JP6185290B2 - Method for producing wavelength conversion material - Google Patents

Method for producing wavelength conversion material Download PDF

Info

Publication number
JP6185290B2
JP6185290B2 JP2013117241A JP2013117241A JP6185290B2 JP 6185290 B2 JP6185290 B2 JP 6185290B2 JP 2013117241 A JP2013117241 A JP 2013117241A JP 2013117241 A JP2013117241 A JP 2013117241A JP 6185290 B2 JP6185290 B2 JP 6185290B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
solution
conversion material
glass
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013117241A
Other languages
Japanese (ja)
Other versions
JP2014234461A (en
Inventor
高木 知己
高木  知己
英一 奥野
英一 奥野
進 祖父江
進 祖父江
正一 川井
川井  正一
恒範 夫
恒範 夫
大貴 金
大貴 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Osaka City University
Original Assignee
Denso Corp
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Osaka City University filed Critical Denso Corp
Priority to JP2013117241A priority Critical patent/JP6185290B2/en
Publication of JP2014234461A publication Critical patent/JP2014234461A/en
Application granted granted Critical
Publication of JP6185290B2 publication Critical patent/JP6185290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Luminescent Compositions (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、蛍光(フォトルミネッセンス)を発する半導体ナノ粒子を分散した蛍光性ガラス、詳しくは、吸収した光とは異なる波長の光を発生する波長変換ナノ粒子をガラスマトリックス内に分散した波長変換材の製造方法に関する。 The present invention relates to a fluorescent glass in which semiconductor nanoparticles emitting fluorescence (photoluminescence) are dispersed, and in particular, a wavelength conversion material in which wavelength conversion nanoparticles that generate light having a wavelength different from the absorbed light are dispersed in a glass matrix. It relates to the manufacturing method.

従来、吸収した光とは異なる波長の光を発生する波長変換材として、吸収した光とは異なる波長の光を発生する色素材料を添加した波長変換材が知られている。
この種の波長変換材は、例えば、太陽電池の表面に配置されて入射光の波長を変換することにより、太陽電池の効率を向上させることができる。また、LEDの表面に配設されてLEDの発光色を変更したり、ディスプレイに用いることも検討されている。
Conventionally, as a wavelength conversion material that generates light having a wavelength different from the absorbed light, a wavelength conversion material to which a dye material that generates light having a wavelength different from the absorbed light is added is known.
This type of wavelength conversion material can be arranged on the surface of the solar cell, for example, to improve the efficiency of the solar cell by converting the wavelength of incident light. Further, it has been studied to change the emission color of the LED disposed on the surface of the LED or to use it for a display.

しかし、従来の色素材料は、耐久性に問題があるため、この色素材料に代えて、無機ナノ粒子である半導体ナノ粒子(波長変換ナノ粒子)を分散させたガラス板等の波長変換材(蛍光性ガラス)の研究が行われている。   However, since conventional dye materials have problems in durability, instead of this dye material, a wavelength conversion material (fluorescent material) such as a glass plate in which semiconductor nanoparticles (wavelength conversion nanoparticles) that are inorganic nanoparticles are dispersed. (Reactive glass) is being researched.

例えば、波長変換ナノ粒子としては、CdSを含むものが提案されているが、Cdは廃棄処理を誤ると環境に悪影響を与えるため、ZnSe等を使用して波長変換ナノ粒子を製造することが提案されている。   For example, as wavelength conversion nanoparticles, those containing CdS have been proposed, but Cd has an adverse effect on the environment if mistreated, so it is proposed to produce wavelength conversion nanoparticles using ZnSe or the like. Has been.

この種の製造方法では、有機溶媒中で波長変換ナノ粒子を製造しているため、その有機溶媒の廃棄処理を誤るとPRTR法に抵触する可能性がある。そこで、水系溶媒中で波長変換ナノ粒子を製造することが提案されている(非特許文献1参照)。   In this type of manufacturing method, wavelength-converting nanoparticles are manufactured in an organic solvent, and therefore the PRTR method may be violated if the organic solvent is discarded. Therefore, it has been proposed to produce wavelength conversion nanoparticles in an aqueous solvent (see Non-Patent Document 1).

また、この水系溶媒などを利用する技術では、いわゆるゾル−ゲル法を用い、波長変換ナノ粒子が分散した溶液を固化することにより、波長変換材を製造している。   Moreover, in the technique using this aqueous solvent etc., the wavelength conversion material is manufactured by solidifying the solution in which the wavelength conversion nanoparticles are dispersed using a so-called sol-gel method.

Narayan Pradhan,David M. Battaglia,Yongcheng Liu, and Xiaogang Peng,Nano Lett., Vol.7,No.2,2007,312-317Narayan Pradhan, David M. Battaglia, Yongcheng Liu, and Xiaogang Peng, Nano Lett., Vol. 7, No. 2, 2007, 312-317

しかしながら、従来技術においては、波長変換ナノ粒子が分散した溶液を固化することによって波長変換材を作製するので、固化する過程で多くの波長変換ナノ粒子が凝集する等の現象が生じ、可視光に対する透明性(光の透過性)が低下するという問題があった。   However, in the prior art, since the wavelength conversion material is prepared by solidifying the solution in which the wavelength conversion nanoparticles are dispersed, a phenomenon such as aggregation of a large number of wavelength conversion nanoparticles occurs in the solidification process. There was a problem that transparency (light transmittance) was lowered.

特に、太陽電池に波長変換材を利用する場合には、可視光に対する透明性が低下すると、太陽電池に入射する可視光が減少するので、発電能力が低下するという問題があった。
本発明は、前記課題を解決するためになされたものであり、その目的は、光の透過性が高い波長変換材の製造方法を提供することにある。
In particular, when a wavelength conversion material is used for a solar cell, if the transparency to visible light is reduced, the visible light incident on the solar cell is reduced, resulting in a problem that power generation capability is reduced.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a wavelength conversion material having high light transmittance.

前記課題を解決するための本発明は、吸収した光とは異なる波長の光を発生する波長変換ナノ粒子が、ガラスの内部に分散された波長変換材の製造方法において、前記ガラスの材料であるガラス前駆体と溶媒とを混合する第1工程と、前記混合した溶液に、有機オキシ酸としてクエン酸を用いた有機オキシ酸系酸性溶液を加えて混合する第2工程と、前記酸性溶液を加えて混合した溶液と波長変換ナノ粒子が分散された水溶液とを混合する第3工程と、前記第3工程にて混合された溶液のガラス化を進めて固化させる第4工程と、を有することを特徴とする。 The present invention for solving the above problems is the glass material in the method for producing a wavelength conversion material in which wavelength conversion nanoparticles that generate light having a wavelength different from the absorbed light are dispersed inside the glass. A first step of mixing a glass precursor and a solvent, a second step of adding and mixing an organic oxyacid-based acidic solution using citric acid as an organic oxyacid to the mixed solution, and adding the acidic solution A third step of mixing the mixed solution and the aqueous solution in which the wavelength conversion nanoparticles are dispersed, and a fourth step of solidifying the solution mixed in the third step by vitrification. Features.

本発明の波長変換材の製造方法は、いわゆるゾル−ゲル法によって、ガラス前駆体からガラスを製造する際に、そのガラス中に(外部からの光のエネルギーを受けて)蛍光を発する半導体ナノ粒子である波長変換ナノ粒子を分散させて、蛍光性ガラスである波長変換材を製造するものである。   The method for producing a wavelength conversion material of the present invention is a semiconductor nanoparticle that emits fluorescence in the glass (in response to external light energy) when producing glass from a glass precursor by a so-called sol-gel method. The wavelength conversion nanoparticle which is is disperse | distributing and the wavelength conversion material which is fluorescent glass is manufactured.

特に、本発明では、ガラス前駆体を含む溶液に、アンモニア等のアルカリ溶液を加えるのではなく、酸性触媒(酸触媒)として有機オキシ酸(ここではクエン酸)で調整した酸性溶液を加えることにより、可視光に対する透明性(光の透過性)が向上する。 In particular, in the present invention, instead of adding an alkaline solution such as ammonia to a solution containing a glass precursor, an acidic solution adjusted with an organic oxyacid ( here, citric acid) is added as an acidic catalyst (acid catalyst). , Transparency to visible light (light transmission) is improved.

つまり、ガラス前駆体の溶液にアルカリ溶液を加えた場合には、ガラス化の速度が促進されて短期間で固化するが、その工程でガラスマトリックスの規則的配列が損なわれ、ガラスが白濁化して光の透過性が低下すると推定される。そこで、本発明では、有機オキシ酸としてクエン酸を用いた有機オキシ酸系酸性溶液を加えることによって、分子配列の乱れを抑える。それによって、ガラスマトリックス配列の規則性を保持して、ガラスマトリックス内に適度に波長変換ナノ粒子を分散させることができると推定される。併せて、有機オキシ酸であるクエン酸がシランイオンに配位結合して、シロキサン結合(Si−O−Si)鎖を架橋することで、ゲル化が促進されると推定される。以上により、白濁化を抑制して、光の透過性が向上すると推定される。 In other words, when an alkaline solution is added to the glass precursor solution, the vitrification rate is accelerated and solidifies in a short period of time, but the regular arrangement of the glass matrix is impaired in the process, and the glass becomes clouded. It is estimated that the light transmittance is lowered. Therefore, in the present invention, the disorder of the molecular arrangement is suppressed by adding an organic oxyacid-based acidic solution using citric acid as the organic oxyacid . Accordingly, it is presumed that the wavelength conversion nanoparticles can be appropriately dispersed in the glass matrix while maintaining the regularity of the glass matrix arrangement. In addition, it is presumed that gelation is promoted by citric acid, which is an organic oxyacid, coordinated to silane ions and crosslinks a siloxane bond (Si—O—Si) chain. From the above, it is estimated that white turbidity is suppressed and light transmittance is improved.

具体的には、本発明では、第1工程にて、ガラスの材料であるガラス前駆体と溶媒とを混合する。なお、混合する際には、通常は、撹拌等により十分に混合を行う(以下同様)。次に、第2工程にて、その混合した溶液に(後のガラスの透過性を保持するために)有機オキシ酸としてクエン酸を用いた有機オキシ酸系酸性溶液を加えて混合する。この混合によって徐々にガラス化が進み溶液の粘度が増加する。次に、第3工程にて、この粘度が増加した溶液と波長変換ナノ粒子が分散された水溶液とを混合する。これによって、混合溶液中に波長変換ナノ粒子がほぼ均一に分散した状態となる。次に、第4工程にて、波長変換ナノ粒子が分散した溶液を、例えば静置することによって、そのガラス化を進めて固化させることにより波長変換材を製造する。 Specifically, in the present invention, a glass precursor that is a glass material and a solvent are mixed in the first step. When mixing, the mixing is usually carried out by stirring or the like (hereinafter the same). Next, in the second step, an organic oxyacid-based acidic solution using citric acid as an organic oxyacid is added to and mixed with the mixed solution (to maintain the transparency of the later glass). By this mixing, vitrification gradually proceeds and the viscosity of the solution increases. Next, in the third step, the solution having increased viscosity is mixed with the aqueous solution in which the wavelength conversion nanoparticles are dispersed. As a result, the wavelength conversion nanoparticles are almost uniformly dispersed in the mixed solution. Next, in the fourth step, the solution in which the wavelength conversion nanoparticles are dispersed is allowed to stand, for example, by allowing the solution to be vitrified and solidified to produce a wavelength conversion material.

・ここで、前記波長変換ナノ粒子としては、粒子径が例えば10nm以下のものを採用でき、この波長変換ナノ粒子は、外部からの光(例えば紫外線)を受けて蛍光を発する半導体ナノ粒子である。この半導体ナノ粒子としては、II-VI族半導体である、テルル化カドミウム(CdTe)、硫化カドミウム(CdS)、セレン化亜鉛(ZnSe)、セレン化カドミウム(CdSe)、テルル化亜鉛(ZnTe)などが挙げられる。   Here, as the wavelength conversion nanoparticles, particles having a particle diameter of, for example, 10 nm or less can be adopted, and the wavelength conversion nanoparticles are semiconductor nanoparticles that emit fluorescence upon receiving external light (for example, ultraviolet rays). . Examples of the semiconductor nanoparticles include II-VI group semiconductors such as cadmium telluride (CdTe), cadmium sulfide (CdS), zinc selenide (ZnSe), cadmium selenide (CdSe), and zinc telluride (ZnTe). Can be mentioned.

・また、有機オキシ酸系酸性溶液とは、有機オキシ酸を含む酸性溶液(有機オキシ酸によって調整された酸性溶液)であり、ここでは、有機オキシ酸としてクエン酸を用いた有機オキシ酸系酸性溶液(水溶液)を用いる。なお、クエン酸を用いる場合には、塩酸を用いる場合に比べて、ゲル化を促進できるとともに、高い透過性を実現でき、また、高い蛍光の強度(輝度)を長期間に渡り維持することができる。 - In addition, the organic oxy acid acidic solution, an acidic solution containing an organic oxy acid (acidic solution adjusted with an organic oxy acid), wherein the organic oxy acid system using the click-enoic acid as an organic oxyacid the acidic solution (aq) Ru used. In addition, when citric acid is used, gelation can be promoted and high permeability can be realized, and high fluorescence intensity (luminance) can be maintained over a long period of time compared to the case of using hydrochloric acid. can Ru.

前記有機オキシ酸系酸性溶液を加えた溶液のpHとしては、6〜8の範囲であれば、高い透過性を実現できるので好適である。 - As the pH of the organic oxy acid acidic solution was added a solution, be in the range of 6-8, is preferred because it achieves high permeability.

・前記ガラス前駆体としては、有機アルコキシシラン又はアルコキシドを採用できる。
このうち、有機アルコキシシランとしては、3−アミノプロピルトリメトキシシラン(APS)を用いると、極性分子であるアミノ基(−NH)により、水との混和性およびナノ粒子の分散性が向上するので、好適である。また、アルコキシドとしては、アルコキシシラン(例えばテトラエトキシシラン(TEOS))を用いることができる。
-Organic alkoxysilane or alkoxide can be adopted as the glass precursor.
Among these, when 3-aminopropyltrimethoxysilane (APS) is used as the organic alkoxysilane, the miscibility with water and the dispersibility of the nanoparticles are improved by the amino group (—NH 2 ) which is a polar molecule. Therefore, it is preferable. As the alkoxide, alkoxysilane (eg, tetraethoxysilane (TEOS)) can be used.

また、他のガラス前駆体として、例えば有機アルコキシ系:3-アミノトリエトキシシラン、アルコキシシラン系:テトラメトキシシラン(TMOS)、テトラアセトキシシランを用いることができる。   Further, as other glass precursors, for example, organic alkoxy-based: 3-aminotriethoxysilane, alkoxysilane-based: tetramethoxysilane (TMOS), and tetraacetoxysilane can be used.

・前記ガラス前駆体を含む溶液には、ガラス前駆体以外に、各種の溶媒を混合して用いることができる。この溶媒としては、メタノールを用いると、ガラス前駆体、水との混合溶媒の混和性が向上するので好適である。それ以外に、例えばエタノールを用いることができる。   In the solution containing the glass precursor, various solvents can be mixed and used in addition to the glass precursor. As this solvent, it is preferable to use methanol because the miscibility of the mixed solvent with the glass precursor and water is improved. In addition, for example, ethanol can be used.

・前記第2工程として、酸性溶液を混合した溶液を撹拌することにより、500〜1500mPasの範囲の値以上の粘度とし、この粘度に達した場合に、次の第3工程にするようにすることができる。
・粘度の範囲(下限値)としては、500〜1500mPasの範囲を採用できる。この範囲であれば、扱い易いという利点がある。
-As the second step, by stirring the solution mixed with the acidic solution, the viscosity is not less than a value in the range of 500 to 1500 mPas, and when this viscosity is reached, the next third step is performed. Can do.
-As a viscosity range (lower limit), the range of 500-1500 mPas is employable. If it is this range, there exists an advantage that it is easy to handle.

500〜1500mPasの範囲の値以上の粘度となった溶液に水を加えて希釈し、撹拌して粘度を高める工程を、複数回繰り返す方法を採用できる。これによって、シロキサン結合またはクエン酸の配位による架橋の促進という利点がある。 -The method of adding water to the solution which became the viscosity more than the value of the range of 500-1500 mPas, diluting, stirring, and raising a viscosity can be employ | adopted several times. This has the advantage of promoting crosslinking by coordination of siloxane bonds or citric acid.

・前記第3工程として、更に、波長変換ナノ粒子を構成する輝度を向上させる元素と配位子とを溶解させた水溶液を加える方法を採用できる。つまり、第2工程にて得た混合溶液に、前記(両物質を溶解させた)水溶液と波長変換ナノ粒子を分散した水溶液とを混合する方法を採用できる。これによって、波長変換材の輝度を高めることができる。   -As said 3rd process, the method of adding the aqueous solution which dissolved the element and ligand which improve the brightness | luminance which comprises the wavelength conversion nanoparticle further can be employ | adopted. That is, it is possible to employ a method in which the aqueous solution (in which both substances are dissolved) and the aqueous solution in which the wavelength conversion nanoparticles are dispersed are mixed with the mixed solution obtained in the second step. Thereby, the brightness | luminance of a wavelength conversion material can be raised.

なお、波長変換ナノ粒子を構成する輝度を向上させる元素としては、例えばCdTeにおいてはCdであり、CdSではCdであり、ZnSeではZnであり、CdSeではCdであり、ZnTeではZnである。   In addition, as an element which improves the brightness | luminance which comprises the wavelength conversion nanoparticle, for example, it is Cd in CdTe, Cd in CdS, Zn in ZnSe, Cd in CdSe, and Zn in ZnTe.

また、配位子(リガント)としては、親水性の配位子を採用でき、例えばN−アセチル−L−システイン(NAC)、チオグリコール酸(TGA)を採用できる。このうち、NACを用いると、酸性条件下で安定であるので好適である。なお、それ以外に、システイン、2-メルカプトプロピオン酸エチル、グルタチオン、3-メルカプトプロピオン酸を採用できる。   Moreover, as a ligand (ligant), a hydrophilic ligand can be employ | adopted, for example, N-acetyl- L-cysteine (NAC) and thioglycolic acid (TGA) can be employ | adopted. Among these, NAC is preferable because it is stable under acidic conditions. In addition, cysteine, ethyl 2-mercaptopropionate, glutathione, and 3-mercaptopropionic acid can be employed.

・前記第4工程としては、第3工程にて混合した溶液を、静置して固化させる方法を採用できる。
・また、固化させる溶液に赤外線を照射すると、ガラスマトリックスに影響を与えることなく(又は影響を少なくして)、ガラス化(固化)を促進することができるので好適である。これにより、透過率を低下させることなく、固化までの時間を短縮することができる。
-As said 4th process, the method of standing still and solidifying the solution mixed at the 3rd process is employable.
Further, it is preferable to irradiate the solution to be solidified with infrared rays because vitrification (solidification) can be promoted without affecting (or reducing) the glass matrix. Thereby, the time to solidification can be shortened without reducing the transmittance.

この理由は、赤外線の照射によって、水分子を共振させて運動を強め、系外への放出が促進されるからであると推定される。なお、赤外線の照射の量やエネルギーとしては、10〜20mWの範囲を採用でき、その照射時間としては、2〜7日の範囲を採用できる。   The reason for this is presumed that the irradiation with infrared rays resonates water molecules to strengthen the movement and promote the release to the outside of the system. In addition, the range of 10-20mW can be employ | adopted as the amount and energy of infrared irradiation, and the range of 2-7 days can be employ | adopted as the irradiation time.

・そして、上述した方法によって製造された波長変換材は、高い光(可視光)の透過性を有するという顕著な効果を奏する。   -And the wavelength conversion material manufactured by the method mentioned above has a remarkable effect that it has high light (visible light) permeability.

波長変換材の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wavelength conversion material. APS、NAC、TGAの構造を示す化学式(構造式)である。It is a chemical formula (structural formula) showing the structures of APS, NAC, and TGA. 波長変換ナノ粒子を分散したナノ粒子分散水溶液の作製手順を示す説明図である。It is explanatory drawing which shows the preparation procedures of the nanoparticle dispersion | distribution aqueous solution which disperse | distributed wavelength conversion nanoparticle. 波長変換材の各波長毎の光の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of the light for every wavelength of a wavelength conversion material. ナノ粒子分散水溶液及び波長変換材の各波長毎の蛍光の強度(輝度)を示すグラフである。It is a graph which shows the intensity | strength (luminance) of the fluorescence for each wavelength of a nanoparticle dispersion | distribution aqueous solution and a wavelength converter. TEOSの加水分解及び脱水縮合を示す説明図である。It is explanatory drawing which shows the hydrolysis and dehydration condensation of TEOS.

次に、本発明の実施の形態(実施形態)を、図面と共に説明する。
[実施形態]
以下では、ガラス内に(半導体ナノ粒子である)波長変換ナノ粒子を分散した(蛍光性ガラスである)波長変換材の製造方法について説明する。
Next, an embodiment (embodiment) of the present invention will be described with reference to the drawings.
[Embodiment]
Below, the manufacturing method of the wavelength conversion material (it is fluorescent glass) which disperse | distributed the wavelength conversion nanoparticle (it is semiconductor nanoparticles) in glass is demonstrated.

a)まず、波長変換材の製造方法の手順について説明する。
図1(A)に示すように、まず、メタノール3mlと3−アミノプロピルメトキシシラン(APS:図2(A)参照)1mlとを、テフロン(登録商標)シャーレ1に加え、攪拌子を用いて(例えば5分間)ゆっくりと撹拌する。この溶液を第1溶液3と称する。
a) First, the procedure of the method for producing the wavelength conversion material will be described.
As shown in FIG. 1 (A), first, 3 ml of methanol and 1 ml of 3-aminopropylmethoxysilane (APS: see FIG. 2 (A)) are added to a Teflon (registered trademark) petri dish 1, and a stirrer is used. Stir slowly (eg 5 minutes). This solution is referred to as the first solution 3.

次に、図1(B)に示すように、撹拌を続けながら、第1溶液3に、pH2.5のクエン酸水溶液を2ml加え、その溶液のpHをpH6〜8の範囲(例えばpH7.5)に調整し、APSの加水分解を促進する。なお、この溶液を第2溶液5と称する。   Next, as shown in FIG. 1B, while continuing stirring, 2 ml of a citric acid aqueous solution having a pH of 2.5 is added to the first solution 3, and the pH of the solution is in the range of pH 6 to 8 (for example, pH 7.5). ) To promote APS hydrolysis. This solution is referred to as the second solution 5.

次に、図1(C)に示すように、遮光下で、例えば24時間撹拌を続け、第2溶液5の粘度が、最低で500〜1500mPas[潤滑油(20℃)]程度(例えば1000mPas)になったのを確認する。この粘度高い溶液を第3溶液7と称する。   Next, as shown in FIG. 1C, stirring is continued for 24 hours under light shielding, and the viscosity of the second solution 5 is at least about 500 to 1500 mPas [lubricating oil (20 ° C.)] (for example, 1000 mPas). Confirm that it became. This highly viscous solution is referred to as a third solution 7.

なお、この工程を複数回繰り返してもよい。例えば、粘度が、1000〜500mPas程度の濃厚ソースになったら、水を加えて粘度100〜500mPas程度に希釈し、再度撹拌を行う工程を2〜3回繰り返してもよい。   This process may be repeated a plurality of times. For example, when the viscosity becomes a thick source of about 1000 to 500 mPas, the step of adding water to dilute to a viscosity of about 100 to 500 mPas and stirring again may be repeated 2-3 times.

次に、前記第3溶液7の粘度の確認後、図1(D)に示すように、粘度が高くなった第3溶液7に、後に詳述する、Cd2+(0.01M)とN−アセチル−L−システイン(NAC:図2(B)参照)(0.02M)とを溶解させた水溶液0.3mlを加えるとともに、波長変換ナノ粒子を分散したナノ粒子分散水溶液(CdTe−NAC)(1ml)を加え、良く分散するまで(例えば数時間)撹拌する。この溶液を第4溶液9と称する。 Next, after confirming the viscosity of the third solution 7, as shown in FIG. 1D, the third solution 7 having a higher viscosity is subjected to Cd 2+ (0.01M) and N− described in detail later. Add 0.3 ml of an aqueous solution in which acetyl-L-cysteine (NAC: see FIG. 2B) (0.02M) is dissolved, and add a nanoparticle-dispersed aqueous solution (CdTe-NAC) in which wavelength-converted nanoparticles are dispersed (CdTe-NAC) ( 1 ml) and stir until well dispersed (eg several hours). This solution is referred to as a fourth solution 9.

次に、図1(E)に示すように、前記ナノ粒子分散水溶液等を加えた第4溶液9を、遮光して例えば7〜10日静置し、ガラス化を促進して固化させて、蛍光性ガラスである波長変換材11を製造する。   Next, as shown in FIG. 1 (E), the fourth solution 9 to which the nanoparticle-dispersed aqueous solution or the like is added is allowed to stand for 7 to 10 days while being shielded from light, and promotes vitrification and solidifies. The wavelength conversion material 11 which is fluorescent glass is manufactured.

なお、第4溶液9を静置する際に、第4溶液9に対して、赤外線を照射する。この赤外線を照射する条件(時間やエネルギー)は、下記の通りである。
条件:2〜7日、10〜20mW
b)次に、上述した各工程の内容について詳しく説明する。
When the fourth solution 9 is allowed to stand, the fourth solution 9 is irradiated with infrared rays. The conditions (time and energy) for irradiating this infrared ray are as follows.
Conditions: 2-7 days, 10-20mW
b) Next, the contents of each process described above will be described in detail.

・上述したCd2+とNACとを溶解させた水溶液は、波長変換ナノ粒子を構成する輝度を向上させる元素(Cd)と配位子(NAC)とを溶解させた水溶液であり、下記の手順で作製することができる。 The above-described aqueous solution in which Cd 2+ and NAC are dissolved is an aqueous solution in which the element (Cd) and the ligand (NAC) that improve the luminance constituting the wavelength conversion nanoparticles are dissolved. Can be produced.

具体的には、過塩素酸カドミウム六水和物 0.41g(1mmol)、NAC 0.326g(2mmol)をそれぞれ秤量し、脱イオン水 100mlに加えてよく撹拌する。   Specifically, 0.41 g (1 mmol) of cadmium perchlorate hexahydrate and 0.326 g (2 mmol) of NAC are respectively weighed and added to 100 ml of deionized water and stirred well.

・また、波長変換ナノ粒子を分散したナノ粒子分散水溶液(CdTe−NAC)は、下記の手順で作製することができる。
まず、図3(A)に示すように、Cdイオン源(例えば過塩素酸Cd)とNACとを、1:2.4のモル比で混合して水溶液13を作製する。
-Moreover, the nanoparticle dispersion | distribution aqueous solution (CdTe-NAC) which disperse | distributed the wavelength conversion nanoparticle can be produced in the following procedure.
First, as shown in FIG. 3A, a Cd ion source (for example, Cd perchloric acid) and NAC are mixed at a molar ratio of 1: 2.4 to prepare an aqueous solution 13.

次に、図3(B)に示すように、この水溶液13に、NaOHを添加することによって、pH8に調整する(水溶液15)。
次に、図3(C)に示すように、前記水溶液15に、Teイオン源(例えばNaHTe)を1.2mmol添加する(水溶液17)。なお、このとき、Cd:Teのモル比は(1:0.3)である。また、この水溶液17では、金属原子にNACのSH基が配位し、NACのカルボキシル基が水系溶媒への溶解を促進しているものと推察される。
Next, as shown in FIG. 3 (B), the aqueous solution 13 is adjusted to pH 8 by adding NaOH (aqueous solution 15).
Next, as shown in FIG. 3C, 1.2 mmol of a Te ion source (for example, NaHTe) is added to the aqueous solution 15 (aqueous solution 17). At this time, the molar ratio of Cd: Te is (1: 0.3). Further, in this aqueous solution 17, it is presumed that the SH group of NAC is coordinated to the metal atom, and the carboxyl group of NAC promotes the dissolution in the aqueous solvent.

次に、図3(D)に示すように、この水溶液17に、更に、HCl水溶液を添加することによって、pH5に調整する(水溶液19)。
その後、図3(E)に示すように、高圧下(例えば6気圧)で200℃で20分間加熱することによって、波長変換ナノ粒子(CdTe)、即ち、波長変換ナノ粒子を分散したナノ粒子分散水溶液(CdTe−NAC)21を製造する。
Next, as shown in FIG. 3D, the aqueous solution 17 is further adjusted to pH 5 by adding an aqueous HCl solution (aqueous solution 19).
Thereafter, as shown in FIG. 3 (E), the wavelength conversion nanoparticles (CdTe), that is, the nanoparticle dispersion in which the wavelength conversion nanoparticles are dispersed by heating at 200 ° C. for 20 minutes under high pressure (for example, 6 atm). An aqueous solution (CdTe-NAC) 21 is produced.

なお、この波長変換ナノ粒子のサイズ(粒子径:平均値)は、例えば3nm〜5nmである。
c)次に、本実施形態の作用効果について説明する。
In addition, the size (particle diameter: average value) of the wavelength conversion nanoparticles is, for example, 3 nm to 5 nm.
c) Next, the function and effect of this embodiment will be described.

本実施形態では、メタノールと(ガラス前駆体である)APSとを混合し、その混合溶液を撹拌しながら、クエン酸水溶液を加え、APSの加水分解を促進させる。更に、遮光下で撹拌を続け、その溶液の粘度が所定値以上になった場合には、Cd2+とNACとを溶解させた水溶液とナノ粒子分散水溶液(CdTe−NAC)とを加えて、良く分散するまで撹拌する。その後、撹拌を停止し、遮光して静置し、ガラス化を促進させて固化させて蛍光性ガラスである波長変換材(板)11を作製する。 In the present embodiment, methanol and APS (which is a glass precursor) are mixed, and an aqueous citric acid solution is added while stirring the mixed solution to promote hydrolysis of APS. Furthermore, stirring is continued under light shielding, and when the viscosity of the solution becomes a predetermined value or more, an aqueous solution in which Cd 2+ and NAC are dissolved and an aqueous nanoparticle dispersion (CdTe-NAC) are added. Stir until dispersed. Then, stirring is stopped, light-shielded and left still, vitrification is promoted and it solidifies, and the wavelength conversion material (plate) 11 which is fluorescent glass is produced.

このように、本実施形態では、酸触媒としてクエン酸水溶液を用いるので、比較的短期間で波長変換材11を製造でき、しかも、この様にして製造された波長変換材11は白濁がなく、光の透過性に優れている。また、製造直後の波長変換材11の蛍光の強度が高く(輝度が高く)、しかも、長期間にわたって高い輝度を維持できるという効果を奏する。   Thus, in this embodiment, since the citric acid aqueous solution is used as the acid catalyst, the wavelength conversion material 11 can be manufactured in a relatively short period of time, and the wavelength conversion material 11 manufactured in this way has no cloudiness. Excellent light transmission. Moreover, there is an effect that the wavelength conversion material 11 immediately after manufacture has high fluorescence intensity (high luminance) and can maintain high luminance over a long period of time.

また、本実施例では、配位子(リガント)としてNACを用いるので、酸触媒共存下でも安定であるという利点がある。
更に、本実施形態では、固化させる溶液に赤外線を照射しているので、ガラスマトリックスに影響を与えることなく、ガラス化を促進することができる。これにより、透過率を低下させることなく、固化までの時間を短縮できるという顕著な効果を奏する。
In this example, since NAC is used as a ligand (ligant), there is an advantage that it is stable even in the presence of an acid catalyst.
Furthermore, in this embodiment, since infrared rays are irradiated to the solution to be solidified, vitrification can be promoted without affecting the glass matrix. Thereby, there is a remarkable effect that the time until solidification can be shortened without reducing the transmittance.

d)次に、本実施形態の効果を確認するために行った実験例について説明する。
[実験例1]
本実験例1では、上述した実施形態の製造方法において、粒子径が3nm、4nm、5nmの波長変換ナノ粒子(CdTe)を分散したナノ粒子分散水溶液(CdTe−NAC)を用いて、それぞれ波長変換材の試料を作製した。
d) Next, an experimental example performed to confirm the effect of this embodiment will be described.
[Experimental Example 1]
In Experimental Example 1, in the manufacturing method according to the above-described embodiment, wavelength conversion is performed using a nanoparticle-dispersed aqueous solution (CdTe-NAC) in which wavelength-converting nanoparticles (CdTe) having a particle diameter of 3 nm, 4 nm, and 5 nm are dispersed. A sample of the material was prepared.

なお、反応時間を調節することにより、波長変換ナノ粒子の粒子径を調節することができる。例えば反応時間を長くすれば、粒子径を大きくすることができる。
そして、各試料において、各波長の光に対してその透過率を測定した。その結果を図4に示す。
In addition, the particle diameter of the wavelength conversion nanoparticle can be adjusted by adjusting the reaction time. For example, if the reaction time is increased, the particle diameter can be increased.
And in each sample, the transmittance | permeability was measured with respect to the light of each wavelength. The result is shown in FIG.

なお、図4において、縦軸が透過率T[%]、横軸が光の波長wavelength[nm]である。また、glassが波長変換ナノ粒子が添加されていない透明なガラス板、R−glassが粒子径3nmの波長変換ナノ粒子を用いた試料(蛍光色は赤色)、Y−glassが粒子径4nmの波長変換ナノ粒子を用いた試料(蛍光色は黄色)、G−glassが粒子径5nmの波長変換ナノ粒子を用いた試料(蛍光色は緑色)である。   In FIG. 4, the vertical axis represents the transmittance T [%], and the horizontal axis represents the wavelength wavelength [nm] of light. Further, glass is a transparent glass plate to which no wavelength conversion nanoparticles are added, R-glass is a sample using wavelength conversion nanoparticles having a particle diameter of 3 nm (fluorescent color is red), and Y-glass is a wavelength having a particle diameter of 4 nm. A sample using converted nanoparticles (fluorescent color is yellow) and a sample using wavelength-converted nanoparticles having a G-glass particle diameter of 5 nm (fluorescent color is green).

図4から明らかなように、光の波長が500nmを超える当たりから透過率が高くなるので好適である。
[実験例2]
本実験例2では、前記実験例1と同様に、上述した実施形態の製造方法において、粒子径が3nm、4nm、5nmの波長変換ナノ粒子(CdTe)を分散したナノ粒子分散水溶液(CdTe−NAC)を用いて、それぞれ波長変換材の試料を作製した。
As is apparent from FIG. 4, the transmittance increases when the wavelength of light exceeds 500 nm, which is preferable.
[Experiment 2]
In Experimental Example 2, as in Experimental Example 1, in the manufacturing method of the above-described embodiment, a nanoparticle-dispersed aqueous solution (CdTe-NAC) in which wavelength-converted nanoparticles (CdTe) having a particle size of 3 nm, 4 nm, and 5 nm are dispersed. ) To prepare samples of wavelength conversion materials.

そして、各ナノ粒子分散水溶液と各波長変換材の試料において、各波長の光に対してその蛍光の強度(輝度)を測定した。その結果を図5に示す。
なお、図5において、縦軸が蛍光(PL)の強度(intensity)[a.u.]、横軸が光の波長wavelength[nm]である。また、R−solutionが粒子径3nmの波長変換ナノ粒子を分散した溶液、Y−solutionが粒子径4nmの波長変換ナノ粒子を分散した溶液、G−solutionが粒子径5nmの波長変換ナノ粒子を分散した溶液である。また、R−glass、Y−glass、G−glassは、前記実験例1と同様である。
And the intensity | strength (luminance) of the fluorescence was measured with respect to the light of each wavelength in the sample of each nanoparticle dispersion | distribution aqueous solution and each wavelength conversion material. The result is shown in FIG.
In FIG. 5, the vertical axis represents the intensity (au) of fluorescence (PL) [au], and the horizontal axis represents the wavelength wavelength [nm] of light. Also, R-solution is a solution in which wavelength conversion nanoparticles with a particle diameter of 3 nm are dispersed, Y-solution is a solution in which wavelength conversion nanoparticles with a particle diameter of 4 nm are dispersed, and G-solution is a dispersion of wavelength conversion nanoparticles with a particle diameter of 5 nm. Solution. R-glass, Y-glass, and G-glass are the same as in Experimental Example 1.

図5から明らかなように、波長変換ナノ粒子を分散した溶液と、その溶液を用いて作製される波長変換材との間には、蛍光の強度のピークの対応関係があることが分かる。
[実験例3]
本実験例3では、下記表1等に示す条件以外は、上述した実施形態の製造方法にて、波長変換材の試料を作製した。
As is apparent from FIG. 5, it can be seen that there is a correspondence relationship between fluorescence intensity peaks between the solution in which the wavelength conversion nanoparticles are dispersed and the wavelength conversion material produced using the solution.
[Experiment 3]
In this Experimental Example 3, a sample of the wavelength conversion material was prepared by the manufacturing method of the above-described embodiment except for the conditions shown in Table 1 below.

具体的には、試料1は、前記実施形態と同様な方法で作成した。
試料2は、触媒としてNH(詳しくはpH11.0のアンモニア水溶液)を用いたものである。この場合には、波長変換材の製造条件を、前記実施形態の製造条件から、クエン酸水溶液をアンモニア水溶液に変更した。
Specifically, Sample 1 was created by the same method as in the above embodiment.
Sample 2 uses NH 3 (specifically, an aqueous ammonia solution having a pH of 11.0) as a catalyst. In this case, the manufacturing condition of the wavelength conversion material was changed from the manufacturing condition of the embodiment to the aqueous ammonia solution.

試料3は、触媒として(pH2.0の)HCl水溶液を用いたものである。この場合には、波長変換材の製造条件を、クエン酸水溶液から塩酸水溶液に変更した。
試料4は、リガントとしてTGA(図2(C)参照)を用い、触媒としてNH(詳しくはpH11.0のアンモニア水溶液)を用いたものである。この場合には、波長変換材の製造条件を、クエン酸水溶液からアンモニア水溶液に変更した。
Sample 3 uses an aqueous HCl solution (pH 2.0) as a catalyst. In this case, the manufacturing condition of the wavelength conversion material was changed from a citric acid aqueous solution to a hydrochloric acid aqueous solution.
Sample 4 uses TGA (see FIG. 2C) as a ligand and NH 3 (more specifically, an aqueous ammonia solution having a pH of 11.0) as a catalyst. In this case, the production conditions for the wavelength conversion material were changed from an aqueous citric acid solution to an aqueous ammonia solution.

そして、各試料を作製する際のゲル化速度、各試料の透過率、蛍光状態、蛍光安定性を調べ、その結果を下記表1に示す。
なお、透過率については、◎は「非常に良い」を示し、○は「良い」(ポリプロピレンフィルムと同程度)を示し、△は「少し悪い」を示している。
And the gelation speed at the time of producing each sample, the transmittance | permeability of each sample, the fluorescence state, and fluorescence stability were investigated, and the result is shown in following Table 1.
Regarding the transmittance, ◎ indicates “very good”, ◯ indicates “good” (similar to a polypropylene film), and Δ indicates “slightly bad”.

また、蛍光状態は、製造直後の蛍光の強度(輝度)の程度を示すものであり、蛍光状態が◎は「非常に強い」を示し、○は「強い」(ナノ粒子分散水溶液と同程度)を示し、△は「弱い」を示し、×は「ほとんど蛍光無し」を示している。   The fluorescence state indicates the intensity (luminance) of the fluorescence immediately after production. The fluorescence state ◎ indicates “very strong” and ○ indicates “strong” (same as that of the nanoparticle-dispersed aqueous solution). , Δ indicates “weak”, and × indicates “almost no fluorescence”.

更に、蛍光安定性は、蛍光の劣化の状態(径時変化:耐久性)を示すものであり、蛍光安定性が◎は「非常に良い」を示し、○は「良い」(ナノ粒子分散水溶液と同程度)を示し、△は「少し悪い」を示し、×は「悪い」(劣化が早い)を示している。   Furthermore, the fluorescence stability indicates the state of deterioration of the fluorescence (diameter change: durability), the fluorescence stability ◎ indicates “very good”, and ○ indicates “good” (nanoparticle dispersed aqueous solution) ) Indicates “slightly bad”, and × indicates “bad” (deteriorates quickly).

Figure 0006185290
この表1から明らかなように、触媒としてクエン酸を用いた試料1は、透過率、蛍光状態、蛍光安定性の全ての点で優れている。
Figure 0006185290
As is apparent from Table 1, Sample 1 using citric acid as a catalyst is excellent in all aspects of transmittance, fluorescence state, and fluorescence stability.

触媒としてNHを用いた試料2は、ゲル化速度が速いが、透過率は最大75%であり、蛍光状態及び蛍光安定性は試料1に比べてやや劣っている、なお、蛍光状態では長波長シフトが発生している。 Sample 2 using NH 3 as a catalyst has a high gelation speed, but the transmittance is 75% at the maximum, and the fluorescence state and the fluorescence stability are slightly inferior to those of sample 1, and it is long in the fluorescence state. A wavelength shift has occurred.

触媒としてHClを用いた試料3は、ゲル化速度が遅く、透過率は試料1に比べてやや劣っている。また、蛍光状態や蛍光安定性は試料1に比べて劣っている。なお、蛍光状態では短波長シフトが発生している。   Sample 3 using HCl as a catalyst has a low gelation rate, and the transmittance is slightly inferior to that of sample 1. Further, the fluorescence state and the fluorescence stability are inferior to those of the sample 1. Note that a short wavelength shift occurs in the fluorescent state.

リガンドとしてTGAを用い、触媒としてNHを用いた試料4は、ゲル化速度は速いが、透過率は試料1に比べて劣っている。また、蛍光状態や蛍光安定性は試料1に比べて大きく劣っている。 Sample 4 using TGA as a ligand and NH 3 as a catalyst has a high gelation speed, but the transmittance is inferior to that of sample 1. Further, the fluorescence state and fluorescence stability are greatly inferior to those of the sample 1.

なお、本発明は前記実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態で実施することができる。
(1)例えばAPSの代わりに、テトラエトキシシラン(TEOS)を用いることができる。このTEOSを用いる場合には、図6に示すように、加水分解、脱水縮合が起こり、ガラス化が促進される。
In addition, this invention is not limited to the said embodiment at all, It can implement with a various form in the range which does not deviate from the summary of this invention.
(1) For example, tetraethoxysilane (TEOS) can be used instead of APS. When TEOS is used, as shown in FIG. 6, hydrolysis and dehydration condensation occur, and vitrification is promoted.

(2)ナノ粒子分散水溶液を加えた後に、ガラス化を促進させるために、赤外線を照射することが好ましいが、赤外線を照射しないでもよい。   (2) In order to promote vitrification after adding the nanoparticle-dispersed aqueous solution, it is preferable to irradiate infrared rays, but it is not necessary to irradiate infrared rays.

3…第1溶液
5…第2溶液
7…第3溶液
9…第4溶液
11…波長変換材(蛍光性ガラス)
DESCRIPTION OF SYMBOLS 3 ... 1st solution 5 ... 2nd solution 7 ... 3rd solution 9 ... 4th solution 11 ... Wavelength conversion material (fluorescent glass)

Claims (11)

吸収した光とは異なる波長の光を発生する波長変換ナノ粒子が、ガラスの内部に分散された波長変換材の製造方法において、
前記ガラスの材料であるガラス前駆体と溶媒とを混合する第1工程と、
前記混合した溶液に、有機オキシ酸としてクエン酸を用いた有機オキシ酸系酸性溶液を加えて混合する第2工程と、
前記酸性溶液を加えて混合した溶液と波長変換ナノ粒子が分散された水溶液とを混合する第3工程と、
前記第3工程にて混合された溶液のガラス化を進めて固化させる第4工程と、
を有することを特徴とする波長変換材の製造方法。
In the method for producing a wavelength conversion material in which wavelength conversion nanoparticles that generate light having a wavelength different from the absorbed light are dispersed inside the glass,
A first step of mixing a glass precursor that is a material of the glass and a solvent;
A second step in which an organic oxyacid-based acidic solution using citric acid as an organic oxyacid is added to and mixed with the mixed solution;
A third step of mixing the solution obtained by adding the acidic solution and the aqueous solution in which the wavelength conversion nanoparticles are dispersed;
A fourth step in which the solution mixed in the third step is vitrified and solidified;
A method for producing a wavelength conversion material, comprising:
前記酸性溶液を加えた溶液のpHは、pH6〜8であることを特徴とする請求項1に記載の波長変換材の製造方法。 The method for producing a wavelength conversion material according to claim 1, wherein the pH of the solution to which the acidic solution is added is pH 6-8. 前記ガラス前駆体は、有機アルコキシシラン又はアルコキシドであることを特徴とする請求項1又は2に記載の波長変換材の製造方法。 The glass precursor, the method for manufacturing a wavelength conversion material according to claim 1 or 2, characterized in that the organic alkoxysilane or alkoxide. 前記有機アルコキシシランは、3−アミノプロピルトリメトキシシランであることを特徴とする請求項に記載の波長変換材の製造方法。 The said organic alkoxysilane is 3-aminopropyl trimethoxysilane, The manufacturing method of the wavelength conversion material of Claim 3 characterized by the above-mentioned. 前記アルコキシドは、テトラエトキシシランであることを特徴とする請求項に記載の波長変換材の製造方法。 The said alkoxide is tetraethoxysilane, The manufacturing method of the wavelength conversion material of Claim 3 characterized by the above-mentioned. 前記溶媒は、メタノールであることを特徴とする請求項1〜のいずれか1項に記載の波長変換材の製造方法。 The said solvent is methanol, The manufacturing method of the wavelength conversion material of any one of Claims 1-5 characterized by the above-mentioned. 前記第2工程では、前記酸性溶液を混合した溶液を、500〜1500mPasの範囲の値以上の粘度とすることを特徴とする請求項1〜のいずれか1項に記載の波長変換材の製造方法。 The said 2nd process WHEREIN: The solution which mixed the said acidic solution is made into the viscosity more than the value of the range of 500-1500 mPas, The manufacture of the wavelength conversion material of any one of Claims 1-6 characterized by the above-mentioned. Method. 前記500〜1500mPasの範囲の値以上の粘度となった溶液に水を加えて希釈し、撹拌して粘度を高める工程を、複数回繰り返すことを特徴とする請求項に記載の波長変換材の製造方法。 The wavelength converting material according to claim 7 , wherein the step of adding water to a solution having a viscosity equal to or higher than a value in the range of 500 to 1500 mPas, diluting, and stirring to increase the viscosity is repeated a plurality of times. Production method. 前記第3工程では、更に、波長変換ナノ粒子を構成する輝度を向上させる元素と配位子とを溶解させた水溶液を加えることを特徴とする請求項1〜のいずれか1項に記載の波長変換材の製造方法。 The said 3rd process WHEREIN: Furthermore, the aqueous solution which dissolved the element and ligand which improve the brightness | luminance which comprises the wavelength conversion nanoparticle is added, The any one of Claims 1-8 characterized by the above-mentioned. A method for producing a wavelength conversion material. 前記第4工程では、前記第3工程にて混合した溶液を、静置して固化させることを特徴とする請求項1〜のいずれか1項に記載の波長変換材の製造方法。 The method for producing a wavelength conversion material according to any one of claims 1 to 9 , wherein in the fourth step, the solution mixed in the third step is allowed to stand and solidify. 前記固化させる溶液に赤外線を照射することを特徴とする請求項1〜10のいずれか1項に記載の波長変換材の製造方法。 Method for manufacturing a wavelength conversion material according to any one of claims 1 to 10, characterized in that radiating the solution to the solidification.
JP2013117241A 2013-06-03 2013-06-03 Method for producing wavelength conversion material Active JP6185290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013117241A JP6185290B2 (en) 2013-06-03 2013-06-03 Method for producing wavelength conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117241A JP6185290B2 (en) 2013-06-03 2013-06-03 Method for producing wavelength conversion material

Publications (2)

Publication Number Publication Date
JP2014234461A JP2014234461A (en) 2014-12-15
JP6185290B2 true JP6185290B2 (en) 2017-08-23

Family

ID=52137401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117241A Active JP6185290B2 (en) 2013-06-03 2013-06-03 Method for producing wavelength conversion material

Country Status (1)

Country Link
JP (1) JP6185290B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200206713A1 (en) * 2017-05-18 2020-07-02 Nec Corporation Object, device, and processing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089767A (en) * 2001-08-23 2003-03-28 Tdo Graphics Co Ltd Coating agent for fluorescent substance, fluorescent powder given by using the same, and method for producing the same
JP2005105244A (en) * 2003-01-24 2005-04-21 National Institute Of Advanced Industrial & Technology Semiconductor ultrafine particle and fluorescent substance
JP4604246B2 (en) * 2005-03-10 2011-01-05 独立行政法人産業技術総合研究所 Phosphor in which semiconductor nanoparticles are dispersed at high concentration and method for producing the same
JP4528947B2 (en) * 2005-06-02 2010-08-25 独立行政法人産業技術総合研究所 Phosphors with semiconductor nanoparticles dispersed in an inorganic matrix
CN102361953A (en) * 2009-03-27 2012-02-22 柯尼卡美能达精密光学株式会社 Phosphor member, method for producing phosphor member, and lighting device
JP2013033854A (en) * 2011-08-02 2013-02-14 Koito Mfg Co Ltd Light wavelength conversion member

Also Published As

Publication number Publication date
JP2014234461A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
Tong et al. Direct hot-injection synthesis of lead halide perovskite nanocubes in acrylic monomers for ultrastable and bright nanocrystal–polymer composite films
KR101673508B1 (en) Multi-layer-coated quantum dot beads
JP6250785B2 (en) Solvent-free quantum dot exchange method
JP6118825B2 (en) Novel material and method for dispersing nanoparticles with high quantum yield and stability in matrix
EP3172291B1 (en) Siloxane ligands to be used for dispersing quantum dots in silicone hosts to obtain color converters for led lighting
Woo et al. Enhanced photoluminance of layered quantum dot–phosphor nanocomposites as converting materials for light emitting diodes
US20150267106A1 (en) Quantum Dot Compositions
EP3475388A1 (en) Methods for buffered coating of nanostructures
TW201422765A (en) PDMS-based ligands for quantum dots in silicones
JP7278371B2 (en) Quantum dot, wavelength conversion material, backlight unit, image display device, and method for manufacturing quantum dot
Wada et al. Preparation and photoluminescence properties of yellow-emitting CuInS 2/ZnS quantum dots embedded in TMAS-derived silica
JP2022523330A (en) Method for synthesizing inorganic nanostructures using molten salt chemistry
US9803137B2 (en) Semiconductor phosphor nanoparticle and light-emitting element including semiconductor phosphor nanoparticle
He et al. ZnO/SiO2 encapsulation of perovskite nanocrystals for efficient and stable light-emitting diodes
CN111363385A (en) Preparation method of organic modified barium titanate nanoparticles and preparation method of quantum dot optical film
JP2013161862A (en) Led device and manufacturing method of the same
JP6185290B2 (en) Method for producing wavelength conversion material
KR101841616B1 (en) Semiconductor nanocrystal-siloxane composite resin and preparation method thereof
JP2020515693A (en) Semiconducting luminescent nanoparticles
KR101878371B1 (en) Preparaion method of semiconductor nanocrystal composite resin composition
TWI797205B (en) Quantum dot and its manufacturing method, resin composition, wavelength conversion material, light-emitting element
WO2018117134A1 (en) Composition
JP2013161861A (en) Led device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R150 Certificate of patent or registration of utility model

Ref document number: 6185290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250