JP6162361B2 - Orthogonal excitation type current sensor - Google Patents

Orthogonal excitation type current sensor Download PDF

Info

Publication number
JP6162361B2
JP6162361B2 JP2012020601A JP2012020601A JP6162361B2 JP 6162361 B2 JP6162361 B2 JP 6162361B2 JP 2012020601 A JP2012020601 A JP 2012020601A JP 2012020601 A JP2012020601 A JP 2012020601A JP 6162361 B2 JP6162361 B2 JP 6162361B2
Authority
JP
Japan
Prior art keywords
magnetic
current
measured
core
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012020601A
Other languages
Japanese (ja)
Other versions
JP2013160549A (en
Inventor
孝 忠津
孝 忠津
Original Assignee
孝 忠津
孝 忠津
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孝 忠津, 孝 忠津 filed Critical 孝 忠津
Priority to JP2012020601A priority Critical patent/JP6162361B2/en
Publication of JP2013160549A publication Critical patent/JP2013160549A/en
Application granted granted Critical
Publication of JP6162361B2 publication Critical patent/JP6162361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,被計測電流回路と計測回路とを電気的に絶縁した状態で,前記被計測電流の値を計測する絶縁型の直流交流両用の電流センサに関するものである.   The present invention relates to an insulation type DC / AC current sensor that measures the value of the current to be measured in a state where the current circuit to be measured and the measurement circuit are electrically insulated.

近年では太陽光や燃料電池による発電,自動車の電動化,あるいは家庭内直流給電など,直流電力が日常生活で利用される機会が増えつつある.新しい電力の普及にあたっては,その高効率化もさることながら,安全性と信頼性の向上はそれ以上に重要である.このような課題を解決するためには対象を正確に把握する必要があり,その中に電流計測がある.ところが従来の直流電流計測技術,すなわち従来の電流センサはそのような新しいニーズに応えられないのが実情である.   In recent years, there are increasing opportunities for DC power to be used in daily life, such as power generation using solar light and fuel cells, electrification of automobiles, or DC power supply in homes. In the spread of new power, it is more important to improve safety and reliability than to improve efficiency. In order to solve such problems, it is necessary to grasp the target accurately, and current measurement is one of them. However, the current situation is that conventional DC current measurement technology, that is, conventional current sensors, cannot meet such new needs.

絶縁型の電流センサは,検出コイル方式と,磁界センサ素子方式に大別できる.検出コイル方式は磁束の変化による誘導起電力を利用したもので,交流用のCTが代表的である.検出コイル方式で直流電流を計測する場合は,被計測電流で変調を受ける交流の励磁磁束を発生させて,変調を受けた交流の励磁磁束による誘導起電力を得るのが一般的である.その代表例としてフラックスゲート方式がある.   Insulation-type current sensors can be broadly divided into detection coil methods and magnetic field sensor element methods. The detection coil method uses an induced electromotive force due to a change in magnetic flux, and a CT for AC is typical. When DC current is measured by the detection coil method, it is common to generate an AC excitation magnetic flux that is modulated by the current to be measured, and to obtain an induced electromotive force due to the modulated AC excitation magnetic flux. A typical example is the fluxgate method.

磁界センサ素子方式は,被計測電流によって生じる磁界の強さを,磁界センサで計測することにより発生源の電流の大きさを計測するものである.原理的には全ての磁界センサで電流センサを作ることが可能であるが,よく使われている磁界センサは,ホール素子,磁気抵抗効果素子,ファラディー素子などである.中でもホール素子は圧倒的なシェアを占めており,前記した直流電力利用の新分野でも盛んに使われている.   The magnetic field sensor element method measures the magnitude of the source current by measuring the strength of the magnetic field generated by the current to be measured with a magnetic field sensor. In principle, it is possible to make a current sensor with all magnetic field sensors, but magnetic field sensors that are often used are Hall elements, magnetoresistive elements, Faraday elements, and so on. Among them, Hall elements occupy an overwhelming share and are actively used in the new field of DC power utilization.

電流センサに求められている昨今の新しいニーズは大きく二分できる.一つは,高い精度は求めないが低価格で高速応答のもの.もう一つは,応答速度は遅くて良いが高精度でダイナミックレンジがひろいものである.前段で述べたホール素子式はこの後者のニーズに応えることができない.それは,磁気コアやホール素子のヒステリシスが原因で生じるオフセットが大きくて,必要な精度を出せないのが理由である.市販品には磁気平衡式とも呼ばれるフィードバック方式で精度を上げているものもあるが,フィードバックの許容範囲を超えた場合や,通電していない状態などで,フィードバックが機能していない場合における着磁には対処できない.したがって,ヒステリシスや着磁が根本的に生じない電流センサが望まれている.   The recent new needs for current sensors can be largely divided into two. One is a high-speed response at a low price that does not require high accuracy. The other is that the response speed may be slow but the accuracy is high and the dynamic range is wide. The Hall element type described in the previous section cannot meet this latter need. The reason for this is that the offset caused by the hysteresis of the magnetic core and Hall elements is so large that the required accuracy cannot be obtained. Some products on the market improve accuracy with a feedback method, also called a magnetic balance type. However, if the feedback exceeds the allowable range or is not energized, etc. Cannot be dealt with. Therefore, there is a demand for a current sensor that does not cause hysteresis or magnetization.

電流センサのオフセットが問題になる用途には次のようなものがある.例えばハイブリッド自動車の二次電池の充放電管理である.ここでは充放電電流を計測して積算することで充電量を推測しているが,電流センサにオフセットがあると,それが積算されて大きな誤差を生じる.この誤差は,過充電や過放電を引き起こす可能性をはらんでいて,リチウムイオン電池などを使用する場合には非常に危険である.また,二次電池のみで走行する電気自動車では残量を誤って表示すれば充電が間に合わずに走行できなくなることも起こりうる.   The applications where current sensor offset is a problem include the following. For example, charge / discharge management of secondary batteries in hybrid vehicles. Here, the charge amount is estimated by measuring the charge / discharge current and integrating it. However, if there is an offset in the current sensor, it will be integrated and a large error will occur. This error has the potential to cause overcharge and overdischarge, and is extremely dangerous when using lithium-ion batteries. In addition, in an electric vehicle that runs only on secondary batteries, if the remaining amount is displayed incorrectly, it may happen that charging cannot be done in time and it becomes impossible to run.

これらの対策の一つとして,電流センサのオフセット量を推測する手法がとられており各自動車メーカから特許の出願がなされている(特許文献1,特許文献2,特許文献3).もう一つは最大のオフセットを見込んで,充電量を制御する方法がある.つまり,電流センサで計測した電流によって得られる充電量が,例えば30%から70%の範囲になるような制御を行う方法である.この方法では電池の利用範囲が狭くなり高価な電池の能力を充分に使えないという不経済が生じる.実際の自動車ではこれらの方法を併用することが多い.   As one of these countermeasures, a method of estimating the offset amount of the current sensor has been taken, and patent applications have been filed by automobile manufacturers (Patent Document 1, Patent Document 2, and Patent Document 3). The other method is to control the amount of charge in anticipation of the maximum offset. That is, it is a method of performing control so that the amount of charge obtained by the current measured by the current sensor is in the range of 30% to 70%, for example. This method has the disadvantage that the range of battery use is narrowed and the capacity of expensive batteries cannot be fully used. In actual cars, these methods are often used together.

また,電流センサの計測精度が悪く対応が不十分なニーズに直流漏電検出がある.昨今求められている漏電の検出レベルは数[mA]であるが,この分野で使用できる従来の絶縁型のセンサの精度は数十[mA]から数百[mA]しかなく性能的に不十分である.一般的によく使われているホール素子方式の場合は先に述べたヒステリシスが障害になる.また,コアに巻いたコイルのリアクタンスの変化を利用した方法も提案されているが性能が悪い(特許文献4).ほかにも高感度なフラックスゲート方式の原理を応用した直流漏電検出装置が提案されているが,残留磁化の問題は解決していない.   In addition, there is DC leakage detection as a need for current sensors that have poor measurement accuracy and are insufficiently supported. The level of leakage detection required nowadays is several [mA], but the accuracy of the conventional insulation type sensor that can be used in this field is only several tens [mA] to several hundred [mA], and the performance is insufficient. It is. In the case of the Hall element method which is generally used in general, the hysteresis described above becomes an obstacle. In addition, a method using a change in reactance of a coil wound around a core has been proposed, but the performance is poor (Patent Document 4). In addition, a DC leakage detector using the high-sensitivity fluxgate principle has been proposed, but the problem of residual magnetization has not been solved.

これらの漏電検出方法は電路の往路と復路の電流の差分を計測することにより実現している.ところが直流回路では負荷側のリアクタンスのために,通電開始時に往路と復路の電流に大きな差が生じ,漏電検出装置の定格を遥かに超える大電流が,瞬間的ではあるが流れる事がある.この際,前記の高透磁材料を用いたものは着磁されて,その後は本来の性能が発揮できなくなる.   These leakage detection methods are realized by measuring the difference between the current in the forward path and the return path. However, in the DC circuit, due to the reactance on the load side, there is a large difference between the current in the forward path and the return path at the start of energization, and a large current that far exceeds the rating of the leakage detector may flow instantaneously. At this time, the material using the high permeability material is magnetized, and after that, the original performance cannot be exhibited.

さらに従来の接触方式の漏電検出装置は電路の往路と復路をそれぞれ同じ値の抵抗で大地に接続して,大地の電位と電路の中間電位との電位差を計測する方法がある.漏電がなければ大地は電路の中間電位になるが,漏電があると大地から往路か復路に電流が流れ,大地の電位は電路の中間電位からずれる.この時の電位差で漏電を検出している.しかしこの方法は大地を検出回路の一部に取り込んでいるために,複数台を同時に運転すると相互干渉が生じて正確な検出ができないことがある.そこで,この方式では時分割運転をする方法があるが,この方法は台数が増えると応答時間が遅くなる問題が生じる.例えばメガソーラ発電所では数千箇所にもおよぶ漏電検出のニーズが有り時分割運転では全く対応できない.   Furthermore, there is a method of measuring the potential difference between the potential of the ground and the intermediate potential of the electrical circuit by connecting the forward and backward paths of the electrical circuit to the ground with the same resistance respectively. If there is no earth leakage, the earth will be at the intermediate potential of the electric circuit. Electric leakage is detected by the potential difference at this time. However, since this method incorporates the ground into a part of the detection circuit, when multiple units are operated simultaneously, mutual interference may occur and accurate detection may not be possible. Therefore, there is a method of time-sharing operation in this method, but this method has a problem that the response time becomes slow as the number increases. For example, megasolar power plants have thousands of needs for leakage detection, and time-sharing operation cannot handle them at all.

このような,充放電管理の課題や直流漏電検出の課題を解決するには,0[A]を確実に計測できること,高感度であること,様々な要因による着磁が生じないこと,すべて解決する必要がある.   In order to solve such problems of charge / discharge management and DC leakage detection, it is possible to reliably measure 0 [A], to be highly sensitive, and not to cause magnetization due to various factors. There is a need to.

着磁の課題を解決した電流センサも提案されているが(特許文献5),この電流センサは高感度では有るものの構造的要因により磁気コアから漏れる励磁磁束が多くて周辺環境の影響を受け易く,それを回避するために磁気シールドが必要になることが多い.つまり汎用的用途ではコストパフォーマンスがよくない.また,磁性流体の形状の可変性を活かし,これを磁気コアに用いた電流センサも提案されているが(特許文献6),磁界の検出方法に新規性はなく,推測できるその性能では前記のニーズには全く対応できるものではない.   A current sensor that solves the problem of magnetization has also been proposed (Patent Document 5). Although this current sensor is highly sensitive, there are many exciting magnetic fluxes leaking from the magnetic core due to structural factors, and it is easily affected by the surrounding environment. In order to avoid this, a magnetic shield is often required. In other words, the cost performance is not good for general purpose use. In addition, a current sensor using a magnetic core utilizing the variability of the shape of the magnetic fluid has been proposed (Patent Document 6). However, the magnetic field detection method is not novel, and its performance can be estimated as described above. The needs are not met at all.

また,本発明と似た構造の直流電流センサが過去に提案されている(特許文献7/以下「先願」という)が,本発明とは根本的な違いがあるので,その違いと先願の課題を述べる.   A DC current sensor having a structure similar to that of the present invention has been proposed in the past (Patent Document 7 / hereinafter referred to as “prior application”), but there is a fundamental difference from the present invention. The problems of are described.

先願に用いている磁気コア用の磁性材は「軟質磁性材料」に限定されているが,本発明は磁性流体である.つぎに,先願の励磁は磁気コアを飽和させるのが基本であるが(先願段落0025),かりに完全には飽和させなくても略飽和させる必要性が示されている(先願段落0028).この点に関して本発明は飽和の必要は全くない.   Although the magnetic material for the magnetic core used in the prior application is limited to “soft magnetic material”, the present invention is a magnetic fluid. Next, the excitation of the prior application is basically to saturate the magnetic core (paragraph 0025 of the prior application), but it is indicated that it is necessary to substantially saturate even if it is not completely saturated (paragraph 0028 of the prior application). ). In this regard, the present invention does not require any saturation.

また先願でも他の従来の電流センサと同じく残留磁化が課題であることに触れており,そのヒステリシスが計測精度に悪影響を及ぼすことを示唆している(先願段落0032).それと同時に,先願は励磁で磁気飽和させるので残留磁化の影響が低減されると述べている一方で,他の段落では完全に飽和させなくても良いとも述べており,この両者は両立しない.   In the previous application, it is mentioned that remanent magnetization is a problem like other conventional current sensors, suggesting that the hysteresis adversely affects the measurement accuracy (paragraph 0032 of the previous application). At the same time, while the earlier application states that the effect of remanent magnetization is reduced because magnetic saturation is achieved by excitation, the other paragraphs also state that it is not necessary to completely saturate, both of which are incompatible.

先願に用いている軟磁性材(軟質磁性材)と本発明に用いている磁性流体とは,センサでは重要な透磁率の特性が全く異なる.軟磁性材では初透磁率は小さく,磁界が強くなるとともに透磁率の徐々に高くなり,ある磁界の強さで最大に達し,さらに磁界が強くなると透磁率は減少する.透磁率が最も大きくなったときの値を最大透磁率と言う.このように軟磁性材は透磁率の傾きが正の領域と負の領域があり,センサに使う場合は注意を要する.一方磁性流体の透磁率は磁界零のときが最も大きく,磁界の増加とともに透磁率は低下の一途をたどる.つまりその傾きは負の領域のみである(図7参照).また,軟磁性材は同じ磁界の強さでも,磁界が増加するときと減少するときとで透磁率が異なるが,磁性流体は同じである.さらに軟磁性材は比透磁率(真空の透磁率に対する比率)が数千から数万と大きいのに対して,磁性流体は10から30程度と小さい.   The soft magnetic material used in the previous application (soft magnetic material) and the magnetic fluid used in the present invention have completely different magnetic permeability characteristics in the sensor. The soft magnetic material has a small initial permeability, and the magnetic field gradually increases as the magnetic field becomes stronger. The maximum value is reached at a certain magnetic field strength, and the magnetic permeability decreases as the magnetic field becomes stronger. The value at which the magnetic permeability is maximized is called the maximum magnetic permeability. Thus, soft magnetic materials have positive and negative magnetic permeability gradients, so care must be taken when using them for sensors. On the other hand, the permeability of magnetic fluid is greatest when the magnetic field is zero, and the magnetic permeability continues to decrease as the magnetic field increases. In other words, the slope is only negative (see Fig. 7). Soft magnetic materials have the same magnetic field strength, but the permeability is different when the magnetic field increases and decreases, but the magnetic fluid is the same. Soft magnetic materials have large relative permeability (ratio to vacuum permeability) of several thousand to several tens of thousands, while magnetic fluids are as small as 10 to 30.

さらに,磁性流体は飽和磁界が軟磁性材の数十倍から数百倍以上あり,より大きな電流を計測できる.つまり,後述する説明のように零点付近の小さな電流を安定して計測できるとともに,大きな電流も測ることができるので,ダイナミックレンジの広い電流センサが実現できる.   Furthermore, magnetic fluid has a saturation magnetic field several tens to several hundred times more than that of soft magnetic material, and can measure a larger current. In other words, as described later, a small current near the zero point can be measured stably, and a large current can also be measured, so a current sensor with a wide dynamic range can be realized.

このように先願と本発明は,材料・動作原理・原理的特性が全く異なる.また本発明の性能は先願を遥かに超えており,産業上の価値は先願のおよぶところではない.   In this way, the prior application and the present invention are completely different in material, operation principle and principle characteristics. In addition, the performance of the present invention far exceeds that of the previous application, and the industrial value does not reach that of the previous application.

特開2002−151165号公報JP 2002-151165 A 特開2004−226154号公報JP 2004-226154 A 特開2007−3452号公報JP 2007-3452 A 特開2000−002738号公報JP 2000-002738 A 特許第4310373号Japanese Patent No. 4310373 特開2009−63368号公報JP 2009-63368 A 特開平10−123180号公報JP-A-10-123180

解決しようとする課題は,磁性材や磁界センサ素子が持つヒステリシスによって,電流センサの出力に不特定のオフセットが生じ,測定の「不確かさ」が大きくなる問題点である.   The problem to be solved is that the hysteresis of the magnetic material and magnetic field sensor element causes an unspecified offset in the output of the current sensor, increasing the measurement “uncertainty”.

本発明は,電流センサのコアに従来から用いられている軟磁性材の使用をやめて代わりに磁性流体を用い,さらに,磁界センサ素子を用いらずにコイルの電磁誘導を利用する.これらの条件を実現するために,磁性流体から成る磁気コアと,被計測電流によってその磁気コアに生じる磁束に平行な電流ベクトルを持つように配置した励磁コイルとを有し,この励磁コイルに交流成分を含む電流を流し,さらに前記磁束と鎖交するように検出コイルを巻いたことを最大の特徴とする.   The present invention uses the magnetic fluid instead of the conventionally used soft magnetic material for the core of the current sensor, and uses the electromagnetic induction of the coil without using the magnetic field sensor element. In order to realize these conditions, a magnetic core made of a magnetic fluid and an exciting coil arranged so as to have a current vector parallel to the magnetic flux generated in the magnetic core by the current to be measured are provided. The biggest feature is that a detection coil is wound so that a current containing a component flows and interlinks with the magnetic flux.

本発明は構成要素のどの部分にも残留磁化やヒステリシスを生じるものがなく,検出要素ではオフセットが生じない.したがって「不確かさ」が小さくて,0[ A ]の精度も高く,ダイナミックレンジの広い電流センサが実現できる.さらに,定格電流値を遥かに超える大電流に曝されても,定格電流値内に復帰すれば元の特性が発現されて,電流センサの信頼性が従来よりも遥かに高くなる効果がある.   In the present invention, there is no residual magnetization or hysteresis in any part of the component, and no offset occurs in the detection element. Therefore, it is possible to realize a current sensor with small uncertainty, high accuracy of 0 [A], and wide dynamic range. Furthermore, even if exposed to a large current far exceeding the rated current value, the original characteristics are manifested when the current falls within the rated current value, and the reliability of the current sensor is much higher than before.

一部を切開した実施例による,本発明の構成要素の説明図Explanatory drawing of the component of this invention by the Example which cut off a part 図1に示した実施例の,中心を含むX−Y平面による断面図1 is a cross-sectional view of the embodiment shown in FIG. 図1に示した実施例の,中心を含むY−Z平面による断面図1 is a sectional view of the embodiment shown in FIG. コア外殻4の断面を四角形にして励磁コイル2を扁平にした実施例の断面図Sectional drawing of the Example which made the exciting coil 2 flat by making the cross section of the core outer shell 4 into a square. コア外殻4の断面を長円形状にして励磁コイル2を2連にした実施例の断面図Sectional drawing of the Example which made the cross section of the core outer shell 4 the ellipse shape, and made the exciting coil 2 into 2 stations | lines 動作原理を説明する磁界と磁束のベクトル図Vector diagram of magnetic field and magnetic flux explaining the operating principle 磁性流体のB−H特性図BH characteristics of magnetic fluid 実施例の特性グラフExample characteristic graph コア部に磁気ギャップを設けた実施例の一部切開図Partial cutaway view of an embodiment in which a magnetic gap is provided in the core 2個のセンサユニットを用いてクランプ式にした実施例の一部を切開した説明図Explanatory drawing which cut out a part of the Example made into the clamp type using two sensor units

まず構成と構造について説明する.   First, the structure and structure will be described.

図1に一部を切開した一実施例による本発明の構成要素の説明図を示す.この図に示した磁気コア1,励磁コイル2,検出コイル3,コア外殻4,が本発明の構成要素である.導体6は被計測電流 Ix が本発明に対してどのように配置されるかを示すものである.なお,磁気コア1は磁性流体であって液体であるため明示していないが,以降の説明において特別の断りがない限りコア外殻4の内部は磁性流体で満たされ,磁性流体から成る磁気コア1であるものとする.   FIG. 1 shows an explanatory diagram of components of the present invention according to an embodiment partially cut away. The magnetic core 1, the excitation coil 2, the detection coil 3, the core outer shell 4 shown in this figure are the components of the present invention. Conductor 6 shows how the measured current Ix is arranged relative to the present invention. Although the magnetic core 1 is a magnetic fluid and is not shown because it is a liquid, the core core 4 is filled with the magnetic fluid unless otherwise specified in the following description. Suppose that it is 1.

図1の断面図を図2に示す.図2は,図1に示した実施例の,中心を含むX−Y平面による断面図である.この図においてコア外殻4の断面は円形をしているが,本発明では円形である必要は無く実施時の都合により四角形や楕円形など任意である.しかし,磁気的には円形が単純であり性能を上げ易い形状である.   A cross-sectional view of Fig. 1 is shown in Fig. 2. FIG. 2 is a sectional view of the embodiment shown in FIG. 1 taken along the XY plane including the center. In this figure, the cross section of the core outer shell 4 is circular. However, in the present invention, it is not necessary to be circular. However, the magnetic shape is simple and the shape is easy to improve.

図2において,励磁コイル2はコア外殻4の中心であり,すなわち磁気コア1の断面の中心に位置されているが,この位置は断面の中心である必要は無く,コア外殻4の内壁に接触してもよい.さらにはコア外殻4の外に配置してもよい.必要な条件は,励磁コイル2が発生する励磁磁界 He が被計測電流 Ix の発生する被計測磁界 Hx と磁気コア1内で直交する成分をもつことである.ただし.励磁コイル2が磁気コア1の外に出た場合は励磁磁束の漏れが生じるので,周辺環境の影響を受けやすくなり性能が著しく低下する.しかし,磁気シールドなどにより周辺環境からの影響は軽減できるために,励磁コイル2をコア外殻4の外に出すことによりほかのメリットがある場合はそのようにしても良い.たとえば,励磁コイル2をコア外殻4の外に置くことにより製造コストを低減する場合や,コア外殻4内の磁性流体の量を増やしたい場合などはその一例である.   In FIG. 2, the exciting coil 2 is the center of the core outer shell 4, that is, located at the center of the cross section of the magnetic core 1, but this position does not have to be the center of the cross section. You may touch Further, it may be arranged outside the core outer shell 4. The necessary condition is that the exciting magnetic field He generated by the exciting coil 2 has a component orthogonal to the measured magnetic field Hx generated by the measured current Ix in the magnetic core 1. However. When the exciting coil 2 goes out of the magnetic core 1, leakage of the exciting magnetic flux occurs, so that it is easily affected by the surrounding environment and the performance is remarkably deteriorated. However, since the influence from the surrounding environment can be reduced by a magnetic shield or the like, if there are other merits by taking the exciting coil 2 out of the core shell 4, it may be done as such. For example, when the manufacturing cost is reduced by placing the exciting coil 2 outside the core outer shell 4 or when it is desired to increase the amount of magnetic fluid in the core outer shell 4.

図2において,検出コイル3はコア外殻4の外側から磁気コア1をトロイダル状に巻回している.これは,磁気コア1に発生する,被計測電流 Ix による被計測磁界 Hx を巻回するように巻くことが要件である.したがって,検出コイル3はコア外殻4の内側でも良く,あるいはコア外殻4の壁内にインサート成形されるような配置でもかまわない.さらには,磁気コア1の断面のすべてを巻回する必要もなく一部を巻回してもよい.   In FIG. 2, the detection coil 3 has a magnetic core 1 wound in a toroidal shape from the outside of the core outer shell 4. This is a requirement that the measured magnetic field Hx generated by the measured current Ix generated in the magnetic core 1 is wound. Therefore, the detection coil 3 may be disposed inside the core outer shell 4 or may be arranged so as to be insert-molded in the wall of the core outer shell 4. Furthermore, it is not necessary to wind all of the cross section of the magnetic core 1, and some may be wound.

図2において,検出コイル3は励磁コイル2をトロイダル巻きで巻回しているが,検出コイル3が励磁コイル2を巻回する必要は無く,検出コイル3の外に励磁コイル2があっても良い.   In FIG. 2, the detection coil 3 is wound around the excitation coil 2 by toroidal winding, but the detection coil 3 does not have to wind the excitation coil 2, and the excitation coil 2 may be provided outside the detection coil 3. .

図3に,図1に示した実施例の中心を含むY−Z平面による断面図を示す.図3においてコア外殻4は円形をしているが,この形状も円形である必要は無く,導体6の形状に合わせて様々な形状にできる.ただし,磁気的には円形が最も単純で精度の向上には円形がよいことが多い.また,図3では検出コイル3は磁気コア1の一部に巻回されているが,性能的には磁気コア1の全体を均一に巻回する方が好ましい.ただしそれが必須ではない.   FIG. 3 shows a cross-sectional view along the YZ plane including the center of the embodiment shown in FIG. In FIG. 3, the core outer shell 4 has a circular shape, but this shape does not need to be circular, and can be various shapes according to the shape of the conductor 6. However, the magnetic circle is the simplest, and the circle is often good for improving accuracy. In FIG. 3, the detection coil 3 is wound around a part of the magnetic core 1, but it is preferable that the entire magnetic core 1 is wound uniformly in terms of performance. However, it is not essential.

図4は,コア外殻4の断面を四角形にして励磁コイル2を扁平にした実施例の断面図である.図4において,コア外殻4および磁気コア1は四角形である.また励磁コイル2の断面も四角形になっている.   FIG. 4 is a cross-sectional view of an embodiment in which the excitation coil 2 is flattened by making the cross section of the core outer shell 4 square. In FIG. 4, the core outer shell 4 and the magnetic core 1 are square. The cross section of the exciting coil 2 is also square.

図5は,コア外殻4の断面を長円形状にして励磁コイル2を2連にした実施例の断面図である.図5では,コア外殻4および磁気コア1は長円形状になっている.さらに励磁コイル2は二つに分割され2連になっている.   FIG. 5 is a cross-sectional view of an embodiment in which the cross-section of the core outer shell 4 is oval and the exciting coil 2 is doubled. In FIG. 5, the core shell 4 and the magnetic core 1 have an oval shape. In addition, the exciting coil 2 is divided into two parts.

図4および図5は,実施仕様に合わせて様々な形状や配置が可能であることを示すものである.例えば導体6に沿って長い筒状のものや,導体6の直径方向に広がった扁平なものなどが製作可能である.   4 and 5 show that various shapes and arrangements are possible according to the implementation specifications. For example, a long cylindrical shape along the conductor 6 or a flat one extending in the diameter direction of the conductor 6 can be manufactured.

次に動作原理について説明する.   Next, the operating principle is explained.

図6に,動作原理を説明する磁界と磁束のベクトル図を示す.この図は磁気コア1内部の任意の点の磁界と磁束を示している.これを図1から図3に対応させると,図6に示した「被計測磁界方向」は,被計測電流 Ix が発生する被計測磁界 Hxの向きであるとともに,励磁コイル2の電流の向きでもある.励磁コイル2に電流を流すことによって生じる励磁磁界 He は,励磁コイル2と直角方向になるために,励磁磁界 He の向きは図6に示した「励磁磁界方向」の通り「被計測磁界方向」と直角になる.本発明において,実施時の製作誤差や使用時の導体6の配置誤差により,全ての磁界が前記の通りに直角に交わる訳ではないが,励磁磁界 He と被計測磁界 Hx とが,前記「励磁磁界方向」と「被計測磁界方向」の関係になる方向成分を必ず持ち,それにより以下に説明する動作原理の作用が生じる.   Figure 6 shows a vector diagram of the magnetic field and magnetic flux that explains the operating principle. This figure shows the magnetic field and magnetic flux at an arbitrary point inside the magnetic core 1. Corresponding to FIG. 1 to FIG. 3, the “measured magnetic field direction” shown in FIG. 6 is the direction of the measured magnetic field Hx generated by the measured current Ix and the current direction of the exciting coil 2. is there. Since the exciting magnetic field He generated by passing an electric current through the exciting coil 2 is perpendicular to the exciting coil 2, the direction of the exciting magnetic field He is “excited magnetic field direction” shown in FIG. Becomes a right angle. In the present invention, not all magnetic fields intersect at right angles as described above due to manufacturing errors during implementation and placement errors of the conductors 6 during use. However, the excitation magnetic field He and the measured magnetic field Hx are It always has a directional component that has a relationship between “magnetic field direction” and “measured magnetic field direction”, and this causes the action principle described below.

この説明では,励磁電流 Ie は直流成分を含まない正弦波で,励磁は継続して行われているものとする.被計測電流
Ix は図1に示したように導体6に流れるものとして,いま,被計測電流 Ix = 0 であれば,被計測電流
Ix によって生じる被計測磁界 Hx は 0 であり,図6の磁界のベクトルは「励磁磁界方向」に変化する励磁磁界 He だけである.したがって,前段で説明した通り被計測電流 Ix = 0 の時には検出コイル3に起電力は生じず,その出力は 0[V] である.
In this explanation, it is assumed that the excitation current Ie is a sine wave that does not contain a DC component, and excitation is continued. Current to be measured
Ix is assumed to flow through the conductor 6 as shown in FIG. 1, and if the current to be measured Ix = 0, the current to be measured
The measured magnetic field Hx generated by Ix is 0, and the magnetic field vector in Fig. 6 is only the excitation magnetic field He that changes in the "excitation magnetic field direction". Therefore, as explained in the previous section, when the measured current Ix = 0, no electromotive force is generated in the detection coil 3, and its output is 0 [V].

次に,被計測電流 Ix が流れている場合を説明する.被計測電流 Ix が流れると被計測磁界 Hx が発生し,その方向は被計測電流 Ix の方向により異なる.この説明ではその一つの方向を取上げて説明するが,逆方向であっても原理作用は同じである.   Next, the case where the measured current Ix flows will be explained. When the measured current Ix flows, a measured magnetic field Hx is generated, and the direction depends on the direction of the measured current Ix. In this explanation, we will explain one direction, but the principle action is the same even in the opposite direction.

図6の左側に描いた正弦波の曲線は,時刻が
i,j,k,l,m の順に過ぎたときの He の大きさを示している.ここで,被計測磁界 Hx が生じると,磁気コア1内部の任意の点では He と被計測磁界 Hx が同時に印加されて,そこに磁界のベクトル合成が生じる.その状態を前記時間軸の沿って分析する.
The sine wave curve drawn on the left side of Fig. 6 shows the magnitude of He when the time passes in the order of i, j, k, l, m. Here, when the magnetic field to be measured Hx is generated, He and the magnetic field to be measured Hx are applied simultaneously at any point inside the magnetic core 1, and the magnetic field vector composition occurs there. The state is analyzed along the time axis.

まず時刻iでは, He = 0 でありベクトル合成された磁界は被計測磁界 Hx だけになり,ベクトル図の Hc-i になる.時刻jでは He は正方向に最大で,ベクトル合成された磁界はベクトル図の Hc-j になる.時刻kでは再び He = 0 になり,時刻iと同じになる.次に時刻 l では He は負方向に最大で,ベクトル合成された磁界はベクトル図の Hc-lになる.さらに時刻mは He の周期が一周期して時刻iと全く同じになる.時刻
j,時刻 k,時刻 m の時のベクトルは同じになるので,図6では,これらを Hc-j , k , m と表記した.
First, at time i, He = 0, and the vector-synthesized magnetic field is only the measured magnetic field Hx, which is Hc-i in the vector diagram. At time j, He is maximum in the positive direction, and the vector-synthesized magnetic field is Hc-j in the vector diagram. At time k, He becomes 0 again, which is the same as time i. Next, at time l, He is maximum in the negative direction, and the vector-synthesized magnetic field becomes Hc-l in the vector diagram. Furthermore, time m is exactly the same as time i with one cycle of He. Since the vectors at time j, time k, and time m are the same, they are denoted as Hc-j, k, m in FIG.

さらにこれらの磁界により生じる磁束を次のように示した.Hc-i , j , k による磁束を「Φc-i , j , k」,Hc-j による磁束を「Φc-j」,Hc-l
による磁束を「Φc-l」,とした.磁束は,磁束=磁束密度×磁路の断面積,で表され磁路の断面積が一定であれば,定性的には磁束と磁束密度を同義ににした議論ができる.
The magnetic flux generated by these magnetic fields is shown as follows. The magnetic flux due to Hc-i, j, k is "Φc-i, j, k", the magnetic flux due to Hc-j is "Φc-j", Hc-l
The magnetic flux due to is defined as “Φc-l”. The magnetic flux is expressed as: magnetic flux = magnetic flux density x cross-sectional area of the magnetic path. If the cross-sectional area of the magnetic path is constant, it is possible to qualitatively discuss that the magnetic flux and the magnetic flux density are synonymous.

磁界と磁束は比例関係にあり,単位面積当りの磁束の量を磁束密度と言い,磁束密度=透磁率×磁界の強さ,で表すことができる.再度図6に戻って,被計測磁界 Hx が一定で He が時刻 i,j,k,l,m で同図のように変化した場合に,合成された磁界の強さの被計測磁界方向成分の大きさは,全ての時刻で同じである.したがって,前記の「磁束密度=透磁率×磁界の強さ」の関係から,透磁率が一定であれば磁束密度も磁界の強さと同じ割合で変化するために,磁束の被計測磁界方向成分は磁界と同様に全ての時刻で同じ大きさになるはずである.しかし,実際には透磁率は一定ではなく磁界の強さによって変化して,図7に示すグラフようになる.したがって磁束密度の被計測磁界方向成分は時刻により異なるり次のようになる.   Magnetic field and magnetic flux are in a proportional relationship, and the amount of magnetic flux per unit area is called magnetic flux density, and can be expressed as magnetic flux density = permeability x magnetic field strength. Returning to FIG. 6 again, when the magnetic field to be measured Hx is constant and He changes as shown in the figure at times i, j, k, l, and m, the magnetic field direction component of the synthesized magnetic field is measured. The size of is the same at all times. Therefore, from the relation of “magnetic flux density = permeability × magnetic field strength”, the magnetic flux density changes at the same rate as the magnetic field strength if the permeability is constant. Like the magnetic field, it should be the same size at all times. However, in practice, the magnetic permeability is not constant, but changes according to the strength of the magnetic field, resulting in the graph shown in FIG. Therefore, the measured magnetic field direction component of the magnetic flux density varies depending on the time and is as follows.

磁界,Hc-j や Hc-l は Hc-i ,
k , m に比べて大きい,図7から磁界が大きくなると透磁率は小さくなることが解る.したがって,図6の磁束,Φc-j
や Φc-l は Hc-j や Hc-l に対して,Hc-i , k , m の時よりも比率的に小さくなる.よって,磁束 Φc-j や Φc-l の被計測磁界方向の成分は,Φc-i , j , k よりも小さくなる.つまり,絶対値では Φc-j や Φc-l は Φc-i , j , k よりも必ず大きいが,被計測磁界方向の成分は小さくなる.
Magnetic field, Hc-j and Hc-l are Hc-i,
From Fig. 7, it can be seen that the permeability decreases as the magnetic field increases. Therefore, the magnetic flux in FIG.
And Φc-l are proportionally smaller than Hc-i, k, and m with respect to Hc-j and Hc-l. Therefore, the magnetic field component of the magnetic flux Φc-j or Φc-l is smaller than Φc-i, j, k. In other words, in absolute values, Φc-j and Φc-l are always larger than Φc-i, j, k, but the components in the direction of the measured magnetic field are small.

図6の右寄りに磁束のベクトルを抜き出して描いた.磁束の被計測磁界方向成分は,時刻 j や l では時刻 i , k ,
m の時より ΔΦx だけ小さくなる.この被計測磁界方向成分の磁束の大きさを時刻 i から時刻 m まで連続的に描くと,同磁束ベクトル図の下方に描いた正弦波状になる.この正弦波状の波形を励磁磁束の波形と比較すると,周波数が2倍になっている.この被計測磁界方向の磁束の変化は,検出コイル3と鎖交する磁束成分であり,電磁誘導により検出コイル3に起電力を生じる.
The magnetic flux vector is extracted and drawn on the right side of FIG. The measured magnetic field direction component of the magnetic flux is the time i, k,
It is smaller by ΔΦx than m. When the magnitude of the magnetic flux of the measured magnetic field direction component is drawn continuously from time i to time m, it becomes a sine wave shape drawn below the magnetic flux vector diagram. When this sinusoidal waveform is compared with the excitation magnetic flux waveform, the frequency is doubled. This change in magnetic flux in the direction of the magnetic field to be measured is a magnetic flux component interlinking with the detection coil 3, and an electromotive force is generated in the detection coil 3 by electromagnetic induction.

この被計測磁界方向の磁束の変化については,Hx = 0 のとき,すなわち被計測電流 Ix = 0 のときには絶対値も0であり当然変化もない.被計測電流 Ix が少しずつ大きくなれば被計測磁界 Hx も同様に大きくなり,被計測磁界方向の磁束の変化も徐々に大きくなる.つまり被計測電流 Ix の大きさに比例した起電力が検出コイル3に生じることになり,その出力で被計測電流
Ix の大きさを知ることができる.
Regarding the change of the magnetic flux in the direction of the measured magnetic field, when Hx = 0, that is, when the measured current Ix = 0, the absolute value is also 0 and naturally does not change. As the measured current Ix increases gradually, the measured magnetic field Hx increases as well, and the change in magnetic flux in the measured magnetic field direction gradually increases. In other words, an electromotive force proportional to the magnitude of the measured current Ix is generated in the detection coil 3, and the output of the measured current
You can know the size of Ix.

さらに,被計測電流 Ix が反対向きだった場合は,前記の被計測磁界方向の磁束の変化は,変化の向きが反対になり,検出コイル3に誘起する起電力も正と負が反転する,したがって,この極性によって被計測電流 Ix の向きを計測することができる.すなわち検出コイル3に誘起される起電力の大きさから被計測電流 Ix の大きさがわかり,同じく Ie に対する位相から被計測電流 Ix の向きがわかる.検出コイル3に誘起される起電力の大きさと位相を同時に検出する手段の一つとして, Ie の位相を参照信号とする同期検波があるが,これは公知の技術である.   Further, when the measured current Ix is in the opposite direction, the change in the magnetic flux in the measured magnetic field direction is reversed, and the electromotive force induced in the detection coil 3 is reversed between positive and negative. Therefore, the direction of the measured current Ix can be measured by this polarity. In other words, the magnitude of the measured current Ix is known from the magnitude of the electromotive force induced in the detection coil 3, and the direction of the measured current Ix is also known from the phase relative to Ie. As one of means for simultaneously detecting the magnitude and phase of the electromotive force induced in the detection coil 3, there is synchronous detection using the phase of Ie as a reference signal, which is a known technique.

本発明に使用する磁性流体について説明する.まず,固体の磁性材には保持力の強い硬磁性材と保持力の弱い軟磁性材があり,硬磁性材は永久磁石や磁気記憶用に用いられ,軟磁性材はトランスやモータのヨークなどに用いられる.いずれも磁気ヒステリシスがある.これらの磁性材のB−H特性は磁性材により個性があり,単純な関数で表現することはできない.これに対して,磁性流体は超常磁性材とよばれ,磁気ヒステリシスが無く,そのB−H特性は図7に示したようになり,ランジュバン関数で明確に表すことができる.したがって磁性流体を使うと数学的演算を利用できて,マイクロコンピュータやデジタル・シグナル・プロセッサでデジタル信号処理をするのに向いている.   The magnetic fluid used in the present invention will be described. First, solid magnetic materials include hard magnetic materials with strong retention and soft magnetic materials with low retention. Hard magnetic materials are used for permanent magnets and magnetic storage, and soft magnetic materials are used for transformers, motor yokes, etc. Used for. Both have magnetic hysteresis. The BH characteristics of these magnetic materials have individuality depending on the magnetic material, and cannot be expressed by simple functions. On the other hand, the magnetic fluid is called a superparamagnetic material and has no magnetic hysteresis, and its BH characteristic is as shown in FIG. 7 and can be clearly expressed by a Langevin function. Therefore, the use of magnetic fluid allows the use of mathematical operations and is suitable for digital signal processing by a microcomputer or a digital signal processor.

よく利用されている磁性流体は,強磁性ナノ粒子(例えば大きさが 10[ nm ]程度のマグネタイト)を分散液(たとえば油や水など)に分散されている.磁性材のナノ粒子は界面活性剤を用いて凝集しないようにもしてあるが,磁性材が小さいためにブラウン運動で常に撹拌され,重力や通常の強さの磁界では沈殿や分離をしない.本発明に用いる磁性流体はこのような特性を持っているのもであれば,磁性材の種類や分散液の種類は問わない.また,塩化鉄(III)酸1-ブチル-3-メチル-イミダゾリウムのような磁性イオン液体でもよい.このように本発明では実施時に液体様の磁性材であるものをまとめて代表的に磁性流体と呼んでいる.   Commonly used magnetic fluids are ferromagnetic nanoparticles (eg, magnetite with a size of about 10 nm) dispersed in a dispersion (eg, oil or water). The nanoparticles of the magnetic material are made not to aggregate by using a surfactant, but because the magnetic material is small, it is constantly stirred by Brownian motion, and does not precipitate or separate by gravity or a magnetic field of normal strength. As long as the magnetic fluid used in the present invention has such characteristics, the type of magnetic material and the type of dispersion liquid are not limited. Magnetic ionic liquids such as 1-butyl-3-methyl-imidazolium iron (III) chloride may also be used. Thus, in the present invention, liquid-like magnetic materials at the time of implementation are collectively referred to as magnetic fluids.

図1は本発明の実施例である.この実施例の図に基づき試作をして特性を採った.図8はその特性グラフである.ただし,磁気コア1の断面は円形ではなく四角形にした.図8の特性グラフは縦軸が出力電圧 Vout で 横軸が被計測電流 Ix である.この特性は被計測電流 Ix の電流値を 0[ A ]から 100[ A ]まで上げて 0[ A ]に戻し,次に反対向きに 100[
A ]まで上げて再び 0[ A ]まで戻したときのセンサの出力を X-Y レコーダで記録したものである.被計測電流 Ix の変化速度は前記の一巡に約10秒かけた.
FIG. 1 shows an embodiment of the present invention. Based on this example, we made a prototype and took the characteristics. Figure 8 shows the characteristic graph. However, the cross section of the magnetic core 1 is not circular but rectangular. In the characteristic graph of Fig. 8, the vertical axis is the output voltage Vout and the horizontal axis is the measured current Ix. This characteristic increases the current value of the measured current Ix from 0 [A] to 100 [A] and returns it to 0 [A].
The output of the sensor was recorded with an XY recorder when it was raised to [A] and returned to [A] again. The rate of change of the measured current Ix took about 10 seconds to complete the cycle.

この特性を得た実施例の仕様は次の通りである.磁気コア1の断面は直径方向が 8[ mm ],X方向が 15[ mm ]の四角形で,このほぼ中央に励磁コイル2がある.この磁気コア1の内径は 19[ mm ]で,外径は 35[ mm ]である.この磁気コア1を保形するコア外殻4は壁の厚さを約1.5[ mm ]である.コイルの巻数は励磁コイル2が約 50 回,検出コイル3が約 700 回である.   The specifications of the example that obtained this characteristic are as follows. The cross section of the magnetic core 1 is a square of 8 [mm] in the diameter direction and 15 [mm] in the X direction. The magnetic core 1 has an inner diameter of 19 [mm] and an outer diameter of 35 [mm]. The core shell 4 that holds the magnetic core 1 has a wall thickness of about 1.5 mm. The number of coil turns is about 50 for excitation coil 2 and about 700 for detection coil 3.

検出コイル3から出力される電圧は,励磁電流 Ie の周波数である励磁周波数 fe の2倍で励磁周波数 fe に同期している.そこで,励磁周波数 fe に同期したその2倍の周波数の信号を参照信号としてロックインアンプで同期検波を行った.これによって,被計測電流 Ix の方向と大きさを計測することができ,図8に示した特性を得ることができた.なお励磁電流 Ie を,直流成分と交流成分とを含む脈流にして,励磁電流 Ie の方向が反転しないようにすると,検出コイル3に誘導される起電力は励磁周波数 fe の2倍にはならず,励磁周波数 fe と同じになる.このようにすると励磁周波数 fe で同期検波ができるメリットがあるが,直流電流を流す電力が必要になるデメリットもある.   The voltage output from the detection coil 3 is synchronized with the excitation frequency fe at twice the excitation frequency fe, which is the frequency of the excitation current Ie. Therefore, synchronous detection was performed with a lock-in amplifier using a signal of twice the frequency synchronized with the excitation frequency fe as a reference signal. As a result, the direction and magnitude of the measured current Ix could be measured, and the characteristics shown in Fig. 8 were obtained. If the exciting current Ie is made into a pulsating flow including a direct current component and an alternating current component so that the direction of the exciting current Ie is not reversed, the electromotive force induced in the detection coil 3 is not twice the exciting frequency fe. It is the same as the excitation frequency fe. This has the advantage that synchronous detection can be performed at the excitation frequency fe, but it also has the disadvantage of requiring power to pass DC current.

図9に,コア部に磁気ギャップ5を設けた実施例の一部切開図を示した.この図は磁気ギャプ5を説明するものであり,コイルについては図示していない.また,図9のコア外殻4は矩形を基調とした形状にしているが,磁気ギャップ5とこの形状とは無関係である.   FIG. 9 shows a partial cutaway view of an embodiment in which a magnetic gap 5 is provided in the core portion. This figure explains the magnetic gap 5, and the coil is not shown. The core outer shell 4 in FIG. 9 has a shape based on a rectangle, but the magnetic gap 5 is not related to this shape.

磁気ギャップ5は,磁気コア1に発生する被計測磁界 Hx による磁束の磁路を非磁性体によって遮るように設け,被計測磁界 Hx 方向の磁気抵抗を高めるようにしている.被計測磁界 Hx 方向の磁気抵抗が高まれば,磁気コア1に発生する被計測磁界 Hx による磁束は,磁気ギャップ5がない場合に比べて小さくなる.本発明に限らず,多くのセンサは計測できる値に上限がある.図8に示した本発明の実施例1の特性では,被計測電流 Ix が 50[ A ]を超える辺りから感度が徐々に下がっているのがわかる.この傾向から 100[ A ]以上ではさらに感度が低下することが容易に推測でき,直線性の改善対策を施しても限界がある.そこで,前記の磁気ギャップ5を設けて磁気コア内に発生する磁束を小さくし,励磁コイル2や検出コイル3から見た見かけ上の被計測電流 Ix を小さくする.つまり,磁気ギャップ5を設けると,磁気ギャップ5がない場合に比べてより大きな電流を計測できるようになる.前記の磁気ギャップ5はその厚さや配置する数により,目的の効果を制御できる.   The magnetic gap 5 is provided so as to block the magnetic path of the magnetic flux generated by the measured magnetic field Hx generated in the magnetic core 1 by a non-magnetic material so as to increase the magnetic resistance in the measured magnetic field Hx direction. If the magnetic resistance in the direction of the measured magnetic field Hx increases, the magnetic flux generated by the measured magnetic field Hx in the magnetic core 1 becomes smaller than that without the magnetic gap 5. Not only the present invention, but many sensors have an upper limit on measurable values. In the characteristics of Example 1 of the present invention shown in FIG. 8, it can be seen that the sensitivity gradually decreases when the measured current Ix exceeds 50 [A]. From this tendency, it can be easily estimated that the sensitivity decreases further at 100 [A] or more, and there is a limit even if measures to improve linearity are taken. Therefore, the magnetic gap 5 is provided to reduce the magnetic flux generated in the magnetic core, and the apparent measured current Ix as seen from the exciting coil 2 and the detecting coil 3 is reduced. In other words, when the magnetic gap 5 is provided, a larger current can be measured than when the magnetic gap 5 is not provided. The desired effect can be controlled by the thickness and the number of the magnetic gaps 5 arranged.

図10に,2個のセンサユニットを用いてクランプ式にした実施例の一部を切開した説明図を示す.ここで言う「センサユニット」とは,磁性流体で構成した磁気コアと,被計測電流によってその磁気コアに生じる磁束に平行な電流ベクトルを持つように配置した励磁コイルとを有し,この励磁コイルに交流成分を含む電流を流し,さらに前記磁束と鎖交するように検出コイルを巻いた特徴を満たした一つの系である.   FIG. 10 shows an explanatory view in which a part of the clamp-type embodiment is cut using two sensor units. The “sensor unit” mentioned here has a magnetic core made of a magnetic fluid and an excitation coil arranged so as to have a current vector parallel to the magnetic flux generated in the magnetic core by the current to be measured. This is a system that satisfies the features of passing a current containing an AC component to the coil and winding a detection coil so as to interlink with the magnetic flux.

このセンサユニットの磁気コア1が被計測電流 Ix を環状に取巻いた場合は実施例1になるが,磁気コア1が環状にならずに端部を持った場合は図10に示したセンサユニット UA やセンサユニット UB になる.センサユニットの端部は実施例2で示した磁気ギャップ5が極端に広がったものとトポロジー的に同じである.   When the magnetic core 1 of this sensor unit surrounds the current Ix to be measured in an annular shape, the first embodiment is obtained, but when the magnetic core 1 does not have an annular shape but has an end, the sensor unit shown in FIG. It becomes UA and sensor unit UB. The end of the sensor unit is topologically the same as the one in which the magnetic gap 5 shown in Example 2 is extremely wide.

図10の実施例はセンサユニットを2個連接することにより被計測電流 Ix を取巻く環状を形成するようになっている.これは切断が困難な導体6に流れる電流を計測する場合に便利であり,一般的にクランプ式と呼ばれているものである.導体6が例えば太いパイプラインで,そこに流れる防食電流を計測しようとする装置の場合にはセンサユニットの数を増やし,一個のセンサユニットを携行しやすい大きさにすることもできる.   In the embodiment of FIG. 10, two sensor units are connected to form a ring surrounding the measured current Ix. This is convenient for measuring the current flowing through the conductor 6 which is difficult to cut, and is generally called a clamp type. For example, in the case where the conductor 6 is a thick pipeline and the device is intended to measure the anticorrosion current flowing therethrough, the number of sensor units can be increased so that one sensor unit can be easily carried.

図10は2個のセンサユニットで構成しているが,このセンサユニットのどちらか一方を磁路ユニットにしても良い.「磁路ユニット」とは,少なくとも1個のセンサユニットと連接して,そのセンサユニットに被計測磁界 Hx による磁束を誘導するもので,磁性材によって成り,基本的にはセンサユニットと協調して環状の磁路を形成するように連接する.必要に応じて磁路を環状にせずに磁気ギャップ5にすることや,導体6を出し入れする開口部にしても良い.   Although FIG. 10 is composed of two sensor units, either one of these sensor units may be a magnetic path unit. A "magnetic path unit" is a unit that is connected to at least one sensor unit and induces a magnetic flux from the measured magnetic field Hx to that sensor unit. It consists of a magnetic material and basically cooperates with the sensor unit. They are connected to form an annular magnetic path. If necessary, the magnetic path may not be formed in an annular shape but may be a magnetic gap 5 or may be an opening through which the conductor 6 is taken in and out.

図10に示した実施例は半円形のセンサユニット2個から成り,これらを連接することにより円形の環状磁路を成している.図10では前記2個のセンサユニットを接触させずに少し離して描いているが,これは図を解りやすくするためであり,実際に使用する際は接触するまで近づけて使用するのが基本である.この2個のセンサユニットの連接部分は磁気コア終端板7からなりこれはコア外殻4の一部分である.この連接部分はコア外殻4の中でも被計測磁界による磁束が貫通する特殊な部分であり,この磁気コア終端板7の材質は検出性能に大きな影響をおよぼす.   The embodiment shown in FIG. 10 is composed of two semicircular sensor units, which are connected to form a circular annular magnetic path. In FIG. 10, the two sensor units are drawn slightly apart from each other without being in contact with each other, but this is for easy understanding of the figure. is there. The connecting part of the two sensor units is composed of a magnetic core end plate 7, which is a part of the core outer shell 4. This connecting part is a special part in the core shell 4 through which the magnetic flux due to the magnetic field to be measured penetrates, and the material of the magnetic core end plate 7 has a great influence on the detection performance.

磁気コア終端板7の材質を非磁性材にした場合は磁気ギャップ5の機能を呈し,より大きな電流を計測する際には好ましい.一方,感度を高く保ちたい場合は磁性材にすることができる.例えばフェライト材やパーマロイ材などがある.この磁気コア終端板7を磁性材にするとその磁性材の残留磁束が少なからずオフセットを発生する.よって磁気コア終端板7はできるだけ薄くする方が好ましい.また,ここを通過する磁束は励磁周波数 fe に起因する変動磁束である.したがって磁気コア終端板7の面内にうず電流が発生してエネルギーを消費し結果的には感度の低下を招く.したがって電気抵抗の大きなフェライトなどは有望である.しかし,より薄くするために機械的強度に視点をおくとパーマロイや珪素鋼板などのほうが良い場合も有る.これらの選択は実施目的により選択されるべきものである.   When the magnetic core end plate 7 is made of a non-magnetic material, it exhibits the function of the magnetic gap 5 and is preferable when measuring a larger current. On the other hand, if you want to keep the sensitivity high, you can use a magnetic material. Examples include ferrite materials and permalloy materials. If the magnetic core end plate 7 is made of a magnetic material, the magnetic material has a small residual magnetic flux and generates an offset. Therefore, it is preferable to make the magnetic core end plate 7 as thin as possible. The magnetic flux passing through here is a fluctuating magnetic flux due to the excitation frequency fe. Therefore, an eddy current is generated in the plane of the magnetic core termination plate 7 and energy is consumed, resulting in a decrease in sensitivity. Therefore, ferrite with high electrical resistance is promising. However, there are cases where permalloy or silicon steel plate is better when looking at mechanical strength to make it thinner. These choices should be selected according to the purpose of implementation.

本発明の電流検出原理では,絶対にオフセットが生じないこと,巨大電流に曝されてもヒステリシスが生じないこと,製造・輸送・保管等の非稼働時に強磁界に曝されても磁化が残留しないこと,など,高い信頼性を得るために必要な課題を原理的に解決しており,従来の電流センサがなし得なかったこの特性は,今日押し進められている直流電力利用に大きな貢献をすることが期待される.   In the current detection principle of the present invention, there is absolutely no offset, no hysteresis occurs even when exposed to a huge current, and no magnetization remains even when exposed to a strong magnetic field during non-operation such as manufacturing, transportation, storage, etc. The characteristics that have been solved in principle to achieve high reliability, etc., which could not be achieved by conventional current sensors, will greatly contribute to the use of DC power being promoted today. There is expected.

人類が直面している大きな課題に,二酸化炭素や地球温暖化の問題,エネルギー不足の問題などがある.これらの解決策として,再生可能エネルギーの活用・エネルギー変換の集約による効率の向上と廃棄物質の散乱廃棄の抑制,等々,様々な知恵が絞られている.具体的には,太陽光発電や風力発電の利用,自動車の電動化,燃料電池の利用,直流送電や直流配電の推進,などがあげられる.ところがこれらは何れも直流電力を利用している.風力発電のように交流で発電する場合でも蓄電や同期を取るために一度直流に変換していることが多い.   Major issues facing humanity include carbon dioxide, global warming, and energy shortages. These solutions focus on various wisdoms such as improving the efficiency by utilizing renewable energy and consolidating energy conversion, and suppressing the scattering of waste materials. Specific examples include the use of solar and wind power generation, motorization of automobiles, the use of fuel cells, and the promotion of direct current power transmission and direct current distribution. However, they all use DC power. Even when generating electricity with alternating current, such as wind power generation, it is often converted to direct current once for storage and synchronization.

このような直流電力を安全で効率よく利用するためには,より高精度な制御が必要である.高精度な制御をするには制御対象の状態を高精度で把握する必要があり,それがすなわち高精度なセンサを必要とするゆえんである.従来より一部の産業では直流電力が使われていたが,装置に頼る安全性やエネルギー効率はさほど重んじられなかった.なぜならば,従来から直流電力をよく使う産業としては,電車・メッキ工場・電気精錬・有線電話,等があったが,使用にあたっては専門の技術者が管理し常に監視しながら使っているからである.しかし,昨今の直流電力利用では状況が変わり,不特定多数の素人が利用するにも拘らず,リチュウムイオン二次電池のように高い精度で制御しなければ危険な製品が使われるなど,装置による安全性の確保が極めて重要で,従来に無く高精度な制御が必要とされている.このように状況にあるにも拘らず,直流電流をメンテナンスフリーで高精度に測られるセンサはなかった.   In order to use such DC power safely and efficiently, more precise control is required. In order to perform high-precision control, it is necessary to grasp the state of the controlled object with high accuracy, which is why a high-precision sensor is required. In some industries, DC power has been used in some industries, but safety and energy efficiency that depend on equipment have not been much valued. This is because the industry that has often used DC power has been trains, plating factories, electric refining, and wired telephones. is there. However, the situation changes with the recent use of DC power, and even though it is used by an unspecified number of amateurs, dangerous products such as lithium ion secondary batteries are used unless they are controlled with high accuracy. Ensuring safety is extremely important, and unprecedented high-precision control is required. Despite this situation, there was no sensor that could measure DC current with high maintenance accuracy.

現在,二次電池の充電量を監視するための充放電電流を高い信頼性で測られるセンサはない.ここで求められる電流センサの特徴はオフセットがないことである.充電量は充放電電流を積算して電荷を求めることにより算出している.この際,オフセットは常に積算され時間とともに大きな誤差に拡大する.このオフセットが常に一定の値であれば補正は容易であるが,実際には残留磁化に起因するものであるために予測できない変化をする.一方,センサのゲイン誤差は充電と放電で相殺されるために,再現性さえあれば全く問題にはならない.それは,例えば100[ A ]を計測した際に,センサの出力を1[ V ]にするのか,2.5[ V ]にするのか,4[ V ]にするのか,それは任意であり物理的に意味のないことだからである.しかし,オフセットの有無はそうではない.   Currently, there is no sensor that can reliably measure the charge / discharge current for monitoring the charge of the secondary battery. The feature of the current sensor required here is that there is no offset. The amount of charge is calculated by integrating the charge / discharge current and calculating the charge. In this case, the offset is always accumulated and expands to a large error with time. If this offset is always a constant value, correction is easy, but in practice it is caused by remanent magnetization and changes are unpredictable. On the other hand, the gain error of the sensor is offset by charging and discharging, so there is no problem as long as reproducibility exists. For example, when measuring 100 [A], whether the sensor output is 1 [V], 2.5 [V], or 4 [V], it is arbitrary and physically meaningful Because there is nothing. However, the presence or absence of an offset is not.

さらに,従来家庭で使用しているのは交流電力であるが,その使用にあたっては必ず漏電ブレーカを付けなければならないことになっている.しかし,直流電力ではまだそのような制約はない.昨今急速に増え続けている太陽光発電設備を始め,電気自動車の充電装置や燃料電池など,直流漏電の可能性は勿論あり,危険であることは言うまでもないのに,直流漏電を非接触で安価に検出できるセンサがないために,直流漏電ブレーカ設置の義務はなく,野放し状態のままで直流電力設備が一般家庭に普及し始めている.これは極めて危険な状態であり,一刻も早い対応が必要である.漏電検出では,数[ mA ]を確実に検出する必要があるが,漏電検出をしたい直流電路では,突入電流などアンバランスな電流が時折数十[ A ]も流れ残留磁化が発生するために,従来の電流センサでは残留磁化によるオフセットに埋れて,数[ mA ]は計測できない.その点,本発明は根本的にオフセットが無く計測が可能である.   Furthermore, the AC power used at home has been required to be equipped with an earth leakage breaker. However, DC power does not have such restrictions yet. There is of course the possibility of DC leakage, such as solar power generation equipment, which has been increasing rapidly in recent years, and charging devices and fuel cells for electric vehicles. Needless to say, DC leakage is non-contact and inexpensive. Because there is no sensor that can detect this, there is no obligation to install a DC leakage breaker, and DC power equipment has begun to spread to general households in an open state. This is an extremely dangerous situation and needs to be addressed as soon as possible. In earth leakage detection, it is necessary to reliably detect several [mA]. However, in a DC circuit that wants to detect earth leakage, unbalanced current such as inrush current occasionally flows for several tens [A], and residual magnetization occurs. With a conventional current sensor, the number [mA] cannot be measured because it is buried in an offset due to residual magnetization. In this respect, the present invention can measure without any offset.

このような社会の現状を鑑みると,本発明は直流大電流の安定した計測が可能で,産業上の利用可能性は明確であるばかりか,早急の供給が必要である.   In view of the current state of society, the present invention can stably measure a large DC current, and the industrial applicability is clear, and an immediate supply is required.

1 磁気コア
2 励磁コイル
3 検出コイル
4 コア外殻
5 磁気ギャップ
6 導体
7 磁気コア終端板
Ix 被計測電流
Ie 励磁電流
H 磁界
Hc 合成磁界
Hx 被計測磁界
He 励磁磁界
B 磁束密度
Φc 合成磁束
ΔΦx 磁束の差分
μ 透磁率
i,j,k,l,m 時刻
Vout 検出コイルの出力電圧
UA,UB センサユニット
X,Y,Z 座標軸
DESCRIPTION OF SYMBOLS 1 Magnetic core 2 Excitation coil 3 Detection coil 4 Core outer shell 5 Magnetic gap 6 Conductor 7 Magnetic core termination plate
Ix Current to be measured
Ie excitation current
H magnetic field
Hc synthetic magnetic field
Hx Magnetic field to be measured
He excitation magnetic field
B Magnetic flux density Φc Composite magnetic flux ΔΦx Magnetic flux difference μ Permeability i, j, k, l, m Time
Output voltage of Vout detection coil
UA, UB sensor unit X, Y, Z coordinate axes

Claims (4)

磁性流体から成る磁気コアと,被計測電流によってその磁気コアに生じる磁束に平行な電流ベクトルを持つように配置した励磁コイルとを有し,この励磁コイルに交流成分を含む電流を流し,さらに前記磁束と鎖交するように検出コイルを巻いたことを特徴とする直交励磁型電流センサ. A magnetic core made of a magnetic fluid, and an exciting coil arranged so as to have a current vector parallel to the magnetic flux generated in the magnetic core due to the current to be measured. An orthogonal excitation type current sensor characterized in that a detection coil is wound so as to interlink with magnetic flux. 環状の励磁コイルと,この励磁コイルを覆う保形容器であるコア外殻と,このコア外殻をトロイダル巻き状に巻回した検出コイルとを有し,且つ前記コア外殻内に磁性流体が充填されていることを特徴とする請求項1の直交励磁型電流センサ.An annular excitation coil, a core outer shell that is a shape-holding container covering the excitation coil, and a detection coil in which the core outer shell is wound in a toroidal shape, and a magnetic fluid is contained in the core outer shell. The orthogonal excitation type current sensor according to claim 1, wherein the orthogonal excitation type current sensor is filled. コア外殻内に充填された磁性流体から成る環状の磁気コアの磁路の一部が,非磁性材から成る磁気ギャップを持つことを特徴とする請求項2の直交励磁型電流センサ. 3. The orthogonal excitation type current sensor according to claim 2, wherein a part of the magnetic path of the annular magnetic core made of a magnetic fluid filled in the core outer shell has a magnetic gap made of a nonmagnetic material. 前記磁気コアと,前記励磁コイルと,前記検出コイルと,を備えたセンサユニットを,少なくとも1個有し,さらにこれと同様のセンサユニットかまたは磁性材による磁路ユニットのどちらか一方か,あるいは両方を前記センサユニットに連接して被計測電流を環状に取巻くことができるように構成した請求項1から請求項3の直交励磁型電流センサ. At least one sensor unit including the magnetic core, the excitation coil, and the detection coil, and either the same sensor unit or a magnetic path unit made of a magnetic material, or 4. An orthogonal excitation type current sensor according to claim 1, wherein both are connected to the sensor unit so that the current to be measured can be surrounded in an annular shape.
JP2012020601A 2012-02-02 2012-02-02 Orthogonal excitation type current sensor Expired - Fee Related JP6162361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020601A JP6162361B2 (en) 2012-02-02 2012-02-02 Orthogonal excitation type current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020601A JP6162361B2 (en) 2012-02-02 2012-02-02 Orthogonal excitation type current sensor

Publications (2)

Publication Number Publication Date
JP2013160549A JP2013160549A (en) 2013-08-19
JP6162361B2 true JP6162361B2 (en) 2017-07-12

Family

ID=49172927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020601A Expired - Fee Related JP6162361B2 (en) 2012-02-02 2012-02-02 Orthogonal excitation type current sensor

Country Status (1)

Country Link
JP (1) JP6162361B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414780B2 (en) * 2015-02-25 2018-10-31 パナソニックIpマネジメント株式会社 Current detector
JP7111347B2 (en) * 2018-06-08 2022-08-02 地方独立行政法人東京都立産業技術研究センター Magnetic field detection coil and EMI antenna

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023278A (en) * 1975-09-05 1977-05-17 Hoyt Charles D Two axis attitude sensor
JPH1010161A (en) * 1996-06-20 1998-01-16 Sumitomo Special Metals Co Ltd Dc current sensor
JPH10123180A (en) * 1996-10-23 1998-05-15 Sumitomo Special Metals Co Ltd Dc current sensor
JP4209114B2 (en) * 2002-01-21 2009-01-14 株式会社産学連携機構九州 Magnetic field sensor
JP2005024356A (en) * 2003-07-01 2005-01-27 Nikon Corp Magnetometric sensor
JP2008145219A (en) * 2006-12-08 2008-06-26 Fdk Corp Current sensor
JP2009063368A (en) * 2007-09-05 2009-03-26 Nippon Steel Engineering Co Ltd Current measuring apparatus and current measuring method
JP2010266340A (en) * 2009-05-15 2010-11-25 Hioki Ee Corp Current sensor
JP2011221004A (en) * 2010-03-25 2011-11-04 Kyocera Corp Magnetic sensor and current sensor
JP2012063331A (en) * 2010-09-20 2012-03-29 Aisan Ind Co Ltd Current sensor

Also Published As

Publication number Publication date
JP2013160549A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5560290B2 (en) Apparatus and method for monitoring state of charge, LFP battery including battery state of charge sensor
US20120194198A1 (en) Sensor arrangements for measuring magnetic susceptibility
US5523677A (en) DC current sensor
CN103308743B (en) Direct current metering device
Suslov et al. Smart Grid: A new way of receiving primary information on electric power system state
CN103174746A (en) Active magnetic bearing system and control circuit
Dewi et al. Design and development of DC high current sensor using Hall-Effect method
CN107202966A (en) The measuring method and system of a kind of alternate stray field of Transformer Winding
CN109946497A (en) Non-contact electric current measuring
JP6162361B2 (en) Orthogonal excitation type current sensor
Kato et al. Magnet temperature estimation methodology by using magnet flux linkage observer for variable leakage flux IPMSM
JP5449222B2 (en) DC leakage detection device
JP2024051024A (en) Sensors, protection circuit breakers, charging cables and charging stations
Mirzaei et al. A novel structure of an eddy current sensor for speed measurement of rotating shafts
CN210803568U (en) Alternating current sensor
JP2021063711A (en) Double solenoid magnetic fluid magnetic field sensor and double solenoid magnetic fluid current sensor
KR102330162B1 (en) current sensor
US9816888B2 (en) Sensor and method for detecting a position of an effective surface of the sensor
CN103513186A (en) Method for testing self-discharge of lithium ion battery
JP2002022774A (en) Magnetic-field-controlled balancing current sensor
Li et al. Eddy-current loss measurement of permanent magnetic material at different frequency
CN106125021B (en) The measurement method of permeability magnetic material characteristic under a kind of quadrature bias magnetic field
JP2013238500A (en) Inclined core type current sensor
Li et al. Impact of the winding area of enameled wire on packaging performance of a closed loop Hall effect current sensor
CN106291431A (en) A kind of tracking accuracy measuring method of current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R150 Certificate of patent or registration of utility model

Ref document number: 6162361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees