JP6161967B2 - Short circuit element and circuit using the same - Google Patents

Short circuit element and circuit using the same Download PDF

Info

Publication number
JP6161967B2
JP6161967B2 JP2013125079A JP2013125079A JP6161967B2 JP 6161967 B2 JP6161967 B2 JP 6161967B2 JP 2013125079 A JP2013125079 A JP 2013125079A JP 2013125079 A JP2013125079 A JP 2013125079A JP 6161967 B2 JP6161967 B2 JP 6161967B2
Authority
JP
Japan
Prior art keywords
electrode
short
circuit element
melting point
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013125079A
Other languages
Japanese (ja)
Other versions
JP2014179309A (en
Inventor
吉弘 米田
吉弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013125079A priority Critical patent/JP6161967B2/en
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to TW103103891A priority patent/TWI594285B/en
Priority to PCT/JP2014/052634 priority patent/WO2014123139A1/en
Priority to CN201480007625.9A priority patent/CN105027252B/en
Priority to KR1020157024285A priority patent/KR102115999B1/en
Publication of JP2014179309A publication Critical patent/JP2014179309A/en
Priority to US14/819,061 priority patent/US9953792B2/en
Priority to US14/819,328 priority patent/US9953793B2/en
Priority to US14/818,862 priority patent/US9899179B2/en
Application granted granted Critical
Publication of JP6161967B2 publication Critical patent/JP6161967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基板上に発熱抵抗体とヒューズエレメントを設けた短絡素子を用いて、電子機器内の異常部品のみを排除する短絡素子及びこれを用いた回路に関する。   The present invention relates to a short-circuit element that eliminates only abnormal parts in an electronic device by using a short-circuit element having a heating resistor and a fuse element provided on a substrate, and a circuit using the same.

充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。   Many secondary batteries that can be charged and used repeatedly are processed into battery packs and provided to users. Particularly in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.

この種の保護素子には、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行うものがある。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大な異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。   This type of protection element includes an overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, a lightning surge or the like is applied and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell, or excessively abnormal Even when the voltage is output, the battery pack and the electronic device must be protected from accidents such as ignition. Therefore, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used. .

このようなリチウムイオン二次電池等向けの保護回路の保護素子としては、特許文献1に記載されているように、電流経路上の第1の電極,発熱体に繋がる導体層,第2の電極間に亘って可溶導体を接続して電流経路の一部をなし、この電流経路上の可溶導体を、過電流による自己発熱、あるいは保護素子内部に設けた発熱体によって溶断するものがある。このような保護素子では、溶融した液体状の可溶導体を発熱体に繋がる導体層上に集めることにより電流経路を遮断する。   As a protection element of a protection circuit for such a lithium ion secondary battery or the like, as described in Patent Document 1, a first electrode on a current path, a conductor layer connected to a heating element, a second electrode Some fusible conductors are connected to form part of the current path, and the fusible conductor on the current path is melted by self-heating due to overcurrent or by a heating element provided inside the protective element. . In such a protection element, the molten liquid soluble conductor is collected on the conductor layer connected to the heating element, thereby interrupting the current path.

特開2010−003665号公報JP 2010-003665 A 特開2007−12381号公報JP 2007-12811 A

近年、バッテリとモーターを使用したHEV(Hybrid Electric Vehicle)やEV(Electric Vehicle)が急速に普及している。HEVやEVの動力源としては、エネルギー密度と出力特性からリチウムイオン二次電池が使用されるようになってきている。自動車用途では、高電圧、大電流が必要とされる。このため、高電圧、大電流に耐えられる専用セルが開発されているが、製造コスト上の問題から多くの場合、複数のバッテリセルを直列、並列に接続することで、汎用セルを用いて必要な電圧電流を確保している。   In recent years, HEV (Hybrid Electric Vehicle) and EV (Electric Vehicle) using a battery and a motor are rapidly spreading. As a power source for HEV and EV, a lithium ion secondary battery has been used from the viewpoint of energy density and output characteristics. In automobile applications, a high voltage and a large current are required. For this reason, dedicated cells that can withstand high voltages and large currents have been developed, but in many cases due to manufacturing cost problems, it is necessary to connect multiple battery cells in series and in parallel to use general-purpose cells. Secures the correct voltage and current.

ところで、高速移動中の自動車等では、急激な駆動力の低下や急停止は却って危険な場合があり、非常時を想定したバッテリ管理が求められている。例えば、走行中にバッテリーシステムの異常が起きた際にも、修理工場もしくは安全な場所まで移動するための駆動力、あるいはハザードランプやエアコン用の駆動力を供給できることが、危険回避上、好ましい。   By the way, in an automobile or the like moving at a high speed, sudden reduction in driving force or sudden stop may be dangerous, and battery management that assumes an emergency is required. For example, when a battery system abnormality occurs during traveling, it is preferable to supply driving force for moving to a repair shop or a safe place, or driving force for a hazard lamp or an air conditioner.

しかし、特許文献1のような複数のバッテリセルが直列に接続されたバッテリパックにおいては、充放電経路上にのみ保護素子を設けたような場合、バッテリセルの一部に異常が発生し保護素子を作動させると、バッテリパック全体の充放電経路が遮断されてしまい、これ以上、電力を供給することができない。   However, in a battery pack in which a plurality of battery cells as in Patent Document 1 are connected in series, when a protection element is provided only on the charge / discharge path, an abnormality occurs in a part of the battery cell, and the protection element When is operated, the charging / discharging path of the entire battery pack is interrupted, and no more power can be supplied.

また、特許文献2に記載されている短絡素子においては、電流電圧特性カーブによると、10V印加時の抵抗値が約17KΩと高く、オープン状態のLED素子を効率よくバイパスするには更に抵抗値を下げることが望まれる。   Further, in the short-circuit element described in Patent Document 2, according to the current-voltage characteristic curve, the resistance value when 10 V is applied is as high as about 17 KΩ, and the resistance value is further increased in order to bypass the open LED element efficiently. Lowering is desired.

そこで、本発明は、複数セルで構成されたバッテリパック内の異常バッテリセルのみを排除し、正常なバッテリセルを有効に活用できる保護素子において、バイパス経路を形成することができる短絡素子、およびこれを用いた回路を提供することを目的とする。   Therefore, the present invention eliminates only abnormal battery cells in a battery pack composed of a plurality of cells, and in a protective element that can effectively use normal battery cells, a short-circuit element that can form a bypass path, and the same An object of the present invention is to provide a circuit using this.

上述した課題を解決するために、本発明に係る短絡素子は、絶縁基板と、上記絶縁基板に形成された第1及び第2の発熱抵抗体と、上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、上記第4の電極に隣接して設けられた第5の電極と、上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、上記第2から上記第4の電極を経由して上記第5の電極に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2の電極と上記第4の電極との間、及び上記第4の電極と上記第5の電極との間の各上記電流経路を溶断する第2の可溶導体とを備え、上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡するものである。   In order to solve the above-described problem, a short-circuit element according to the present invention is provided adjacent to each other on an insulating substrate, first and second heating resistors formed on the insulating substrate, and the insulating substrate. The first and second electrodes, the third electrode provided on the insulating substrate adjacent to the first electrode, and electrically connected to the first heating resistor, and the insulation A fourth electrode provided on the substrate adjacent to the second electrode and electrically connected to the second heating resistor, and a fifth electrode provided adjacent to the fourth electrode. Between the first electrode and the first and third electrodes to form a current path, and by heating from the first heating resistor, the current between the first and third electrodes. A first soluble conductor that melts the path, and the second through fourth electrodes, Current path is formed by being provided across the electrodes, and by heating from the second heating resistor, between the second electrode and the fourth electrode, and between the fourth electrode and the above A second fusible conductor that melts each of the current paths between the first electrode and the fifth electrode, and is melted by heating from the first and second heating resistors, and the first and second electrodes The first electrode and the second electrode are short-circuited by the first and second soluble conductors agglomerated above.

また、本発明に係る短絡素子回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡されるものである。   The short-circuit element circuit according to the present invention includes a switch, a first fuse connected to one end of the switch, a first heating resistor connected to an open end of the first fuse, and the switch Second and third fuses connected in series to the open end of the first and second heating resistors connected to the connection point of the second and third fuses, and the second heating resistor The second and third fuses are blown by the heat generation of the first fuse, and the first fuse is blown by the heat generation of the first heating resistor, whereby the switch is short-circuited by the molten conductor of the first fuse. It is what is done.

また、本発明に係る補償回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点と接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子と、電子部品と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、上記第2、第3のヒューズと上記電子部品とを直列に接続して電流経路を構成し、上記スイッチと上記第1のヒューズとの接続点を上記電子部品の開放端にバイパスするように接続し、上記第1の発熱抵抗体の開放端に上記第1の制御素子を接続し、上記第2の発熱抵抗体の開放端に上記第2の制御素子を接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記電子部品の電流経路の遮断と、上記第1のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。   The compensation circuit according to the present invention includes a switch, a first fuse connected to one end of the switch, a first heating resistor connected to the open end of the first fuse, and the switch. A second and third fuse connected in series with the open end; and a second heating resistor connected to a connection point of the second and third fuses; The second and third fuses are blown by heat generation, and the first fuse is blown by heat generation of the first heating resistor, whereby the switch is short-circuited by the molten conductor of the first fuse. A short circuit element, an electronic component, a protective component that detects an abnormality of the electronic component and outputs an abnormal signal, and first and second control elements that operate in response to the abnormal signal of the protective component, The second and third fuses and the electronic unit Are connected in series so that a connection point between the switch and the first fuse is bypassed to an open end of the electronic component, and an open end of the first heating resistor is connected. The first control element is connected to the open end of the second heating resistor, and the second control element is connected to the open end of the second heating resistor. The first and second control elements operate to cut off the current path of the electronic component and short the switch in conjunction with the fusing of the first fuse, thereby forming a bypass current path.

また、本発明に係る短絡素子回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチと上記第1のヒューズとの接続点と接続された保護抵抗と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡されるものである。   The short-circuit element circuit according to the present invention includes a switch, a first fuse connected to one end of the switch, a first heating resistor connected to an open end of the first fuse, and the switch And a protective resistor connected to a connection point of the first fuse, a second and third fuse connected in series with the open end of the switch, and a connection point of the second and third fuses. A second heat generating resistor connected, the second and third fuses are blown by heat generated by the second heat generating resistor, and the first fuse is generated by heat generated by the first heat generating resistor. Is blown, the switch is short-circuited by the molten conductor of the first fuse.

また、本発明に係る補償回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチと上記第1のヒューズとの接続点と接続された保護抵抗と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子と、電子部品と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、上記第2、第3のヒューズと上記電子部品とを直列に接続して電流経路を構成し、上記保護抵抗の開放端を上記電子部品の開放端にバイパスするように接続し、上記第1の発熱抵抗体の開放端に上記第1の制御素子を接続し、上記第2の発熱抵抗体の開放端に上記第2の制御素子を接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記電子部品の電流経路の遮断と、上記第1のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。   The compensation circuit according to the present invention includes a switch, a first fuse connected to one end of the switch, a first heating resistor connected to an open end of the first fuse, and the switch. A protective resistor connected to the connection point with the first fuse, a second and third fuse connected in series with the open end of the switch, and a connection point between the second and third fuses The second heat generating resistor, the second and third fuses are blown by the heat generated by the second heat generating resistor, and the first fuse is heated by the heat generated by the first heat generating resistor. A short-circuit element in which the switch is short-circuited by the molten conductor of the first fuse by being melted, an electronic component, a protective component that detects an abnormality of the electronic component and outputs an abnormal signal, and the protective component Operates in response to an abnormal signal 1 and a second control element, the second and third fuses and the electronic component are connected in series to form a current path, and the open end of the protective resistor is connected to the open end of the electronic component Connect to bypass, connect the first control element to the open end of the first heating resistor, connect the second control element to the open end of the second heating resistor, When the electronic component is abnormal, the first and second control elements are operated in response to an abnormal signal from the protective component, and the current path of the electronic component is cut off and the first fuse is blown. The switch is short-circuited to form a bypass current path.

本発明によれば、第1、第2の発熱抵抗体からの加熱により溶融し、第1、第2の電極上に凝集した溶融導体によって、絶縁されていた第1の電極と第2の電極とが短絡することにより、新たなバイパス電流経路を形成することができる。   According to the present invention, the first electrode and the second electrode which are melted by heating from the first and second heating resistors and are insulated by the molten conductor aggregated on the first and second electrodes. Can be short-circuited to form a new bypass current path.

短絡素子を示す図であり、(A)は平面図、(B)は断面図である。It is a figure which shows a short circuit element, (A) is a top view, (B) is sectional drawing. 短絡素子の回路図である。It is a circuit diagram of a short circuit element. 短絡素子において、第2の可溶導体が先に溶融した状態を示す平面図である。In a short circuiting element, it is a top view showing the state where the 2nd soluble conductor melted first. 短絡素子を示す図であり、(A)は絶縁されていた第1、第2の電極が溶融導体によって短絡された状態を示す平面図であり、(B)は断面図である。It is a figure which shows a short circuit element, (A) is a top view which shows the state by which the insulated 1st, 2nd electrode was short-circuited by the molten conductor, (B) is sectional drawing. 短絡素子の変形例を示す断面図である。It is sectional drawing which shows the modification of a short circuit element. 短絡素子の変形例を示す断面図である。It is sectional drawing which shows the modification of a short circuit element. 短絡素子の変形例を示す断面図である。It is sectional drawing which shows the modification of a short circuit element. 本発明が適用された他の短絡素子を示す断面図であり、(A)は可溶導体の溶融前、(B)は可溶導体の溶融後の状態を示す。It is sectional drawing which shows the other short circuit element to which this invention was applied, (A) shows the state after melt | dissolution of a soluble conductor, (B) shows the state after melt | dissolution of a soluble conductor. 本発明が適用された他の短絡素子を示す平面図である。It is a top view which shows the other short circuit element to which this invention was applied. 短絡素子を用いたバッテリパックの回路図であり、(A)は正常時、(B)は異常発生時、(C)はバイパス電流経路が形成された状態を示す。It is a circuit diagram of the battery pack using a short circuit element, (A) is normal, (B) is abnormal, and (C) shows a state where a bypass current path is formed. 保護抵抗を備える短絡素子を示す平面図である。It is a top view which shows a short circuit element provided with protection resistance. 保護抵抗を備える短絡素子の回路図である。It is a circuit diagram of a short circuit element provided with protection resistance. 保護抵抗を備える短絡素子を用いたバッテリパックの回路図である。It is a circuit diagram of the battery pack using the short circuit element provided with a protective resistance.

以下、本発明が適用された保護素子について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, a protection element to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

[短絡素子]
図1(A)に短絡素子1の平面図、及び図1(B)に短絡素子1の断面図を示す。短絡素子1は、絶縁基板2と、絶縁基板2に設けられた第1の発熱抵抗体21及び第2の発熱抵抗体22と、絶縁基板2に、互いに隣接して設けられた第1の電極4及び第2の電極5(A1)と、第1の電極4と隣接して設けられるとともに、第1の発熱抵抗体21に電気的に接続された第3の電極6と、第2の電極5(A1)と隣接して設けられるとともに、第2の発熱抵抗体22に電気的に接続された第4の電極7(P1)と、第4の電極7(P1)に隣接して設けられる第5の電極31(A2)と、第1、第3の電極4,6間に亘って設けられることにより電流経路を構成し、第1の発熱抵抗体21からの加熱により、第1、第3の電極4,6間の電流経路を溶断する第1の可溶導体8と、第2の電極5(A1)から第4の電極7(P1)を経て第5の電極31(A2)に亘って設けられ、第2の発熱抵抗体22からの加熱により、第2、第4、第5の電極5(A1),7(P1),31(A2)間の電流経路を溶断する第2の可溶導体9とを備える。そして、短絡素子1は、絶縁基板2上に内部を保護するカバー部材10が取り付けられている。
[Short-circuit element]
FIG. 1A shows a plan view of the short-circuit element 1, and FIG. 1B shows a cross-sectional view of the short-circuit element 1. The short-circuit element 1 includes an insulating substrate 2, a first heating resistor 21 and a second heating resistor 22 provided on the insulating substrate 2, and a first electrode provided adjacent to the insulating substrate 2. 4 and the second electrode 5 (A1), the third electrode 6 provided adjacent to the first electrode 4 and electrically connected to the first heating resistor 21, and the second electrode 5 (A1) and the fourth electrode 7 (P1) electrically connected to the second heating resistor 22 and the fourth electrode 7 (P1). A current path is formed by being provided between the fifth electrode 31 (A2) and the first and third electrodes 4 and 6, and the first and second heating elements 21 are heated to heat the first and first electrodes. The first soluble conductor 8 that melts the current path between the three electrodes 4 and 6, and the second electrode 5 (A1) to the fourth electrode 7 (P ) Through the fifth electrode 31 (A2), and the second, fourth, and fifth electrodes 5 (A1), 7 (P1), 31 by heating from the second heating resistor 22 (A2) and a second soluble conductor 9 that melts the current path between the two. In the short-circuit element 1, a cover member 10 that protects the inside is attached on the insulating substrate 2.

絶縁基板2は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板2は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。なお、絶縁基板2は、裏面に外部端子12が形成されている。   The insulating substrate 2 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. In addition, the insulating substrate 2 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at which the fuse is blown. The insulating substrate 2 has external terminals 12 formed on the back surface.

第1、第2の発熱抵抗体21,22は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板2上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。   The first and second heat generating resistors 21 and 22 are conductive members that have a relatively high resistance value and generate heat when energized, and are made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 2 by patterning using a screen printing technique and firing.

また、第1、第2の発熱抵抗体21,22は、絶縁基板2上において絶縁層11に被覆されている。第1の発熱抵抗体21を被覆する絶縁層11上には、第1、第3の電極4,6が形成され、第2の発熱抵抗体22を被覆する絶縁層11上には、第2、第4、第5の電極5,7,31が形成されている。第1の電極4は、一方側において第2の電極5と隣接して形成されるとともに、絶縁されている。第1の電極4の他方側には第3の電極6が形成されている。第1の電極4と第3の電極6とは、第1の可溶導体8が接続されることにより導通され、短絡素子1の電流経路を構成する。また、第1の電極4は、絶縁基板2の側面に臨む第1の電極端子部4aに接続されている。第1の電極端子部4aは、スルーホールを介して絶縁基板2の裏面に設けられた外部端子12と接続されている。   The first and second heating resistors 21 and 22 are covered with an insulating layer 11 on the insulating substrate 2. First and third electrodes 4 and 6 are formed on the insulating layer 11 covering the first heating resistor 21, and the second electrode is formed on the insulating layer 11 covering the second heating resistor 22. , Fourth and fifth electrodes 5, 7, 31 are formed. The first electrode 4 is formed adjacent to the second electrode 5 on one side and insulated. A third electrode 6 is formed on the other side of the first electrode 4. The first electrode 4 and the third electrode 6 are brought into conduction when the first fusible conductor 8 is connected to form a current path of the short-circuit element 1. The first electrode 4 is connected to the first electrode terminal portion 4 a facing the side surface of the insulating substrate 2. The first electrode terminal portion 4a is connected to an external terminal 12 provided on the back surface of the insulating substrate 2 through a through hole.

また、第3の電極6は、絶縁基板2あるいは絶縁層11に設けられた第1の発熱体引出電極23を介して第1の発熱抵抗体21と接続されている。また、第1の発熱抵抗体21は、第1の発熱体引出電極23を介して、絶縁基板2の側縁に臨む第1の抵抗体端子部21aに接続されている。第1の抵抗体端子部21aは、スルーホールを介して、絶縁基板2の裏面に設けられた外部端子12と接続されている。   The third electrode 6 is connected to the first heating resistor 21 via the first heating element lead electrode 23 provided on the insulating substrate 2 or the insulating layer 11. Further, the first heating resistor 21 is connected to the first resistor terminal portion 21 a facing the side edge of the insulating substrate 2 through the first heating element lead-out electrode 23. The first resistor terminal portion 21a is connected to the external terminal 12 provided on the back surface of the insulating substrate 2 through a through hole.

第2の電極5(A1)の第1の電極4と隣接する一方側と反対の他方側には、第4の電極7(P1)が形成されている。また、第4の電極7(P1)の第2の電極5(A1)と隣接する一方側と反対の他方側には、第5の電極31(A2)が形成されている。第2の電極5(A1)、第4の電極7(P1)及び第5の電極31(A2)は、第2の可溶導体9と接続されている。また、第2の電極5(A1)は、絶縁基板2の側面に臨む第2の電極端子部5aに接続されている。第2の電極端子部5aは、スルーホールを介して絶縁基板2の裏面に設けられた外部端子12と接続されている。   A fourth electrode 7 (P1) is formed on the other side opposite to the one side adjacent to the first electrode 4 of the second electrode 5 (A1). A fifth electrode 31 (A2) is formed on the other side of the fourth electrode 7 (P1) opposite to the one side adjacent to the second electrode 5 (A1). The second electrode 5 (A1), the fourth electrode 7 (P1), and the fifth electrode 31 (A2) are connected to the second soluble conductor 9. The second electrode 5 (A1) is connected to the second electrode terminal portion 5a facing the side surface of the insulating substrate 2. The second electrode terminal portion 5a is connected to an external terminal 12 provided on the back surface of the insulating substrate 2 through a through hole.

また、第4の電極7(P1)は、絶縁基板2あるいは絶縁層11に設けられた第2の発熱体引出電極24を介して第2の発熱抵抗体22と接続されている。また、第2の発熱抵抗体22は、第2の発熱体引出電極24を介して、絶縁基板2の側縁に臨む第2の抵抗体端子部22a(P2)に接続されている。第2の抵抗体端子部22a(P2)は、スルーホールを介して、絶縁基板2の裏面に設けられた外部端子12と接続されている。   The fourth electrode 7 (P1) is connected to the second heating resistor 22 via the second heating element lead electrode 24 provided on the insulating substrate 2 or the insulating layer 11. The second heating resistor 22 is connected to the second resistor terminal portion 22a (P2) facing the side edge of the insulating substrate 2 via the second heating element lead-out electrode 24. The second resistor terminal portion 22a (P2) is connected to the external terminal 12 provided on the back surface of the insulating substrate 2 through a through hole.

さらに、第5の電極31(A2)は、絶縁基板2の側面に臨む第5の電極端子部31aに接続されている。第5の電極端子部31aは、スルーホールを介して絶縁基板2の裏面に設けられた外部端子12と接続されている。   Further, the fifth electrode 31 (A2) is connected to the fifth electrode terminal portion 31a facing the side surface of the insulating substrate 2. The fifth electrode terminal portion 31a is connected to the external terminal 12 provided on the back surface of the insulating substrate 2 through a through hole.

なお、第1〜第5の電極4,5,6,7,31は、CuやAg等の一般的な電極材料を用いて形成することができるが、少なくとも第1、第2の電極4,5の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、公知のメッキ処理により形成されていることが好ましい。これにより、第1、第2の電極4,5の酸化を防止し、溶融導体を確実に保持させることができる。また、短絡素子1をリフロー実装する場合に、第1、第2の可溶導体8,9を接続するハンダあるいは第1、第2の可溶導体8,9の外層を形成する低融点金属が溶融することにより第1、第2の電極4,5を溶食(ハンダ食われ)して切断するのを防ぐことができる。   The first to fifth electrodes 4, 5, 6, 7, and 31 can be formed using a general electrode material such as Cu or Ag, but at least the first and second electrodes 4 and 4 are formed. On the surface of 5, a coating such as Ni / Au plating, Ni / Pd plating, Ni / Pd / Au plating is preferably formed by a known plating process. Thereby, oxidation of the 1st, 2nd electrodes 4 and 5 can be prevented, and a molten conductor can be hold | maintained reliably. In addition, when the short-circuit element 1 is mounted by reflow soldering, a solder that connects the first and second soluble conductors 8 and 9 or a low melting point metal that forms an outer layer of the first and second soluble conductors 8 and 9 is used. By melting, the first and second electrodes 4 and 5 can be prevented from being melted (soldered) and cut.

[可溶導体]
第1、第2の可溶導体8,9は、第1、第2の発熱抵抗体21,22の発熱により速やかに溶断される低融点金属からなり、例えばSnを主成分とするPbフリーハンダを好適に用いることができる。
[Soluble conductor]
The first and second fusible conductors 8 and 9 are made of a low melting point metal that is quickly melted by the heat generated by the first and second heat generating resistors 21 and 22, for example, Pb-free solder containing Sn as a main component. Can be suitably used.

また、第1、第2の可溶導体8,9は、低融点金属と高融点金属を含有してもよい。低融点金属としては、Pbフリーハンダなどのハンダを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、短絡素子1をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、第1、第2の可溶導体8,9として溶断するに至らない。かかる第1、第2の可溶導体8,9は、高融点金属に低融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。なお、第1、第2の可溶導体8,9は、外層を構成する低融点金属を用いて、第1及び第3の電極4,6、又は第2、第4及び第5の電極5,7,31へ、ハンダ接続することができる。   Moreover, the 1st, 2nd soluble conductors 8 and 9 may contain a low melting metal and a high melting metal. As the low melting point metal, it is preferable to use solder such as Pb-free solder, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as a main component. By including the high melting point metal and the low melting point metal, even when the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal is melted when the short circuit element 1 is reflow mounted, the first, The second soluble conductors 8 and 9 do not blow out. The first and second fusible conductors 8 and 9 may be formed by depositing a low melting point metal on a high melting point metal using a plating technique, and other well-known lamination techniques and film forming techniques may be used. You may form by using. In addition, the 1st, 2nd soluble conductors 8 and 9 are the 1st and 3rd electrodes 4 and 6 or the 2nd, 4th and 5th electrode 5 using the low melting metal which comprises an outer layer. , 7, 31 can be soldered.

第1、第2の可溶導体8,9は、内層を低融点金属とし、外層を高融点金属としてもよい。内層の低融点金属層の全表面を外層の高融点金属層で被覆した可溶導体を用いることにより、リフロー温度よりも融点の低い低融点金属を用いた場合でも、リフロー実装時に、内層の低融点金属の外部への流出を抑制することができる。また、溶断時も、内層の低融点金属が溶融することにより、外層の高融点金属を溶食(ハンダ食われ)し、速やかに溶断することができる。   The first and second soluble conductors 8 and 9 may have an inner layer made of a low melting point metal and an outer layer made of a high melting point metal. By using a soluble conductor in which the entire surface of the inner low melting point metal layer is covered with the outer high melting point metal layer, even when using a low melting point metal having a melting point lower than the reflow temperature, the inner layer has a low Outflow of the melting point metal to the outside can be suppressed. Further, when the inner layer low melting point metal melts, the outer layer high melting point metal is also eroded (soldered) and can be quickly melted.

また、第1、第2の可溶導体8,9は、内層を高融点金属とし、外層を低融点金属とする被覆構造としてもよい。内層の高融点金属層の全表面を外層の低融点金属層で被覆した可溶導体を用いることにより、外層の低融点金属層を介して電極上に接続することができ、また、溶断時も、低融点金属層が速やかに溶融して高融点金属を溶食するため、速やかに溶断することができる。   Further, the first and second soluble conductors 8 and 9 may have a covering structure in which the inner layer is made of a high melting point metal and the outer layer is made of a low melting point metal. By using a soluble conductor in which the entire surface of the inner high-melting-point metal layer is covered with an outer low-melting-point metal layer, it can be connected to the electrode via the outer-layer low-melting-point metal layer. Since the low melting point metal layer melts rapidly and erodes the high melting point metal, it can be melted quickly.

また、第1、第2の可溶導体8,9は、低融点金属層と、高融点金属層とが積層された積層構造としてもよい。また、低融点金属層と、高融点金属層とが交互に積層された4層以上の多層構造としてもよい。また、第1、第2の可溶導体8,9は、内層を構成する低融点金属層の表面を高融点金属層にてストライプ状に部分的に積層してもよい。これらの構造によっても、低融点金属による高融点金属の溶食による短時間での溶断を行うことができる。   Further, the first and second soluble conductors 8 and 9 may have a laminated structure in which a low melting point metal layer and a high melting point metal layer are laminated. Moreover, it is good also as a multilayered structure of four or more layers by which the low melting metal layer and the high melting metal layer were laminated | stacked alternately. Further, the first and second soluble conductors 8 and 9 may be partially laminated in a stripe shape on the surface of the low melting point metal layer constituting the inner layer with the high melting point metal layer. Even with these structures, it is possible to perform fusing in a short time by the corrosion of the high melting point metal by the low melting point metal.

また、第1、第2の可溶導体8,9は、多数の開口部を有する高融点金属と、上記開口部に挿入された低融点金属とから構成してもよい。これにより、溶融する低融点金属層に接する高融点金属層の面積が増大するので、より短時間で低融点金属層が高融点金属層を溶食することができるようになる。したがって、より速やか、かつ確実に可溶導体を溶断させることが可能となる。   Moreover, you may comprise the 1st, 2nd soluble conductors 8 and 9 from the high melting point metal which has many opening parts, and the low melting metal inserted in the said opening part. As a result, the area of the refractory metal layer in contact with the molten low melting point metal layer increases, so that the low melting point metal layer can erode the refractory metal layer in a shorter time. Therefore, the soluble conductor can be blown out more quickly and reliably.

また、第1、第2の可溶導体8,9は、高融点金属の体積よりも低融点金属の体積を多くすることが好ましい。これにより、第1、第2の可溶導体8,9は、効果的に高融点金属層の溶食による短時間での溶断を行うことができる。   Moreover, it is preferable that the 1st, 2nd soluble conductors 8 and 9 increase the volume of a low melting metal rather than the volume of a high melting metal. Thereby, the 1st, 2nd soluble conductors 8 and 9 can perform fusing in a short time by the corrosion of a refractory metal layer effectively.

なお、第1、第2の可溶導体8,9の酸化防止、及び第1、第2の可溶導体8,9の溶融時における濡れ性を向上させるために、第1、第2の可溶導体8,9の上にはフラックス15が塗布されている。   In order to prevent oxidation of the first and second soluble conductors 8 and 9 and to improve the wettability when the first and second soluble conductors 8 and 9 are melted, the first and second possible conductors 8 and 9 are used. A flux 15 is applied on the molten conductors 8 and 9.

短絡素子1は、絶縁基板2がカバー部材10に覆われることによりその内部が保護されている。カバー部材10は、短絡素子1の側面を構成する側壁16と、短絡素子1の上面を構成する天面部17とを有し、側壁16が絶縁基板2上に接続されることにより、短絡素子1の内部を閉塞する蓋体となる。このカバー部材10は、上記絶縁基板2と同様に、たとえば、熱可塑性プラスチック,セラミックス、ガラスエポキシ基板等の絶縁性を有する部材を用いて形成されている。   The inside of the short-circuit element 1 is protected by covering the insulating substrate 2 with the cover member 10. The cover member 10 has a side wall 16 that constitutes a side surface of the short-circuit element 1 and a top surface portion 17 that constitutes an upper surface of the short-circuit element 1, and the short-circuit element 1 is connected to the side wall 16 on the insulating substrate 2. It becomes a lid that closes the inside of the. The cover member 10 is formed using an insulating member such as a thermoplastic plastic, ceramics, glass epoxy substrate, etc., as with the insulating substrate 2.

また、カバー部材10は、天面部17の内面側に、カバー部電極18が形成されていても良い。カバー部電極18は、第1、第2の電極4,5と重畳する位置に形成されている。このカバー部電極18は、第1、第2の発熱抵抗体21,22が発熱し、第1、第2の可溶導体8,9が溶融されると、第1、第2の電極4,5上に凝集した溶融導体が接触して濡れ広がることにより、溶融導体を保持する許容量を増加させることができる。   Further, the cover member 10 may have a cover portion electrode 18 formed on the inner surface side of the top surface portion 17. The cover part electrode 18 is formed at a position overlapping the first and second electrodes 4 and 5. When the first and second heating resistors 21 and 22 generate heat and the first and second fusible conductors 8 and 9 are melted, the cover electrode 18 has the first and second electrodes 4 and 4. When the molten conductor agglomerated on 5 comes into contact and spreads out, the tolerance for holding the molten conductor can be increased.

[短絡素子回路]
以上のような短絡素子1は、図2に示すような回路構成を有する。すなわち、短絡素子1は、第1の電極4と第2の電極5とが、正常時には絶縁され、第1、第2の発熱抵抗体21,22の発熱により第1、第2の可溶導体8,9が溶融すると、当該溶融導体を介して短絡するスイッチ20を構成する。そして、第1の電極端子部4aと第2の電極端子部5aは、スイッチ20の両端子を構成する。
[Short-circuit element circuit]
The short-circuit element 1 as described above has a circuit configuration as shown in FIG. That is, in the short-circuit element 1, the first electrode 4 and the second electrode 5 are normally insulated, and the first and second fusible conductors are generated by the heat generated by the first and second heating resistors 21 and 22. When 8 and 9 are melted, the switch 20 is configured to be short-circuited through the molten conductor. The first electrode terminal portion 4a and the second electrode terminal portion 5a constitute both terminals of the switch 20.

また、第1の可溶導体8は、第3の電極6及び第1の発熱体引出電極23を介して第1の発熱抵抗体21と接続されている。第2の可溶導体9は、第4の電極7(P1)及び第2の発熱体引出電極24を介して第2の発熱抵抗体22及び第2の抵抗体端子部22a(P2)と接続されている。すなわち、第2の可溶導体9が接続される第2の電極5(A1)、第4の電極7(P1)及び第5の電極31(A2)は、保護素子として機能する。   The first soluble conductor 8 is connected to the first heating resistor 21 via the third electrode 6 and the first heating element lead electrode 23. The second soluble conductor 9 is connected to the second heating resistor 22 and the second resistor terminal portion 22a (P2) via the fourth electrode 7 (P1) and the second heating element lead electrode 24. Has been. That is, the second electrode 5 (A1), the fourth electrode 7 (P1), and the fifth electrode 31 (A2) to which the second soluble conductor 9 is connected function as a protection element.

そして、短絡素子1は、第2の抵抗体端子部22a(P2)より通電されると、図3に示すように、第2の発熱抵抗体22が発熱し、第2の可溶導体9を溶融させることにより、第4の電極7(P1)を介して接続されている第2の電極5(A1)と第5の電極31(A2)とに亘る電流経路を遮断する。また、短絡素子1は、第1の抵抗体端子部21aより通電されると、第1の発熱抵抗体21が発熱し、第1の可溶導体8を溶融させる。これにより、短絡素子1は、図4に示すように、第1の電極4と第2の電極5とに凝集した第1、第2の可溶導体8,9の溶融導体が結合することにより、絶縁されていた第1の電極4と第2の電極5とを短絡させる、すなわちスイッチ20を短絡させることができる。   When the short-circuit element 1 is energized from the second resistor terminal portion 22a (P2), the second heating resistor 22 generates heat as shown in FIG. By melting, the current path extending between the second electrode 5 (A1) and the fifth electrode 31 (A2) connected via the fourth electrode 7 (P1) is interrupted. Further, when the short-circuit element 1 is energized from the first resistor terminal portion 21a, the first heating resistor 21 generates heat, and the first soluble conductor 8 is melted. Thereby, as shown in FIG. 4, the short-circuit element 1 is formed by combining the molten conductors of the first and second soluble conductors 8 and 9 that are aggregated into the first electrode 4 and the second electrode 5. The insulated first electrode 4 and second electrode 5 can be short-circuited, that is, the switch 20 can be short-circuited.

なお、第1の発熱抵抗体21への通電は、第1の可溶導体8が溶断することにより第1、第3の電極4,6間が遮断されるため、停止され、第2の発熱抵抗体22への通電は、第2の可溶導体9が溶断することにより、第2、第4の電極5,7間及び第4、第5の電極7,31間が遮断されるため、停止される。   The energization of the first heating resistor 21 is stopped because the first fusible conductor 8 is melted and the first and third electrodes 4 and 6 are cut off, and the second heat generation is stopped. Since the current to the resistor 22 is cut off between the second and fourth electrodes 5 and 7 and between the fourth and fifth electrodes 7 and 31 by the fusing of the second soluble conductor 9, Stopped.

[第2の可溶導体の先溶融]
ここで、短絡素子1は、第2の可溶導体9が第1の可溶導体8よりも先行して溶融することが好ましい。短絡素子1は、第1の発熱抵抗体21と第2の発熱抵抗体22とが、別々に発熱されることから、通電のタイミングとして第2の発熱抵抗体22を先に発熱させ、その後に第1の発熱抵抗体21を発熱させることで、図3に示すように、容易に第2の可溶導体9を第1の可溶導体8よりも先行して溶融させ、図4に示すように、確実に第1、第2の電極4,5上に、第1、第2の可溶導体8,9の溶融導体を凝集、結合させ、第1、第2の電極4,5を短絡させることができる。
[First melting of second soluble conductor]
Here, in the short-circuit element 1, it is preferable that the second soluble conductor 9 is melted prior to the first soluble conductor 8. Since the first heating resistor 21 and the second heating resistor 22 are separately heated in the short-circuit element 1, the second heating resistor 22 is first heated as the energization timing, and thereafter By causing the first heating resistor 21 to generate heat, as shown in FIG. 3, the second soluble conductor 9 is easily melted ahead of the first soluble conductor 8, and as shown in FIG. Then, the molten conductors of the first and second fusible conductors 8 and 9 are surely aggregated and bonded onto the first and second electrodes 4 and 5, and the first and second electrodes 4 and 5 are short-circuited. Can be made.

また、短絡素子1は、第2の可溶導体9を、第1の可溶導体8よりも幅狭に形成することにより、第2の可溶導体9を第1の可溶導体よりも先に溶断するようにしてもよい。第2の可溶導体9を幅狭に形成することにより、溶断時間を短くすることができるため、第2の可溶導体9が第1の可溶導体8よりも先行して溶融させることができる。   Moreover, the short circuit element 1 forms the 2nd soluble conductor 9 ahead of the 1st soluble conductor by forming the 2nd soluble conductor 9 narrower than the 1st soluble conductor 8. FIG. You may make it melt into. Since the fusing time can be shortened by forming the second fusible conductor 9 narrow, the second fusible conductor 9 can be melted ahead of the first fusible conductor 8. it can.

[電極面積]
また、短絡素子1は、第1の電極4の面積を第3の電極6よりも広くし、第2の電極5の面積を第4、第5の電極7,31よりも広くすることが好ましい。溶融導体の保持量は、電極面積に比例して多くなるため、第1、第2の電極4,5の面積を第3、第4、第5の電極6,7,31よりも広く形成することにより、より多くの溶融導体を第1、第2の電極4,5上に凝集させることができ、第1、第2の電極4,5間を確実に短絡させることができる。
[Electrode area]
In the short-circuit element 1, the area of the first electrode 4 is preferably larger than that of the third electrode 6, and the area of the second electrode 5 is preferably larger than those of the fourth and fifth electrodes 7 and 31. . Since the holding amount of the molten conductor increases in proportion to the electrode area, the areas of the first and second electrodes 4 and 5 are formed wider than those of the third, fourth and fifth electrodes 6, 7 and 31. As a result, more molten conductors can be aggregated on the first and second electrodes 4 and 5, and the first and second electrodes 4 and 5 can be short-circuited reliably.

[短絡素子の変形例]
なお、短絡素子1は、必ずしも、第1、第2の発熱抵抗体21,22を絶縁層11によって被覆する必要はなく、図5に示すように、第1、第2の発熱抵抗体21,22が絶縁基板2の内部に設置されてもよい。絶縁基板2の材料として熱伝導性に優れたものを用いることにより、第1、第2の発熱抵抗体21,22は、ガラス層等の絶縁層11を介した場合と同等に加熱することができる。
[Modification of short circuit element]
Note that the short-circuit element 1 does not necessarily need to cover the first and second heating resistors 21 and 22 with the insulating layer 11, and as shown in FIG. 5, the first and second heating resistors 21 and 22, 22 may be installed inside the insulating substrate 2. By using a material having excellent thermal conductivity as the material of the insulating substrate 2, the first and second heating resistors 21 and 22 can be heated in the same manner as when the insulating layer 11 such as a glass layer is interposed. it can.

また、短絡素子1は、図6に示すように、第1、第2の発熱抵抗体21,22が絶縁基板2の第1〜第5の電極4,5,6,7,31の形成面と反対の裏面に設置されてもよい。第1、第2の発熱抵抗体21,22を絶縁基板2の裏面に形成することにより、絶縁基板2内に形成するよりも簡易な工程で形成することができる。なお、この場合、第1、第2の発熱抵抗体21,22上には、絶縁層11が形成されると抵抗体の保護や実装時の絶縁性確保と言う意味で好ましい。   Further, as shown in FIG. 6, the short-circuit element 1 includes the first and second heating resistors 21 and 22 on which the first to fifth electrodes 4, 5, 6, 7, and 31 are formed. It may be installed on the back side opposite to. By forming the first and second heat generating resistors 21 and 22 on the back surface of the insulating substrate 2, the first and second heat generating resistors 21 and 22 can be formed by a simpler process than in the insulating substrate 2. In this case, it is preferable that the insulating layer 11 is formed on the first and second heating resistors 21 and 22 in terms of protecting the resistor and ensuring insulation during mounting.

さらに、短絡素子1は、図7に示すように、第1、第2の発熱抵抗体21,22が絶縁基板2の第1〜第5の電極4,5,6,7,31の形成面上に設置されてもよい。第1、第2の発熱抵抗体21,22を絶縁基板2の表面に形成することにより、絶縁基板2内に形成するよりも簡易な工程で形成することができる。なお、この場合も、第1、第2の発熱抵抗体21,22上には、絶縁層11が形成される事が望ましい。   Further, as shown in FIG. 7, the short-circuit element 1 includes first and second heating resistors 21 and 22 on which the first to fifth electrodes 4, 5, 6, 7, and 31 are formed. It may be installed on top. By forming the first and second heat generating resistors 21 and 22 on the surface of the insulating substrate 2, the first and second heat generating resistors 21 and 22 can be formed by a simpler process than forming in the insulating substrate 2. In this case as well, it is desirable that the insulating layer 11 be formed on the first and second heating resistors 21 and 22.

また、第1の電極4又は第2の電極5のいずれか一方に接続される保護抵抗を備える構成としてもよい。ここで、保護抵抗は、短絡素子に接続する電子部品の内部抵抗相当の抵抗値とし、発熱抵抗体3の抵抗値よりも小さくする。すなわち、電子部品が正常に作動している場合、電流は短絡素子側へは流れず電子部品側に流れる。   Moreover, it is good also as a structure provided with the protective resistance connected to any one of the 1st electrode 4 or the 2nd electrode 5. FIG. Here, the protective resistance is a resistance value corresponding to the internal resistance of the electronic component connected to the short-circuit element, and is smaller than the resistance value of the heating resistor 3. That is, when the electronic component is operating normally, current does not flow to the short-circuit element side but flows to the electronic component side.

また、本発明が適用された短絡素子は、絶縁基板2の裏面に第1、第2の電極とスルーホールを介して連続する外部端子12を設ける以外にも、図8(A)(B)に示す短絡素子33のように、絶縁基板2の第1、第2の電極4,5が形成された表面に、第1の電極4と連続する第1の外部接続電極34、第1の外部接続電極34上に設けられた1個もしくは複数個からなる第1の外部接続端子35、第2の電極5と連続する第2の外部接続電極36、第2の外部接続電極36上に設けられた1個もしくは複数個からなる第2の外部接続端子37を形成するようにしてもよい。   The short-circuit element to which the present invention is applied is not limited to providing the external terminal 12 continuous with the first and second electrodes through the through-holes on the back surface of the insulating substrate 2. A first external connection electrode 34 continuous with the first electrode 4 and a first external electrode are formed on the surface of the insulating substrate 2 on which the first and second electrodes 4 and 5 are formed. One or a plurality of first external connection terminals 35 provided on the connection electrode 34, a second external connection electrode 36 continuous with the second electrode 5, and a second external connection electrode 36 are provided. Alternatively, one or a plurality of second external connection terminals 37 may be formed.

第1、第2の外部接続電極34,36は、短絡素子33と短絡素子33が組み込まれる電子機器の回路とを接続する電極であり、第1の外部接続電極34は第1の電極4と連続され、第2の外部接続電極36は第2の電極5と連続されている。   The first and second external connection electrodes 34 and 36 are electrodes that connect the short-circuit element 33 and a circuit of an electronic device in which the short-circuit element 33 is incorporated. The first external connection electrode 34 is connected to the first electrode 4. The second external connection electrode 36 is continuous with the second electrode 5.

第1、第2の外部接続電極34,36は、CuやAg等の一般的な電極材料を用いて形成され、絶縁基板2の第1、第2の電極4,5の形成面と同一面に形成されている。すなわち、図8に示す短絡素子33は、第1、第2の可溶導体8,9が設けられる表面が実装面となる。なお、第1、第2の外部接続電極34,36は、第1、第2の電極4,5と同時に形成することができる。   The first and second external connection electrodes 34 and 36 are formed using a general electrode material such as Cu or Ag, and are the same as the formation surfaces of the first and second electrodes 4 and 5 of the insulating substrate 2. Is formed. That is, in the short-circuit element 33 shown in FIG. 8, the surface on which the first and second soluble conductors 8 and 9 are provided is the mounting surface. The first and second external connection electrodes 34 and 36 can be formed simultaneously with the first and second electrodes 4 and 5.

第1の外部接続電極34上には、第1の外部接続端子35が設けられている。同様に、第2の外部接続電極36上には、第2の外部接続端子37が設けられている。これら第1、第2の外部接続端子35,37は、電子機器へ実装するための接続端子であり、例えば金属バンプや、金属ポストを用いて形成されている。また、第1、第2の外部接続端子35,37は、図8(A)に示すように、絶縁基板2上に設けられたカバー部材10よりも突出する高さを有し、短絡素子33の実装対象物となる基板側に実装可能とされている。   A first external connection terminal 35 is provided on the first external connection electrode 34. Similarly, a second external connection terminal 37 is provided on the second external connection electrode 36. The first and second external connection terminals 35 and 37 are connection terminals for mounting on an electronic device, and are formed using, for example, metal bumps or metal posts. Further, the first and second external connection terminals 35 and 37 have a height protruding from the cover member 10 provided on the insulating substrate 2 as shown in FIG. It can be mounted on the side of the board that is the mounting target.

なお、短絡素子33の第1の発熱抵抗体21は、第1の発熱体引出電極23、及び第1の抵抗体端子部21aを介して、第1の抵抗体接続端子21bが形成されている。また、短絡素子33の第2の発熱抵抗体22は、第2の発熱体引出電極24、及び第2の抵抗体端子部22aを介して、第2の抵抗体接続端子22bが形成されている。また、第5の電極5は、第5の電極端子部31a上に第3の外部接続端子31bが形成されている。第1、第2の抵抗体接続端子21b,22b及び第3の外部接続端子31bは、第1、第2の外部接続端子35,37と同様に、金属バンプや金属ポストを用いて形成され、絶縁層11を介して上方に突出されている。   The first heating resistor 21 of the short-circuit element 33 is formed with a first resistor connection terminal 21b via the first heating element lead-out electrode 23 and the first resistor terminal portion 21a. . In addition, the second heating resistor 22 of the short-circuit element 33 is formed with a second resistor connection terminal 22b via the second heating element lead-out electrode 24 and the second resistor terminal portion 22a. . The fifth electrode 5 has a third external connection terminal 31b formed on the fifth electrode terminal portion 31a. The first and second resistor connection terminals 21b and 22b and the third external connection terminal 31b are formed using metal bumps or metal posts, like the first and second external connection terminals 35 and 37. It protrudes upward through the insulating layer 11.

このように、短絡素子33は、上記短絡素子1のように絶縁基板2の裏面に外部端子12を設けて第1、第2の電極4,5と当該外部端子12とをスルーホールによって接続するものではなく、第1、第2の電極4,5と同一表面に、外部接続電極34,36を介して外部接続端子35,37を形成している。そして、図8(B)に示すように、短絡素子33は、第1の電極4と第2の電極5とが短絡したときの、第1、第2の外部接続電極34,36間の導通抵抗よりも、第1の外部接続端子35と第2の外部接続端子37との合成抵抗が低く構成されている。   As described above, the short-circuit element 33 is provided with the external terminal 12 on the back surface of the insulating substrate 2 like the short-circuit element 1 and connects the first and second electrodes 4 and 5 and the external terminal 12 through a through hole. Instead, external connection terminals 35 and 37 are formed on the same surface as the first and second electrodes 4 and 5 via external connection electrodes 34 and 36. Then, as shown in FIG. 8B, the short-circuit element 33 is electrically connected between the first and second external connection electrodes 34 and 36 when the first electrode 4 and the second electrode 5 are short-circuited. The combined resistance of the first external connection terminal 35 and the second external connection terminal 37 is configured to be lower than the resistance.

これにより、短絡素子33は、第1、第2の電極4,5が短絡しバイパス電流経路を構成した際における定格を向上させ、大電流に対応することができる。すなわち、HEVやEV等の動力源として使用されるリチウムイオン二次電池等の大電流用途においては、短絡素子の定格のさらなる向上が求められている。そして、可溶導体によって短絡された第1、第2の外部接続電極34,36間の導通抵抗は定格向上に応えることができる程度に十分下げることができる(例えば0.4mΩ未満)。   Thereby, the short circuit element 33 can improve the rating when the first and second electrodes 4 and 5 are short-circuited to form a bypass current path, and can cope with a large current. That is, in high current applications such as lithium ion secondary batteries used as power sources such as HEV and EV, further improvement of the rating of the short-circuit element is required. The conduction resistance between the first and second external connection electrodes 34 and 36 short-circuited by the fusible conductor can be lowered sufficiently to meet the rating improvement (for example, less than 0.4 mΩ).

しかし、絶縁基板2の裏面に外部端子12を設け、第1、第2の電極4,5と当該外部端子12とをスルーホールによって接続する短絡素子1においては、第1、第2の電極4,5と外部端子12との間の導通抵抗が高く(例えば0.5〜1.0mΩ)、スルーホール内に導体を充填したとしても、短絡素子全体の導通抵抗を下げるには限界がある。   However, in the short-circuit element 1 in which the external terminal 12 is provided on the back surface of the insulating substrate 2 and the first and second electrodes 4 and 5 and the external terminal 12 are connected by a through hole, the first and second electrodes 4 , 5 and the external terminal 12 have a high conduction resistance (for example, 0.5 to 1.0 mΩ), and even if a conductor is filled in the through hole, there is a limit to lowering the conduction resistance of the entire short-circuit element.

また、高抵抗の第1、第2の電極4,5と外部端子12との間に大電流を流すことによる発熱で、バイパス電流経路の破壊や、他の周辺機器への熱影響も懸念される。   In addition, heat generated by flowing a large current between the high resistance first and second electrodes 4 and 5 and the external terminal 12 may cause damage to the bypass current path and thermal effects on other peripheral devices. The

この点、短絡素子33は、第1、第2の電極4,5と同一表面に外部接続端子35,37を設けている。この外部接続端子35,37は、外部接続電極34,36上に設けるものであり、形状やサイズ等の自由度が高く、導通抵抗の低い端子を容易に設けることができる。これにより、短絡素子33は、第1の電極4と第2の電極5とが短絡したときの、第1、第2の外部接続電極34,36間の導通抵抗よりも、第1の外部接続端子35と第2の外部接続端子37との合成抵抗が低く構成されている。   In this regard, the short-circuit element 33 is provided with external connection terminals 35 and 37 on the same surface as the first and second electrodes 4 and 5. The external connection terminals 35 and 37 are provided on the external connection electrodes 34 and 36, and a terminal having a high degree of freedom in shape and size and a low conduction resistance can be easily provided. As a result, the short-circuit element 33 is connected to the first external connection rather than the conduction resistance between the first and second external connection electrodes 34 and 36 when the first electrode 4 and the second electrode 5 are short-circuited. The combined resistance of the terminal 35 and the second external connection terminal 37 is configured to be low.

したがって、短絡素子33によれば、短絡素子1の構成おいては高くなる第1、第2の外部接続電極34,36から先の導通抵抗を容易に下げることができ、定格の飛躍的な向上を図ることができる。   Therefore, according to the short-circuit element 33, the conduction resistance ahead of the first and second external connection electrodes 34 and 36, which are high in the configuration of the short-circuit element 1, can be easily lowered, and the rating is dramatically improved. Can be achieved.

第1、第2の外部接続端子32,34としては、例えば、Snを主成分とするPbフリーハンダからなる金属バンプや金属ポストを用いて構成することができる。金属バンプや金属ポストの形状は問わない。第1、第2の外部接続端子35,37の抵抗値は材料や形状、サイズから求めることができる。一例として、Cuコアの表面にハンダをコーティングした直方体の金属ポスト(Cuコア:0.6mm×0.6mm、断面積0.36mm、高さ1mm、比抵抗17.2μΩ・mm)を用いた場合、その1端子のCuコア部抵抗値は約0.048mΩであり、ハンダコーティング分を考慮すると第1、第2の外部接続端子35,37を直列接続させた抵抗値が0.096mΩ未満と低く、短絡素子33全体の定格を向上できることがわかる。 The first and second external connection terminals 32 and 34 can be configured using, for example, metal bumps or metal posts made of Pb-free solder whose main component is Sn. The shape of the metal bump or the metal post is not limited. The resistance values of the first and second external connection terminals 35 and 37 can be obtained from the material, shape, and size. As an example, a rectangular parallelepiped metal post (Cu core: 0.6 mm × 0.6 mm, cross-sectional area 0.36 mm 2 , height 1 mm, specific resistance 17.2 μΩ · mm) was used. In this case, the resistance value of the Cu core portion of one terminal is about 0.048 mΩ, and the resistance value obtained by connecting the first and second external connection terminals 35 and 37 in series is less than 0.096 mΩ in consideration of the solder coating. It can be seen that the overall rating of the short-circuit element 33 can be improved.

なお、短絡素子33は、短絡時における第1、第2の外部接続端子35,37間に亘る抵抗値より素子全体の全抵抗値を求め、この全抵抗値と既知である第1、第2の外部接続端子35,37の合成抵抗との差より、短絡時における第1、第2の外部接続電極34,36間の導通抵抗を求めることができる。また、短絡素子33は、短絡時における第1、第2の外部接続電極34,36間の抵抗を測定し、短絡時における素子全体の全抵抗値との差より、第1、第2の外部接続端子35,37の合成抵抗を求めることができる。   The short-circuit element 33 obtains the total resistance value of the entire element from the resistance value between the first and second external connection terminals 35 and 37 at the time of the short-circuit, and the total resistance value and the known first and second values. From the difference between the combined resistance of the external connection terminals 35 and 37, the conduction resistance between the first and second external connection electrodes 34 and 36 at the time of a short circuit can be obtained. Further, the short-circuit element 33 measures the resistance between the first and second external connection electrodes 34 and 36 at the time of the short-circuit, and the first and second external elements are calculated based on the difference from the total resistance value of the entire element at the time of the short-circuit. The combined resistance of the connection terminals 35 and 37 can be obtained.

また、図9に示すように、短絡素子33は、第1、第2の外部接続電極34,36を矩形状に形成する等により広く設け、第1、第2の外部接続端子35,37を複数設けることにより導通抵抗を下げるようにしてもよい。その他にも、短絡素子33は、広く設けた第1、第2の外部接続電極34,36に大径の第1、第2の外部接続端子35,37を設けることにより導通抵抗を下げるようにしてもよい。   Further, as shown in FIG. 9, the short-circuit element 33 is widely provided by forming the first and second external connection electrodes 34 and 36 in a rectangular shape or the like, and the first and second external connection terminals 35 and 37 are provided. The conduction resistance may be lowered by providing a plurality. In addition, the short-circuit element 33 reduces the conduction resistance by providing the first and second external connection terminals 35 and 37 having large diameters on the widely provided first and second external connection electrodes 34 and 36. May be.

また、第1、第2の外部接続端子35,37は、コアとなる高融点金属35a,37aの表面に低融点金属層35b,37bを設けることにより形成してもよい。低融点金属層35b,37bを構成する金属としては、Snを主成分とするPbフリーハンダなどのハンダを好適に用いることができ、高融点金属35a,37aとしては、CuやAgを主成分とする合金などを好適に用いることができる。   The first and second external connection terminals 35 and 37 may be formed by providing low melting point metal layers 35b and 37b on the surfaces of the high melting point metals 35a and 37a serving as cores. As the metal constituting the low melting point metal layers 35b and 37b, solder such as Pb-free solder containing Sn as a main component can be preferably used. As the high melting point metals 35a and 37a, Cu or Ag is used as a main component. An alloy to be used can be preferably used.

高融点金属35a,37aの表面に低融点金属層35b,37bを設けることにより、短絡素子33をリフロー実装する場合に、リフロー温度が低融点金属層35b,37bの溶融温度を超えて、低融点金属が溶融しても、第1、第2の外部接続端子35,37として溶融することを防止することができる。また、第1、第2の外部接続端子35,37は、外層を構成する低融点金属を用いて、第1、第2の外部接続電極34,36へ接続することができる。   By providing the low melting point metal layers 35b and 37b on the surfaces of the high melting point metals 35a and 37a, the reflow temperature exceeds the melting temperature of the low melting point metal layers 35b and 37b when the short circuit element 33 is reflow mounted. Even if the metal is melted, it can be prevented from melting as the first and second external connection terminals 35 and 37. The first and second external connection terminals 35 and 37 can be connected to the first and second external connection electrodes 34 and 36 using a low melting point metal constituting the outer layer.

第1、第2の外部接続端子35,37は、高融点金属35a,37aに低融点金属をメッキ技術を用いて成膜することにより形成することができ、またその他の周知の積層技術、膜形成技術を用いることによっても形成することができる。   The first and second external connection terminals 35 and 37 can be formed by forming a low melting point metal on the high melting point metal 35a and 37a by using a plating technique, and other well-known lamination techniques and films. It can also be formed by using a forming technique.

なお、第1、第2の外部接続端子35,37は、金属バンプや金属ポストを用いて形成する他にも、導電メッキ層や、導電ペーストを塗布することにより形成された導電層により形成してもよい。   The first and second external connection terminals 35 and 37 are formed by using a conductive plating layer or a conductive layer formed by applying a conductive paste, in addition to using metal bumps or metal posts. May be.

また、第1、第2の外部接続端子35,37は、短絡素子33が実装される基板等の実装対象物側に予め設け、短絡素子が実装された実装体において、第1、第2の外部接続電極34,36、あるいは第1、第2の電極4,5と接続されるようにしてもよい。   Further, the first and second external connection terminals 35 and 37 are provided in advance on the mounting object side such as a substrate on which the short-circuit element 33 is mounted, and in the mounting body on which the short-circuit element is mounted, You may make it connect with the external connection electrodes 34 and 36 or the 1st, 2nd electrodes 4 and 5. FIG.

[バッテリパックの回路構成]
次いで、短絡素子1を組み込んだ電子機器の回路構成について説明する。図10は、クルマや電動工具等の各種電子機器に搭載されて用いられるリチウムイオンバッテリーが内蔵されたバッテリパック40の回路構成を示す図である。図10(A)に示すように、バッテリパック40は、バッテリセル41と、短絡素子1と、短絡素子1の動作を制御する第1、第2の電流制御素子61,62と、保護抵抗54とで構成されるバッテリユニット63を複数備え、これら複数のバッテリユニット63が直列に接続されている。
[Battery pack circuit configuration]
Next, a circuit configuration of an electronic device incorporating the short-circuit element 1 will be described. FIG. 10 is a diagram illustrating a circuit configuration of a battery pack 40 in which a lithium ion battery used in various electronic devices such as a car and an electric tool is built. As shown in FIG. 10A, the battery pack 40 includes a battery cell 41, a short-circuit element 1, first and second current control elements 61 and 62 for controlling the operation of the short-circuit element 1, and a protective resistor 54. And a plurality of battery units 63 connected in series.

その他に、バッテリパック40は、バッテリユニット63と、バッテリユニット63の充放電を制御する充放電制御回路55と、各バッテリユニット63のバッテリセル41の電圧を検出するとともに、短絡素子1の動作を制御する第1、第2の電流制御素子61,62に異常信号を出力する検出回路56とを備える。充放電制御回路55は、バッテリユニット63から充電装置に流れる電流経路に直列接続された第3、第4の電流制御素子57,58と、これらの電流制御素子57,58の動作を制御する制御部59とを備える。   In addition, the battery pack 40 detects the voltage of the battery unit 63, the charge / discharge control circuit 55 that controls the charge / discharge of the battery unit 63, and the battery cell 41 of each battery unit 63, and operates the short-circuit element 1. And a detection circuit 56 that outputs an abnormal signal to the first and second current control elements 61 and 62 to be controlled. The charge / discharge control circuit 55 controls the operation of the third and fourth current control elements 57 and 58 connected in series to the current path flowing from the battery unit 63 to the charging device, and the operation of these current control elements 57 and 58. Part 59.

各バッテリユニット63は、短絡素子1の第2の電極5(A1)の第2の電極端子部5aがバッテリパック40の充放電電流経路と接続され、第5の電極31(A2)の第5の電極端子部31aがバッテリセル41に接続されることにより、短絡素子1がバッテリセル41と直列に接続されている。また、バッテリユニット63は、第2の発熱抵抗体22が第2の抵抗体端子部22a(P2)を介して第1の電流制御素子61に接続されている。   In each battery unit 63, the second electrode terminal portion 5 a of the second electrode 5 (A 1) of the short-circuit element 1 is connected to the charge / discharge current path of the battery pack 40, and the fifth electrode 31 (A 2) The short-circuit element 1 is connected in series with the battery cell 41 by connecting the electrode terminal portion 31 a to the battery cell 41. In the battery unit 63, the second heating resistor 22 is connected to the first current control element 61 via the second resistor terminal portion 22a (P2).

また、バッテリユニット63は、第1の電極4の第1の電極端子部4aが保護抵抗54を介してバッテリセル41の開放端と接続されることにより、スイッチ20がバッテリセル41の充放電電流経路からバイパスされている。また、バッテリユニット63は、第1の発熱抵抗体21が第1の抵抗体端子部21aを介して第2の電流制御素子62に接続されている。   Further, in the battery unit 63, the first electrode terminal portion 4a of the first electrode 4 is connected to the open end of the battery cell 41 via the protective resistor 54, so that the switch 20 is charged and discharged by the battery cell 41. Bypassed from the route. In the battery unit 63, the first heating resistor 21 is connected to the second current control element 62 via the first resistor terminal portion 21a.

検出回路56は、各バッテリセル41と接続され、各バッテリセル41の電圧値を検出して、バッテリセル41が過充電電圧又は過放電電圧になったときに、当該バッテリセル41を有するバッテリユニット63の第1、第2の電流制御素子61,62へ異常信号を出力する。   The detection circuit 56 is connected to each battery cell 41, detects the voltage value of each battery cell 41, and when the battery cell 41 becomes an overcharge voltage or an overdischarge voltage, the battery unit having the battery cell 41 An abnormal signal is output to 63 first and second current control elements 61 and 62.

第1、第2の電流制御素子61,62は、たとえばFETにより構成され、検出回路56から出力される検出信号によって、バッテリセル41の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、短絡素子1を動作させて、バッテリユニット63の充放電電流経路を第3、第4の電流制御素子57,58のスイッチ動作によらず遮断するとともに、短絡素子1のスイッチ20を短絡させ、当該バッテリユニット63をバイパスするバイパス電流経路を形成するように制御する。   The first and second current control elements 61 and 62 are constituted by, for example, FETs, and the voltage value of the battery cell 41 is set to a voltage exceeding a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 56. When this happens, the short-circuit element 1 is operated to cut off the charging / discharging current path of the battery unit 63 regardless of the switching operation of the third and fourth current control elements 57 and 58, and the switch 20 of the short-circuit element 1 is turned off. Control is performed so as to form a bypass current path that bypasses the battery unit 63 by short-circuiting.

このようなバッテリパック40は、正常時には、図10(A)に示すように、短絡素子1のスイッチ20が短絡されていないため、電流は第2の可溶導体9を介してバッテリセル41側に流れる。   When such a battery pack 40 is normal, the switch 20 of the short-circuit element 1 is not short-circuited, as shown in FIG. 10A, so that the current flows through the second soluble conductor 9 to the battery cell 41 side. Flowing into.

バッテリセル41に電圧異常等が検知されると、検出回路56より第1の電流制御素子61に異常信号が出力され、短絡素子1の第2の発熱抵抗体22が発熱される。図10(B)に示すように、短絡素子1は、第2の発熱抵抗体22によって、第2の可溶導体9を加熱、溶融させることにより、第2の電極5(A1)と第4の電極7(P1)との間、及び第4の電極7(P1)と第5の電極31(A2)との間を遮断する。これにより、図10(B)に示すように、異常なバッテリセル41を有する当該バッテリユニット63を、バッテリパック40の充放電電流経路上から遮断することができる。なお、第2の可溶導体9が溶断することにより、第2の発熱抵抗体22への給電は停止される。   When a voltage abnormality or the like is detected in the battery cell 41, an abnormality signal is output from the detection circuit 56 to the first current control element 61, and the second heating resistor 22 of the short circuit element 1 is heated. As shown in FIG. 10B, the short-circuit element 1 is formed by heating and melting the second fusible conductor 9 with the second heating resistor 22, so that the second electrode 5 (A 1) and the fourth electrode 4. Between the first electrode 7 (P1) and the fourth electrode 7 (P1) and the fifth electrode 31 (A2). Thereby, as shown in FIG. 10B, the battery unit 63 having the abnormal battery cell 41 can be cut off from the charge / discharge current path of the battery pack 40. Note that the power supply to the second heating resistor 22 is stopped when the second fusible conductor 9 is melted.

次いで、バッテリパック40は、検出回路56により第1の電流制御素子61に少し遅れて当該バッテリユニット63の第2の電流制御素子62にも異常信号が出力され、短絡素子1の第1の発熱抵抗体21も発熱する。短絡素子1は、第1の発熱抵抗体21によって第1の可溶導体8を加熱、溶融させることにより、第1の電極4と第2の電極5とに凝集した第1、第2の可溶導体8,9の溶融導体が結合する。これにより、絶縁されていた第1の電極4と第2の電極5とが短絡され、スイッチ20の第1の電極端子部4a及び第2の電極端子部5aが短絡される。これにより、短絡素子1は、図10(C)に示すように、当該バッテリユニット63をバイパスするバイパス電流経路を形成することができる。なお、第1の可溶導体8が溶断することにより、第1の発熱抵抗体21への給電は停止される。   Next, the battery pack 40 outputs a failure signal to the second current control element 62 of the battery unit 63 with a slight delay from the first current control element 61 by the detection circuit 56, and the first heat generation of the short-circuit element 1. The resistor 21 also generates heat. The short-circuit element 1 is formed by heating and melting the first fusible conductor 8 by the first heating resistor 21, so that the first and second possible electrodes aggregated into the first electrode 4 and the second electrode 5. The molten conductors 8 and 9 are joined. Thereby, the insulated 1st electrode 4 and 2nd electrode 5 are short-circuited, and the 1st electrode terminal part 4a and 2nd electrode terminal part 5a of the switch 20 are short-circuited. Thereby, the short circuit element 1 can form the bypass current path which bypasses the said battery unit 63, as shown in FIG.10 (C). Note that power supply to the first heating resistor 21 is stopped when the first fusible conductor 8 is melted.

なお、保護抵抗54は、バッテリセル41の内部抵抗とほぼ同じ抵抗値を有することにより、バイパス電流経路上においても、正常時と同じ容量とすることができる。   The protective resistor 54 has substantially the same resistance value as the internal resistance of the battery cell 41, so that the same capacity as that in the normal state can be obtained on the bypass current path.

このようなバッテリパック40によれば、一つのバッテリユニット63に異常が起きた場合にも、当該バッテリユニット63を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリユニット63によって充放電機能を維持することができる。   According to such a battery pack 40, even when an abnormality occurs in one battery unit 63, a bypass current path that bypasses the battery unit 63 can be formed and is charged by the remaining normal battery units 63. The discharge function can be maintained.

[短絡素子(保護抵抗内蔵)]
また、短絡素子は、予め保護抵抗を内蔵させて形成してもよい。図11は、絶縁基板2上に保護抵抗71が形成された短絡素子70の平面図である。短絡素子70は、上述した短絡素子1の構成に加え、第1の電極4と接続された保護抵抗71が形成され、この保護抵抗71を介して第1の電極端子部4aが形成されている。保護抵抗71は、上述した第1、第2の発熱抵抗体21,22と同じ材料を用いて、同一のプロセスで同時に形成することができる。
[Short-circuit element (built-in protection resistor)]
Further, the short-circuit element may be formed by incorporating a protective resistor in advance. FIG. 11 is a plan view of the short-circuit element 70 in which the protective resistor 71 is formed on the insulating substrate 2. In addition to the configuration of the short-circuit element 1 described above, the short-circuit element 70 includes a protective resistor 71 connected to the first electrode 4, and the first electrode terminal portion 4 a is formed via the protective resistor 71. . The protective resistor 71 can be formed simultaneously in the same process using the same material as the first and second heating resistors 21 and 22 described above.

このように電子機器やバッテリパックにおける内部抵抗が決まっているような場合、予め保護抵抗71を内蔵した短絡素子70を用いることにより、実装等の工程を省力化することができる。   As described above, when the internal resistance of the electronic device or the battery pack is determined, a process such as mounting can be saved by using the short-circuit element 70 in which the protective resistor 71 is built in in advance.

図12は、短絡素子70の回路構成を示す図である。短絡素子70の回路構成は、スイッチ20が短絡することにより、第1の電極端子部4aと第2の電極端子部5aとが、保護抵抗71を介して接続される。すなわち、短絡素子70の回路構成は、第1の可溶導体(ヒューズ)8と、第1の可溶導体8の一端に接続された第1の発熱抵抗体21と、第1の可溶導体8の第1の発熱抵抗体21が接続されていない他端に接続されたスイッチ20と、スイッチ20の端子の少なくとも一方の端子に接続された保護抵抗71とを備え、スイッチ20が、第1の可溶導体8の溶断に連動して短絡するものである。   FIG. 12 is a diagram illustrating a circuit configuration of the short-circuit element 70. In the circuit configuration of the short-circuit element 70, the first electrode terminal portion 4a and the second electrode terminal portion 5a are connected via the protective resistor 71 when the switch 20 is short-circuited. That is, the circuit configuration of the short-circuit element 70 includes a first fusible conductor (fuse) 8, a first heating resistor 21 connected to one end of the first fusible conductor 8, and a first fusible conductor. 8 includes a switch 20 connected to the other end to which the first heating resistor 21 is not connected, and a protective resistor 71 connected to at least one of the terminals of the switch 20. This is a short circuit in conjunction with the melting of the fusible conductor 8.

なお、短絡素子70においても、絶縁基板2の裏面に外部端子12を設けて第1の電極端子部4a及び第2の電極端子部5aと当該外部端子12とをスルーホールによって接続する以外にも、上述した短絡素子33と同様に、絶縁基板2の第1、第2の電極4,5が形成された表面に、第1の電極4と連続する第1の外部接続電極34、第1の外部接続端子35、保護抵抗61を介して第2の電極5と連続する第2の外部接続電極36、及び第2の外部接続端子37を形成するようにしてもよい。   In the short-circuit element 70, the external terminal 12 is provided on the back surface of the insulating substrate 2 and the first electrode terminal portion 4a and the second electrode terminal portion 5a are connected to the external terminal 12 through a through hole. As in the case of the short-circuit element 33 described above, the first external connection electrode 34 that is continuous with the first electrode 4, the first electrode 4 is formed on the surface of the insulating substrate 2 on which the first and second electrodes 4 and 5 are formed. You may make it form the 2nd external connection electrode 36 and the 2nd external connection terminal 37 which continue with the 2nd electrode 5 via the external connection terminal 35, the protective resistance 61, and.

[バッテリパックの回路構成(保護抵抗内蔵)]
図13は、短絡素子70を組み込んだバッテリパック80の回路構成を示す図である。バッテリパック80は、短絡素子1に代えて短絡素子70を用いた点を除いて、上述したバッテリパック40と同じ構成を有する。すなわち、バッテリパック80は、バッテリセル41と、短絡素子70と、短絡素子70の動作を制御する第1、第2の電流制御素子61,62とで構成されるバッテリユニット73を複数備え、これら複数のバッテリユニット73が直列に接続されている。バッテリパック80において、各バッテリユニットに設けられた短絡素子70の保護抵抗71は、当該バッテリユニット73のバッテリセル41の内部抵抗とほぼ同じ抵抗値を有する。
[Battery pack circuit configuration (built-in protection resistor)]
FIG. 13 is a diagram showing a circuit configuration of a battery pack 80 in which the short-circuit element 70 is incorporated. The battery pack 80 has the same configuration as the battery pack 40 described above except that the short-circuit element 70 is used instead of the short-circuit element 1. That is, the battery pack 80 includes a plurality of battery units 73 including the battery cell 41, the short-circuit element 70, and the first and second current control elements 61 and 62 that control the operation of the short-circuit element 70. A plurality of battery units 73 are connected in series. In the battery pack 80, the protective resistance 71 of the short-circuit element 70 provided in each battery unit has substantially the same resistance value as the internal resistance of the battery cell 41 of the battery unit 73.

このようなバッテリパック80によれば、一つのバッテリユニット73に異常が起きた場合にも、当該バッテリユニット73を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリユニット73によって充放電機能を維持することができる。このとき、バッテリパック80は、保護抵抗71が、バッテリセル41の内部抵抗とほぼ同じ抵抗値を有することにより、バイパス電流経路上においても、正常時と同じ電流容量とすることができる。   According to such a battery pack 80, even when an abnormality occurs in one battery unit 73, a bypass current path that bypasses the battery unit 73 can be formed and is charged by the remaining normal battery units 73. The discharge function can be maintained. At this time, the battery pack 80 can have the same current capacity as that in the normal state on the bypass current path because the protective resistance 71 has substantially the same resistance value as the internal resistance of the battery cell 41.

1 短絡素子、2 絶縁基板、4 第1の電極、4a 第1の電極端子部、5 第2の電極、5a 第2の電極端子部、6 第3の電極、7 第4の電極、8 第1の可溶導体、9 第2の可溶導体、10 カバー部材、11 絶縁層、12 外部端子、15 フラックス、18 カバー部電極、20 スイッチ、21 第1の発熱抵抗体、21a 第1の抵抗体端子部、21b 第1の抵抗体接続端子、22 第2の発熱抵抗体、22a 第2の抵抗体端子部、22b 第2の抵抗体接続端子、23 第1の発熱体引出電極、24 第2の発熱体引出電極、31 第5の電極、31a 第5の電極端子部、31b 第3の外部接続端子、33 短絡素子、34 第1の外部接続電極、35 第1の外部接続端子、36 第2の外部接続電極、37 第2の外部接続端子、40 バッテリパック、41 バッテリセル、54 保護抵抗、55 充放電制御回路、56 検出回路、57 第3の電流制御素子、58 第4の電流制御素子、59 制御部、61 第1の電流制御素子、62 第2の電流制御素子、63 バッテリユニット、70 短絡素子、71 保護抵抗、73 バッテリユニット
DESCRIPTION OF SYMBOLS 1 Short circuit element, 2 Insulating substrate, 4 1st electrode, 4a 1st electrode terminal part, 5 2nd electrode, 5a 2nd electrode terminal part, 6 3rd electrode, 7 4th electrode, 8 1st 1 soluble conductor, 9 second soluble conductor, 10 cover member, 11 insulating layer, 12 external terminal, 15 flux, 18 cover part electrode, 20 switch, 21 first heating resistor, 21a first resistance Body terminal part, 21b first resistor connection terminal, 22 second heating resistor, 22a second resistor terminal part, 22b second resistor connection terminal, 23 first heating element lead electrode, 24th 2 heating element extraction electrode, 31 5th electrode, 31a 5th electrode terminal part, 31b 3rd external connection terminal, 33 short circuit element, 34 1st external connection electrode, 35 1st external connection terminal, 36 2nd external connection electrode, 37 2nd external connection terminal, 40 battery pack 41, battery cell, 54 protection resistor, 55 charge / discharge control circuit, 56 detection circuit, 57 third current control element, 58 fourth current control element, 59 control unit, 61 first current control element, 62 first 2 current control elements, 63 battery unit, 70 short-circuit element, 71 protection resistance, 73 battery unit

Claims (36)

絶縁基板と、
上記絶縁基板に形成された第1及び第2の発熱抵抗体と、
上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、
上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、
上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、
上記第4の電極に隣接して設けられた第5の電極と、
上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、
上記第2から上記第4の電極を経由して上記第5の電極に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2の電極と上記第4の電極との間、及び上記第4の電極と上記第5の電極との間の各上記電流経路を溶断する第2の可溶導体とを備え、
上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡することを特徴とする短絡素子。
An insulating substrate;
First and second heating resistors formed on the insulating substrate;
First and second electrodes provided adjacent to each other on the insulating substrate;
A third electrode provided on the insulating substrate adjacent to the first electrode and electrically connected to the first heating resistor;
A fourth electrode provided on the insulating substrate adjacent to the second electrode and electrically connected to the second heating resistor;
A fifth electrode provided adjacent to the fourth electrode;
A current path is formed by being provided between the first and third electrodes, and the current path between the first and third electrodes is blown by heating from the first heating resistor. A first soluble conductor;
A current path is formed by being provided across the fifth electrode through the second to fourth electrodes, and the second electrode and the above are heated by heating from the second heating resistor. A second soluble conductor for fusing each of the current paths between the fourth electrode and between the fourth electrode and the fifth electrode;
The first and second fusible conductors are melted by heating from the first and second heating resistors and aggregated on the first and second electrodes, so that the first electrode and the second electrode A short-circuit element characterized in that the electrode is short-circuited.
上記第2の可溶導体の幅が、上記第1の可溶導体よりも狭い請求項1記載の短絡素子。   The short-circuit element according to claim 1, wherein a width of the second soluble conductor is narrower than that of the first soluble conductor. 上記第2の可溶導体が、上記第1の可溶導体に先行して溶断する請求項1又は2記載の短絡素子。   The short-circuit element according to claim 1 or 2, wherein the second soluble conductor is blown prior to the first soluble conductor. 上記絶縁基板上に積層された絶縁層を備え、
上記第1〜第5の電極が、上記絶縁層上に設置され、
上記第1、第2の発熱抵抗体が、上記絶縁層の内部もしくは上記絶縁層と上記絶縁基板の間に設置されている請求項1乃至3のいずれか1項に記載の短絡素子。
Comprising an insulating layer laminated on the insulating substrate;
The first to fifth electrodes are disposed on the insulating layer;
4. The short-circuit element according to claim 1, wherein the first and second heating resistors are disposed inside the insulating layer or between the insulating layer and the insulating substrate. 5.
上記第1、第2の発熱抵抗体が、上記絶縁基板の内部に設置されてなる請求項1乃至3のいずれか1項に記載の短絡素子。   4. The short-circuit element according to claim 1, wherein the first and second heating resistors are installed inside the insulating substrate. 5. 上記第1、第2の発熱抵抗体が、上記絶縁基板の電極形成面と反対の面に設置されてなる請求項1乃至3のいずれか1項に短絡素子。   4. The short-circuit element according to claim 1, wherein the first and second heating resistors are provided on a surface opposite to an electrode forming surface of the insulating substrate. 上記第1、第2の発熱抵抗体が、上記絶縁基板の電極形成面上に設置されてなる請求項1乃至3のいずれか1項に記載の短絡素子。   4. The short-circuit element according to claim 1, wherein the first and second heating resistors are provided on an electrode forming surface of the insulating substrate. 上記第1の電極及び上記第2の電極の表面に、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキのいずれか1つが被覆されている請求項1乃至7のいずれか1項に記載の短絡素子。   The surface of each of the first electrode and the second electrode is coated with any one of Ni / Au plating, Ni / Pd plating, and Ni / Pd / Au plating. The short-circuit element described in 1. 上記第1の電極の面積が、上記第3の電極よりも広く、上記第2の電極の面積が、上記第4及び第5の電極よりも広い請求項1乃至8のいずれか1項に記載の短絡素子。   The area of the first electrode is larger than that of the third electrode, and the area of the second electrode is wider than those of the fourth and fifth electrodes. Short circuit element. 上記絶縁基板上に設けられた内部を保護するカバー部材と、
上記カバー部材の内面に設けられるカバー部電極とを備え、
上記カバー部電極が、上記第1の電極及び上記第2の電極と重畳する位置に設置されてなる請求項1乃至9のいずれか1項に記載の短絡素子。
A cover member for protecting the inside provided on the insulating substrate;
A cover part electrode provided on the inner surface of the cover member,
10. The short-circuit element according to claim 1, wherein the cover part electrode is disposed at a position overlapping the first electrode and the second electrode. 11.
上記絶縁基板上に、上記第1の電極又は上記第2の電極のいずれか一方に接続される保護抵抗を備える請求項1乃至10のいずれか1項に記載の短絡素子。   The short-circuit element according to any one of claims 1 to 10, further comprising a protective resistor connected to either the first electrode or the second electrode on the insulating substrate. 上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、Snを主成分とするPbフリーハンダである請求項1乃至11のいずれか1項に記載の短絡素子。   12. The short-circuit element according to claim 1, wherein at least one of the first soluble conductor and the second soluble conductor is Pb-free solder containing Sn as a main component. 上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
上記低融点金属が、上記発熱抵抗体から発する熱により溶融することで、上記高融点金属を溶食する請求項1乃至11のいずれか1項に記載の短絡素子。
At least one of the first soluble conductor and the second soluble conductor contains a low melting point metal and a high melting point metal,
12. The short-circuit element according to claim 1, wherein the low-melting-point metal is melted by heat generated from the heating resistor, and the high-melting-point metal is eroded.
上記低融点金属が、ハンダであり、
上記高融点金属が、Ag、Cu、又はAg若しくはCuを主成分とする合金である請求項13記載の短絡素子。
The low melting point metal is solder,
The short-circuit element according to claim 13, wherein the refractory metal is Ag, Cu, or an alloy mainly composed of Ag or Cu.
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方の内層が上記低融点金属であり、外層が上記高融点金属の被覆構造である請求項1乃至11、13又は14のいずれか1項に記載の短絡素子。
At least one of the first soluble conductor and the second soluble conductor contains a low melting point metal and a high melting point metal,
The inner layer of at least one of the first soluble conductor and the second soluble conductor is the low melting point metal, and the outer layer is a coating structure of the high melting point metal. The short circuit element of any one of Claims.
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方の内層が上記高融点金属であり、外層が上記低融点金属の被覆構造である請求項1乃至11、13又は14のいずれか1項に記載の短絡素子。
At least one of the first soluble conductor and the second soluble conductor contains a low melting point metal and a high melting point metal,
The inner layer of at least one of the first soluble conductor and the second soluble conductor is the high melting point metal, and the outer layer is a covering structure of the low melting point metal. The short circuit element of any one of Claims.
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、上記低融点金属と、上記高融点金属とが積層された積層構造である請求項1乃至11、13又は14のいずれか1項に記載の短絡素子。
At least one of the first soluble conductor and the second soluble conductor contains a low melting point metal and a high melting point metal,
15. At least one of the first soluble conductor and the second soluble conductor has a laminated structure in which the low melting point metal and the high melting point metal are laminated. The short circuit element of any one of Claims.
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、上記低融点金属と、上記高融点金属とが交互に積層された4層以上の多層構造である請求項1乃至11、13又は14のいずれか1項に記載の短絡素子。
At least one of the first soluble conductor and the second soluble conductor contains a low melting point metal and a high melting point metal,
The at least one of the first soluble conductor and the second soluble conductor has a multilayer structure of four or more layers in which the low melting point metal and the high melting point metal are alternately laminated. The short-circuit element according to any one of 11, 13, and 14.
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、内層を構成する低融点金属の表面を、高融点金属にてストライプ状に部分的に積層する請求項1乃至11、13又は14のいずれか1項に記載の短絡素子。
At least one of the first soluble conductor and the second soluble conductor contains a low melting point metal and a high melting point metal,
The at least one of the first soluble conductor and the second soluble conductor partially laminates the surface of a low melting point metal constituting the inner layer in a stripe shape with a high melting point metal. 15. The short-circuit element according to any one of 13 and 14.
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、多数の開口部を有する高融点金属と、上記開口部に挿入された低融点金属とからなる請求項1乃至11、13又は14のいずれか1項に記載の短絡素子。
At least one of the first soluble conductor and the second soluble conductor contains a low melting point metal and a high melting point metal,
12. At least one of the first soluble conductor and the second soluble conductor is composed of a high melting point metal having a large number of openings and a low melting point metal inserted into the openings. 15. The short-circuit element according to any one of 13 and 14.
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方の低融点金属の体積が、高融点金属の体積よりも多い請求項1乃至11、13乃至20のいずれか1項に記載の短絡素子
At least one of the first soluble conductor and the second soluble conductor contains a low melting point metal and a high melting point metal,
The volume of the low melting point metal of at least one of the first soluble conductor and the second soluble conductor is larger than the volume of the high melting point metal, according to any one of claims 1 to 11 and 13 to 20. The short-circuit element described
スイッチと、
上記スイッチの一端に接続された第1のヒューズと、
上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、
上記スイッチの開放端と直列に接続された第2、第3のヒューズと、
上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、
上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、
上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子回路。
A switch,
A first fuse connected to one end of the switch;
A first heating resistor connected to the open end of the first fuse;
Second and third fuses connected in series with the open end of the switch;
A second heating resistor connected to the connection point of the second and third fuses,
The second and third fuses are blown by heat generated by the second heating resistor,
A short-circuit element circuit in which the switch is short-circuited by a molten conductor of the first fuse when the first fuse is blown by heat generation of the first heating resistor.
スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子と、
電子部品と、
上記電子部品の異常を検知し、異常信号を出力する保護部品と、
上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、
上記第2、第3のヒューズと上記電子部品とを直列に接続して電流経路を構成し、
上記スイッチと上記第1のヒューズとの接続点を上記電子部品の開放端にバイパスするように接続し、
上記第1の発熱抵抗体の開放端に上記第1の制御素子を接続し、
上記第2の発熱抵抗体の開放端に上記第2の制御素子を接続し、
上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記電子部品の電流経路の遮断と、上記第1のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
A switch; a first fuse connected to one end of the switch; a first heating resistor connected to the open end of the first fuse; and a second connected in series to the open end of the switch. , A third fuse and a second heating resistor connected to a connection point of the second and third fuses, and the second and third fuses are generated by the heat generated by the second heating resistor. A short-circuit element in which the switch is short-circuited by a molten conductor of the first fuse by fusing the first fuse due to heat generation of the first heating resistor,
Electronic components,
A protective component that detects an abnormality of the electronic component and outputs an abnormality signal;
First and second control elements that operate in response to an abnormality signal of the protective component,
A current path is formed by connecting the second and third fuses and the electronic component in series,
Connecting the connection point of the switch and the first fuse so as to bypass the open end of the electronic component;
Connecting the first control element to the open end of the first heating resistor;
Connecting the second control element to the open end of the second heating resistor;
When the electronic component is abnormal, the first and second control elements operate in response to an abnormal signal from the protective component, and are linked to the interruption of the current path of the electronic component and the fusing of the first fuse. A compensation circuit in which a bypass current path is formed by short-circuiting the switch.
上記保護部品及び上記第1、第2の制御素子を制御することにより、上記電子部品の電流経路の遮断を行い、その後上記短絡素子による上記バイパス電流経路を形成する請求項23に記載の補償回路。   The compensation circuit according to claim 23, wherein the current path of the electronic component is interrupted by controlling the protection component and the first and second control elements, and then the bypass current path is formed by the short-circuit element. . 上記バイパス電流経路上に、上記電子部品の内部抵抗相当の保護抵抗が接続されている請求項23又は24記載の補償回路。   The compensation circuit according to claim 23 or 24, wherein a protective resistance corresponding to an internal resistance of the electronic component is connected on the bypass current path. 上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項23乃至25のいずれか1項に記載の補償回路。   The compensation circuit according to any one of claims 23 to 25, wherein the electronic component is a battery cell accompanied by an electrical short circuit or thermal runaway in an abnormal state. スイッチと、
上記スイッチの一端に接続された第1のヒューズと、
上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、
上記スイッチと上記第1のヒューズとの接続点と接続された保護抵抗と、
上記スイッチの開放端と直列に接続された第2、第3のヒューズと、
上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、
上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、
上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子回路。
A switch,
A first fuse connected to one end of the switch;
A first heating resistor connected to the open end of the first fuse;
A protective resistor connected to a connection point between the switch and the first fuse;
Second and third fuses connected in series with the open end of the switch;
A second heating resistor connected to the connection point of the second and third fuses,
The second and third fuses are blown by heat generated by the second heating resistor,
A short-circuit element circuit in which the switch is short-circuited by a molten conductor of the first fuse when the first fuse is blown by heat generation of the first heating resistor.
スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチと上記第1のヒューズとの接続点と接続された保護抵抗と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子と、
電子部品と、
上記電子部品の異常を検知し、異常信号を出力する保護部品と、
上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、
上記第2、第3のヒューズと上記電子部品とを直列に接続して電流経路を構成し、
上記保護抵抗の開放端を上記電子部品の開放端にバイパスするように接続し、
上記第1の発熱抵抗体の開放端に上記第1の制御素子を接続し、
上記第2の発熱抵抗体の開放端に上記第2の制御素子を接続し、
上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記電子部品の電流経路の遮断と、上記第1のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
A switch, a first fuse connected to one end of the switch, a first heating resistor connected to an open end of the first fuse, and a connection point between the switch and the first fuse A connected protection resistor; second and third fuses connected in series with the open end of the switch; and a second heating resistor connected to a connection point of the second and third fuses. And the second and third fuses are blown by the heat generated by the second heat generating resistor, and the first fuse is blown by the heat generated by the first heat generating resistor. A short-circuit element in which the switch is short-circuited by a fused conductor of a fuse;
Electronic components,
A protective component that detects an abnormality of the electronic component and outputs an abnormality signal;
First and second control elements that operate in response to an abnormality signal of the protective component,
A current path is formed by connecting the second and third fuses and the electronic component in series,
Connect the open end of the protective resistor to bypass the open end of the electronic component,
Connecting the first control element to the open end of the first heating resistor;
Connecting the second control element to the open end of the second heating resistor;
When the electronic component is abnormal, the first and second control elements operate in response to an abnormal signal from the protective component, and are linked to the interruption of the current path of the electronic component and the fusing of the first fuse. A compensation circuit in which a bypass current path is formed by short-circuiting the switch.
上記保護部品及び上記第1、第2の制御素子を制御することにより、上記電子部品の電流経路の遮断を行い、その後上記短絡素子による上記バイパス電流経路を形成する請求項28に記載の補償回路。   29. The compensation circuit according to claim 28, wherein the current path of the electronic component is interrupted by controlling the protection component and the first and second control elements, and then the bypass current path is formed by the short-circuit element. . 上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項28又は29記載の補償回路。   30. The compensation circuit according to claim 28 or 29, wherein the electronic component is a battery cell accompanied by an electrical short circuit or thermal runaway in an abnormal state. 上記絶縁基板には、上記可溶導体が設けられた面と同一面に、上記第1の電極と連続する第1の外部接続電極と、上記第1の外部接続電極上に設けられる1又は複数の第1の外部接続端子と、上記第2の電極と連続する第2の外部接続電極と、上記第2の外部接続電極上に設けられる1又は複数の第2の外部接続端子が形成され、
上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低い請求項1〜21のいずれか1項に記載の短絡素子。
The insulating substrate has a first external connection electrode continuous with the first electrode on the same surface as the surface on which the soluble conductor is provided, and one or more provided on the first external connection electrode. A first external connection terminal, a second external connection electrode continuous with the second electrode, and one or a plurality of second external connection terminals provided on the second external connection electrode,
The first external connection terminal and the second external connection terminal than the conduction resistance between the first and second external connection electrodes when the first electrode and the second electrode are short-circuited. The short circuit element according to any one of claims 1 to 21, wherein the combined resistance of the short circuit element is low.
上記外部接続端子が、金属バンプ又は金属ポストである請求項31記載の短絡素子。   32. The short-circuit element according to claim 31, wherein the external connection terminal is a metal bump or a metal post. 上記金属バンプ又は金属ポストは、高融点金属の表面に低融点金属層が形成されている請求項32記載の短絡素子。   The short circuiting element according to claim 32, wherein the metal bump or the metal post has a low melting point metal layer formed on the surface of the high melting point metal. 上記高融点金属は銅又は銀を主成分とし、上記低融点金属は錫を主成分とする鉛フリー半田である請求項33記載の短絡素子。   34. The short-circuit element according to claim 33, wherein the refractory metal is copper or silver as a main component, and the low melting point metal is lead-free solder whose main component is tin. 上記外部接続端子が、錫を主成分とする鉛フリー半田からなる金属バンプである請求項31記載の短絡素子。   32. The short-circuit element according to claim 31, wherein the external connection terminal is a metal bump made of lead-free solder mainly composed of tin. 短絡素子が実装対象物に実装された実装体において、
上記短絡素子は、
絶縁基板と、
上記絶縁基板に形成された第1及び第2の発熱抵抗体と、
上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、
上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、
上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、
上記第4の電極に隣接して設けられた第5の電極と、
上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、
上記第2から上記第4の電極を経由して上記第5の電極に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2の電極と上記第4の電極との間、及び上記第4の電極と上記第5の電極との間の各上記電流経路を溶断する第2の可溶導体と、
上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、
上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、
上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とする実装体。
In the mounting body in which the short-circuit element is mounted on the mounting target,
The short-circuit element is
An insulating substrate;
First and second heating resistors formed on the insulating substrate;
First and second electrodes provided adjacent to each other on the insulating substrate;
A third electrode provided on the insulating substrate adjacent to the first electrode and electrically connected to the first heating resistor;
A fourth electrode provided on the insulating substrate adjacent to the second electrode and electrically connected to the second heating resistor;
A fifth electrode provided adjacent to the fourth electrode;
A current path is formed by being provided between the first and third electrodes, and the current path between the first and third electrodes is blown by heating from the first heating resistor. A first soluble conductor;
A current path is formed by being provided across the fifth electrode through the second to fourth electrodes, and the second electrode and the above are heated by heating from the second heating resistor. A second soluble conductor that blows off each of the current paths between the fourth electrode and between the fourth electrode and the fifth electrode;
A first external connection electrode that is formed on the same surface as the surface on which the first and second electrodes of the insulating substrate are formed and that is continuous with the first electrode and a second electrode that is continuous with the second electrode. With external connection electrodes,
The first electrode is connected to the mounting object via a first external connection terminal connected on the first external connection electrode, and the second electrode is on the second external connection electrode. It is connected to the mounting object through the connected second external connection terminal,
The first and second fusible conductors are melted by heating from the first and second heating resistors and aggregated on the first and second electrodes, so that the first electrode and the second electrode The combined resistance of the first external connection terminal and the second external connection terminal is lower than the conduction resistance between the first and second external connection electrodes when the electrode is short-circuited. An implementation body.
JP2013125079A 2013-02-05 2013-06-13 Short circuit element and circuit using the same Active JP6161967B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013125079A JP6161967B2 (en) 2013-02-12 2013-06-13 Short circuit element and circuit using the same
PCT/JP2014/052634 WO2014123139A1 (en) 2013-02-05 2014-02-05 Short-circuit element and circuit using same
CN201480007625.9A CN105027252B (en) 2013-02-05 2014-02-05 Short-circuit component and the circuit using the short-circuit component
KR1020157024285A KR102115999B1 (en) 2013-02-05 2014-02-05 Short-circuit element and circuit using same
TW103103891A TWI594285B (en) 2013-02-05 2014-02-05 Short circuit components and circuits using this
US14/819,061 US9953792B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same
US14/819,328 US9953793B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same
US14/818,862 US9899179B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013024643 2013-02-12
JP2013024643 2013-02-12
JP2013125079A JP6161967B2 (en) 2013-02-12 2013-06-13 Short circuit element and circuit using the same

Publications (2)

Publication Number Publication Date
JP2014179309A JP2014179309A (en) 2014-09-25
JP6161967B2 true JP6161967B2 (en) 2017-07-12

Family

ID=51699038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125079A Active JP6161967B2 (en) 2013-02-05 2013-06-13 Short circuit element and circuit using the same

Country Status (1)

Country Link
JP (1) JP6161967B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436729B2 (en) * 2014-11-11 2018-12-12 デクセリアルズ株式会社 Fuse element, fuse element, protection element, short-circuit element, switching element
JP6527323B2 (en) * 2014-11-11 2019-06-05 デクセリアルズ株式会社 Flux sheet, flux, fuse element, fuse element, protection element, short circuit element and switching element
WO2020026789A1 (en) * 2018-07-31 2020-02-06 株式会社村田製作所 Electroconductive plate and battery device
JP6577118B2 (en) * 2018-10-23 2019-09-18 デクセリアルズ株式会社 Fuse element, fuse element, protection element, short-circuit element, switching element
JP7477958B2 (en) * 2019-10-30 2024-05-02 デクセリアルズ株式会社 Protection elements and circuits

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133318A (en) * 1998-08-21 2000-05-12 Sony Corp Battery pack
JP5072796B2 (en) * 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device

Also Published As

Publication number Publication date
JP2014179309A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
TWI594285B (en) Short circuit components and circuits using this
JP6249602B2 (en) Protective element
JP7281274B2 (en) Protective elements and battery packs
WO2014123139A1 (en) Short-circuit element and circuit using same
JP6161967B2 (en) Short circuit element and circuit using the same
KR102239935B1 (en) Short-circuiting element
JP6246503B2 (en) Short circuit element and circuit using the same
KR102386943B1 (en) Short-circuit element
KR102233539B1 (en) Bypass element and bypass circuit
JP7339071B2 (en) protection element, battery pack
KR102378639B1 (en) Switching element and switching circuit
JP6058476B2 (en) Protective element and mounting body on which protective element is mounted
JP6254777B2 (en) Short circuit element and circuit using the same
KR102527559B1 (en) Short circuit element
JP6223142B2 (en) Short circuit element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170614

R150 Certificate of patent or registration of utility model

Ref document number: 6161967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250