JP6152636B2 - Porous acrylic single fiber and cesium ion adsorbent containing the fiber - Google Patents

Porous acrylic single fiber and cesium ion adsorbent containing the fiber Download PDF

Info

Publication number
JP6152636B2
JP6152636B2 JP2012246976A JP2012246976A JP6152636B2 JP 6152636 B2 JP6152636 B2 JP 6152636B2 JP 2012246976 A JP2012246976 A JP 2012246976A JP 2012246976 A JP2012246976 A JP 2012246976A JP 6152636 B2 JP6152636 B2 JP 6152636B2
Authority
JP
Japan
Prior art keywords
fiber
porous acrylic
acrylonitrile
cesium ion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012246976A
Other languages
Japanese (ja)
Other versions
JP2014095164A (en
Inventor
拓三 小見山
拓三 小見山
佳丘 大和
佳丘 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2012246976A priority Critical patent/JP6152636B2/en
Publication of JP2014095164A publication Critical patent/JP2014095164A/en
Application granted granted Critical
Publication of JP6152636B2 publication Critical patent/JP6152636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、多孔質アクリル繊維および該繊維を含有するセシウムイオン吸着材に関する。 The present invention relates to a porous acrylic fiber and a cesium ion adsorbent containing the fiber.

原子炉施設、核燃料の再処理工場等からの廃液には、種々の放射性核種が含まれているため、廃液中の放射能濃度を原子炉等規制法に定める値以下にして、環境中へ放出している。また、原子炉施設等の事故時に各種放射性核種が環境中へ放出された場合に備えて、各種放射性核種を環境中から回収する方法が求められている。これら放射性核種は、放射性セシウム、放射性ヨウ素等があげられるが、その半減期が約30年と長いことから放射性セシウムの回収方法はより重要になる。 Waste liquid from nuclear reactor facilities, nuclear fuel reprocessing plants, etc. contain various radionuclides, so the radioactive concentration in the waste liquid is released to the environment below the value specified in the Reactor Regulation Law. doing. There is also a need for a method for recovering various radionuclides from the environment in preparation for the release of various radionuclides into the environment at the time of an accident at a nuclear reactor facility or the like. These radionuclides include radioactive cesium, radioactive iodine and the like, but since the half-life is as long as about 30 years, the method for recovering radioactive cesium becomes more important.

放射性セシウムの回収方法のうち、プルシアンブルー等の不溶性フェロシアン化物は他の金属イオンが存在している環境においても、セシウムイオン選択性が優れ、放射性廃液処理剤としての利用が期待されている(非特許文献1)。 Among the methods for recovering radioactive cesium, insoluble ferrocyanide such as Prussian blue is excellent in cesium ion selectivity even in an environment where other metal ions exist, and is expected to be used as a treatment agent for radioactive liquid waste ( Non-patent document 1).

しかし、不溶性フェロシアン化物は粉末であり、そのまま使用した場合、使用後の回収において、手間がかかる、あるいは、飛散する等の取扱い上での問題がある。また、ゼオライトに上記不溶性フェロシアン化物を担持させた例もあるが(特許文献1)、放射性核種を含有する廃液を処理するなどの実用面を考慮した場合、依然として満足できるものではない。 However, the insoluble ferrocyanide is a powder, and when used as it is, there is a problem in handling such as troublesome or scattering in the recovery after use. Further, although there is an example in which the above insoluble ferrocyanide is supported on zeolite (Patent Document 1), it is still unsatisfactory when considering practical aspects such as treating waste liquid containing radionuclide.

特開昭56-79999号公報JP 56-79999 A

Radiochimica Acta,(ドイツ),1986年,40,p.49−56Radiochimica Acta, (Germany), 1986, 40, p. 49-56

本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は、水溶液中のセシウムイオンを効果的に除去できる製品を提供することにある。 The present invention has been made in view of the current state of the prior art, and an object thereof is to provide a product that can effectively remove cesium ions in an aqueous solution.

本発明者は、上述の目的を達成するために鋭意検討を進めた結果、不溶性フェロシアン化物を含有し、且つ吸水率が10%以上である多孔質アクリル繊維が、
水溶液中のセシウムイオンを効果的に除去できることを見出し、本発明に到達した。
As a result of diligent studies to achieve the above-mentioned object, the present inventor has obtained a porous acrylic fiber containing an insoluble ferrocyanide and having a water absorption of 10% or more.
The inventors have found that cesium ions in an aqueous solution can be effectively removed, and have reached the present invention.

即ち、本発明は以下の手段により達成される。
(1) 溶剤に溶解するアクリロニトリル系重合体および不溶性フェロシアン化物のみからなる混合物のみから形成されており、且つ吸水率が10〜100%であることを特徴とする多孔質アクリル繊維。
(2) アクリロニトリル系重合体のアクリロニトリルの結合含有量が85〜90重量%であることを特徴とする(1)に記載の多孔質アクリル単繊維。
) 不溶性フェロシアン化物が、プルシアンブルーであることを特徴とする(1)または(2)に記載の多孔質アクリル繊維。
) (1)から(3)のいずれかに記載の多孔質アクリル繊維を含有するセシウムイオン吸着材。
That is, the present invention is achieved by the following means.
(1) A porous acrylic monofilament which is formed only from a mixture consisting of only an acrylonitrile polymer dissolved in a solvent and an insoluble ferrocyanide and has a water absorption of 10 to 100%.
(2) The porous acrylic monofilament according to (1), wherein the acrylonitrile bond content of the acrylonitrile-based polymer is 85 to 90% by weight.
( 3 ) The porous acrylic monofilament according to (1) or (2) , wherein the insoluble ferrocyanide is Prussian blue.
( 4 ) A cesium ion adsorbent containing the porous acrylic monofilament according to any one of (1) to (3) .

本発明の特筆すべき効果は、取り扱いやすく、水溶液中のセシウムイオンを効果的に除去できる製品を提供し得た点である。 The remarkable effect of the present invention is that it is easy to handle and can provide a product that can effectively remove cesium ions in an aqueous solution.

以下、本発明を詳述する。本発明は不溶性フェロシアン化物を含有し、且つ吸水率が10〜100%である多孔質アクリル繊維である。 The present invention is described in detail below. The present invention is a porous acrylic fiber containing an insoluble ferrocyanide and having a water absorption of 10 to 100%.

本発明に採用する不溶性のフェロシアン化物としては、一般式M[Fe(CN)](ただしMはCu,Co,Ni,Zn,Cd,Mn,Feなどの二価の遷移金属)で表わされるフェロシアン化物、又はこれらのMの一部が、一価の陽イオンにより置換されているフェロシアン化物で水に難溶のものを挙げることができるが、コスト、入手のしやすさからプルシアンブルー(フェロシアン化鉄(III))が特に望ましい。 The insoluble ferrocyanide employed in the present invention is represented by the general formula M 2 [Fe (CN) 6 ] (where M is a divalent transition metal such as Cu, Co, Ni, Zn, Cd, Mn, Fe). Although the ferrocyanide represented, or a part of these M is a ferrocyanide substituted with a monovalent cation, those which are hardly soluble in water can be mentioned, but from the viewpoint of cost and availability Prussian blue (iron ferrocyanide (III)) is particularly desirable.

不溶性フェロシアン化物の含有量としては、後述するアクリロニトリル系重合体100重量部に対して、好ましくは0.1〜5.0重量部、より好ましくは1.0〜5.0重量部、さらに好ましくは1.0〜3.0重量部である。不溶性フェロシアン化物の含有量が下限に満たない場合には、水溶液中のセシウムイオン除去性能が十分でないことがあり、上限を超える場合には、実用上利用しうる繊維物性を保つことができないことがある。 The content of the insoluble ferrocyanide is preferably 0.1 to 5.0 parts by weight, more preferably 1.0 to 5.0 parts by weight, further preferably 100 parts by weight of an acrylonitrile-based polymer described later. Is 1.0 to 3.0 parts by weight. When the content of insoluble ferrocyanide is less than the lower limit, the cesium ion removal performance in the aqueous solution may not be sufficient, and when it exceeds the upper limit, the fiber physical properties that can be practically used cannot be maintained. There is.

また、本願に係る多孔質アクリル繊維は、後述する測定法においての吸水率が10〜100%、好ましくは10〜80%、より好ましくは20〜80%であることが望ましい。吸水率がかかる範囲内であることにより、セシウムイオンを効率的に除去できる。この理由としては、繊維内部にまでセシウムイオンを含有する水溶液が入り込みやすくなり、繊維表層部のみならず繊維内部に存在する不溶性フェロシアン化物についても、セシウムイオン除去に有効に利用できるためと考えられる。一方、吸水率が10%未満である場合には使用上有益な量の多孔質構造を持っておらず、水溶液中のセシウムイオンを効果的に除去できない。また、吸水率が100%を超える場合には、紡糸時に糸切れが起こりやすく、強度等の繊維物性についても実用上満足できる水準のものを得ることができない。 Further, the porous acrylic fiber according to the present application desirably has a water absorption rate of 10 to 100%, preferably 10 to 80%, more preferably 20 to 80% in a measurement method described later. Cesium ions can be efficiently removed when the water absorption is within this range. The reason for this is considered to be that an aqueous solution containing cesium ions can easily enter the fiber, and insoluble ferrocyanide existing not only in the fiber surface layer but also in the fiber can be effectively used for removing cesium ions. . On the other hand, when the water absorption is less than 10%, the porous structure does not have a useful amount for use, and cesium ions in the aqueous solution cannot be effectively removed. When the water absorption rate exceeds 100%, yarn breakage is likely to occur during spinning, and fiber properties such as strength cannot be obtained in practically satisfactory levels.

本発明の多孔質アクリル繊維に採用するアクリロニトリル系重合体は、アクリロニトリルを単独重合するか、あるいは、アクリロニトリルと共重合可能な不飽和ビニル化合物とともに共重合することによって作成される。かかる不飽和ビニル化合物としては、アクリル酸、メタクリル酸又はこれらのメチルエステル、エチルエステル等のエステル類;アクリルアミド、メタクリルアミド又はこれらのNーアルキル置換体;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル又はビニリデン類;ビニルスルホン酸、pースチレンスルホン酸等の不飽和スルホン酸又はこれらの塩類;アクリル酸、メタクリル酸のジメチルアミノエチルエステル;スチレン等を単独又は併用して用いることができる。かかるアクリロニトリル系重合体は、周知の重合手段である懸濁重合法、乳化重合法、溶液重合法等によって製造することができる。 The acrylonitrile polymer employed in the porous acrylic fiber of the present invention is prepared by homopolymerizing acrylonitrile or copolymerizing with an unsaturated vinyl compound copolymerizable with acrylonitrile. Examples of the unsaturated vinyl compound include acrylic acid, methacrylic acid or esters thereof such as methyl ester and ethyl ester; acrylamide, methacrylamide or N-alkyl substituted products thereof; vinyl esters such as vinyl acetate and vinyl propionate; Vinyl halides or vinylidenes such as vinyl chloride, vinyl bromide and vinylidene chloride; unsaturated sulfonic acids such as vinyl sulfonic acid and p-styrene sulfonic acid or salts thereof; dimethylaminoethyl ester of acrylic acid and methacrylic acid; styrene Etc. can be used alone or in combination. Such an acrylonitrile-based polymer can be produced by a well-known polymerization means such as a suspension polymerization method, an emulsion polymerization method, or a solution polymerization method.

また、かかるアクリロニトリル系重合体においては、85重量%以上のアクリロニトリルを結合含有することが望ましい。アクリロニトリル系重合体のアクリロニトリル含有量が85重量%に満たない場合は、後述する製造方法において、各々の細孔が繊維内部で連結せず、さらに繊維にスキン層を形成して繊維表面とも連通していない繊維構造が得られ、上述した範囲の吸水率をもった繊維が得られない場合がある。すなわち、繊維内部の不溶性フェロシアン化合物が、水溶液中のセシウムイオン除去に利用できなくなり、セシウムイオン除去性能が十分に得られなくなる場合がある。 In addition, it is desirable that the acrylonitrile-based polymer contains 85% by weight or more of acrylonitrile as a bond. When the acrylonitrile content of the acrylonitrile-based polymer is less than 85% by weight, in the production method described later, each pore is not connected inside the fiber, and further, a skin layer is formed on the fiber to communicate with the fiber surface. In some cases, a fiber structure having a water absorption rate in the above-described range cannot be obtained. That is, the insoluble ferrocyan compound inside the fiber cannot be used for removing cesium ions in the aqueous solution, and cesium ion removal performance may not be sufficiently obtained.

本発明の多孔質アクリル繊維を製造する方法としては、上述したアクリロニトリル系重合体と不溶性フェロシアン化物を溶剤と混合して不溶性フェロシアン化物が分散した紡糸原液を作成し、該原液をノズルから吐出させて繊維状に成形する方法を挙げることができる。 As a method for producing the porous acrylic fiber of the present invention, the above-mentioned acrylonitrile polymer and insoluble ferrocyanide are mixed with a solvent to prepare a spinning stock solution in which the insoluble ferrocyanide is dispersed, and the stock solution is discharged from a nozzle. And forming into a fibrous form.

紡糸原液を作成する方法としては、アクリロニトリル系重合体と不溶性フェロシアン化物を溶剤に添加し混合する方法や、アクリロニトリル系重合体を溶剤に溶解した後に不溶性フェロシアン化物を添加混合する方法などを挙げることができる。この時に用いられる溶剤としては上記アクリロニトリル系重合体を溶解し、かつ該アクリロニトリル系重合体溶液が不溶性フェロシアン化物を凝集させないものであれば使用可能であり、例えば、水系溶剤や有機系溶剤などが挙げられる。水系溶剤としては、硝酸、塩化亜鉛水溶液、チオシアン酸ナトリウム水溶液など、有機系溶剤としては、N−メチルピロリドン(NMP)、DMF、DMAc、DMSOなどが挙げられる。中でも、チオシアン酸ナトリウム水溶液などの水系溶剤においては、不溶性フェロシアン化物の分散性が良好であり、より多くの量の不溶性フェロシアン化物を含有させても、実用的な繊維物性を発現できるので好適である。 Examples of a method for preparing a spinning dope include a method in which an acrylonitrile polymer and an insoluble ferrocyanide are added to a solvent and mixing, a method in which an acrylonitrile polymer is dissolved in a solvent, and an insoluble ferrocyanide is added and mixed. be able to. The solvent used at this time can be used as long as it dissolves the acrylonitrile-based polymer and the acrylonitrile-based polymer solution does not aggregate insoluble ferrocyanide, and examples thereof include aqueous solvents and organic solvents. Can be mentioned. Examples of the aqueous solvent include nitric acid, zinc chloride aqueous solution, and sodium thiocyanate aqueous solution, and examples of the organic solvent include N-methylpyrrolidone (NMP), DMF, DMAc, DMSO, and the like. Above all, in aqueous solvents such as sodium thiocyanate aqueous solution, the dispersibility of insoluble ferrocyanide is good, and even if a larger amount of insoluble ferrocyanide is contained, practical fiber physical properties can be expressed. It is.

上述のようにして作成された紡糸原液は、公知のノズルで湿式紡糸される。かかる紡糸において、上述した範囲の吸水率を有する繊維を得る方法としては、例えば、チオシアン酸ナトリウム等の無機塩水溶液を用いて製造する場合においては、以下のような方法を採ることができる。 The spinning dope prepared as described above is wet-spun with a known nozzle. In such spinning, as a method for obtaining a fiber having a water absorption rate in the above-described range, for example, in the case of producing using an aqueous inorganic salt solution such as sodium thiocyanate, the following method can be employed.

即ち、上述のようにして紡糸原液を作製し、ノズルから紡出後、凝固、水洗、延伸の各工程を経て、延伸後の未乾燥繊維の水分率を好ましくは50〜130重量%、より好ましくは60〜120重量%とする。続いて湿熱処理を好ましくは105℃〜130℃、より好ましくは110℃〜125℃で行い、その後湿熱処理温度以下で乾燥することにより本発明の多孔質アクリル繊維が得られる。 That is, a spinning dope is prepared as described above, and after spinning from the nozzle, the water content of the undried fiber after stretching is preferably 50 to 130% by weight, more preferably through the respective steps of coagulation, water washing and stretching. Is 60 to 120% by weight. Subsequently, the porous acrylic fiber of the present invention is obtained by performing wet heat treatment preferably at 105 ° C. to 130 ° C., more preferably 110 ° C. to 125 ° C., and then drying at a temperature equal to or lower than the wet heat treatment temperature.

ここで、延伸後の未乾燥繊維の水分率は以下の方法により求められるものである。まず、延伸後の未乾燥繊維を純水中に浸漬した後、遠心加速度1100G(Gは重力加速度を示す)下2分間脱水する。脱水後重量を測定(Wbとする)後、該未乾燥繊維を120℃で15分間乾燥して重量を測定(Waとする)し、次式により計算する。
延伸後の未乾燥繊維の水分率(%)=(Wb−Wa)/Wa×100
Here, the moisture content of the undried fiber after stretching is determined by the following method. First, the stretched undried fiber is immersed in pure water, and then dehydrated for 2 minutes under a centrifugal acceleration of 1100G (G indicates gravitational acceleration). After measuring the weight after dehydration (Wb), the undried fiber is dried at 120 ° C. for 15 minutes, and the weight is measured (Wa).
Moisture content of undried fiber after stretching (%) = (Wb−Wa) / Wa × 100

なお、延伸後の未乾燥繊維の水分率を制御する方法は多数あるが、上記範囲内に制御するには、凝固浴温度としては0℃〜15℃程度、延伸倍率としては7〜15倍程度が望ましい。一方、凝固浴温度が下限に満たない場合は各々の細孔が繊維内部で連結せず、且つ繊維表面に連通しないため、上述した範囲の吸水率をもった繊維が得られない場合があり、上限を越えると可紡性が低下し好ましくない。また、延伸倍率がかかる範囲を満たさない場合は、繊維に適度な強度が付与し得ない、単糸切れ等の問題も惹起し好ましくない。 There are many methods for controlling the moisture content of the undried fiber after stretching. To control the moisture content within the above range, the coagulation bath temperature is about 0 ° C. to 15 ° C., and the stretching ratio is about 7 to 15 times. Is desirable. On the other hand, if the coagulation bath temperature is less than the lower limit, each pore does not connect inside the fiber and does not communicate with the fiber surface, so there may be cases where a fiber having a water absorption rate in the above range cannot be obtained. Exceeding the upper limit is not preferable because the spinnability is lowered. Further, when the draw ratio does not satisfy such a range, it is not preferable because an appropriate strength cannot be imparted to the fiber and problems such as single yarn breakage are caused.

また、溶媒として有機系溶媒を用いる場合でも上記紡糸条件は同じである。ただし、凝固浴温度については、延伸後の未乾燥繊維の水分率を上記範囲内に制御するために、40℃以上とするのが望ましい。 The spinning conditions are the same even when an organic solvent is used as the solvent. However, the coagulation bath temperature is preferably 40 ° C. or higher in order to control the moisture content of the undried fiber after stretching within the above range.

上述した紡糸方法においては、その工程においてフェロシアン化物がほとんど脱落することなく繊維を得ることができる。この理由は明らかでないが、アクリロニトリル系重合体と不溶性フェロシアン化物はどちらもシアノ基を有しているため、何らかの相互作用があり、不溶性フェロシアン化物の脱落が抑えられているものと考えられる。また、かかる方法で得られた繊維は多孔質構造を有するが、具体的にはミクロボイドが繊維内部で連結し、表面に連通している構造となっており、繊維内部に存在する不溶性フェロシアン化合物についてもそのセシウムイオン吸着作用をより有効に利用できるものである。 In the spinning method described above, fibers can be obtained with almost no ferrocyanide falling off in the process. Although the reason for this is not clear, it is considered that both the acrylonitrile polymer and the insoluble ferrocyanide have a cyano group and thus have some interaction, and the insoluble ferrocyanide is prevented from dropping off. Moreover, although the fiber obtained by such a method has a porous structure, specifically, a microvoid is connected inside the fiber and has a structure communicating with the surface, and an insoluble ferrocyan compound existing inside the fiber. The cesium ion adsorption action can also be used more effectively.

一方湿熱処理が上記温度下限に満たない場合は熱的に安定な繊維を得ることができず、150℃以上では繊維形態を保つことができず発明が達成されない。また、乾燥条件において、温度が80℃に満たない場合は繊維の乾燥に時間がかかり工業的に有利ではない。 On the other hand, when the wet heat treatment is less than the above lower temperature limit, thermally stable fibers cannot be obtained, and at 150 ° C. or higher, the fiber form cannot be maintained and the invention is not achieved. Also, if the temperature is less than 80 ° C. under drying conditions, it takes time to dry the fibers, which is not industrially advantageous.

上述してきた本発明の多孔質アクリル繊維は該繊維単独あるいは他の素材と組み合わせることでセシウムイオン吸着材として利用することができる。 The porous acrylic fiber of the present invention described above can be used as a cesium ion adsorbent by combining the fiber alone or with other materials.

例えば、本発明の多孔質アクリル繊維を含む不織布、織物、編み物、糸、紙状物、シート状物、積層体、綿状体(球状や塊状のものを含む)等、さまざまな形態のセシウムイオン吸着材として提供することができる。また、他の素材としては、公用されている綿、麻、絹、羊毛、などの天然繊維、レーヨンなどの半合成繊維、ナイロン、ポリエステル、アクリルなどの合成繊維、無機繊維、あるはガラス繊維等を組み合わせることができる。 For example, various forms of cesium ions such as nonwoven fabrics, woven fabrics, knitted fabrics, yarns, papers, sheets, laminates, cottons (including spheres and lumps) containing the porous acrylic fiber of the present invention It can be provided as an adsorbent. Other materials include natural fibers such as cotton, hemp, silk, and wool, semi-synthetic fibers such as rayon, synthetic fibers such as nylon, polyester, and acrylic, inorganic fibers, or glass fibers. Can be combined.

以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。なお、実施例中、部及び百分率は特に断りのない限り重量基準で示す。 Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are based on weight unless otherwise specified.

<吸水率の測定>
十分乾燥した試料約1gを精秤し(W1[g])、これを純水200ml中に浸漬させた後、遠心脱水機で(1200rpm×5分)脱水した後の重量を精秤し(W2[g])し、次式によって含水率を算出する。
吸水率[%] =(W2−W1)/W1×100
<Measurement of water absorption rate>
About 1 g of a sufficiently dried sample is precisely weighed (W1 [g]), immersed in 200 ml of pure water, and then weighed after being dehydrated with a centrifugal dehydrator (1200 rpm × 5 minutes) (W2 [G]) and the water content is calculated by the following equation.
Water absorption [%] = (W2-W1) / W1 × 100

<セシウムイオン除去効果の測定>
塩化セシウムを溶解させることでセシウムイオン濃度を4.7ppmとした人工海水溶液100g中に、評価用試料5gを加え、24時間経過時のセシウムイオン濃度をICP−発光スペクトルにより測定した。なお、人工海水には八洲薬品製のアクアマリンを使用した。
<Measurement of cesium ion removal effect>
5 g of a sample for evaluation was added to 100 g of an artificial seawater solution having a cesium ion concentration of 4.7 ppm by dissolving cesium chloride, and the cesium ion concentration after 24 hours was measured by ICP-emission spectrum. For the artificial seawater, Aquamarine manufactured by Yashima Pharmaceutical was used.

<実施例1>
アクリロニトリル90重量%、アクリル酸メチル9重量%、メタアリルスルホン酸ナトリウム1重量%を水系懸濁重合することによってアクリロニトリル系重合体を作成した。アクリロニトリル系重合体を濃度45重量%のチオシアン酸ナトリウム水溶液に、濃度12重量%となるように溶解した後、プルシアンブルー(ACROS社製)を添加混合し、アクリロニトリル系重合体とプルシアンブルーの重量比が100:1.5である紡糸原液を作成した。該原液を15重量%、+3.0℃のチオシアン酸ナトリウム水溶液中に押出し、次いで水洗し、10倍延伸後115℃×10分間湿熱処理し、110℃の熱風乾燥機で乾燥することで3.3dtexの本発明の多孔質アクリル繊維を作成した。得られた繊維の吸水率及びセシウムイオン除去効果の測定結果を表1に示す。
<Example 1>
An acrylonitrile polymer was prepared by aqueous suspension polymerization of 90% by weight of acrylonitrile, 9% by weight of methyl acrylate, and 1% by weight of sodium methallylsulfonate. An acrylonitrile polymer is dissolved in an aqueous sodium thiocyanate solution having a concentration of 45% by weight so as to have a concentration of 12% by weight, and then Prussian blue (manufactured by ACROS) is added and mixed. A spinning stock solution having a ratio of 100: 1.5 was prepared. The stock solution is extruded into a 15% by weight, + 3.0 ° C. sodium thiocyanate aqueous solution, then washed with water, stretched 10 times, wet-heat treated at 115 ° C. for 10 minutes, and dried in a hot air dryer at 110 ° C. 3 dtex porous acrylic fiber of the present invention was prepared. Table 1 shows the measurement results of water absorption and cesium ion removal effect of the obtained fiber.

<実施例2>
アクリロニトリル系重合体とプルシアンブルーの重量比を100:3.0とすること以外は実施例1と同様にして本発明の多孔質アクリル繊維を得た。得られた繊維の吸水率及びセシウムイオン除去効果の測定結果を表1に示す。
<Example 2>
A porous acrylic fiber of the present invention was obtained in the same manner as in Example 1 except that the weight ratio of the acrylonitrile polymer and Prussian blue was 100: 3.0. Table 1 shows the measurement results of water absorption and cesium ion removal effect of the obtained fiber.

<実施例3>
アクリロニトリル系重合体とプルシアンブルーの重量比を100:5.0として紡糸原液を作成し、該原液を15重量%、0℃のチオシアン酸ナトリウム水溶液中に押出すこと以外は実施例1と同様にして本発明の多孔質アクリル繊維を得た。得られた繊維の吸水率及びセシウムイオン除去効果の測定結果を表1に示す。
<Example 3>
A spinning stock solution was prepared at a weight ratio of acrylonitrile polymer to Prussian blue of 100: 5.0, and the stock solution was extruded into a 15% by weight, 0 ° C. aqueous sodium thiocyanate solution in the same manner as in Example 1. Thus, the porous acrylic fiber of the present invention was obtained. Table 1 shows the measurement results of water absorption and cesium ion removal effect of the obtained fiber.

<実施例4>
アクリロニトリル系重合体とプルシアンブルーの重量比を100:0.5として紡糸原液を作成し、該原液を15重量%、+10℃のチオシアン酸ナトリウム水溶液中に押出すこと以外は実施例1と同様にして本発明の多孔質アクリル繊維を得た。得られた繊維の吸水率及びセシウムイオン除去効果の測定結果を表1に示す。
<Example 4>
A spinning stock solution was prepared at a weight ratio of acrylonitrile polymer to Prussian blue of 100: 0.5, and the stock solution was extruded into a 15% by weight, + 10 ° C. aqueous sodium thiocyanate solution in the same manner as in Example 1. Thus, the porous acrylic fiber of the present invention was obtained. Table 1 shows the measurement results of water absorption and cesium ion removal effect of the obtained fiber.

紡糸原液を15重量%、0℃のチオシアン酸ナトリウム水溶液中に押出すこと以外は実施例1と同様にして本発明の多孔質アクリル繊維を得た。得られた繊維の吸水率及びセシウムイオン除去効果の測定結果を表1に示す。 A porous acrylic fiber of the present invention was obtained in the same manner as in Example 1 except that the spinning dope was extruded into a 15% by weight, 0 ° C. aqueous sodium thiocyanate solution. Table 1 shows the measurement results of water absorption and cesium ion removal effect of the obtained fiber.

<比較例1>
115℃×10分間の湿熱処理前に120℃×10分間の熱風乾燥を行うことで緻密化すること以外は実施例1と同様にして多孔質構造を有していないアクリル繊維を得た。得られた繊維の吸水率及びセシウムイオン除去効果の測定結果を表1に示す。
<Comparative Example 1>
An acrylic fiber having no porous structure was obtained in the same manner as in Example 1 except that it was densified by performing hot air drying at 120 ° C. for 10 minutes before wet heat treatment at 115 ° C. for 10 minutes. Table 1 shows the measurement results of water absorption and cesium ion removal effect of the obtained fiber.

<比較例2>
プルシアンブルーを添加しないこと以外は実施例1と同様にして、不溶性フェロシアン化物を含有しない多孔質アクリル繊維を得た。得られた繊維の吸水率及びセシウムイオン除去効果の測定結果を表1に示す。
<Comparative example 2>
A porous acrylic fiber containing no insoluble ferrocyanide was obtained in the same manner as in Example 1 except that Prussian blue was not added. Table 1 shows the measurement results of water absorption and cesium ion removal effect of the obtained fiber.

Figure 0006152636
Figure 0006152636

表1より、不溶性フェロシアン化物を含有する多孔質アクリル繊維は、水溶液中のセシウムイオンを効果的に除去できることが分かる。 Table 1 shows that the porous acrylic fiber containing insoluble ferrocyanide can effectively remove cesium ions in the aqueous solution.

Claims (4)

溶剤に溶解するアクリロニトリル系重合体および不溶性フェロシアン化物のみからなる混合物のみから形成されており、且つ吸水率が10〜100%であることを特徴とする多孔質アクリル繊維。 A porous acrylic monofilament characterized in that it is formed only from a mixture consisting of an acrylonitrile-based polymer dissolved in a solvent and an insoluble ferrocyanide, and has a water absorption of 10 to 100%. アクリロニトリル系重合体のアクリロニトリルの結合含有量が85〜90重量%であることを特徴とする請求項1に記載の多孔質アクリル単繊維。The porous acrylic monofilament according to claim 1, wherein the acrylonitrile-based polymer has an acrylonitrile bond content of 85 to 90% by weight. 不溶性フェロシアン化物が、プルシアンブルーであることを特徴とする請求項1または2に記載の多孔質アクリル繊維。 The porous acrylic monofilament according to claim 1 or 2 , wherein the insoluble ferrocyanide is Prussian blue. 請求項1から3のいずれかに記載の多孔質アクリル繊維を含有するセシウムイオン吸着材。
A cesium ion adsorbent containing the porous acrylic monofilament according to any one of claims 1 to 3 .
JP2012246976A 2012-11-09 2012-11-09 Porous acrylic single fiber and cesium ion adsorbent containing the fiber Active JP6152636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012246976A JP6152636B2 (en) 2012-11-09 2012-11-09 Porous acrylic single fiber and cesium ion adsorbent containing the fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012246976A JP6152636B2 (en) 2012-11-09 2012-11-09 Porous acrylic single fiber and cesium ion adsorbent containing the fiber

Publications (2)

Publication Number Publication Date
JP2014095164A JP2014095164A (en) 2014-05-22
JP6152636B2 true JP6152636B2 (en) 2017-06-28

Family

ID=50938464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012246976A Active JP6152636B2 (en) 2012-11-09 2012-11-09 Porous acrylic single fiber and cesium ion adsorbent containing the fiber

Country Status (1)

Country Link
JP (1) JP6152636B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418372B2 (en) * 2014-03-20 2018-11-07 パナソニックIpマネジメント株式会社 Cesium removal method
KR101612403B1 (en) * 2014-06-19 2016-04-27 주식회사 아모그린텍 Nanofiber Composite Impregnating Prussian Blue for Adsorption of Radioactive Cs, Filter Materials and Decontamination Method of Radioactive Cs Using the Same
EP3808196A1 (en) 2015-04-30 2021-04-21 Japan Tobacco Inc. Non-combustion type flavor inhaler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196769A (en) * 1987-02-04 1988-08-15 旭化成株式会社 Novel acrylic synthetic fiber
JPH0722699B2 (en) * 1987-07-10 1995-03-15 旭化成工業株式会社 Collection material for heavy metals such as complex radionuclides
JPH07150470A (en) * 1993-11-30 1995-06-13 Japan Exlan Co Ltd Porous acrylonitrile fiber
JPH10110384A (en) * 1996-10-04 1998-04-28 Kanebo Ltd Deodorizing nonwoven fabric and its production
JP3749941B2 (en) * 1997-09-04 2006-03-01 独立行政法人産業技術総合研究所 Method for producing cesium separator
JP4072702B2 (en) * 1998-08-17 2008-04-09 日本エクスラン工業株式会社 Acid and / or aldehyde adsorbing fiber and structure thereof
JP4932054B1 (en) * 2011-04-28 2012-05-16 学校法人慈恵大学 Radioactive substance decontamination system, decontamination method for radioactive substance, and magnetic composite particles for decontamination

Also Published As

Publication number Publication date
JP2014095164A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP6819686B2 (en) Modified acrylonitrile fiber, manufacturing method of the fiber, and fiber structure containing the fiber
TWI481753B (en) An antistatic acrylic fiber and a making method thereof
JP3196855B2 (en) High moisture absorption and release fiber
CN110453496B (en) Textile with multiple health care functions and preparation process thereof
JP6152636B2 (en) Porous acrylic single fiber and cesium ion adsorbent containing the fiber
TW201512476A (en) Flame-retardant fabric, method for producing same and fire protective clothes comprising same
TWI237669B (en) Acrylic composite fiber, the manufacturing method therefor, and the fiber complex by using the same
JPS5837407B2 (en) Synthetic filaments and fibers with high moisture absorption and water retention capacity
JP2013204206A (en) Multifunctional regenerated cellulosic fiber, fiber structure including the same, and method for producing them
JPH02160915A (en) Antimicrobial acrylic synthetic fiber and production thereof
JP6108145B2 (en) Acrylic deodorant fiber and spun yarn and woven / knitted fabric containing the same.
JPS607047B2 (en) Method for producing hydrophilic fibers and filaments from synthetic polymers
KR102490200B1 (en) Fiber with moisture desorbing and cooling characteristics, and fiber structure containing the same
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3349028B2 (en) Textile products made of deodorant and antibacterial acrylic synthetic fibers
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JPH10273821A (en) Water absorbing acrylic fiber
JP2002294556A (en) Hygroscopic synthetic fiber with high whiteness, and method for producing the fiber
TW201335450A (en) Manufacturing method for natural cellulose fiber having flame resistant function
JP7187911B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2016186135A (en) Color fastness fiber and fiber structure containing the fiber
WO2021100322A1 (en) Substance removing composite body, and fiber structure, resin molded article and filter, each containing said composite body
JPH0457911A (en) Porous actylic yarn having excellent water retention and its production
JP2005009034A (en) Acrylic fiber containing photocatalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170515

R150 Certificate of patent or registration of utility model

Ref document number: 6152636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250