排水装置31を説明する。ここで、インタークーラ10と高圧スロットル弁11との間の吸気管4には排水管28の一端が接続されており、排水管28の他端はNOxトラップ触媒18の排気上流側近傍位置に接続されている。排水管28の途中には開閉弁29が配設されており、開閉弁29はこれに接続された制御手段によってその開閉動作を制御される。制御手段30は、図示しないCPU、ROM、RAM等を有する周知のマイクロコンピュータによって構成されており、各種センサからの検知信号に基づいて、各スロットル弁7,11、各EGR用バルブ8,12及び開閉弁29の動作を制御する。   Next, a drainage device 31 for an internal combustion engine used in an embodiment of the present invention that causes condensed water generated in the intake pipe 4 to flow into the exhaust pipe 5 through a drain pipe 28 that forms a drainage channel will be described. To do. Here, one end of a drain pipe 28 is connected to the intake pipe 4 between the intercooler 10 and the high pressure throttle valve 11, and the other end of the drain pipe 28 is connected to a position near the exhaust upstream side of the NOx trap catalyst 18. Has been. An opening / closing valve 29 is disposed in the middle of the drain pipe 28, and the opening / closing operation of the opening / closing valve 29 is controlled by a control means connected thereto. The control means 30 is composed of a well-known microcomputer having a CPU, ROM, RAM, etc. (not shown), and based on detection signals from various sensors, the throttle valves 7, 11, EGR valves 8, 12, and The operation of the on-off valve 29 is controlled.

制御手段30は、排水管28内に貯留された凝縮水の量が一定量に達したり、エンジン1の運転時間や車両の走行距離が一定値に達したりした場合に開閉弁29を開弁し、触媒コンバータ19を介して排水管28内の凝縮水を車外に排出する機能を有している。また制御手段30は、排水管28から凝縮水が抜けて酸素濃度センサ20が排水管28を介して漏出する吸気ガス内の酸素濃度を検出して、これがリーン側の所定値に達すると排水管28から凝縮水が完全に抜けたと判断して、開閉弁29を閉弁させる機能を有している。この制御手段30の制御により、排水管28からの凝縮水排出完了後に吸気ガスが排水管28から排出され、エンジン1のトルク低下や出力低下の発生が防止されている。   The control means 30 opens the on-off valve 29 when the amount of condensed water stored in the drain pipe 28 reaches a certain amount, or when the operation time of the engine 1 or the travel distance of the vehicle reaches a certain value. Further, it has a function of discharging condensed water in the drain pipe 28 through the catalytic converter 19 to the outside of the vehicle. The control means 30 detects the oxygen concentration in the intake gas leaked from the drain pipe 28 through the drain pipe 28 and the oxygen concentration sensor 20 leaks through the drain pipe 28. When this reaches a predetermined value on the lean side, the drain pipe It is determined that the condensed water has been completely removed from the valve 28, and the on-off valve 29 is closed. By the control of the control means 30, the intake gas is discharged from the drain pipe 28 after the condensed water discharge from the drain pipe 28 is completed, and the occurrence of torque reduction and output reduction of the engine 1 is prevented.

図1に示すように、排気管5の上流側排気管501の後端にNOxトラップ触媒18を有する触媒コンバータが接続される。触媒コンバータ19は排気通路の拡径部を有する容器本体を備え、容器本体はNOxトラップ触媒18を収容する主部191、主部191に連続形成された排気通路前側の拡径部である拡径前部192、排気通路後側の拡径後部193を有する。拡径前部192は排気通路下流側に向けて排気通路径を徐々に拡大するコーン形状の傾斜部をなし、その前端が上流側排気管501に接続される。拡径後部193は排気通路下流側に向けて排気通路径を徐々に縮小するコーン形状の傾斜部をなし、その後端が下流側排気管502に接続される。   As shown in FIG. 1, a catalytic converter having a NOx trap catalyst 18 is connected to the rear end of the exhaust pipe 501 upstream of the exhaust pipe 5. The catalytic converter 19 includes a container body having an enlarged diameter portion of the exhaust passage. The container body is a main portion 191 that houses the NOx trap catalyst 18, and an enlarged diameter that is an enlarged diameter portion on the front side of the exhaust passage that is continuously formed in the main portion 191. It has a front part 192 and an enlarged diameter rear part 193 on the rear side of the exhaust passage. The enlarged diameter front portion 192 forms a cone-shaped inclined portion that gradually increases the diameter of the exhaust passage toward the downstream side of the exhaust passage, and the front end thereof is connected to the upstream side exhaust pipe 501. The enlarged diameter rear portion 193 has a cone-shaped inclined portion that gradually reduces the diameter of the exhaust passage toward the downstream side of the exhaust passage, and the rear end thereof is connected to the downstream side exhaust pipe 502.

図2に示すように、上流側排気管501の後端近傍の部位には、排水管28の他端側の端部28aが排気管5内に延出形成されている。他端側の端部28aは、図2(b)にも示すように、徐々にその径が小さくなる螺旋形状をなすと共に、その螺旋形状の中心軸が排気管5内における排気ガスの排気方向と沿うように形成され、径が最小となる他端には凝縮水を排気ガスの排気方向上流側に向けて排出する開口部28bが形成されている。   As shown in FIG. 2, an end portion 28 a on the other end side of the drain pipe 28 is formed to extend into the exhaust pipe 5 at a portion near the rear end of the upstream side exhaust pipe 501. As shown in FIG. 2B, the end 28a on the other end side has a spiral shape whose diameter gradually decreases, and the central axis of the spiral shape is the exhaust direction of the exhaust gas in the exhaust pipe 5. The other end having the smallest diameter is formed with an opening 28b for discharging condensed water toward the upstream side in the exhaust direction of the exhaust gas.

次に、内燃機関の排水装置31の作動を説明する。
エンジン1の運転中、特に低圧EGR装置25使用時にはインタークーラ10の出口部に多量の凝縮水が発生する。発生した凝縮水は、排水管28を通ってNOxトラップ触媒18の上流側近傍に位置する上流側排気管501に送られ、触媒コンバータ19を介して車外に排出される。ここで、排水管28の途中に設けられた開閉弁29が閉じられているときには排水管28内に貯留される。開閉弁29は、排水管28内に設けられた図示しない水位センサによって貯留された凝縮水の量が一定量に達したとき、あるいはエンジン1の運転時間や走行距離が一定値に達したときに制御手段30によって開弁される。
Next, the operation of the drainage device 31 of the internal combustion engine will be described.
During operation of the engine 1, particularly when the low-pressure EGR device 25 is used, a large amount of condensed water is generated at the outlet of the intercooler 10. The generated condensed water passes through the drain pipe 28 and is sent to the upstream exhaust pipe 501 located in the vicinity of the upstream side of the NOx trap catalyst 18, and is discharged outside the vehicle through the catalytic converter 19. Here, when the on-off valve 29 provided in the middle of the drain pipe 28 is closed, it is stored in the drain pipe 28. The on-off valve 29 is used when the amount of condensed water stored by a water level sensor (not shown) provided in the drain pipe 28 reaches a certain amount, or when the operation time or travel distance of the engine 1 reaches a certain value. The valve is opened by the control means 30.

エンジン1の運転中に排気管5内を流動してきた排気は、上流側排気管501を介して触媒コンバータ19に流入する。また、開閉弁29が開弁されると、排水管28内に貯留されている凝縮水が他端部の端部28aに流入する。他端部の端部28a内に流入した凝縮水は、その螺旋形状部を流れる際に排気管5内を通る排気の熱によって気化が促進され、そして開口部28bから排気方向上流側に向けて排出される。排出された凝縮水は図3に示すように他端部の端部28aの上流側部分に当たり、各螺旋形状部に水滴32aとして付着し、排気によって下流側に送られるに伴い気化が促進されて水滴32b、水滴32c、水滴32dと徐々に蒸発し、NOxトラップ触媒18を支持する担持体前面に飛散した後、触媒コンバータ19を通過して車外に排出される。   The exhaust flowing in the exhaust pipe 5 during the operation of the engine 1 flows into the catalytic converter 19 via the upstream exhaust pipe 501. When the on-off valve 29 is opened, the condensed water stored in the drain pipe 28 flows into the end portion 28a at the other end. The condensed water that has flowed into the end portion 28a of the other end is accelerated by the heat of the exhaust gas passing through the exhaust pipe 5 when flowing through the spiral-shaped portion, and from the opening portion 28b toward the upstream side in the exhaust direction. Discharged. As shown in FIG. 3, the discharged condensed water hits the upstream side portion of the end portion 28a at the other end, adheres to each spiral shape portion as a water droplet 32a, and vaporization is promoted as it is sent downstream by exhaust. The water droplets 32b, water droplets 32c, and water droplets 32d are gradually evaporated and scattered on the front surface of the carrier that supports the NOx trap catalyst 18, and then pass through the catalytic converter 19 and discharged outside the vehicle.

上述の構成によれば、排水管28の他端側の端部28aがNOxトラップ触媒18よりも上流側の排気管5内に延出形成され、延出形成された他端側の端部28aが螺旋形状をなすと共にその端部に凝縮水を排出する開口部28bが形成され、螺旋形状の中心軸が排気方向に沿って配置されているので、他端側の端部28a内に流入した凝縮水が高温の排気によって気化が促進される。また、開口部28bから排気方向上流側に排出された凝縮水は、螺旋形状部に当たり排気に晒されることでさらに気化が促進される。これにより、凝縮水は気化または飛散して微粒子化した状態で触媒コンバータ19に導入されるので、触媒コンバータ19の目詰まりあるいはNOxトラップ触媒18の担体割れといった不具合の発生を低減することができる。   According to the above-described configuration, the end portion 28a on the other end side of the drain pipe 28 is formed to extend into the exhaust pipe 5 on the upstream side of the NOx trap catalyst 18, and the end portion 28a on the other end side formed to extend. Has an opening 28b for discharging condensed water at its end, and the central axis of the spiral is arranged along the exhaust direction, so that it flows into the end 28a on the other end side. Vaporization of condensed water is promoted by high-temperature exhaust. Further, the condensed water discharged to the upstream side in the exhaust direction from the opening portion 28b hits the spiral-shaped portion and is exposed to the exhaust gas, whereby vaporization is further promoted. As a result, the condensed water is introduced into the catalytic converter 19 in a state of being vaporized or scattered to form fine particles, so that occurrence of problems such as clogging of the catalytic converter 19 or cracking of the carrier of the NOx trap catalyst 18 can be reduced.

上述の構成では、他端側の端部28aを徐々に径が異なる螺旋形状に形成した。他端側の端部28aの形状としては径が等しい渦巻状であってもよいが、径が徐々に異なる螺旋形状とすることにより排気管5内の排気が他端側の端部28aに均等に当たるため、より一層気化が促進される。   In the above-described configuration, the end portion 28a on the other end side is formed in a spiral shape with gradually different diameters. The shape of the end portion 28a on the other end side may be a spiral shape having the same diameter, but the exhaust gas in the exhaust pipe 5 is evenly distributed to the end portion 28a on the other end side by forming a spiral shape with gradually different diameters. Therefore, vaporization is further promoted.

1 内燃機関(エンジン)
4 吸気通路(吸気管)
5 排気通路(排気管)
9 過給機(ターボチャージャ)
18 触媒装置(NOxトラップ触媒)
28 排水路(排水管)
28a 他端側の端部
28b 開口部
31 排水装置
1 Internal combustion engine
4 Intake passage (intake pipe)
5 Exhaust passage (exhaust pipe)
9 Turbocharger (turbocharger)
18 Catalytic device (NOx trap catalyst)
28 Drainage channel (drainage pipe)
28a End 28b on the other end side Opening 31 Drainage device

Claims (1)

内燃機関の吸気通路に一端が、排気通路に他端がそれぞれ接続されて前記吸気通路内の凝縮水を前記排気通路に排出する排水路を備え、
前記排水路の他端は前記排気通路内に排気方向の下流に向かって螺旋形状に延出形成されると共に、前記螺旋形状の先端に開口部が形成され
前記螺旋形状は前記先端に向かうに連れて径が小さくなるように形成され、前記開口部は排気方向上流側に向けて開口することを特徴とする内燃機関の排水装置。
One end is connected to the intake passage of the internal combustion engine, the other end is connected to the exhaust passage, and a drainage passage for discharging condensed water in the intake passage to the exhaust passage is provided.
The other end of the drainage channel is formed in a spiral shape in the exhaust passage toward the downstream in the exhaust direction, and an opening is formed at the tip of the spiral shape ,
The drainage device for an internal combustion engine, wherein the spiral shape is formed so that the diameter decreases toward the tip, and the opening opens toward the upstream side in the exhaust direction .
JP2013265984A 2013-12-24 2013-12-24 Drainage device for internal combustion engine Active JP6187243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265984A JP6187243B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265984A JP6187243B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015121171A JP2015121171A (en) 2015-07-02
JP6187243B2 true JP6187243B2 (en) 2017-08-30

Family

ID=53532998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265984A Active JP6187243B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6187243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105715332B (en) * 2016-04-01 2018-07-24 山西大学 A kind of novel environment friendly car tail inflator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3398558B2 (en) * 1997-01-29 2003-04-21 日野自動車株式会社 Internal combustion engine exhaust gas purification device
JP2007085266A (en) * 2005-09-22 2007-04-05 Toyota Motor Corp Heat exchange apparatus of exhaust system
DE102005051920B4 (en) * 2005-10-29 2007-12-06 Cooper-Standard Automotive (Deutschland) Gmbh Pipe part for an exhaust pipe
JP5494528B2 (en) * 2011-02-28 2014-05-14 三菱自動車工業株式会社 Condensate drain device
JP5804376B2 (en) * 2011-12-13 2015-11-04 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2015121171A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
CN101646846B (en) Method of estimating rate of n2o formation on ammonia oxidation catalyst and exhaust purification system for internal combustion engine
JP5494528B2 (en) Condensate drain device
JP4709220B2 (en) Particulate filter regeneration method
JP5206403B2 (en) EGR system for internal combustion engine
US20090241515A1 (en) Exhaust condensation separator
JP4986973B2 (en) Exhaust purification device
CN103527290A (en) Methods and systems for improving operation of an SCR
JP2008208787A (en) Turbocharger for internal combustion engine
JP2009275673A (en) Egr system and controlling method of egr system
JP2014169632A (en) Intercooler condensed water discharge device for internal combustion engine
WO2015075944A1 (en) Control device for internal combustion engine
JP2009041551A (en) Exhaust gas recirculation device for internal combustion engine
JP6187243B2 (en) Drainage device for internal combustion engine
JP2011208575A (en) Exhaust gas recirculation device
EP3075977B1 (en) Exhaust purifying apparatus for internal combustion engine
JP6201740B2 (en) Drainage device for internal combustion engine
JP6201738B2 (en) Drainage device for internal combustion engine
JP6201737B2 (en) Drainage device for internal combustion engine
JP5999324B2 (en) Intake system structure of internal combustion engine
JP6241265B2 (en) Drainage device for internal combustion engine
JP6146567B2 (en) Engine intake system structure
EP3055524B1 (en) Exhaust gas control apparatus for an internal combustion engine and corresponding control method
JP6201739B2 (en) Drainage device for internal combustion engine
JP6213224B2 (en) Drainage device for internal combustion engine
JP6237158B2 (en) Drainage control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R151 Written notification of patent or utility model registration

Ref document number: 6187243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350