JP6174831B1 - Construction method of earth retaining wall - Google Patents

Construction method of earth retaining wall Download PDF

Info

Publication number
JP6174831B1
JP6174831B1 JP2017078231A JP2017078231A JP6174831B1 JP 6174831 B1 JP6174831 B1 JP 6174831B1 JP 2017078231 A JP2017078231 A JP 2017078231A JP 2017078231 A JP2017078231 A JP 2017078231A JP 6174831 B1 JP6174831 B1 JP 6174831B1
Authority
JP
Japan
Prior art keywords
steel material
predetermined depth
retaining wall
hole
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017078231A
Other languages
Japanese (ja)
Other versions
JP2018178495A (en
Inventor
藤井 健之
健之 藤井
Original Assignee
藤井 健之
健之 藤井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤井 健之, 健之 藤井 filed Critical 藤井 健之
Priority to JP2017078231A priority Critical patent/JP6174831B1/en
Application granted granted Critical
Publication of JP6174831B1 publication Critical patent/JP6174831B1/en
Publication of JP2018178495A publication Critical patent/JP2018178495A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

【課題】鋼材の引き抜きの際に地表に土砂が上がるのを防止すること。【解決手段】地表面Gから第一所定深さh1までの地盤に連続壁10を形成する工程と、連続壁10を貫通して地表面Gから第一所定深さh1よりも深い第二所定深さh2に至る埋設穴13を形成し、この埋設穴13の地表面Gから第一所定深さh1までの領域のみに充填剤を注入し、埋設穴13内の掘削土砂と充填剤を混合した混合物14で前記領域を満たす工程と、鋼材15の表面に介在層16を形成する工程と、介在層16が形成された鋼材15を、介在層16が混合物14と鋼材15との間に介在するように埋設穴13に埋設して土留め壁を構成する工程と、土留め壁の使用後に、混合物14を硬化させた鋼材支持部17に形成された透孔の縁部によって、鋼材15の表面に付着していた土砂を削ぎ落としながら、鋼材15を埋設穴13から引き抜く工程と、を備えた土留め壁の施工方法を構成する。【選択図】図1DAn object of the present invention is to prevent earth and sand from rising on the ground surface when a steel material is drawn. A step of forming a continuous wall 10 on the ground from the ground surface G to a first predetermined depth h1, and a second predetermined depth deeper than the first predetermined depth h1 from the ground surface G through the continuous wall 10 A buried hole 13 reaching the depth h2 is formed, the filler is injected only into a region from the ground surface G of the buried hole 13 to the first predetermined depth h1, and the excavated earth and sand in the buried hole 13 are mixed. The step of filling the region with the prepared mixture 14, the step of forming the intervening layer 16 on the surface of the steel material 15, and the steel material 15 on which the intervening layer 16 is formed are interposed between the mixture 14 and the steel material 15. The steps of forming the retaining wall by embedding in the embedding hole 13, and the edge of the through hole formed in the steel material support portion 17 in which the mixture 14 is hardened after use of the retaining wall, The steel material 15 is buried in the hole while scraping the earth and sand adhering to the surface. A step of pulling out the 3 constitutes a method of constructing the earth retaining wall with a. [Selection] Figure 1D

Description

この発明は、建設工事現場において行われる土留め壁の施工方法に関する。   The present invention relates to a method for constructing a retaining wall performed at a construction site.

工事現場で構築される土留め壁は、例えば特許文献1に示すように、地盤に掘削した掘削穴の中にセメントミルクを注入し、掘削土砂とセメントミルクを混合撹拌したソイルセメントコラムを構築する。そして、このセメントミルクが硬化する前に掘削穴内にH形鋼を建て込み、このセメントミルクを硬化させる。これにより、内部にH形鋼が埋め込まれた連続柱体が構築される(特許文献1の段落0017〜0026、図1など参照)。この柱体に使用されたH形鋼は、土留め壁の使用後(建設工事の終了後)も、通常はそのまま地中に埋設されたままの状態とされる。   The earth retaining wall constructed at the construction site, for example, as shown in Patent Document 1, constructs a soil cement column in which cement milk is injected into an excavation hole excavated in the ground and the excavated earth and cement milk are mixed and stirred. . And before this cement milk hardens | cures, H-section steel is built in a drilling hole and this cement milk is hardened. Thereby, the continuous column body in which H-section steel was embedded is constructed (refer to paragraphs 0017 to 0026 of FIG. 1 and FIG. 1). The H-section steel used for this column is normally left as it is embedded in the ground even after the earth retaining wall is used (after the construction work is completed).

特開2012−107444号公報JP 2012-107444 A

特許文献1に記載の土留め壁においては、既述の通り、土留め壁の使用後もH形鋼は地中に埋設されたままの状態とされるため、このH形鋼の材料コストが施工コストにそのまま転嫁される。このため、鋼材価格が高騰すると、それに伴って施工コストが高騰する問題がある。この土留め壁の使用後にH形鋼を引き抜いて再利用することにより、施工コスト(材料コスト)の削減を図ることができるが、H形鋼の埋設中にこのH形鋼と地盤の土砂が固着して、その引き抜きとともにH形鋼の周囲の土砂が一緒に地表に上がり、地表に上がった土砂の体積分だけ土留め壁の周囲で地盤沈下を生じる問題がある。H形鋼の表面にグリースなどの潤滑剤を塗布することによって、H形鋼の引き抜く際の土砂の切れを高めることも考えられるが、周囲の土砂がグリースで汚染されるため好ましくない。   In the retaining wall described in Patent Document 1, as described above, the H-shaped steel remains embedded in the ground even after the retaining wall is used, so the material cost of the H-shaped steel is low. It is passed on to the construction cost as it is. For this reason, when the price of steel materials increases, there is a problem that the construction cost increases accordingly. The construction cost (material cost) can be reduced by extracting and reusing the H-shaped steel after using the retaining wall. However, the H-shaped steel and the earth and sand are buried during the embedding of the H-shaped steel. There is a problem that the soil around the H-shaped steel rises to the ground surface together with the withdrawal, and the subsidence occurs around the retaining wall by the volume of the soil that has risen to the ground surface. By applying a lubricant such as grease to the surface of the H-shaped steel, it is conceivable to increase the breakage of the earth and sand when the H-shaped steel is pulled out, but it is not preferable because the surrounding earth and sand are contaminated with grease.

そこで、この発明は、鋼材の引き抜きの際に地表に土砂が上がるのを防止することを課題とする。   Then, this invention makes it a subject to prevent that earth and sand go up to the surface of the earth at the time of extraction of steel materials.

上記の課題を解決するため、この発明は、地表面から第一所定深さまでの地盤を掘削しつつ充填剤を注入し、掘削した領域の掘削土砂と前記充填剤を混合した上で硬化させて、前記領域に連続壁を形成する工程と、前記連続壁を上下方向に貫通して、前記地表面から前記第一所定深さよりも深い第二所定深さに至る埋設穴を形成し、この埋設穴の前記地表面から前記第一所定深さまでの領域のみに前記充填剤を再注入し、前記埋設穴内の掘削土砂と再注入された前記充填剤を混合した混合物で前記領域を満たす工程と、前記第二所定深さに相当する長さの鋼材の、前記第一所定深さに相当する範囲の表面に介在層を形成する工程と、前記介在層が形成された前記鋼材を、前記混合物が硬化する前に、前記介在層が前記混合物と前記鋼材との間に介在するように前記埋設穴に埋設し、前記混合物を硬化させた鋼材支持部で前記鋼材の上端部を支持することによって土留め壁を構成する工程と、前記土留め壁の使用後に、前記鋼材支持部に形成された前記鋼材の断面形状に対応する断面を有する透孔の縁部によって、第一所定深さよりも深い第二所定深さ領域において前記鋼材の表面に付着していた土砂を削ぎ落としながら、前記鋼材を前記埋設穴から引き抜く工程と、を備えた土留め壁の施工方法を構成した。   In order to solve the above-mentioned problems, the present invention injects a filler while excavating the ground from the ground surface to the first predetermined depth, mixes the excavated soil in the excavated area and the filler, and hardens the mixture. A step of forming a continuous wall in the region, and forming a buried hole penetrating the continuous wall in a vertical direction from the ground surface to a second predetermined depth deeper than the first predetermined depth. Refilling the filler only in a region from the ground surface of the hole to the first predetermined depth, and filling the region with a mixture of the excavated sediment in the buried hole and the refilled filler; and The step of forming an intervening layer on the surface of the steel material having a length corresponding to the second predetermined depth and a surface of the range corresponding to the first predetermined depth; Before hardening, the intervening layer is between the mixture and the steel material. A step of forming a retaining wall by supporting an upper end portion of the steel material with a steel material supporting portion embedded in the embedding hole so as to be interposed and hardening the mixture; and after the use of the retaining wall, the steel material The earth and sand adhering to the surface of the steel material in the second predetermined depth region deeper than the first predetermined depth is shaved by the edge of the through hole having a cross section corresponding to the cross sectional shape of the steel material formed in the support portion. The construction method of the retaining wall provided with the process of pulling out the said steel material from the said burial hole, dropping.

このように、鋼材の表面に介在層を形成しておくと、鋼材支持部(埋設穴内の掘削土砂と充填剤の混合物の硬化体)と鋼材が隔離される。そして、この介在層は、鋼材に引き抜き力が作用した際に鋼材支持部と鋼材との間の滑り境界層として作用し、この鋼材を埋設穴からスムーズに引き抜くことができる。しかも、この引き抜きの際に、第一所定深さよりも深い第二所定深さ領域において鋼材の表面に付着していた土砂が、この鋼材支持部に形成された鋼材の断面形状に対応する断面を有する透孔の縁部によって削ぎ落とされるため、この土砂が地表まで上がってこない。このため、土留め壁の周囲で地盤沈下が生じるのを防止することができる。また、引き抜いた鋼材を他の土留め壁を構成するために再利用することにより、土留め壁の施工コストを大幅に削減することができる。この鋼材の種類は特に限定されないが、H形鋼を採用するのが一般的である。   As described above, when the intervening layer is formed on the surface of the steel material, the steel material support portion (a hardened body of a mixture of excavated sediment and filler in the buried hole) and the steel material are isolated. The intervening layer acts as a sliding boundary layer between the steel material support portion and the steel material when a pulling force acts on the steel material, and the steel material can be smoothly extracted from the embedded hole. In addition, the earth and sand adhering to the surface of the steel material in the second predetermined depth region deeper than the first predetermined depth at the time of drawing out has a cross section corresponding to the cross-sectional shape of the steel material formed on the steel material support portion. This earth and sand does not go up to the ground surface because it is scraped off by the edge of the through hole. For this reason, it is possible to prevent ground subsidence from occurring around the earth retaining wall. Moreover, the construction cost of the retaining wall can be significantly reduced by reusing the extracted steel material to form another retaining wall. Although the kind of this steel material is not specifically limited, it is common to employ | adopt H-section steel.

前記構成においては、前記介在層が、前記鋼材に被せられた筒状の被覆材であって、前記被覆材の下端部を固定部材で前記鋼材に固定する一方で、上端部を開放状態とし、前記鋼材を前記埋設穴に埋設する際に、前記被覆材の内側の空気が、前記上端部から前記被覆材の外に抜けるようにした構成とすることもできる。   In the above configuration, the intervening layer is a tubular covering material covered on the steel material, and the lower end portion of the covering material is fixed to the steel material with a fixing member, while the upper end portion is in an open state, When embedding the steel material in the embedding hole, the air inside the covering material may be configured to escape from the upper end portion to the outside of the covering material.

この鋼材に被覆材を設ける作業は、熟練した作業員でなくても容易に行うことができるため、介在層の形成に要する作業コストの削減と、作業の迅速化を図ることができる。   Since the operation of providing the coating material on the steel material can be easily performed even by an unskilled worker, the operation cost required for forming the intervening layer can be reduced and the operation can be speeded up.

この被覆材を採用する構成においては、開放状態とされた前記上端部から、前記被覆材と前記鋼材との間に剥離剤を噴霧して、前記被覆材の内面にこの剥離剤を付着させた上で、前記鋼材を埋設する構成とすることもできる。   In the configuration employing this covering material, the release agent is sprayed between the covering material and the steel material from the open upper end portion, and the release agent is adhered to the inner surface of the covering material. Above, it can also be set as the structure which embeds the said steel materials.

このように、被覆材の内面に剥離剤を付着させることにより、鋼材を埋設穴から一層スムーズに引き抜くことができる。   In this way, by attaching the release agent to the inner surface of the covering material, the steel material can be more smoothly pulled out from the embedded hole.

上記のように介在層として被覆材を採用する代わりに、前記介在層を、前記鋼材の表面に形成された剥離剤の層と、その上に形成された高分子ファイバとベントナイトまたはカルボキシルメチルセルロースの少なくとも一方とを混合した吸水層と、から構成することもできる。   Instead of adopting a covering material as an intervening layer as described above, the intervening layer includes a layer of a release agent formed on the surface of the steel material, a polymer fiber formed thereon and at least of bentonite or carboxymethylcellulose. It can also be composed of a water-absorbing layer in which one is mixed.

このように、介在層を剥離剤の層と吸水層から構成すると、この吸水層中のベントナイトまたはカルボキシルメチルセルロースが充填剤中の水分を吸収して体積膨張し、鋼材の表面に所定の厚み(例えば2mm〜5mm程度)を有する介在層を形成することができる。この介在層は、鋼材支持部および鋼材のいずれよりも軟弱な層なので、鋼材に引き抜き力が作用するとこの介在層(特に剥離剤の層)を滑り境界層として、この鋼材を埋設穴から非常にスムーズに引き抜くことができる。ベントナイトおよびカルボキシルメチルセルロースは、液状の混合物の粘度を調整する作用を有し、その粘度調整によって、鋼材の表面に前記混合物をスムーズに塗布することができる。   Thus, when the intervening layer is composed of a release agent layer and a water absorbing layer, bentonite or carboxymethyl cellulose in the water absorbing layer absorbs moisture in the filler and expands in volume, and a predetermined thickness (for example, on the surface of the steel material) An intervening layer having a thickness of about 2 mm to 5 mm can be formed. This intervening layer is a softer layer than either the steel support part or the steel material, so when a pulling force acts on the steel material, this intervening layer (especially the layer of release agent) is used as a slipping boundary layer, and this steel material is greatly removed from the buried hole. Can be pulled out smoothly. Bentonite and carboxymethylcellulose have the effect of adjusting the viscosity of the liquid mixture, and the mixture can be smoothly applied to the surface of the steel material by adjusting the viscosity.

前記各構成においては、前記第一所定深さが0.5〜10mの範囲内であって、前記第二所定深さが、前記第一所定深さに1〜15mを加えた範囲内である構成とすることができる。   In each said structure, said 1st predetermined depth is in the range of 0.5-10 m, and said 2nd predetermined depth is in the range which added 1-15 m to said 1st predetermined depth. It can be configured.

このように、第一所定深さおよび第二所定深さをこの範囲内とすることにより、地表面から第一所定深さまで形成した連続壁、および、第二所定深さまで埋設した鋼材によって、土留め壁の十分な強度を確保することができる。しかも、第一所定深さをこの範囲内とすることにより、鋼材の引き抜きの際に、この鋼材の表面に付着した土砂を確実に削ぎ落とすことができる。   In this way, by setting the first predetermined depth and the second predetermined depth within this range, the continuous wall formed from the ground surface to the first predetermined depth and the steel material embedded to the second predetermined depth are used to Sufficient strength of the retaining wall can be ensured. Moreover, when the first predetermined depth is within this range, the earth and sand adhering to the surface of the steel material can be surely scraped off when the steel material is drawn.

この発明は、鋼材の表面に介在層を形成し、この介在層が、鋼材支持部と鋼材との間の滑り境界層として作用するようにしたので、鋼材に引き抜き力を与えることによって、この鋼材を埋設穴からスムーズに引き抜くことができる。しかも、この引き抜きの際に、第一所定深さよりも深い第二所定深さ領域において鋼材の表面に付着していた土砂が、鋼材支持部に形成された鋼材の断面形状に対応する断面を有する透孔の縁部によって削ぎ落とされるため、この土砂が地表まで上がってこない。このため、土留め壁の周囲で地盤沈下が生じるのを防止することができる。   In the present invention, an intervening layer is formed on the surface of the steel material, and the intervening layer acts as a sliding boundary layer between the steel material supporting portion and the steel material. Can be smoothly pulled out from the buried hole. Moreover, during this extraction, the earth and sand adhering to the surface of the steel material in the second predetermined depth region deeper than the first predetermined depth has a cross section corresponding to the cross-sectional shape of the steel material formed on the steel material support portion. This earth and sand does not go up to the ground surface because it is scraped off by the edge of the through hole. For this reason, it is possible to prevent ground subsidence from occurring around the earth retaining wall.

この発明に係る土留め壁の施工方法の施工フローにおいて、連続壁の形成工程を示す斜視図In the construction flow of the construction method of the earth retaining wall according to the present invention, a perspective view showing a process of forming a continuous wall この発明に係る土留め壁の施工方法の施工フローにおいて、埋設穴の形成工程を示す斜視図In the construction flow of the construction method of the earth retaining wall according to the present invention, a perspective view showing a process of forming a buried hole この発明に係る土留め壁の施工方法の施工フローにおいて、H形鋼の埋設工程を示す斜視図In the construction flow of the retaining wall construction method according to the present invention, a perspective view showing the H-section steel burying process この発明に係る土留め壁の施工方法の施工フローにおいて、H形鋼の引き抜き工程を示す斜視図In the construction flow of the retaining wall construction method according to the present invention, a perspective view showing the H-section steel drawing step 図1に示す施工方法において用いられるH形鋼の斜視図であって、(a)は埋設穴への埋設前、(b)は埋設穴への埋設後It is a perspective view of H-section steel used in the construction method shown in Drawing 1, (a) before embedding in an embedding hole, (b) after embedding in an embedding hole. 図2に示すH形鋼の他例を示し、(a)は断面図、(b)は斜視図FIG. 2 shows another example of the H-shaped steel shown in FIG. 2, (a) is a sectional view, and (b) is a perspective view.

この発明に係る土留め壁の施工方法は、建設物の建設工事に際し、その工事現場に隣接する地盤の土砂が、工事現場側に流れ込むのを阻止する土留め壁を施工するための方法に関する。この施工方法の施工フローを、図1A〜図1Dを用いて説明する。なお、本施工方法で施工される土留め壁は地盤内(地中)に埋設された状態で施工されるが、この土留め壁の構造を見やすくするために、これらの各図においては、土留め壁の周囲の土砂の図示を省略する。   The construction method of the retaining wall according to the present invention relates to a method for constructing a retaining wall that prevents the earth and sand of the ground adjacent to the construction site from flowing into the construction site when the construction work is performed. The construction flow of this construction method will be described with reference to FIGS. 1A to 1D. In addition, the earth retaining wall constructed by this construction method is constructed in a state where it is buried in the ground (under the ground). Illustration of earth and sand around the retaining wall is omitted.

まず、地盤内に連続壁10を形成する。この連続壁10の形成工程においては、図1Aに示すように、オーガスクリューSを用いて、地表面Gから第一所定深さh1まで至る掘削穴11を掘削しつつ、この掘削穴11の中に充填剤としてのセメントミルクを注入する。そして、掘削した領域の掘削土砂とセメントミルクをオーガスクリューSによって撹拌混合して改良杭12を形成する。さらに、オーガスクリューSによる掘削位置を平面視で少しずつオーバーラップさせながら移動させて(図1A中の矢印参照)複数の改良杭12を形成すると、掘削した領域に、連続した改良杭12からなる連続壁10が構成される。   First, the continuous wall 10 is formed in the ground. In the process of forming the continuous wall 10, as shown in FIG. 1A, the auger screw S is used to excavate the excavation hole 11 from the ground surface G to the first predetermined depth h 1. Inject cement milk as filler. Then, the excavated soil and cement milk in the excavated area are agitated and mixed by the auger screw S to form the improved pile 12. Further, when a plurality of improved piles 12 are formed by moving the excavation position by the auger screw S while gradually overlapping in a plan view (see arrows in FIG. 1A), the excavated region is composed of continuous improved piles 12. A continuous wall 10 is constructed.

次に、連続壁10の硬化後に、図1Bに示すように、オーガスクリューSを用いて、所定間隔ごとに連続壁10を上下方向に貫通し、第一所定深さh1よりも深い第二所定深さh2まで至る埋設穴13を形成する。そして、この埋設穴13の連続壁10に対応する領域のみ(地表面Gから第一所定深さh1まで)にセメントミルクを再注入し、オーガスクリューSで埋設穴13内の掘削土砂とセメントミルクを撹拌する。これにより、埋設穴13の前記領域が、掘削土砂とセメントミルクを混合した混合物14で満たされた状態となる。   Next, after the continuous wall 10 is cured, as shown in FIG. 1B, the auger screw S is used to penetrate the continuous wall 10 in the vertical direction at predetermined intervals, and the second predetermined depth deeper than the first predetermined depth h1. A buried hole 13 reaching the depth h2 is formed. Then, the cement milk is reinjected only in the region corresponding to the continuous wall 10 of the buried hole 13 (from the ground surface G to the first predetermined depth h1), and the excavated sediment and cement milk in the buried hole 13 are auger screw S. Is stirred. Thereby, the said area | region of the embedding hole 13 will be in the state filled with the mixture 14 which mixed excavated earth and sand and cement milk.

さらに、この混合物14が硬化する前に、図1Cに示すように、この埋設穴13内に、第二所定長さh2(埋設穴13の深さ)に相当する長さのH形鋼(鋼材)15を埋設する。このH形鋼15の第一所定深さh1(連続壁10の厚み)に相当する範囲の表面には、図2(a)(b)に示すように、介在層16が形成されている。   Further, before the mixture 14 is cured, as shown in FIG. 1C, an H-shaped steel (steel material) having a length corresponding to the second predetermined length h2 (depth of the embedded hole 13) is set in the embedded hole 13. ) 15 is buried. An intervening layer 16 is formed on the surface of the H-shaped steel 15 in a range corresponding to the first predetermined depth h1 (thickness of the continuous wall 10), as shown in FIGS.

この介在層16は、鋼材15に被せられた筒状の被覆材18と、この被覆材18と鋼材15との間に噴霧された剥離剤19とを備える。被覆材18の下端部は、固定部材20で鋼材15にしっかりと固定されている。この被覆材18として、例えば、樹脂製のシートまたは袋体、気泡緩衝材、発泡性樹脂材などを採用することができる。また、固定部材20として、粘着テープ(両面テープ)、接着剤などの粘着性部材を採用することができる。なお、樹脂製のシートまたは袋体を用いたときは、剥離剤19を噴霧しない構成とすることもできる。   The intervening layer 16 includes a cylindrical covering material 18 placed on the steel material 15 and a release agent 19 sprayed between the covering material 18 and the steel material 15. The lower end portion of the covering material 18 is firmly fixed to the steel material 15 by a fixing member 20. As the covering material 18, for example, a resin sheet or bag, a foam cushioning material, a foamable resin material, or the like can be used. Moreover, as the fixing member 20, an adhesive member such as an adhesive tape (double-sided tape) or an adhesive can be employed. When a resin sheet or bag is used, the release agent 19 may not be sprayed.

その一方で、被覆材18の上端部は開放状態とされている。この開放された上端部から、被覆材18と鋼材15との間に剥離剤19が噴霧され、被覆材18の内面に剥離剤19が付着した状態とされる(図2(a)参照)。この剥離剤19の種類は特に限定されないが、水溶性の剥離剤19を採用するのが好ましい。水溶性とすることにより、有機溶剤系のものと比較して臭気が抑えられるため、住宅地に近い工事現場においても、近隣住民に迷惑をかけることなく、この施工方法を採用することができる。   On the other hand, the upper end portion of the covering material 18 is open. The release agent 19 is sprayed between the covering material 18 and the steel material 15 from the opened upper end portion, and the release agent 19 is attached to the inner surface of the covering material 18 (see FIG. 2A). The type of the release agent 19 is not particularly limited, but it is preferable to employ a water-soluble release agent 19. By making it water-soluble, the odor can be suppressed as compared with organic solvent-based ones. Therefore, this construction method can be adopted even in construction sites close to residential areas without causing inconvenience to neighboring residents.

このH形鋼15は、この介在層16が混合物14とH形鋼15との間に介在するように埋設穴13に埋設される。このとき、周囲からの圧力(埋設穴13内の混合物14から受ける圧力)によって、被覆材18の内側の空気が被覆材18の上端部からその外に抜けて、被覆材18が鋼材15の表面に沿った状態となる(図2(b)参照)。この混合物14は、硬化することによってH形鋼15の上端部を支持する鋼材支持部17となる。このようにして構成された土留め壁は、建設工事の間(例えば、2か月間程度)、継続して使用される。   The H-shaped steel 15 is embedded in the embedded hole 13 so that the intervening layer 16 is interposed between the mixture 14 and the H-shaped steel 15. At this time, due to pressure from the surroundings (pressure received from the mixture 14 in the buried hole 13), the air inside the covering material 18 escapes from the upper end portion of the covering material 18, and the covering material 18 is exposed to the surface of the steel material 15. (See FIG. 2B). This mixture 14 becomes a steel material support portion 17 that supports the upper end portion of the H-section steel 15 by hardening. The earth retaining wall configured in this way is continuously used during construction work (for example, about two months).

建設工事が終了して土留め壁が不要となったら、図1Dに示すように、埋設穴13に埋設されたH形鋼15の引き抜き作業が行なわれる。この引き抜き作業においては、まず、H形鋼15の上端部にバイブレーションハンマーや重錘(図示せず)で衝撃を与える。衝撃を与えることにより、鋼材支持部17とH形鋼15との間が縁切りされて、このH形鋼15をスムーズに引き抜くことができる。   When the construction work is completed and the retaining wall is no longer needed, the H-section steel 15 embedded in the embedded hole 13 is pulled out as shown in FIG. 1D. In this drawing work, first, an impact is applied to the upper end of the H-shaped steel 15 with a vibration hammer or a weight (not shown). By giving an impact, the steel material support part 17 and the H-section steel 15 are bordered, and the H-section steel 15 can be pulled out smoothly.

この引き抜き時に、鋼材支持部17に形成されたH形鋼15の断面形状に対応する断面を有する透孔(この実施形態では断面H形の透孔)の縁部によって、第一所定深さh1よりも深く、第二所定深さh2までの領域(連続壁10の下端から埋設穴13の下端までの領域)においてH形鋼15の表面に付着していた土砂が削ぎ落とされ、この土砂が地表まで上がってこない。このため、土留め壁の周囲で地盤沈下が生じるのを防止することができる。   At the time of drawing, the first predetermined depth h1 is formed by the edge of a through hole (in this embodiment, a H hole having a cross section) having a cross section corresponding to the cross sectional shape of the H section steel 15 formed in the steel material support portion 17. The earth and sand adhering to the surface of the H-section steel 15 in the area deeper than the second predetermined depth h2 (area from the lower end of the continuous wall 10 to the lower end of the buried hole 13) is scraped off. It does n’t go up to the surface. For this reason, it is possible to prevent ground subsidence from occurring around the earth retaining wall.

この実施形態においては、第一所定深さh1を2m、第二所定深さh2を8mとしたが、第一所定深さh1は0.5〜10mの範囲内で、第二所定深さh2は第一所定深さh1に1〜15mを加えた範囲内で適宜変更することができる。第一所定深さh1および第二所定深さh2をこの範囲内とすることにより、地表面Gから第一所定深さh1まで形成した連続壁10、および、第二所定深さh2まで埋設したH形鋼15によって、土留め壁の十分な強度を確保することができる。しかも、第一所定深さh1をこの範囲内とすることにより、H形鋼15の引き抜きの際に、このH形鋼15の表面に付着した土砂を確実に削ぎ落とすことができる。   In this embodiment, the first predetermined depth h1 is 2 m and the second predetermined depth h2 is 8 m. However, the first predetermined depth h1 is in the range of 0.5 to 10 m, and the second predetermined depth h2 is set. Can be appropriately changed within a range in which 1 to 15 m is added to the first predetermined depth h1. By setting the first predetermined depth h1 and the second predetermined depth h2 within this range, the continuous wall 10 formed from the ground surface G to the first predetermined depth h1 and the second predetermined depth h2 are embedded. The H-shaped steel 15 can ensure sufficient strength of the earth retaining wall. Moreover, by setting the first predetermined depth h1 within this range, the earth and sand adhering to the surface of the H-section steel 15 can be surely scraped off when the H-section steel 15 is pulled out.

第一所定深さh1が0.5mよりも浅いと、連続壁10による支持安定性が低下する一方で、第一所定深さh1が10mよりも深いと、鋼材支持部17とH形鋼15との間のその長さ方向全体に亘るトータルの固着力が大きくなって、縁切りや引き抜きの作業性が低下するとともに、施工コストが増大する問題がある。また、第一所定深さh1に対する第二所定深さh2の増分が1mより浅いと、土留め壁全体としての支持安定性が不十分となる一方で、その増分が15mよりも深いと、長いH形鋼15を埋設し、さらに、引き抜くための施工コストが増大する問題がある。   If the first predetermined depth h1 is shallower than 0.5 m, the support stability by the continuous wall 10 is lowered. On the other hand, if the first predetermined depth h1 is deeper than 10 m, the steel material support portion 17 and the H-section steel 15 There is a problem in that the total fixing force over the entire length direction between the two is increased, the workability of edge cutting and drawing is lowered, and the construction cost is increased. Further, if the increment of the second predetermined depth h2 with respect to the first predetermined depth h1 is shallower than 1 m, the support stability as the entire retaining wall becomes insufficient, while if the increment is deeper than 15 m, it is long. There is a problem that the construction cost for embedding the H-shaped steel 15 and further pulling it out increases.

上記の実施形態において用いられる介在層16の他例を図3に示す。この介在層16は、鋼材15の表面に形成された剥離剤21の層と、その上に形成された高分子ファイバとベントナイトまたはカルボキシルメチルセルロースの少なくとも一方とを混合した吸水層22と、を備える。   Another example of the intervening layer 16 used in the above embodiment is shown in FIG. The intervening layer 16 includes a layer of a release agent 21 formed on the surface of the steel material 15 and a water absorbing layer 22 obtained by mixing a polymer fiber formed thereon and at least one of bentonite or carboxymethyl cellulose.

この実施形態においては、鋼材15の表面に形成された剥離剤21の層、および、吸水層22を形成するための液状混合物の各成分の重量割合を、剥離剤:高分子ファイバ:ベントナイト=5:5:2としたが、この重量割合は適宜変更することもできる。ベントナイトに代えて、または、ベントナイトとともに、カルボキシルメチルセルロースを添加することもできる。ベントナイトおよびカルボキシルメチルセルロースの重量割合を変化させることで、混合物の粘度を調整することができる。ベントナイトとカルボキシルメチルセルロースをともに添加する場合は、これらの重量割合を、例えば、ベントナイト:カルボキシルメチルセルロース=100:1程度とするのが好ましい。   In this embodiment, the weight ratio of each component of the liquid mixture for forming the layer of the release agent 21 formed on the surface of the steel material 15 and the water absorption layer 22 is expressed as release agent: polymer fiber: bentonite = 5. : 5: 2, but this weight ratio can be changed as appropriate. Carboxymethyl cellulose can be added instead of or together with bentonite. By changing the weight ratio of bentonite and carboxymethyl cellulose, the viscosity of the mixture can be adjusted. When both bentonite and carboxymethyl cellulose are added, it is preferable that the weight ratio of these is, for example, bentonite: carboxymethyl cellulose = about 100: 1.

介在層16の厚みは、1mm〜10mmの範囲内とするのが好ましく、2〜5mmの範囲内とするのがさらに好ましい。厚みが1mmよりも薄いと、鋼材支持部17とH形鋼15との間で固着が生じやすくなって、H形鋼15の引き抜き時に大きな力が必要となる問題がある。また厚みが10mmよりも厚いと、H形鋼15の表面への塗布時間および乾燥時間が長くなるとともに、介在層16を形成するための液状混合物の使用量が多くなり、施工コスト高の原因となる問題がある。   The thickness of the intervening layer 16 is preferably in the range of 1 mm to 10 mm, and more preferably in the range of 2 to 5 mm. If the thickness is less than 1 mm, the steel material support portion 17 and the H-shaped steel 15 are likely to be fixed, and there is a problem that a large force is required when the H-shaped steel 15 is pulled out. On the other hand, if the thickness is greater than 10 mm, the application time and drying time on the surface of the H-section steel 15 will be longer, and the amount of liquid mixture used to form the intervening layer 16 will increase, leading to high construction costs. There is a problem.

このように、介在層16を形成した場合においても、上記と同様に、この介在層16が、鋼材支持部17とH形鋼15との間の滑り境界層として作用し、このH形鋼15を埋設穴13から非常にスムーズに引き抜くことができる。   As described above, even when the intervening layer 16 is formed, the intervening layer 16 acts as a sliding boundary layer between the steel material support portion 17 and the H-section steel 15 in the same manner as described above. Can be pulled out from the embedded hole 13 very smoothly.

上記において示した土留め壁の施工方法はあくまでも例示であって、鋼材15の引き抜きの際に地表に土砂が上がるのを防止する、というこの発明の課題を解決し得る限りにおいて、その工程の一部を適宜変更することができる。また、鋼材15の種類もH形鋼15に限定されず、各種の形鋼を採用することができる。   The construction method of the earth retaining wall shown above is merely an example, and as long as the problem of the present invention of preventing the earth and sand from rising on the ground surface when the steel material 15 is pulled out can be solved, The part can be changed as appropriate. Moreover, the kind of the steel material 15 is not limited to the H-section steel 15, and various shape steels can be adopted.

10 連続壁
11 掘削穴
12 改良杭
13 埋設穴
14 混合物
15 鋼材(H形鋼)
16 介在層
17 鋼材支持部
18 被覆材
19、21 剥離剤
20 固定部材(粘着性部材)
22 吸水層
h1 第一所定深さ
h2 第二所定深さ
G 地表面
S オーガスクリュー
10 Continuous wall 11 Drilling hole 12 Improved pile 13 Buried hole 14 Mixture 15 Steel (H-shaped steel)
16 Intervening layer 17 Steel material support part 18 Covering material 19, 21 Stripping agent 20 Fixing member (adhesive member)
22 Water absorption layer h1 First predetermined depth h2 Second predetermined depth G Ground surface S Auger screw

Claims (5)

地表面(G)から第一所定深さ(h1)までの地盤を掘削しつつ充填剤を注入し、掘削した領域の掘削土砂と前記充填剤を混合した上で硬化させて、前記領域に連続壁(10)を形成する工程と、
前記連続壁(10)を上下方向に貫通して、前記地表面(G)から前記第一所定深さ(h1)よりも深い第二所定深さ(h2)に至る埋設穴(13)を形成し、この埋設穴(13)の前記地表面(G)から前記第一所定深さ(h1)までの領域のみに前記充填剤を再注入し、前記埋設穴(13)内の掘削土砂と再注入された前記充填剤を混合した混合物(14)で前記領域を満たす工程と、
前記第二所定深さ(h2)に相当する長さの鋼材(15)の、前記第一所定深さ(h1)に相当する範囲の表面に介在層(16)を形成する工程と、
前記介在層(16)が形成された前記鋼材(15)を、前記混合物(14)が硬化する前に、前記介在層(16)が前記混合物(14)と前記鋼材(15)との間に介在するように前記埋設穴(13)に埋設し、前記混合物(14)を硬化させた鋼材支持部(17)で前記鋼材(15)の上端部を支持することによって土留め壁を構成する工程と、
前記土留め壁の使用後に、前記鋼材支持部(17)に形成された前記鋼材(15)の断面形状に対応する断面を有する透孔の縁部によって、第一所定深さ(h1)よりも深い第二所定深さ(h2)領域において前記鋼材(15)の表面に付着していた土砂を削ぎ落としながら、前記鋼材(15)を前記埋設穴(13)から引き抜く工程と、
を備えた土留め壁の施工方法。
The filler is injected while excavating the ground from the ground surface (G) to the first predetermined depth (h1), and after mixing the excavated soil and the filler in the excavated area, it is hardened and continuously in the area. Forming a wall (10);
An embedded hole (13) that penetrates the continuous wall (10) in the vertical direction and extends from the ground surface (G) to a second predetermined depth (h2) deeper than the first predetermined depth (h1) is formed. Then, the filler is reinjected only in the region from the ground surface (G) to the first predetermined depth (h1) of the buried hole (13), and the excavated earth and sand in the buried hole (13) are re-injected. Filling the region with a mixture (14) mixed with the injected filler;
Forming an intervening layer (16) on the surface of the steel material (15) having a length corresponding to the second predetermined depth (h2) in a range corresponding to the first predetermined depth (h1);
Before the mixture (14) hardens the steel material (15) on which the intervening layer (16) is formed, the intervening layer (16) is interposed between the mixture (14) and the steel material (15). A step of forming a retaining wall by supporting an upper end portion of the steel material (15) with a steel material support portion (17) embedded in the embedding hole (13) so as to be interposed and hardening the mixture (14). When,
After the use of the retaining wall, the edge of the through hole having a cross section corresponding to the cross sectional shape of the steel material (15) formed in the steel material support portion (17) is more than the first predetermined depth (h1). A step of pulling out the steel material (15) from the embedded hole (13) while scraping the earth and sand adhering to the surface of the steel material (15) in a deep second predetermined depth (h2) region;
Construction method of earth retaining wall with
前記介在層(16)が、前記鋼材(15)に被せられた筒状の被覆材(18)であって、前記被覆材(18)の下端部を固定部材(20)で前記鋼材(15)に固定する一方で、上端部を開放状態とし、前記鋼材(15)を前記埋設穴(13)に埋設する際に、前記被覆材(18)の内側の空気が前記上端部から前記被覆材(18)の外に抜けるようにした請求項1に記載の土留め壁の施工方法。   The intervening layer (16) is a cylindrical covering material (18) covered with the steel material (15), and the lower end portion of the covering material (18) is fixed to the steel material (15) by a fixing member (20). While the upper end is opened, and when the steel material (15) is embedded in the embedded hole (13), the air inside the covering material (18) passes from the upper end to the covering material ( The method for constructing a retaining wall according to claim 1, wherein the retaining wall is allowed to come out of step 18). 開放状態とされた前記上端部から、前記被覆材(18)と前記鋼材(15)との間に剥離剤(19)を噴霧して、前記被覆材(18)の内面にこの剥離剤(19)を付着させた上で、前記鋼材(15)を埋設する請求項2に記載の土留め壁の施工方法。   A release agent (19) is sprayed between the covering material (18) and the steel material (15) from the opened upper end portion, and the release agent (19) is applied to the inner surface of the covering material (18). 3), the steel wall (15) is buried, and the retaining wall construction method according to claim 2. 前記介在層(16)が、前記鋼材(15)の表面に形成された剥離剤(21)の層と、その上に形成された高分子ファイバとベントナイトまたはカルボキシルメチルセルロースの少なくとも一方とを混合した吸水層(22)と、から構成された請求項1に記載の土留め壁の施工方法。   The intervening layer (16) is a water absorbing material obtained by mixing a layer of a release agent (21) formed on the surface of the steel material (15), a polymer fiber formed thereon and at least one of bentonite or carboxymethyl cellulose. The construction method of the retaining wall according to claim 1, comprising a layer (22). 前記第一所定深さ(h1)が0.5〜10mの範囲内であって、前記第二所定深さ(h2)が、前記第一所定深さ(h1)に1〜15mを加えた範囲内である請求項1から4のいずれか1項に記載の土留め壁の施工方法。   The first predetermined depth (h1) is in a range of 0.5 to 10 m, and the second predetermined depth (h2) is a range in which 1 to 15 m is added to the first predetermined depth (h1). The construction method of the retaining wall according to any one of claims 1 to 4, wherein the retaining wall is inside.
JP2017078231A 2017-04-11 2017-04-11 Construction method of earth retaining wall Active JP6174831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017078231A JP6174831B1 (en) 2017-04-11 2017-04-11 Construction method of earth retaining wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017078231A JP6174831B1 (en) 2017-04-11 2017-04-11 Construction method of earth retaining wall

Publications (2)

Publication Number Publication Date
JP6174831B1 true JP6174831B1 (en) 2017-08-02
JP2018178495A JP2018178495A (en) 2018-11-15

Family

ID=59505207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017078231A Active JP6174831B1 (en) 2017-04-11 2017-04-11 Construction method of earth retaining wall

Country Status (1)

Country Link
JP (1) JP6174831B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281821A (en) * 1990-03-29 1991-12-12 Epoch Soil Kouhou Kenkyusho:Kk Construction method for underground wall with core
JPH07247549A (en) * 1994-01-14 1995-09-26 Nippon Shokubai Co Ltd Lubricating material for drawing out temporary buried object
JP2005113672A (en) * 2003-10-02 2005-04-28 Ps Tech Co Ltd Pile extracting construction method and heterogeneous coating material of pile
JP2009286814A (en) * 2008-05-27 2009-12-10 Takenaka Komuten Co Ltd Remover of soil adhered to core member for earth retaining wall for soil cement column row and method for removing adhered soil
JP2015094098A (en) * 2013-11-11 2015-05-18 藤井 俊彦 Construction method of ground improvement wall

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281821A (en) * 1990-03-29 1991-12-12 Epoch Soil Kouhou Kenkyusho:Kk Construction method for underground wall with core
JPH07247549A (en) * 1994-01-14 1995-09-26 Nippon Shokubai Co Ltd Lubricating material for drawing out temporary buried object
JP2005113672A (en) * 2003-10-02 2005-04-28 Ps Tech Co Ltd Pile extracting construction method and heterogeneous coating material of pile
JP2009286814A (en) * 2008-05-27 2009-12-10 Takenaka Komuten Co Ltd Remover of soil adhered to core member for earth retaining wall for soil cement column row and method for removing adhered soil
JP2015094098A (en) * 2013-11-11 2015-05-18 藤井 俊彦 Construction method of ground improvement wall

Also Published As

Publication number Publication date
JP2018178495A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
CA2955218C (en) Rapid pier
US9567723B2 (en) Open-end extensible shells and related methods for constructing a support pier
KR101021915B1 (en) A method for constructing cut-off temporary structure for sheathing work
JP2002047676A (en) Buoyancy preventing structure and its construction method
KR100614602B1 (en) Piling method for reducing negative skin friction
JP6174831B1 (en) Construction method of earth retaining wall
KR20180039891A (en) A Environment-Friendly construction method of drainage channel on softground by Grouting and Mixing of Solidifying Agent
KR101021913B1 (en) A method for constructing cut-off temporary structure for sheathing work
JP2008031772A (en) Construction method of precast pile, and cover for use in the construction method
KR101392995B1 (en) Construction method for retaining of earth
JP6730121B2 (en) Underground wall construction method
KR100996444B1 (en) Method for carrying out improved micro pile and improved micro pile and ribbed section pipe of the improved micro pile
JP3760343B2 (en) Drilling bottom stabilization method and construction method of underground building
KR101816006B1 (en) Method for supporting an augered pile and apparatus thereof
KR100698911B1 (en) Horizontal Compacting Method of Weak Soil with Filling Pulled-out Pile Hole
JP2015132125A (en) Open-end steel pipe pile and construction method thereof
CN104294817B (en) The construction method of concrete-pile
KR100687496B1 (en) Construction method of pile for building
JP2014156716A (en) Construction method for pile with great bearing capacity
KR101375155B1 (en) Construction Method of Reinforced Bar Insert Type in-situ Concrete Pile
JP4911242B2 (en) Reinforcement structure of existing gravity quay
JP2002322644A (en) Bored precast pile and its construction method
JP4033561B2 (en) Airtight structure in vacuum consolidation method
JP3835516B2 (en) Pile foundation construction method at waste disposal site
AU2016298233B2 (en) Open-bottom extensible shells and related methods for constructing a support pier

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6174831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250