JP6180717B2 - Method for producing lithium iodide aqueous solution and use thereof - Google Patents

Method for producing lithium iodide aqueous solution and use thereof Download PDF

Info

Publication number
JP6180717B2
JP6180717B2 JP2012213075A JP2012213075A JP6180717B2 JP 6180717 B2 JP6180717 B2 JP 6180717B2 JP 2012213075 A JP2012213075 A JP 2012213075A JP 2012213075 A JP2012213075 A JP 2012213075A JP 6180717 B2 JP6180717 B2 JP 6180717B2
Authority
JP
Japan
Prior art keywords
lithium iodide
free iodine
hydroiodic acid
producing
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012213075A
Other languages
Japanese (ja)
Other versions
JP2014065637A (en
Inventor
藤原 直樹
直樹 藤原
佑介 大高
佑介 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippoh Chemicals Co Ltd
Original Assignee
Nippoh Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippoh Chemicals Co Ltd filed Critical Nippoh Chemicals Co Ltd
Priority to JP2012213075A priority Critical patent/JP6180717B2/en
Publication of JP2014065637A publication Critical patent/JP2014065637A/en
Application granted granted Critical
Publication of JP6180717B2 publication Critical patent/JP6180717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、ヨウ化リチウム水溶液の製造方法に関する。   The present invention relates to a method for producing an aqueous lithium iodide solution.

ヨウ化リチウムは、水溶液として吸収式冷凍機用の吸収液に用いられるほか、酢酸製造用の助触媒などに用いられている。また、リチウム二次電池、色素増感太陽電池、有機ELなどの電子材料分野への用途が盛んに開発されている。   Lithium iodide is used as an aqueous solution as an absorption liquid for absorption refrigerators, and as a promoter for acetic acid production. In addition, applications in the field of electronic materials such as lithium secondary batteries, dye-sensitized solar cells, and organic EL have been actively developed.

ヨウ化リチウムの水溶液の製造方法としては、炭酸リチウムと水とのスラリーにヨウ化水素ガスを吹き込む製造方法(非特許文献1)、アルゴン雰囲気下、蒸留精製したヨウ化水素酸と炭酸リチウムとを反応させる製造方法(非特許文献2)、及び激しい攪拌下において、炭酸リチウムと水とのスラリーに、ヨウ素を溶解含有するヨウ化リチウム水溶液と硫化水素とを連続的に加えながら反応させる製造方法(特許文献1)が知られている。   As a method for producing an aqueous solution of lithium iodide, a production method in which hydrogen iodide gas is blown into a slurry of lithium carbonate and water (Non-patent Document 1), hydroiodic acid and lithium carbonate purified by distillation under an argon atmosphere are used. A production method (Non-patent Document 2) for reacting, and a production method for reacting a slurry of lithium carbonate and water with continuous addition of an aqueous solution of lithium iodide containing dissolved iodine and hydrogen sulfide under vigorous stirring ( Patent Document 1) is known.

特開平1−148708号公報(1989年6月12日公開)Japanese Patent Laid-Open No. 1-148708 (released on June 12, 1989)

日本化学会編,「新実験化学講座」,8巻,p.462〜463,1997年,丸善株式会社The Chemical Society of Japan, “New Experimental Chemistry Course”, Volume 8, p. 462-463, 1997, Maruzen Co., Ltd. 日本化学会編,「第4版実験化学講座」,16巻,p.206,1993年,丸善株式会社The Chemical Society of Japan, “Fourth Edition, Experimental Chemistry Course”, Volume 16, p. 206, 1993, Maruzen Co., Ltd.

ヨウ化水素酸は、ヨウ化リチウム水溶液を製造する方法において好ましい原料であるが、空気や光で容易に分解してヨウ素を遊離する不安定な材料である。市販のヨウ化水素酸は、遊離ヨウ素のために淡黄色から褐色に着色している。これら遊離ヨウ素により着色したヨウ化水素酸を用いてヨウ化リチウム水溶液を製造した場合、生成物であるヨウ化リチウムにおいても遊離ヨウ素による着色が認められる。   Hydroiodic acid is a preferred raw material in the method for producing an aqueous lithium iodide solution, but is an unstable material that is easily decomposed by air or light to liberate iodine. Commercial hydroiodic acid is colored from pale yellow to brown due to free iodine. When a lithium iodide aqueous solution is produced using hydroiodic acid colored with these free iodines, coloring of free iodine is also observed in the product lithium iodide.

又、ヨウ素は金属に対する腐食性が強く、ヨウ素を含有しているヨウ化リチウム水溶液を保管あるいは乾燥する際には、特殊な材質の容器あるいは装置を必要とし、それらは一般的に高価である。   In addition, iodine is highly corrosive to metals, and when a lithium iodide aqueous solution containing iodine is stored or dried, a container or a device made of a special material is required, and they are generally expensive.

又、上記非特許文献1及び2の製造方法では、高価なヨウ化水素ガスをリチウム化合物との反応に用いるか、又は蒸留精製された遊離ヨウ素の含有量の少ないヨウ化水素酸をリチウム化合物との反応に用いる必要がある。又、特許文献1の製造方法では、毒性の強い硫化水素が用いられる。さらに、上記先行技術文献には、リチウム化合物とヨウ化水素酸の反応工程において生じる遊離ヨウ素について除去することは記載されていない。よって、例えば蒸留精製されたヨウ化水素酸を用いても結果として得られるヨウ化リチウム水溶液には遊離ヨウ素を多く含む虞がある。   In addition, in the production methods of Non-Patent Documents 1 and 2, expensive hydrogen iodide gas is used for the reaction with the lithium compound, or hydroiodic acid having a low free iodine content purified by distillation is used as the lithium compound. It is necessary to use for this reaction. Moreover, in the manufacturing method of patent document 1, hydrogen sulfide with strong toxicity is used. Furthermore, the prior art document does not describe the removal of free iodine generated in the reaction step between the lithium compound and hydroiodic acid. Therefore, for example, even when distilled and purified hydroiodic acid is used, the resulting lithium iodide aqueous solution may contain a large amount of free iodine.

本発明はこのような事情に鑑みて成された発明であり、ヨウ化水素酸を用いて、遊離ヨウ素の含有量が少なく、かつ着色の少ないヨウ化リチウム水溶液を製造する方法を提供する。本発明はまた、ヨウ化水素酸を用いて、遊離ヨウ素の含有量が少なく、かつ着色の少ないヨウ化リチウム水溶液を提供する。   The present invention has been made in view of such circumstances, and provides a method for producing a lithium iodide aqueous solution having a low content of free iodine and little coloration using hydroiodic acid. The present invention also provides an aqueous lithium iodide solution that uses hydroiodic acid and has a low free iodine content and low coloration.

上記の課題を解決するために、本発明に係るヨウ化リチウム水溶液の製造方法は、リチウム化合物及びヨウ化水素酸を反応させる反応工程と、上記反応工程で得られた液体から遊離ヨウ素を除去する除去工程とを包含することを特徴とする。   In order to solve the above problems, a method for producing a lithium iodide aqueous solution according to the present invention removes free iodine from a reaction step in which a lithium compound and hydroiodic acid are reacted and a liquid obtained in the reaction step. And a removing step.

本発明によれば、ヨウ化水素酸を用いて、遊離ヨウ素の含有量が少なく、かつ着色の少ないヨウ化リチウム水溶液が得ることができるという効果を奏する。   According to the present invention, it is possible to obtain a lithium iodide aqueous solution with a low content of free iodine and with little coloring by using hydroiodic acid.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係るヨウ化リチウム水溶液の製造方法は、リチウム化合物及びヨウ化水素酸を反応させる反応工程と、反応工程で得られた液体から遊離ヨウ素を除去する除去工程と、を包含する。   The method for producing an aqueous lithium iodide solution according to the present invention includes a reaction step of reacting a lithium compound and hydroiodic acid, and a removal step of removing free iodine from the liquid obtained in the reaction step.

反応工程においては、リチウム化合物の水溶液とヨウ化水素酸を用いて反応を行なう。よって、ヨウ化水素ガス又は硫化水素ガスとリチウム化合物水溶液とを用いる反応工程に比べて、定量的に収率よくリチウム化合物とヨウ化水素酸とを反応させることができる。   In the reaction step, the reaction is carried out using an aqueous solution of a lithium compound and hydroiodic acid. Therefore, compared with the reaction process using hydrogen iodide gas or hydrogen sulfide gas and a lithium compound aqueous solution, the lithium compound and hydroiodic acid can be reacted quantitatively with a high yield.

又、反応工程で得られたヨウ化リチウム水溶液を、遊離ヨウ素を除去する除去工程を行なうことで、ヨウ化水素酸に含有する遊離ヨウ素のみならず、リチウム化合物及びヨウ化水素酸を反応させる工程において発生した遊離ヨウ素をも除去できる。   Moreover, the process which makes not only the free iodine contained in hydroiodic acid but a lithium compound and hydroiodic acid react by performing the removal process which removes free iodine from the lithium iodide aqueous solution obtained at the reaction process. The free iodine generated in can also be removed.

従って、本発明に係る製造方法における除去工程は、ヨウ化リチウム水溶液における遊離ヨウ素の含有量を少なくすることができる。このため、ヨウ化リチウムにおいて遊離ヨウ素に起因する着色を少なくすることもできる。   Therefore, the removal step in the production method according to the present invention can reduce the content of free iodine in the lithium iodide aqueous solution. For this reason, coloring resulting from free iodine in lithium iodide can also be reduced.

また、除去工程に用いられる吸着剤は、ろ過によって効率よくヨウ化リチウム水溶液から除去できるものを採用できる。又、除去工程において水と混和しない有機溶剤を使用する場合は、ヨウ化リチウム水溶液と有機溶媒とは静置することで二相に分離する。このため、有機溶媒相のみを除去することができる。よって、ヨウ化水素酸を蒸留精製することによって遊離ヨウ素を除去する工程に比べると、簡便であり、大量のヨウ化リチウム水溶液から遊離ヨウ素を除去するのに適している。よって、従来技術に比べ工業的に有利であるといえる。   Moreover, what can be efficiently removed from the lithium iodide aqueous solution by filtration can be adopted as the adsorbent used in the removing step. When an organic solvent that is not miscible with water is used in the removal step, the aqueous lithium iodide solution and the organic solvent are allowed to stand to separate into two phases. For this reason, only the organic solvent phase can be removed. Therefore, it is simpler than the process of removing free iodine by distilling and purifying hydroiodic acid, and is suitable for removing free iodine from a large amount of lithium iodide aqueous solution. Therefore, it can be said that it is industrially advantageous compared with the prior art.

〔反応工程〕
本発明に係るヨウ化リチウム水溶液の製造方法が包含する反応工程では、リチウム化合物及びヨウ化水素酸を反応させる。
[Reaction process]
In the reaction step included in the method for producing an aqueous lithium iodide solution according to the present invention, a lithium compound and hydroiodic acid are reacted.

反応工程において用いるリチウム化合物としては、水酸化リチウム、炭酸リチウム、硫酸リチウム、酢酸リチウム、又はシュウ酸リチウム等が挙げられる。これらリチウム化合物は、単独で用いることも、2種以上を混合して用いることもできる。又、リチウム化合物としては、水酸化リチウム、又は炭酸リチウムが副生成物を除去しやすいことから好ましい。   Examples of the lithium compound used in the reaction step include lithium hydroxide, lithium carbonate, lithium sulfate, lithium acetate, and lithium oxalate. These lithium compounds can be used alone or in combination of two or more. Further, as the lithium compound, lithium hydroxide or lithium carbonate is preferable because it can easily remove by-products.

反応工程において用いるヨウ化水素酸は、蒸留精製する必要がないことが、本発明の有利な点の一つである。反応後の除去工程によって遊離ヨウ素は除去されるため、0.05〜15重量%である遊離ヨウ素の含有量が多いヨウ化水素酸を用いることが可能である。より好ましくは遊離ヨウ素の含有量が0.1〜10重量%のヨウ化水素酸を用いることができる。よって、次亜リン酸のような遊離ヨウ素の発生を抑える安定剤を配合していないヨウ化水素酸をも使用することができる。   One advantage of the present invention is that hydroiodic acid used in the reaction step does not need to be purified by distillation. Since free iodine is removed by the removal step after the reaction, hydroiodic acid having a high free iodine content of 0.05 to 15% by weight can be used. More preferably, hydroiodic acid having a free iodine content of 0.1 to 10% by weight can be used. Therefore, hydroiodic acid that does not contain a stabilizer that suppresses the generation of free iodine such as hypophosphorous acid can also be used.

反応工程においては、50〜60重量%の範囲内のヨウ化水素酸が好ましく用いられる。   In the reaction step, hydroiodic acid within the range of 50 to 60% by weight is preferably used.

反応工程においてリチウム化合物及びヨウ化水素酸を反応させる方法としては、例えば、リチウム化合物の水溶液に、ヨウ化水素酸を滴下する方法であってもよい。当該リチウム化合物の水溶液は無機成分を除去した水にリチウム化合物を溶解させたものであることがより好ましい。又、水に、リチウム化合物水溶液とヨウ化水素酸とを同時に滴下して製造することもできる。当該水は無機成分を除去した水であることがより好ましい。無機成分を除去した水としては、イオン交換水、純水、超純水が例として挙げられる。該リチウム化合物の水溶液を調製することによって不純物として無機成分を含まないヨウ化リチウム水溶液、さらにはヨウ化リチウム粉末を製造することができる。   The method of reacting the lithium compound and hydriodic acid in the reaction step may be, for example, a method of dropping hydroiodic acid into an aqueous solution of a lithium compound. More preferably, the lithium compound aqueous solution is obtained by dissolving a lithium compound in water from which inorganic components have been removed. It can also be produced by simultaneously dropping an aqueous lithium compound solution and hydroiodic acid into water. The water is more preferably water from which inorganic components have been removed. Examples of water from which inorganic components have been removed include ion exchange water, pure water, and ultrapure water. By preparing an aqueous solution of the lithium compound, an aqueous lithium iodide solution that does not contain an inorganic component as an impurity, and further a lithium iodide powder can be produced.

無機成分を除去した水に対するリチウム化合物の量は、20〜60重量%の範囲とすることが好ましい。該範囲内とすることで、効率よくリチウム化合物を溶解させることができ、ヨウ化水素酸と効率的に反応させることができる。   The amount of the lithium compound relative to the water from which the inorganic component has been removed is preferably in the range of 20 to 60% by weight. By setting it within this range, the lithium compound can be dissolved efficiently and can be reacted efficiently with hydroiodic acid.

また、リチウム化合物水溶液に、攪拌下において、ヨウ化水素酸を滴下することで、急激な反応による発熱を防止することができる。   Moreover, the heat_generation | fever by a rapid reaction can be prevented by dripping hydroiodic acid to lithium compound aqueous solution under stirring.

リチウム化合物と反応させるヨウ化水素酸の使用量は、リチウム化合物に対して0.5〜1.5モル当量の範囲とすることが好ましい。該範囲内とすることで、ヨウ化リチウムを収率よく製造することができる。   The amount of hydroiodic acid to be reacted with the lithium compound is preferably in the range of 0.5 to 1.5 molar equivalents relative to the lithium compound. By setting it within this range, lithium iodide can be produced with good yield.

反応工程は、遊離ヨウ素の発生を抑制する観点から、窒素ガス又はアルゴンガスのような不活性ガス条件下で行なうことが好ましい。   The reaction step is preferably performed under an inert gas condition such as nitrogen gas or argon gas from the viewpoint of suppressing the generation of free iodine.

反応工程における反応器内の温度は、0〜100℃の範囲内であることが好ましい。製造の容易さから、10〜50℃の範囲内であることが特に好ましい。   The temperature in the reactor in the reaction step is preferably in the range of 0 to 100 ° C. In view of ease of production, it is particularly preferably in the range of 10 to 50 ° C.

〔除去工程〕
本発明に係るヨウ化リチウム水溶液の製造方法が包含する除去工程では、吸着剤によって遊離ヨウ素を除去することもできる。
[Removal process]
In the removing step included in the method for producing an aqueous lithium iodide solution according to the present invention, free iodine can also be removed by an adsorbent.

反応工程後に、除去工程においてヨウ化リチウム水溶液に吸着剤を投入することで、反応に用いられたヨウ化水素酸に初めから存在する遊離ヨウ素のみならず、反応工程において生じた遊離ヨウ素をも吸着することができる。従って、蒸留精製したヨウ化水素酸を使用しなくても、遊離ヨウ素の含有量の少ないヨウ化リチウム水溶液を、簡便に製造することができる。   After the reaction step, the adsorbent is added to the lithium iodide aqueous solution in the removal step, so that not only the free iodine originally present in the hydroiodic acid used in the reaction but also the free iodine generated in the reaction step is adsorbed. can do. Therefore, an aqueous lithium iodide solution having a low free iodine content can be easily produced without using distilled and purified hydroiodic acid.

本発明に係るヨウ化リチウムの製造方法が包含する遊離ヨウ素除去工程では、水と混和しない有機溶媒によって遊離ヨウ素を除去することもできる。   In the free iodine removal step included in the method for producing lithium iodide according to the present invention, free iodine can also be removed with an organic solvent immiscible with water.

反応工程において得られたヨウ化リチウム水溶液に、水と混和しない有機溶媒を加えてから、振とう又は攪拌することで遊離ヨウ素を該有機溶媒に抽出することができる。   After adding an organic solvent immiscible with water to the aqueous lithium iodide solution obtained in the reaction step, free iodine can be extracted into the organic solvent by shaking or stirring.

反応工程後に、除去工程において水と混和しない有機溶媒を用いることで、反応に用いられたヨウ化水素酸に初めから存在する遊離ヨウ素のみならず、反応工程において生じた遊離ヨウ素をも抽出することができる。水と混和しない有機溶媒を加えたヨウ化リチウム水溶液は、振とう又は攪拌を停止して静置することで、ヨウ化リチウム水溶液と遊離ヨウ素を抽出した有機溶媒との二相に分離できる。このため、有機溶媒は容易に除去することができる。従って、蒸留精製したヨウ化水素酸を使用しなくても、遊離ヨウ素の含有量の少ないヨウ化リチウム水溶液を、簡便に製造することができる。   By using an organic solvent that is immiscible with water in the removal step after the reaction step, not only free iodine present in the hydroiodic acid used in the reaction but also free iodine generated in the reaction step is extracted. Can do. A lithium iodide aqueous solution to which an organic solvent immiscible with water is added can be separated into two phases of a lithium iodide aqueous solution and an organic solvent from which free iodine has been extracted by stopping shaking or stirring. For this reason, the organic solvent can be easily removed. Therefore, an aqueous lithium iodide solution having a low free iodine content can be easily produced without using distilled and purified hydroiodic acid.

(吸着剤)
除去工程において用いられる吸着剤としては、例えば、ろ過によって容易に除去することができるものがより好ましい。このような吸着剤としては粉末状であるものが挙げられ、より好ましくは活性炭、活性白土、シクロデキストリン、ゼオライト、シリカゲル又はアルミナ等が例として挙げられる。これら吸着剤は、単独で、又は2種以上を混合して使用することができる。
(Adsorbent)
As the adsorbent used in the removing step, for example, an adsorbent that can be easily removed by filtration is more preferable. Such adsorbents include those in powder form, more preferably activated carbon, activated clay, cyclodextrin, zeolite, silica gel or alumina. These adsorbents can be used alone or in admixture of two or more.

吸着剤の使用量は、ヨウ化リチウム水溶液中の遊離ヨウ素の含有量を考慮して適宜調整することができるが、ヨウ化リチウム水溶液に対して、好ましくは0.01〜20重量%、より好ましくは0.05〜15重量%、さらに好ましくは0.1〜10重量%の範囲内であることがより好ましい。   The amount of the adsorbent used can be appropriately adjusted in consideration of the content of free iodine in the lithium iodide aqueous solution, but is preferably 0.01 to 20% by weight, more preferably based on the lithium iodide aqueous solution. Is more preferably in the range of 0.05 to 15% by weight, more preferably 0.1 to 10% by weight.

吸着剤による除去工程は、さらなる遊離ヨウ素の発生を防止するために、不活性ガス条件下で攪拌しながら行われることが好ましい。   In order to prevent further generation of free iodine, the removal step using the adsorbent is preferably performed with stirring under an inert gas condition.

又、活性炭槽のような吸着剤を用いたフィルターを通過させることで、遊離ヨウ素を除去することもできる。   Moreover, free iodine can also be removed by passing through a filter using an adsorbent such as an activated carbon tank.

(有機溶媒)
除去工程に用いられる有機溶媒は、遊離ヨウ素を効果的に除去するために、ヨウ化リチウム水溶液と混和しない有機溶媒が用いられる。
(Organic solvent)
As the organic solvent used in the removing step, an organic solvent that is not miscible with the lithium iodide aqueous solution is used in order to effectively remove free iodine.

水と混和しないとは、有機溶媒とヨウ化リチウム水溶液とを振とうした後、静置した時に、2相に分離している状態のことであり、相互に溶解していても構わない。   “Immiscible with water” means a state in which the organic solvent and the aqueous lithium iodide solution are shaken and then allowed to stand and are separated into two phases, which may be dissolved in each other.

有機溶媒としては、エステル系溶媒、芳香族炭化水素系溶媒、又はエーテル系溶媒が例として挙げられる。   Examples of the organic solvent include ester solvents, aromatic hydrocarbon solvents, and ether solvents.

エステル系溶媒としては、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸アミル、又は酢酸ヘキシル等が好ましく用いられる。芳香族炭化水素系溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン、又はジエチルベンゼン等が用いられる。エーテル系溶媒としては、イソプロピルエーテル、ブチルエーテル、又はメチルt−ブチルエーテル等が好ましく用いられる。また、水と混和しないのであれば、ケトン系溶媒、アルコール系溶媒を使用してもよい。これら溶媒は単独で、又は2種以上を混合して使用することができる。   As the ester solvent, ethyl acetate, isopropyl acetate, butyl acetate, amyl acetate, hexyl acetate or the like is preferably used. As the aromatic hydrocarbon solvent, benzene, toluene, xylene, ethylbenzene, diethylbenzene or the like is used. As the ether solvent, isopropyl ether, butyl ether, methyl t-butyl ether or the like is preferably used. If not miscible with water, a ketone solvent or an alcohol solvent may be used. These solvents can be used alone or in admixture of two or more.

上記有機溶媒の使用量は、使用する有機溶媒、及びヨウ化リチウム水溶液中の遊離ヨウ素の含有量を考慮して適宜調整できる。遊離ヨウ素を除去する効率において、特にエステル系溶媒を使用することが好ましい。   The amount of the organic solvent used can be appropriately adjusted in consideration of the organic solvent to be used and the content of free iodine in the lithium iodide aqueous solution. In view of the efficiency of removing free iodine, it is particularly preferable to use an ester solvent.

例えば、エステル系溶媒として、酢酸ブチルを用いる場合、ヨウ化リチウム水溶液100重量部に対して、酢酸ブチルを好ましくは10〜2000重量部、より好ましくは15〜1500重量部、さらに好ましくは30〜1000重量部の範囲内で用いることによって、好ましく遊離ヨウ素を除去することができる。   For example, when butyl acetate is used as the ester solvent, butyl acetate is preferably 10 to 2000 parts by weight, more preferably 15 to 1500 parts by weight, still more preferably 30 to 1000 parts per 100 parts by weight of the lithium iodide aqueous solution. By using within the range of parts by weight, free iodine can be preferably removed.

上記水と混和しない有機溶媒による除去工程は、さらなる遊離ヨウ素の発生を防止するために、不活性ガス条件下で振とう又は攪拌しながら行われることが好ましい。   The removal step using an organic solvent that is not miscible with water is preferably performed with shaking or stirring under inert gas conditions in order to prevent further generation of free iodine.

本発明に係る遊離ヨウ素を除去する除去工程は、吸着剤により遊離ヨウ素を除去する工程と、水と混和しない有機溶媒により遊離ヨウ素を除去する工程とが挙げられる。除去工程は、上記2つの除去工程のいずれか一方のみを採用することもできるし、両方の除去工程を採用することもできる。又、両方の除去工程を採用する場合、これら工程の順序は限定されない。   Examples of the removing step for removing free iodine according to the present invention include a step of removing free iodine with an adsorbent and a step of removing free iodine with an organic solvent immiscible with water. As the removal process, only one of the two removal processes can be adopted, or both of the removal processes can be adopted. Moreover, when employ | adopting both removal processes, the order of these processes is not limited.

〔pH調整工程〕
本発明に係るヨウ化リチウム水溶液の製造方法は、pH調整工程を包含することがより好ましい。pH調整工程は、反応工程の後にヨウ化リチウム水溶液のpHを調整する工程である。
[PH adjustment step]
More preferably, the method for producing an aqueous lithium iodide solution according to the present invention includes a pH adjustment step. The pH adjustment step is a step of adjusting the pH of the lithium iodide aqueous solution after the reaction step.

反応工程において、反応の効率を高めるためにヨウ化水素酸を過剰に投入した場合、反応工程後におけるヨウ化リチウム水溶液のpHは酸性となっている。よってpH調整工程において、リチウム化合物を用いることで、過剰に存在するヨウ化水素酸を中和することが好ましい。   In the reaction step, when an excessive amount of hydroiodic acid is added to increase the reaction efficiency, the pH of the lithium iodide aqueous solution after the reaction step is acidic. Therefore, it is preferable to neutralize the excess hydroiodic acid by using a lithium compound in the pH adjustment step.

pH調整工程において用いられるpH調整剤は、リチウム化合物であることが好ましい。リチウム化合物としては、水酸化リチウム、炭酸リチウム、硫酸リチウム、酢酸リチウム、又はシュウ酸リチウム等が好ましく用いられる。   The pH adjusting agent used in the pH adjusting step is preferably a lithium compound. As the lithium compound, lithium hydroxide, lithium carbonate, lithium sulfate, lithium acetate, lithium oxalate or the like is preferably used.

ヨウ化リチウム水溶液の品質の安定性、製品の安全性の観点から、ヨウ化リチウム水溶液のpHは、好ましくは3〜10、より好ましくは4〜9、さらに好ましくは5〜8の範囲内に調整されることが好ましい。   From the viewpoint of the stability of the quality of the lithium iodide aqueous solution and the safety of the product, the pH of the lithium iodide aqueous solution is preferably adjusted within the range of 3 to 10, more preferably 4 to 9, and further preferably 5 to 8. It is preferred that

pH調整工程は、反応工程後であれば、除去工程の前後のいずれかにおいて行うことができる。   The pH adjustment step can be performed either before or after the removal step as long as it is after the reaction step.

以上のようにして、本発明に係るヨウ化リチウム水溶液の製造方法によって得られるヨウ化リチウム水溶液も本発明の範疇である。   The lithium iodide aqueous solution obtained by the method for producing a lithium iodide aqueous solution according to the present invention as described above is also within the scope of the present invention.

本発明に係るヨウ化リチウム水溶液は、色調が、APHA No.(ハーゼン色数)150以下、より好ましくはAPHA No.が100以下であるヨウ化リチウム水溶液であることが好ましい。   The lithium iodide aqueous solution according to the present invention has a color tone of APHA No. (Hazen color number) 150 or less, more preferably APHA No. It is preferable that it is a lithium iodide aqueous solution which is 100 or less.

また、本発明に係るヨウ化リチウム水溶液の遊離ヨウ素の含有量は、0.05重量%未満が好ましく、より好ましくは0.02重量%未満である。遊離ヨウ素の含有量を0.05重量%未満とすることで、遊離ヨウ素による着色のないヨウ化リチウム水溶液を得ることができる。本発明に係るヨウ化リチウム水溶液の製造方法によれば、遊離ヨウ素の含有量を0.05重量%未満とすることができる。   Further, the content of free iodine in the lithium iodide aqueous solution according to the present invention is preferably less than 0.05% by weight, more preferably less than 0.02% by weight. By making the content of free iodine less than 0.05% by weight, an aqueous lithium iodide solution free from coloring by free iodine can be obtained. According to the method for producing an aqueous lithium iodide solution according to the present invention, the content of free iodine can be less than 0.05% by weight.

<本発明に係るヨウ化リチウムの製造方法>
本発明に係るヨウ化リチウムの製造方法は、上述した本発明に係るヨウ化リチウム水溶液の製造方法を行なう製造工程と、製造工程で得られたヨウ化リチウム水溶液から水分を除去する水分除去工程と、を包含する。
<Method for producing lithium iodide according to the present invention>
The method for producing lithium iodide according to the present invention includes a production process for performing the above-described method for producing an aqueous lithium iodide solution according to the present invention, and a moisture removal process for removing moisture from the lithium iodide aqueous solution obtained in the production process. .

〔水分除去工程〕
本発明に係るヨウ化リチウムの製造方法が包含する水分除去工程は、製造工程で得られたヨウ化リチウム水溶液から水分を除去する工程である。
[Moisture removal process]
The water removal step included in the method for producing lithium iodide according to the present invention is a step of removing water from the lithium iodide aqueous solution obtained in the production step.

ヨウ化リチウム水溶液から水分を除去することで、本発明に係る製造方法で得られたヨウ化リチウム水溶液から、ヨウ化リチウムの固体を得ることができる。従って、本発明に係るヨウ化リチウム水溶液の製造方法によって得られたヨウ化リチウム水溶液を、水溶液として用いる用途以外の用途に使用することができる。   By removing moisture from the lithium iodide aqueous solution, a lithium iodide solid can be obtained from the lithium iodide aqueous solution obtained by the production method according to the present invention. Therefore, the lithium iodide aqueous solution obtained by the method for producing an aqueous lithium iodide solution according to the present invention can be used for uses other than the use of the aqueous solution.

水分を除去する方法としては、例えば、ヨウ化リチウム水溶液を攪拌しながら、減圧下、加温することで水分を除去する方法が挙げられる。   Examples of the method for removing moisture include a method for removing moisture by heating the aqueous lithium iodide solution under reduced pressure while stirring.

水分除去工程において加温する場合、加温の条件は、製造するヨウ化リチウム水和物の種類によって適宜設定すればよい。例えば、ヨウ化リチウム3水和物は、75℃以下の温度条件で得ることができる。ヨウ化リチウム無水和物を製造する場合には、120〜300℃で加温することが好ましい。又、ヨウ化リチウムの安定性の観点から、加温条件は390℃より低い温度であることが好ましい。   When heating in the moisture removal step, the heating conditions may be set as appropriate depending on the type of lithium iodide hydrate to be produced. For example, lithium iodide trihydrate can be obtained under a temperature condition of 75 ° C. or lower. When producing a lithium iodide anhydride, it is preferable to heat at 120-300 degreeC. Further, from the viewpoint of the stability of lithium iodide, the heating condition is preferably lower than 390 ° C.

水分除去工程における減圧条件は、0.4〜10kPaであることが好ましい。さらに効率的に水分を除去するためには0.4〜3kPaであることが好ましい。又、特にヨウ化リチウム無水物を効率的に製造する場合は、0.4〜2kPaであることが好ましい。   It is preferable that the pressure reduction conditions in a water removal process are 0.4-10 kPa. Furthermore, in order to remove a water | moisture content efficiently, it is preferable that it is 0.4-3 kPa. Moreover, when manufacturing lithium iodide anhydride efficiently, it is preferable that it is 0.4-2 kPa.

遊離ヨウ素の含有量、およびヨウ化リチウム水溶液中のヨウ素イオン濃度は、以下の方法により測定した。
<遊離ヨウ素の含有量の測定方法>
試料の一部を100mlの三角フラスコに秤量し、0.01Mチオ硫酸ナトリウム水溶液(力価=1.004)を用いて滴定した。
<ヨウ化リチウム水溶液中のヨウ素イオン濃度の測定方法>
ヨウ化リチウム水溶液の一部を200mlのビーカーに秤量し、0.1M硝酸銀水溶液(力価=1.003)を用いて滴定した。
The content of free iodine and the iodine ion concentration in the lithium iodide aqueous solution were measured by the following methods.
<Measurement method of free iodine content>
A part of the sample was weighed into a 100 ml Erlenmeyer flask and titrated with a 0.01 M sodium thiosulfate aqueous solution (titer = 1.004).
<Measurement method of iodine ion concentration in lithium iodide aqueous solution>
A part of the lithium iodide aqueous solution was weighed in a 200 ml beaker and titrated with a 0.1 M aqueous silver nitrate solution (titer = 1.003).

〔実施例1〕
攪拌装置、温度計、pHメーター、滴下ロートおよび固体投入口を備えた容量500mlの反応容器内を窒素で十分に置換した。該滴下ロートよりイオン交換水130.0gを反応容器内に投入した。攪拌下、該固体投入口より炭酸リチウム50.0g(0.676モル)を投入した。該滴下ロートに0.858重量%の遊離ヨウ素を含む褐色の58重量%のヨウ化水素酸314.1g (1.400モル)を仕込んだ。反応容器内の温度を25℃に設定した後、反応容器内の温度を25〜40℃の範囲に保ちながら、滴下ロート内のヨウ化水素酸を38分かけて滴下した。滴下終了後、反応器内の温度を25〜30℃に保ちながら30分間攪拌し熟成を続けた。熟成終了後の反応溶液のpHは−0.71であった。ついで固体投入口より水酸化リチウムを投入し、反応溶液のpHを6.3に調整し褐色微濁のpH調整液を得た。pH調整液中の遊離ヨウ素の含有量は0.164重量%であった。
[Example 1]
The inside of a reaction vessel having a capacity of 500 ml equipped with a stirrer, a thermometer, a pH meter, a dropping funnel and a solid charging port was sufficiently substituted with nitrogen. From the dropping funnel, 130.0 g of ion-exchanged water was charged into the reaction vessel. Under stirring, 50.0 g (0.676 mol) of lithium carbonate was charged from the solid charging port. The dropping funnel was charged with 314.1 g (1.400 mol) of brown 58 wt% hydroiodic acid containing 0.858 wt% free iodine. After setting the temperature in the reaction vessel to 25 ° C., hydroiodic acid in the dropping funnel was dropped over 38 minutes while maintaining the temperature in the reaction vessel in the range of 25 to 40 ° C. After completion of the dropping, the mixture was stirred for 30 minutes while maintaining the temperature in the reactor at 25 to 30 ° C., and the aging was continued. The pH of the reaction solution after completion of aging was -0.71. Next, lithium hydroxide was charged from the solid charging port, and the pH of the reaction solution was adjusted to 6.3 to obtain a brown and slightly turbid pH adjusting solution. The content of free iodine in the pH adjusting solution was 0.164% by weight.

次に固体投入口より活性炭(白鷺A 武田薬品製)0.4gを上記pH調整液に投入し、反応容器内の温度を25〜30℃の範囲に保ちながら30分間攪拌した後、吸引ビンに定性濾紙No.5C(ADVANTEC製)を装着したヌッチェ上に、減圧下、反応容器の内容物を給液し、活性炭を濾過し、さらに濾紙上の活性炭をイオン交換水0.4gで洗浄し、濾液と洗浄液を合わせて無色透明のヨウ化リチウム水溶液を得た。色差計SE6000(日本電色工業製)を用いて該ヨウ化リチウム水溶液の色調を測定したところ、APHA No.は76であった。   Next, 0.4 g of activated carbon (Shirakaba A Takeda Pharmaceutical Co., Ltd.) is charged into the pH adjusting solution from the solid charging port, and stirred for 30 minutes while maintaining the temperature in the reaction vessel in the range of 25 to 30 ° C. Qualitative filter paper No. On a Nutsche equipped with 5C (manufactured by ADVANTEC), the contents of the reaction vessel are fed under reduced pressure, the activated carbon is filtered, and the activated carbon on the filter paper is washed with 0.4 g of ion-exchanged water. In combination, a colorless and transparent aqueous solution of lithium iodide was obtained. When the color tone of the lithium iodide aqueous solution was measured using a color difference meter SE6000 (manufactured by Nippon Denshoku Industries Co., Ltd.), APHA No. Was 76.

ヨウ化リチウム水溶液のヨウ素イオン濃度は37.3重量%であった。これをヨウ化リチウム濃度に換算するとヨウ化リチウムの収率は92.0%であった。また、ヨウ化リチウム水液中の遊離ヨウ素の含有量は0.0017重量%であり、遊離ヨウ素の除去率は99.0%であった。   The iodine ion concentration of the lithium iodide aqueous solution was 37.3% by weight. When this was converted into a lithium iodide concentration, the yield of lithium iodide was 92.0%. The content of free iodine in the lithium iodide aqueous solution was 0.0017% by weight, and the removal rate of free iodine was 99.0%.

〔実施例2〕
攪拌装置、温度計、pHメーター、滴下ロートおよび固体投入口を備えた容量500mlの反応容器内を窒素で十分に置換した。該滴下ロートよりイオン交換水130.2gを反応容器内に投入した。攪拌下、該固体投入口より炭酸リチウム50.0g(0.676モル)を投入した。該滴下ロートに5.93重量%の遊離ヨウ素を含む黒褐色の58重量%のヨウ化水素酸326.4g(1.38モル)を仕込んだ。反応容器内の温度を25℃に設定した後、反応容器内の温度を25〜40℃の範囲に保ちながら、滴下ロート内のヨウ化水素酸を41分かけて滴下した。滴下終了後、反応器内の温度を25〜35℃に保ちながら30分間攪拌し熟成を続けた。熟成終了後の反応溶液のpHは−0.69であった。ついで固体投入口より水酸化リチウムを投入することで反応容器内のpHを6.0に調整し、黒色のpH調整液を得た。遊離ヨウ素の濃度は3.93重量%であった。上記色差計を用いてpH調整液の色調を測定したところ、APHA No.は2870(測定上限値)であった。
[Example 2]
The inside of a reaction vessel having a capacity of 500 ml equipped with a stirrer, a thermometer, a pH meter, a dropping funnel and a solid charging port was sufficiently substituted with nitrogen. From the dropping funnel, 130.2 g of ion exchange water was charged into the reaction vessel. Under stirring, 50.0 g (0.676 mol) of lithium carbonate was charged from the solid charging port. The dropping funnel was charged with 326.4 g (1.38 mol) of black brown 58 wt% hydroiodic acid containing 5.93 wt% free iodine. After setting the temperature in the reaction vessel to 25 ° C., hydroiodic acid in the dropping funnel was dropped over 41 minutes while maintaining the temperature in the reaction vessel in the range of 25 to 40 ° C. After completion of the dropwise addition, the mixture was stirred for 30 minutes while maintaining the temperature in the reactor at 25 to 35 ° C., and aging was continued. The pH of the reaction solution after completion of aging was -0.69. Subsequently, lithium hydroxide was charged from the solid charging port to adjust the pH in the reaction vessel to 6.0, and a black pH adjusting solution was obtained. The concentration of free iodine was 3.93% by weight. When the color tone of the pH adjusting solution was measured using the color difference meter, APHA No. was 2870 (measurement upper limit value).

次に、容量200mlのビーカーに上記のpH調整液を100.0g秤量した。ついで活性炭(白鷺A 武田薬品製)10.0gを上記ビーカー内に投入し、25〜35℃を保ちながら30分間攪拌した後、吸引ビンに定量濾紙No.5C(ADVANTEC製)を装着した内径55mmヌッチェ上に、減圧下、ビーカーの内容物を給液し、活性炭を濾過し、さらに濾紙上の活性炭をイオン交換水5.0gで洗浄し、濾液と洗浄液を合わせて微黄色澄明のヨウ化リチウム水溶液を得た。上記色差計を用いて、該ヨウ化リチウム水溶液の色調を測定したところAPHA No.は62であった。   Next, 100.0 g of the pH adjusting solution was weighed into a 200 ml capacity beaker. Next, 10.0 g of activated carbon (Shirakaba A manufactured by Takeda Pharmaceutical Co., Ltd.) was put into the above beaker and stirred for 30 minutes while maintaining the temperature at 25 to 35 ° C. The contents of the beaker are fed under reduced pressure to a 55 mm ID Nutsche equipped with 5C (manufactured by ADVANTEC), the activated carbon is filtered, and the activated carbon on the filter paper is washed with 5.0 g of ion-exchanged water. Were combined to obtain a slightly yellow and clear aqueous solution of lithium iodide. When the color tone of the lithium iodide aqueous solution was measured using the color difference meter, APHA No. Was 62.

実施例1と同様の方法で分析したところ、ヨウ化リチウムの収率は99.8%であった。また、ヨウ化リチウム水溶液中の遊離ヨウ素の含有量は0.0361重量%であり、遊離ヨウ素の除去率は99.0%であった。   When analyzed in the same manner as in Example 1, the yield of lithium iodide was 99.8%. The content of free iodine in the lithium iodide aqueous solution was 0.0361% by weight, and the removal rate of free iodine was 99.0%.

〔実施例3〕
実施例1の方法により得られた遊離ヨウ素濃度が0.164重量%である褐色微濁のpH調整液を用いて以下の操作を実施した。該pH調整液50gを容量500mlの分液ロートに移送し、次に酢酸ブチル50.0gを投入し、5分間振とうした後、5分間静置分液したところ、褐色の有機層と無色透明のヨウ化リチウム水溶液を得た。ヨウ化リチウムの収率は100%であり、ヨウ化リチウム水溶液のAPHA No.は64であった。また、ヨウ化リチウム水溶液中に遊離ヨウ素は検出できなかった。
Example 3
The following operation was carried out using a brownish-turbid pH adjusting solution having a free iodine concentration of 0.164% by weight obtained by the method of Example 1. 50 g of the pH adjusting solution was transferred to a 500 ml separatory funnel, then 50.0 g of butyl acetate was added, shaken for 5 minutes, and allowed to stand still for 5 minutes to separate the brown organic layer and colorless and transparent. An aqueous lithium iodide solution was obtained. The yield of lithium iodide was 100%, and APHA No. Was 64. In addition, free iodine was not detected in the lithium iodide aqueous solution.

〔実施例4〕
実施例2の方法により得られた遊離ヨウ素濃度が3.93重量%である黒色のpH調整液を用いて以下の操作を実施した。該pH調整液50.3gを200ml分液ロートに移送し、次に酢酸ブチル100.4gを投入し、5分間振とうした後、5分間静置分液したところ、黒褐色の有機層と微黄色のヨウ化リチウム水溶液を得た。上記色差計を用いてヨウ化リチウム水溶液の色調を測定したところAPHA No.は130であった。ヨウ化リチウム水溶液中の遊離ヨウ素の含有量は0.0181%であり、遊離ヨウ素の除去率は99.6%であった。
Example 4
The following operation was carried out using a black pH adjusting solution having a free iodine concentration of 3.93 wt% obtained by the method of Example 2. The pH adjusting solution (50.3 g) was transferred to a 200 ml separatory funnel, then butyl acetate (100.4 g) was added, shaken for 5 minutes, and allowed to stand for 5 minutes to separate the liquid. An aqueous lithium iodide solution was obtained. When the color tone of the lithium iodide aqueous solution was measured using the color difference meter, APHA No. Was 130. The content of free iodine in the lithium iodide aqueous solution was 0.0181%, and the removal rate of free iodine was 99.6%.

〔比較例1〕
実施例3の方法において、酢酸ブチルに代えてヘキサン50gを使用して実施し、有機層と褐色のヨウ化リチウム水溶液を得た。ヨウ化リチウム水溶液の色調はAPHA No.2870(測定上限値)であり、有機層中に遊離ヨウ素は抽出されていなかった。
[Comparative Example 1]
The method of Example 3 was carried out using 50 g of hexane instead of butyl acetate to obtain an organic layer and a brown lithium iodide aqueous solution. The color tone of the lithium iodide aqueous solution is APHA No. 2870 (upper limit of measurement), and free iodine was not extracted in the organic layer.

〔比較例2〕
実施例3の方法において、酢酸ブチルに代えてクロロホルム50gを使用して実施し、有機層と褐色のヨウ化リチウム水溶液を得た。該ヨウ化リチウム水溶液のAPHA No.は2870(測定上限値)であり、有機層中に遊離ヨウ素は抽出されていなかった。
[Comparative Example 2]
The method of Example 3 was carried out using 50 g of chloroform instead of butyl acetate to obtain an organic layer and a brown lithium iodide aqueous solution. APHA No. of the lithium iodide aqueous solution. Was 2870 (upper limit of measurement), and free iodine was not extracted in the organic layer.

上記実施例1及び2における活性炭投入前後のヨウ化リチウム水溶液における遊離ヨウ素の含有量の比較、及びAPHA No.の比較により、該除去工程が有効であることが確認された。   Comparison of the content of free iodine in the lithium iodide aqueous solution before and after the input of activated carbon in Examples 1 and 2, and APHA No. Comparison of these results confirmed that the removal step was effective.

上記実施例3〜4における水と混和しない有機溶媒による遊離ヨウ素の除去工程の前後における、ヨウ化リチウム水溶液における遊離ヨウ素の含有量の比較の比較により、該除去工程が有効であることが確認された。   Comparison of the content of free iodine in the lithium iodide aqueous solution before and after the step of removing free iodine with an organic solvent immiscible with water in Examples 3 to 4 above confirmed that the removal step was effective. It was.

〔実施例5〕
実施例1で得られたヨウ化リチウム水溶液を用いて以下の操作を実施した。ヨウ化リチウム水溶液5mlを容量50mlのナス型フラスコに入れ、エバポレーターを用いて、50℃/3kPaで1時間かけて水を留去した後、140℃/3kPaで2時間かけてさらに濃縮乾固して、白色のヨウ化リチウムの結晶を得た。カールフィッシャー法で測定したところ、結晶中の水分は20.3重量%であり、得られた結晶はヨウ化リチウム2水和物であった。
Example 5
Using the lithium iodide aqueous solution obtained in Example 1, the following operation was performed. 5 ml of an aqueous lithium iodide solution was placed in a 50 ml eggplant-shaped flask, water was distilled off at 50 ° C./3 kPa over 1 hour using an evaporator, and then further concentrated to dryness at 140 ° C./3 kPa over 2 hours. Thus, white lithium iodide crystals were obtained. When measured by the Karl Fischer method, the water content in the crystal was 20.3% by weight, and the obtained crystal was lithium iodide dihydrate.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明に係る製造方法は、例えばリチウム二次電池に用いられるようなヨウ化リチウムの製造に好適に利用することができる。   The production method according to the present invention can be suitably used for producing lithium iodide such as that used in lithium secondary batteries.

Claims (10)

リチウム化合物及びヨウ化水素酸を反応させる反応工程と、
上記反応工程で得られた液体から遊離ヨウ素を除去する除去工程と、を包含し、
上記除去工程が、エステル系溶媒により遊離ヨウ素を除去する工程であり、
上記エステル系溶媒により遊離ヨウ素を除去する工程は、上記エステル系溶媒とヨウ化リチウム水溶液とを振とうした後、静置することによって2相に分離させる工程であることを特徴とするヨウ化リチウム水溶液の製造方法。
A reaction step of reacting a lithium compound and hydroiodic acid;
Removing the free iodine from the liquid obtained in the reaction step,
The removal step is a step of removing free iodine with an ester solvent,
The step of removing free iodine with the ester solvent is a step of shaking the ester solvent and an aqueous lithium iodide solution, and then allowing the solution to stand to separate into two phases. A method for producing an aqueous solution.
上記ヨウ化水素酸が、0.05〜15重量%の遊離ヨウ素を含むことを特徴とする請求項1に記載のヨウ化リチウム水溶液の製造方法。   The method for producing an aqueous lithium iodide solution according to claim 1, wherein the hydroiodic acid contains 0.05 to 15% by weight of free iodine. 上記除去工程が、吸着剤により遊離ヨウ素を除去する工程を包含することを特徴とする請求項1又は2に記載のヨウ化リチウム水溶液の製造方法。   The method for producing an aqueous lithium iodide solution according to claim 1 or 2, wherein the removing step includes a step of removing free iodine by an adsorbent. pH調整工程を上記反応工程の後にさらに包含することを特徴とする請求項1から3のいずれか1項に記載のヨウ化リチウム水溶液の製造方法。   The method for producing an aqueous lithium iodide solution according to any one of claims 1 to 3, further comprising a pH adjusting step after the reaction step. 上記pH調整工程が、上記反応工程によって得られた酸性の液体の中のヨウ化水素酸を中和するために、pHを3〜10に調整する工程であることを特徴とする請求項4に記載のヨウ化リチウム水溶液の製造方法。   The pH adjustment step is a step of adjusting the pH to 3 to 10 in order to neutralize hydroiodic acid in the acidic liquid obtained by the reaction step. The manufacturing method of lithium iodide aqueous solution of description. 上記反応工程に供する上記ヨウ化水素酸が、遊離ヨウ素の発生を抑えるための安定剤が添加されていないものであることを特徴とする請求項1から5のいずれか1項に記載のヨウ化リチウム水溶液の製造方法。   The iodination according to any one of claims 1 to 5, wherein the hydroiodic acid to be subjected to the reaction step is not added with a stabilizer for suppressing generation of free iodine. A method for producing a lithium aqueous solution. リチウム化合物及びヨウ化水素酸を反応させて、pHが3よりも低い酸性の液体を得る反応工程と、
上記反応工程で得られた液体から遊離ヨウ素を除去する除去工程と、
上記反応工程によって得られた上記酸性の液体中のヨウ化水素酸を中和するために、pHを3〜10に調整するpH調整工程と、を包含し、
上記反応工程に供する上記ヨウ化水素酸が、0.05〜15重量%の遊離ヨウ素を含み、遊離ヨウ素の発生を抑えるための安定剤が添加されていないものであり、
上記除去工程が、有機溶媒により遊離ヨウ素を除去する工程であり、
上記有機溶媒により遊離ヨウ素を除去する工程は、上記有機溶媒とヨウ化リチウム水溶液とを振とうした後、静置することによって2相に分離させる工程であり、
上記有機溶媒が、エステル系溶媒、芳香族炭化水素系溶媒、及びエーテル系溶媒からなる群より選ばれる少なくとも一つであることを特徴とするヨウ化リチウム水溶液の製造方法。
A reaction step of reacting a lithium compound and hydroiodic acid to obtain an acidic liquid having a pH lower than 3;
A removal step of removing free iodine from the liquid obtained in the reaction step,
A pH adjustment step of adjusting the pH to 3 to 10 in order to neutralize hydroiodic acid in the acidic liquid obtained by the reaction step,
The hydroiodic acid to be subjected to the reaction step comprises a 0.05 to 15% by weight of free iodine state, and are not stabilizers for suppressing the generation of free iodine is not added,
The removal step is a step of removing free iodine with an organic solvent,
The step of removing free iodine by the organic solvent is a step of shaking the organic solvent and an aqueous lithium iodide solution, and then allowing the mixture to stand to separate into two phases.
The method for producing an aqueous lithium iodide solution, wherein the organic solvent is at least one selected from the group consisting of an ester solvent, an aromatic hydrocarbon solvent, and an ether solvent .
リチウム化合物及びヨウ化水素酸を反応させて、pHが3よりも低い酸性の液体を得る反応工程と、
上記反応工程で得られた液体から遊離ヨウ素を除去する除去工程と、
上記反応工程によって得られた上記酸性の液体中のヨウ化水素酸を中和するために、pHを3〜10に調整するpH調整工程と、を包含し、
上記反応工程に供する上記ヨウ化水素酸が、0.05〜15重量%の遊離ヨウ素を含み、遊離ヨウ素の発生を抑えるための安定剤が添加されていないものであり、
上記除去工程が、吸着剤により遊離ヨウ素を除去する工程と、
有機溶媒により遊離ヨウ素を除去する工程と、を包含し、
上記有機溶媒により遊離ヨウ素を除去する工程は、上記有機溶媒とヨウ化リチウム水溶液とを振とうした後、静置することによって2相に分離させる工程であり、
上記有機溶媒が、エステル系溶媒、芳香族炭化水素系溶媒、及びエーテル系溶媒からなる群より選ばれる少なくとも一つであることを特徴とするヨウ化リチウム水溶液の製造方法。
A reaction step of reacting a lithium compound and hydroiodic acid to obtain an acidic liquid having a pH lower than 3;
A removal step of removing free iodine from the liquid obtained in the reaction step,
A pH adjustment step of adjusting the pH to 3 to 10 in order to neutralize hydroiodic acid in the acidic liquid obtained by the reaction step,
The hydroiodic acid to be subjected to the reaction step comprises a 0.05 to 15% by weight of free iodine state, and are not stabilizers for suppressing the generation of free iodine is not added,
The removal step comprises removing free iodine with an adsorbent;
Removing free iodine with an organic solvent, and
The step of removing free iodine by the organic solvent is a step of shaking the organic solvent and an aqueous lithium iodide solution, and then allowing the mixture to stand to separate into two phases.
The method for producing an aqueous lithium iodide solution, wherein the organic solvent is at least one selected from the group consisting of an ester solvent, an aromatic hydrocarbon solvent, and an ether solvent .
上記吸着剤が、活性炭、活性白土、シクロデキストリン、ゼオライト、シリカゲル及びアルミナからなる群より選ばれる少なくとも一つであることを特徴とする請求項3または8に記載のヨウ化リチウム水溶液の製造方法。   9. The method for producing an aqueous lithium iodide solution according to claim 3, wherein the adsorbent is at least one selected from the group consisting of activated carbon, activated clay, cyclodextrin, zeolite, silica gel, and alumina. 請求項1から9のいずれか1項に記載のヨウ化リチウム水溶液の製造方法によりヨウ化リチウム水溶液を製造する製造工程と、
上記製造工程で得られたヨウ化リチウム水溶液から水分を除去する水分除去工程と、を包含することを特徴とするヨウ化リチウムの製造方法。
A production process for producing an aqueous lithium iodide solution by the method for producing an aqueous lithium iodide solution according to any one of claims 1 to 9 ,
And a moisture removal step of removing moisture from the lithium iodide aqueous solution obtained in the above production step.
JP2012213075A 2012-09-26 2012-09-26 Method for producing lithium iodide aqueous solution and use thereof Active JP6180717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012213075A JP6180717B2 (en) 2012-09-26 2012-09-26 Method for producing lithium iodide aqueous solution and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213075A JP6180717B2 (en) 2012-09-26 2012-09-26 Method for producing lithium iodide aqueous solution and use thereof

Publications (2)

Publication Number Publication Date
JP2014065637A JP2014065637A (en) 2014-04-17
JP6180717B2 true JP6180717B2 (en) 2017-08-16

Family

ID=50742414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213075A Active JP6180717B2 (en) 2012-09-26 2012-09-26 Method for producing lithium iodide aqueous solution and use thereof

Country Status (1)

Country Link
JP (1) JP6180717B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159665A1 (en) 2016-03-14 2017-09-21 出光興産株式会社 Alkali metal halide production method, and sulfide solid electrolyte production method
US11038198B2 (en) 2016-03-14 2021-06-15 Idemitsu Kosan Co., Ltd. Solid electrolyte and method for producing solid electrolyte

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148403A (en) * 1984-08-10 1986-03-10 Takekoshi Kagaku:Kk Manufacture of alkali iodide
JPH01104302A (en) * 1987-10-16 1989-04-21 Matsushita Electric Ind Co Ltd Purifying method for solid electrolyte
JPH01261224A (en) * 1988-04-13 1989-10-18 Ise Kagaku Kogyo Kk Production of alkali iodide
JPH07242414A (en) * 1994-03-04 1995-09-19 Mitsui Toatsu Chem Inc Production of alkali metal iodic salt
DE10228201B4 (en) * 2002-06-24 2006-12-21 Chemetall Gmbh Process for the preparation of lithium iodide solutions
JP4404570B2 (en) * 2003-04-18 2010-01-27 日宝化学株式会社 Method for producing inorganic iodine compound
KR101526030B1 (en) * 2008-01-31 2015-06-04 닛포가가쿠 가부시키가이샤 Inorganic iodide, production method thereof, and production system thereof
JP5437082B2 (en) * 2008-01-31 2014-03-12 日宝化学株式会社 Iodine compound production system and production method
CN102030345A (en) * 2011-01-25 2011-04-27 新疆有色金属研究所 Preparation method of cell-grade anhydrous lithium iodide

Also Published As

Publication number Publication date
JP2014065637A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP6083901B2 (en) Method for producing binaphthalene compound
EP2170769A1 (en) Crystalline solid izm-2 and method for the preparation thereof
US8153842B2 (en) Method for producing 3-(2,2,2-trimethyl-hydrazinium) propionate dihydrate
JP5520610B2 (en) Inorganic iodide, its production method and its production system
KR102614834B1 (en) Crystal of alcohol having fluorene skeleton and method for producing same
JP6180717B2 (en) Method for producing lithium iodide aqueous solution and use thereof
CN102395591A (en) Method for preparing prasugrel
JP5891598B2 (en) Method for producing lithium fluorosulfonate and lithium fluorosulfonate
JP6180718B2 (en) Method for producing lithium iodide aqueous solution and use thereof
KR20140102248A (en) Lipf6 solutions
JP6441662B2 (en) Method for producing alkali metal iodide or alkaline earth metal iodide
JP5633196B2 (en) Carbonate purification method and carbonate
JP6870967B2 (en) Manufacturing method of anhydrous lithium borofluoride
CN114591133B (en) High-quality acenaphthylene
CN110818615B (en) Method for separating toluene and pyridine
JP2000351789A (en) Purification of phosphoric ester
JP3008552B2 (en) Method for producing high quality tetrabromobisphenol A
JP6853639B2 (en) Method for purifying diglycidyl compounds
JP4825969B2 (en) Method for producing tertiary alcohol
KR20230080683A (en) Manufacturing method of carbonates
US20230234975A1 (en) Method for purifying organic compound and method for producing organic compound
CN117603232A (en) Preparation method of (Z) -3-hexene-1-magnesium bromide format reagent
JP2003160580A (en) Ethylene sulfite and production method thereof
EP4037828A1 (en) Low-temperature synthesis of high-purity afx zeolite
JP4791092B2 (en) Method for producing silver sulfonylimido acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170719

R150 Certificate of patent or registration of utility model

Ref document number: 6180717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250