JP6150986B2 - Method for forming a functional film composed of sintered metal nanoparticles - Google Patents

Method for forming a functional film composed of sintered metal nanoparticles Download PDF

Info

Publication number
JP6150986B2
JP6150986B2 JP2012118587A JP2012118587A JP6150986B2 JP 6150986 B2 JP6150986 B2 JP 6150986B2 JP 2012118587 A JP2012118587 A JP 2012118587A JP 2012118587 A JP2012118587 A JP 2012118587A JP 6150986 B2 JP6150986 B2 JP 6150986B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
substrate
laser
metal nanoparticle
functional film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012118587A
Other languages
Japanese (ja)
Other versions
JP2013247181A (en
Inventor
前川 克廣
克廣 前川
山崎 和彦
和彦 山崎
御田 護
護 御田
Original Assignee
株式会社 M&M研究所
株式会社 M&M研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 M&M研究所, 株式会社 M&M研究所 filed Critical 株式会社 M&M研究所
Priority to JP2012118587A priority Critical patent/JP6150986B2/en
Publication of JP2013247181A publication Critical patent/JP2013247181A/en
Application granted granted Critical
Publication of JP6150986B2 publication Critical patent/JP6150986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、例えば電子回路等の製造時に、レーザ光を用いて、金属基板または樹脂基板などの上に金属ナノ粒子焼結体から成る機能性膜を形成する方法に係り、特に、各種基板との密着性に優れた金属ナノ粒子焼結体から成る機能性膜を形成する方法に関する。   The present invention relates to a method of forming a functional film made of a metal nanoparticle sintered body on a metal substrate or a resin substrate using a laser beam when manufacturing an electronic circuit, for example. The present invention relates to a method for forming a functional film made of a sintered metal nanoparticle having excellent adhesion.

レーザ焼結技術を用いて、各種基板上に金属ナノ粒子焼結体から成る機能性膜を形成する方法として、従来、特許文献1や特許文献2に記載された方法が知られている。特許文献1は本願発明者らの文献であり、ここには、電気絶縁基板または金属銅などの導電体層を有する基板上に、本発明と同様の目的である基板との密着性に優れたレーザ焼結機能性膜を形成する方法が示されている。この特許文献1に示された発明では、印刷された金属ナノ粒子ペーストをレーザ焼結するにあたり、基板の前処理等を含めて、それぞれ用途別に異なる波長のレーザ光(λ、λ、λ)を順次照射して、レーザ焼結膜と基板との密着性を高めるようにしている。また、特許文献2には、レーザ光による金属ナノ粒子焼結において、反射率測定器を用いて焼結状態をフィードバックしてレーザ照射時間を制御することで、基板温度を上げずに基板上に線状もしくは突起状の形状を形成する方法が示されている。 As a method for forming a functional film made of a metal nanoparticle sintered body on various substrates using a laser sintering technique, methods described in Patent Document 1 and Patent Document 2 are conventionally known. Patent Document 1 is a document of the inventors of the present application, in which excellent adhesion to a substrate having the same object as the present invention is provided on a substrate having a conductive layer such as an electrically insulating substrate or metallic copper. A method of forming a laser sintered functional film is shown. In the invention disclosed in Patent Document 1, laser sintering (λ 1 , λ 2 , λ, etc.) of different wavelengths for each application, including pretreatment of the substrate, is performed when laser sintering the printed metal nanoparticle paste. 3 ) are sequentially irradiated to enhance the adhesion between the laser sintered film and the substrate. Further, in Patent Document 2, in metal nanoparticle sintering by laser light, the laser irradiation time is controlled by feeding back the sintering state using a reflectometer, so that the substrate temperature can be increased without increasing the substrate temperature. A method of forming a linear or protruding shape is shown.

さらにまた、基板上への機能性膜の形成方法については触れていないが、類似の技術であるレーザ加工技術において、レーザ照射される被加工物の表面温度を検知して、レーザ光の出力を制御することにより被加工物を高品質に加工する技術も知られている。例えば、特許文献3に記載された発明においては、その明細書の段落[0009]、[0010]および[0016]に記載されているように、レーザ光照射部であるワーク(被加工物)表面の温度を赤外線放射温度計により測定し、その赤外線放射温度計の出力する温度データを予め記憶してある制御パターンと比較し、その比較結果に応じて、レーザ光の出力をレーザ光出力調整部で調整し、ワーク表面のレーザ光照射部の温度を一定に保つようにしている。ここに開示された発明によれば、レーザ光が安定してワーク表面に吸収されるようになるため、高品質の加工が可能となる。   Furthermore, although a method for forming a functional film on a substrate is not mentioned, in laser processing technology that is a similar technology, the surface temperature of a workpiece irradiated with laser is detected to output laser light. A technique for processing a workpiece with high quality by controlling is also known. For example, in the invention described in Patent Document 3, as described in paragraphs [0009], [0010] and [0016] of the specification, the surface of a workpiece (workpiece) which is a laser beam irradiation unit Is measured with an infrared radiation thermometer, and the temperature data output by the infrared radiation thermometer is compared with a pre-stored control pattern, and the laser light output is adjusted according to the comparison result. The temperature of the laser beam irradiation part on the workpiece surface is kept constant. According to the invention disclosed herein, the laser beam is stably absorbed by the workpiece surface, so that high quality processing is possible.

特開2009−283783号公報JP 2009-283788 A 特開平6−340901号公報JP-A-6-340901 特開平5−8062号公報JP-A-5-8062

一般的に、不活性ガス雰囲気下のレーザ焼結法では、レーザ光が照射される箇所での局所的な基板の温度上昇により基板の劣化が促進されるという問題がある。また、不活性ガス雰囲気下のレーザ焼結法では、レーザ光エネルギーによる瞬間的な高温熱分解効果により焼結が可能であるが、温度が高いために、酸素がたとえ極微量であっても基板の酸化劣化が加速され、焼結膜の密着性が低下するという問題がある。前者の問題に対しては、特許文献1のように、予め照射するレーザ光の波長、位置、強度などを設定しておくとか、特許文献2や3のように、直接焼結状態あるいは被加工物の表面温度を検知して、その情報をフィードバックし、レーザ光の照射時間を制御するとか、レーザ光の照射強度を制御する方法が取られている。しかし、後者の問題に対しては、これまで有効な手立てがなされて来なかった。   In general, the laser sintering method in an inert gas atmosphere has a problem that the deterioration of the substrate is promoted due to a local temperature rise of the substrate at a position where the laser beam is irradiated. In addition, the laser sintering method in an inert gas atmosphere allows sintering due to the instantaneous high-temperature pyrolysis effect caused by laser light energy. However, since the temperature is high, even if the amount of oxygen is extremely small, There is a problem that the oxidation deterioration of the film is accelerated and the adhesion of the sintered film is lowered. For the former problem, the wavelength, position, intensity, etc. of the laser light to be irradiated are set in advance as in Patent Document 1, or directly sintered or processed as in Patent Documents 2 and 3. A method of detecting the surface temperature of an object, feeding back the information, and controlling the irradiation time of the laser beam or controlling the irradiation intensity of the laser beam is used. However, no effective measures have been taken for the latter problem.

従って、本発明の目的は、レーザ焼結雰囲気中の酸素濃度を、基板の表面に形成した導電性薄膜が酸化劣化しない(以下、これを基板の酸化劣化という。)値以下に最適化することにより、各種基板との密着性に一層優れた金属ナノ粒子焼結体から成る機能性膜の形成方法を提供することにある。
Therefore, an object of the present invention is to optimize the oxygen concentration in the laser sintering atmosphere to a value that does not cause oxidation deterioration of the conductive thin film formed on the surface of the substrate (hereinafter referred to as oxidation deterioration of the substrate). Accordingly, an object of the present invention is to provide a method for forming a functional film made of a sintered metal nanoparticle that is more excellent in adhesion to various substrates.

本発明の一つの観点によれば、基板に金属ナノ粒子ペーストを印刷した後、ペーストにレーザ光を照射し、基板上に金属ナノ粒子焼結体から成る機能性膜を形成する方法において、レーザ光が照射されているペーストを取り囲む雰囲気に常時不活性ガスを供給すると同時に、上記雰囲気の酸素濃度を測定し、測定された酸素濃度に応じて不活性ガスの供給量を制御することによって、酸素濃度を予め求めた前記基板が酸化劣化しない値以下に調整するようにしている。   According to one aspect of the present invention, in a method of forming a functional film made of a metal nanoparticle sintered body on a substrate by irradiating the paste with laser light after printing the metal nanoparticle paste on the substrate, By constantly supplying an inert gas to the atmosphere surrounding the paste irradiated with light, the oxygen concentration of the atmosphere is measured, and the supply amount of the inert gas is controlled according to the measured oxygen concentration, thereby The concentration is adjusted to a value that does not cause oxidative degradation of the substrate obtained in advance.

上述の方法においては、前記酸素濃度を予め求めた前記基板が酸化劣化しない値以下に調整するための、前記酸素濃度と前記不活性ガスの供給量との関係を予め求め、それらの関係を例えばコンピュータの記憶装置にテーブルとして記憶しておき、前記測定された酸素濃度を基に前記テーブルを参照して前記不活性ガスの供給量を制御することが好ましい。   In the above-described method, the relationship between the oxygen concentration and the supply amount of the inert gas for adjusting the oxygen concentration to be equal to or less than the value at which the substrate is not deteriorated by oxidation is determined in advance, It is preferable to store as a table in a storage device of a computer and control the supply amount of the inert gas with reference to the table based on the measured oxygen concentration.

上述の方法においては、酸素濃度の測定に加え、前記レーザ光が照射されている金属ナノ粒子ペーストの局所的温度を測定し、測定された温度に基づいて前記レーザ光の出力を調整することが好ましい。   In the above-described method, in addition to the measurement of the oxygen concentration, the local temperature of the metal nanoparticle paste irradiated with the laser light is measured, and the output of the laser light is adjusted based on the measured temperature. preferable.

本発明によれば、機能性膜の形成対象である基板の酸化劣化を防止できる。その結果、基板とそこに形成される膜間の密着性に優れた金属ナノ粒子焼結体から成る機能性膜を、安定的に形成することができる。すなわち、本発明では、予め基板の酸化劣化と酸素濃度との関係を調べ、レーザ焼結雰囲気中の酸素濃度が最適な値になるように、不活性ガスのレーザ焼結雰囲気中への供給量を制御する方法を取っているため、基板の酸化劣化を防止でき、各種基板との密着性に優れた金属ナノ粒子焼結体から成る機能性膜を形成することができる。   ADVANTAGE OF THE INVENTION According to this invention, the oxidation degradation of the board | substrate which is a formation object of a functional film can be prevented. As a result, a functional film made of a metal nanoparticle sintered body having excellent adhesion between the substrate and the film formed thereon can be stably formed. That is, in the present invention, the relationship between the oxidative degradation of the substrate and the oxygen concentration is examined in advance, and the supply amount of the inert gas into the laser sintering atmosphere so that the oxygen concentration in the laser sintering atmosphere becomes an optimum value. Therefore, a functional film made of a metal nanoparticle sintered body having excellent adhesion to various substrates can be formed.

本発明に係る方法を実施するための装置の概略構成図である。It is a schematic block diagram of the apparatus for enforcing the method concerning this invention. 予め求められた酸素濃度と不活性ガス供給量との関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration calculated | required previously and the inert gas supply amount. レーザ焼結膜の密着性試験方法の説明図である。It is explanatory drawing of the adhesiveness test method of a laser sintered film.

本発明の金属ナノ粒子焼結体から成る機能性膜の形成方法について、図1に示された装置を参照して説明する。図1は本発明に係る方法を実施するための装置の概略構成図であって、図において、符号1は、金属または樹脂製の基板である。この基板1は平坦なステージ12上に配置される。基板1の表面には、印刷等によって金属ナノ粒子ペースト膜2が形成されている。また、符号3は金属ナノ粒子ペースト膜2を焼結するためのレーザ光照射装置である。   A method for forming a functional film made of the metal nanoparticle sintered body of the present invention will be described with reference to the apparatus shown in FIG. FIG. 1 is a schematic configuration diagram of an apparatus for carrying out a method according to the present invention. In the figure, reference numeral 1 denotes a metal or resin substrate. The substrate 1 is placed on a flat stage 12. A metal nanoparticle paste film 2 is formed on the surface of the substrate 1 by printing or the like. Reference numeral 3 denotes a laser beam irradiation device for sintering the metal nanoparticle paste film 2.

また、符号4は前記レーザ光が照射されているペーストを取り囲む雰囲気の酸素濃度を検知するための酸素濃度計であり、雰囲気ガスが、先端がペースト近傍まで延びている雰囲気ガス定量吸入管5を介して酸素濃度計4に取り込まれるようになっている。酸素濃度計4としては、ガルバノ式酸素濃度計が好適である。ガルバノ式酸素濃度計としては、ガルバノ電池式酸素濃度計や酸素励起蛍光感知式酸素濃度計などの市販品を使用でき、例えば、0〜100容量%の酸素濃度測定が可能である大榮エンジニアリング株式会社製のガルバノ電池式酸素濃度計「オキシマン」(登録商標)が好適である。   Reference numeral 4 denotes an oxygen concentration meter for detecting the oxygen concentration of the atmosphere surrounding the paste irradiated with the laser beam, and the atmospheric gas has an atmospheric gas fixed amount suction pipe 5 whose tip extends to the vicinity of the paste. Via the oxygen concentration meter 4. As the oxygen concentration meter 4, a galvano type oxygen concentration meter is suitable. Commercially available products such as a galvano-cell oximeter and an oxygen-excited fluorescence sensing oximeter can be used as the galvano-type oximeter. A company-made galvano cell type oxygen concentration meter “Oxyman” (registered trademark) is suitable.

さらにまた、レーザ焼結時に、レーザ光が照射されている金属ナノ粒子ペースト膜2の局所的温度を測定するため、赤外線放射温度計6も設けられている。局所的温度を測定するため、赤外線放射温度計6からペースト近傍まで赤外線放射温度測定プローブ7が設けられている。赤外線放射温度計6としては、赤外線中空ファイバー、石英系光ファイバー、赤外線カメラなどの市販品を使用でき、例えば、日立電線株式会社製の赤外線用中空ファイバー放射温度計を使用できる。   Furthermore, an infrared radiation thermometer 6 is also provided for measuring the local temperature of the metal nanoparticle paste film 2 irradiated with laser light during laser sintering. In order to measure the local temperature, an infrared radiation temperature measuring probe 7 is provided from the infrared radiation thermometer 6 to the vicinity of the paste. As the infrared radiation thermometer 6, commercially available products such as an infrared hollow fiber, a quartz optical fiber, and an infrared camera can be used. For example, an infrared hollow fiber radiation thermometer manufactured by Hitachi Cable, Ltd. can be used.

レーザ光が照射されているペーストを取り囲む雰囲気に不活性ガス15を供給するため、不活性ガスタンク8、不活性ガスの供給量を制御するための制御弁9、制御された不活性ガス15をレーザ焼結部に供給するための不活性ガス供給ノズル10とノズル上部を取り囲むように設けられたカバー11が設けられている。カバー11は不活性ガス15の上方への漏洩を極力抑え、焼結部に効率的に送り込むためのものであり、その材質は、金属、樹脂など加工の容易なものであれば良く、特に制約はない。また、符号100は、例えばマイクロコンピュータなどのコンピュータで、処理装置(CPU)、記憶装置(M)及び入出力装置(I/O)を備えていれば、どのようなものであっても良い。コンピュータ100には、酸素濃度計4と赤外線放射温度計6からの信号が入力され、コンピュータ100において所定のプログラムに従って処理された結果が、制御信号としてレーザ光照射装置3や制御弁9に与えられるようになっている。   In order to supply the inert gas 15 to the atmosphere surrounding the paste irradiated with the laser light, the inert gas tank 8, the control valve 9 for controlling the supply amount of the inert gas, and the controlled inert gas 15 are laser-controlled. An inert gas supply nozzle 10 for supplying the sintered portion and a cover 11 provided so as to surround the upper portion of the nozzle are provided. The cover 11 is for suppressing the upward leakage of the inert gas 15 as much as possible and efficiently feeding it into the sintered part. The material of the cover 11 may be any material that can be easily processed, such as metal and resin. There is no. Reference numeral 100 is a computer such as a microcomputer, for example, as long as it includes a processing device (CPU), a storage device (M), and an input / output device (I / O). Signals from the oxygen concentration meter 4 and the infrared radiation thermometer 6 are input to the computer 100, and the results processed by the computer 100 according to a predetermined program are given to the laser light irradiation device 3 and the control valve 9 as control signals. It is like that.

次に、図1に示された装置の動作について説明する。
最初に、ステージ12上の所定の位置に、金属ナノ粒子ペースト膜2が印刷された基板1が配置される。コンピュータ100からの指令により、制御弁9が開放され、不活性ガスが不活性ガスタンク8から不活性ガス供給ノズル10を介して、焼結部に常時供給される。その後、レーザ光照射装置3から照射されるレーザ光によって金属ナノ粒子ペースト膜2が焼結される。焼結時には、酸素濃度計4によって、前記レーザ光が照射されている金属ナノ粒子ペーストを取り囲む雰囲気の酸素濃度が雰囲気ガス定量吸入管5を介して測定され、その測定値が所定のサンプリング間隔でコンピュータ100に取り込まれる。同時に、赤外線放射温度計6によって、レーザ光が照射されている金属ナノ粒子ペースト膜2の局所的温度が赤外線放射温度測定プローブ7を介して測定され、同様に、その測定値が所定のサンプリング間隔でコンピュータ100に取り込まれる。これらのサンプリング間隔は、焼結速度を考慮して設定されるが、両者のサンプリング間隔はかならずしも同じである必要はない。
Next, the operation of the apparatus shown in FIG. 1 will be described.
First, the substrate 1 on which the metal nanoparticle paste film 2 is printed is disposed at a predetermined position on the stage 12. In response to a command from the computer 100, the control valve 9 is opened, and the inert gas is constantly supplied from the inert gas tank 8 through the inert gas supply nozzle 10 to the sintering section. Thereafter, the metal nanoparticle paste film 2 is sintered by the laser light emitted from the laser light irradiation device 3. At the time of sintering, the oxygen concentration meter 4 measures the oxygen concentration of the atmosphere surrounding the metal nanoparticle paste irradiated with the laser light through the atmospheric gas fixed amount suction pipe 5, and the measured value is measured at a predetermined sampling interval. It is captured by the computer 100. At the same time, the local temperature of the metal nanoparticle paste film 2 irradiated with the laser beam is measured by the infrared radiation thermometer 6 via the infrared radiation temperature measurement probe 7, and the measured value is similarly measured at a predetermined sampling interval. Is taken into the computer 100. These sampling intervals are set in consideration of the sintering speed, but the sampling intervals of both need not necessarily be the same.

コンピュータ100の記憶装置(M)には、後述する図2のグラフに相当するテーブルが予め記憶されており、このデータベースを参照して、測定された酸素濃度に対応する不活性ガス流量を与えるための制御弁9の開度が処理装置(CPU)で求められ、求められた開度制御信号がコンピュータ100の入出力装置(I/O)を介して、制御弁9に送られる。その結果、不活性ガス供給ノズル10から実質的に現時点の酸素濃度に見合った適切な量の不活性ガス量が供給される。その結果、過剰酸素濃度による基板の酸化や劣化を防止できるので、各種基板との密着性に優れた金属ナノ粒子焼結体から成る機能性膜を形成することができるようになる。   In the storage device (M) of the computer 100, a table corresponding to the graph of FIG. 2 to be described later is stored in advance, and an inert gas flow rate corresponding to the measured oxygen concentration is given with reference to this database. The opening degree of the control valve 9 is obtained by the processing device (CPU), and the obtained opening degree control signal is sent to the control valve 9 via the input / output device (I / O) of the computer 100. As a result, an appropriate amount of inert gas substantially corresponding to the current oxygen concentration is supplied from the inert gas supply nozzle 10. As a result, the substrate can be prevented from being oxidized or deteriorated due to excess oxygen concentration, and a functional film made of a metal nanoparticle sintered body having excellent adhesion to various substrates can be formed.

赤外線放射温度計6の測定温度は、周期的にコンピュータ100の記憶装置(M)に記憶されたしきい値と比較され、必要に応じてレーザ光照射装置3に制御信号を出力し、レーザ光の発振出力を調整する。   The measured temperature of the infrared radiation thermometer 6 is periodically compared with a threshold value stored in the storage device (M) of the computer 100, and a control signal is output to the laser light irradiation device 3 as necessary. Adjust the oscillation output of.

図2に酸素濃度(容量%)とアルゴンガス流量(L/min)との関係を示すグラフを示す。図2のグラフは、図1の装置を用いて、予め実験で、アルゴンガス流量を0、0,5、1,0、1,5、2,0、2,5、3,0 L/minと変化させ、その時の酸素濃度の測定結果を示めしている。この実験は3回行ったが、アルゴンガス流量が1,5 L/minで、酸素濃度はほぼ0.2 容量%よりもやや低い値を示し、アルゴンガス流量が2,0 L/minで、酸素濃度は0.1 容量%よりもかなり低い値を示した。   FIG. 2 is a graph showing the relationship between the oxygen concentration (volume%) and the argon gas flow rate (L / min). The graph of FIG. 2 shows the argon gas flow rate of 0, 0, 5, 1, 0, 1, 5, 2, 0, 2, 5, 3, 0 L / min in advance using the apparatus of FIG. The measurement result of the oxygen concentration at that time is shown. This experiment was performed three times. The argon gas flow rate was 1.5 L / min, the oxygen concentration was a little lower than 0.2% by volume, the argon gas flow rate was 2.0 L / min, The oxygen concentration was much lower than 0.1% by volume.

図2のグラフにおいて、酸素濃度が0.2容量%を超える範囲(矢印200で示される範囲)では、レーザ焼結膜2の基板1への密着性が十分ではなかった。レーザ焼結膜2と基板1の密着性は、図3に示される方法で調べた。まず、図3(a)に示されたようなパンチ30とダイス31の組み合わせを使用して、焼結膜を内側にして90度に曲げた。このときパンチ30の先端のRは0.1mmで行った。次に、図3の(b)に示すように、曲げ部を戻し開いてからテープ32を貼り付け、剥離させた。このテープの接着力は、所定の剥離力を作用させたときの剥離の有無で評価した。所定の剥離力は、例えば100gf/cm2であった。 In the graph of FIG. 2, the adhesion of the laser sintered film 2 to the substrate 1 was not sufficient in the range where the oxygen concentration exceeded 0.2% by volume (the range indicated by the arrow 200). The adhesion between the laser sintered film 2 and the substrate 1 was examined by the method shown in FIG. First, using a combination of a punch 30 and a die 31 as shown in FIG. 3A, the sintered film was bent to 90 degrees with the sintered film inside. At this time, R at the tip of the punch 30 was 0.1 mm. Next, as shown in FIG. 3B, the bent portion was returned and opened, and then the tape 32 was applied and peeled off. The adhesive strength of this tape was evaluated by the presence or absence of peeling when a predetermined peeling force was applied. The predetermined peeling force was, for example, 100 gf / cm 2 .

なお、図示はしていないが、レーザ出力と金属ナノ粒子ペースト膜の焼結温度の相関関係を示すテーブルは、次のようにして求めることができる。赤外線用中空ファイバー放射温度計を用いて、銀ナノ粒子ペースト印刷パッドの焼結時の温度を測定する。そして、レーザ照射時間50msにおける、レーザ出力と焼結温度の関係を、レーザ出力を50Wから100Wの範囲で変化させて測定する。その結果、焼結時の温度はレーザ出力上昇と共に上昇し、レーザ出力と焼結時温度の相関関係を得ることができる。   Although not shown, a table showing the correlation between the laser output and the sintering temperature of the metal nanoparticle paste film can be obtained as follows. The temperature at the time of sintering of the silver nanoparticle paste printing pad is measured using a hollow fiber radiation thermometer for infrared rays. Then, the relationship between the laser output and the sintering temperature at the laser irradiation time of 50 ms is measured by changing the laser output in the range of 50 W to 100 W. As a result, the temperature during sintering increases as the laser output increases, and a correlation between the laser output and the sintering temperature can be obtained.

平均粒子径6ナノメートルの銀ナノ粒子ペーストを用いて、インクジェット印刷装置(図示せず)により、厚さ0.1mmの銅基板1上に、直径0.2mm、厚さ4μmの印刷パッド(膜2)を形成した。この印刷パッド(膜2)にアルゴンガスを噴射ノズル10により噴射しながら、波長1064ナノメートルのNd:YAGレーザを照射して銀ナノ粒子ペーストを焼結した。このとき、銀ナノ粒子ペースト印刷パッドのレーザ焼結時の酸素濃度を、上述の大榮エンジニアリング株式会社製のガルバノ電池式酸素濃度計4を用いて測定し、アルゴンガス流量を、レーザ出力100W、照射時間50msにおけるレーザ照射時の印刷パッド近傍の酸素濃度データから、印刷パッド近傍の酸素濃度が0〜0.1容量%になるように調節した。その結果、銅基板との密着性に優れ、かつ空孔のない良質の銀ナノ粒子焼結膜を得ることができた。   Using a silver nanoparticle paste having an average particle diameter of 6 nanometers, a printing pad (film) having a diameter of 0.2 mm and a thickness of 4 μm is formed on a copper substrate 1 having a thickness of 0.1 mm by an inkjet printing apparatus (not shown). 2) was formed. The silver nanoparticle paste was sintered by irradiating the printing pad (film 2) with an Nd: YAG laser having a wavelength of 1064 nm while jetting argon gas from the jet nozzle 10. At this time, the oxygen concentration at the time of laser sintering of the silver nanoparticle paste printing pad was measured using the above-mentioned galvano cell type oxygen concentration meter 4 manufactured by Ohtsuki Engineering Co., Ltd. From the oxygen concentration data in the vicinity of the printing pad at the time of laser irradiation at an irradiation time of 50 ms, the oxygen concentration in the vicinity of the printing pad was adjusted to be 0 to 0.1% by volume. As a result, it was possible to obtain a high-quality silver nanoparticle sintered film having excellent adhesion to a copper substrate and having no voids.

平均粒子径6ナノメートルの銀ナノ粒子ペーストを用いて、インクジェット印刷装置(図示せず)により、厚さ50μmのポリイミドフィルム上に、直径0.2mm、厚さ4μmの印刷パッド(膜2)を形成した。この印刷パッド(膜2)にアルゴンガスを噴射ノズル10により噴射しながら、波長1064ナノメートルのNd:YAGレーザを照射して銀ナノ粒子ペーストを焼結した。このとき、銀ナノ粒子ペースト印刷パッドのレーザ焼結時の酸素濃度を、上述の大榮エンジニアリング株式会社製のガルバノ電池式酸素濃度計4を用いて測定し、アルゴンガス流量を、レーザ出力100W、照射時間50msにおけるレーザ照射時の印刷パッド近傍の酸素濃度データから、印刷パッド近傍の酸素濃度が0〜0.1容量%になるように調節した。その結果、ポリイミド基板との密着性に優れ、かつ空孔のない良質の銀ナノ粒子焼結膜を得ることができた。
〔比較例〕
Using a silver nanoparticle paste having an average particle diameter of 6 nanometers, a printing pad (film 2) having a diameter of 0.2 mm and a thickness of 4 μm was formed on a polyimide film having a thickness of 50 μm by an inkjet printing apparatus (not shown). Formed. The silver nanoparticle paste was sintered by irradiating the printing pad (film 2) with an Nd: YAG laser having a wavelength of 1064 nm while jetting argon gas from the jet nozzle 10. At this time, the oxygen concentration at the time of laser sintering of the silver nanoparticle paste printing pad was measured using the above-mentioned galvano cell type oxygen concentration meter 4 manufactured by Ohtsuki Engineering Co., Ltd. From the oxygen concentration data in the vicinity of the printing pad at the time of laser irradiation at an irradiation time of 50 ms, the oxygen concentration in the vicinity of the printing pad was adjusted to be 0 to 0.1% by volume. As a result, it was possible to obtain a high-quality silver nanoparticle sintered film having excellent adhesion to the polyimide substrate and having no pores.
[Comparative Example]

平均粒子径6ナノメートルの銀ナノ粒子ペーストを用いて、インクジェット印刷装置(図示せず)により、厚さ0.1mmの銅基板1上に、直径0.2mm、厚さ4μmの印刷パッド(膜2)を形成した。この印刷パッド(膜2)に波長1064ナノメートルのNd:YAGレーザを照射して銀ナノ粒子ペーストを焼結した。このとき、銀ナノ粒子ペースト印刷パッドのレーザ焼結時の酸素濃度を、上述の大榮エンジニアリング株式会社製のガルバノ電池式酸素濃度計4を用いて測定したところ、印刷パッド近傍の酸素濃度が0.2容量%であった。このようにして作製したレーザ焼結膜について、図3の方法で密着性試験を行ったところ、剥離が発生した。   Using a silver nanoparticle paste having an average particle diameter of 6 nanometers, a printing pad (film) having a diameter of 0.2 mm and a thickness of 4 μm is formed on a copper substrate 1 having a thickness of 0.1 mm by an inkjet printing apparatus (not shown). 2) was formed. This printing pad (film 2) was irradiated with an Nd: YAG laser having a wavelength of 1064 nm to sinter the silver nanoparticle paste. At this time, when the oxygen concentration at the time of laser sintering of the silver nanoparticle paste printing pad was measured using the galvano battery type oxygen concentration meter 4 manufactured by Otsuchi Engineering Co., Ltd., the oxygen concentration in the vicinity of the printing pad was 0. .2% by volume. The laser sintered film thus produced was subjected to an adhesion test by the method shown in FIG.

上述の実施例では、大榮エンジニアリング製のガルバノ電池式酸素濃度計を使用したが、オーシャンオプティクス社製(東京)の光学式酸素濃度測定システムを使用しても良い。この場合は、酸素濃度0〜10容量%の測定が可能なFOSPOR式がある。これは、励起酸素から発せられる蛍光強度を検知する光学式測定装置であり、レーザ焼結における雰囲気ガスを定量吸引するガルバノ方式と異なり、センサーを金属ナノ粒子印刷パッド近傍に配置して、蛍光の受光強度から酸素濃度を求める。   In the above-described embodiment, a galvano battery type oxygen concentration meter manufactured by Taiho Engineering was used, but an optical oxygen concentration measurement system manufactured by Ocean Optics (Tokyo) may be used. In this case, there is a FOSPOR formula that can measure an oxygen concentration of 0 to 10% by volume. This is an optical measurement device that detects the intensity of fluorescence emitted from excited oxygen, and unlike the galvano method that sucks the atmospheric gas in laser sintering quantitatively, a sensor is placed near the metal nanoparticle printing pad, The oxygen concentration is obtained from the received light intensity.

また、上述の実施例では、いずれもレーザ光源として波長1064ナノメートルのNd:YAGレーザを用いたが、波長980ナノメートルの半導体レーザ、波長10.6μmの炭酸ガスレーザ、波長2.94μmのEr:YAGレーザなどを用いることもできる。   In each of the above embodiments, an Nd: YAG laser having a wavelength of 1064 nm is used as a laser light source. However, a semiconductor laser having a wavelength of 980 nm, a carbon dioxide gas laser having a wavelength of 10.6 μm, and an Er: having a wavelength of 2.94 μm are used. A YAG laser or the like can also be used.

上述の説明では、機能性膜を形成する基板として、銅基板またはポリイミド樹脂基板の場合について説明したが、基板については特に限定されるものではなく、例えば、金属基板としては、銅合金、鉄系金属、アルミニウム系基板などを用いても良い。また、金属系以外の基板として、ガラスエポキシ、液晶ポリマー、セラミック基板などを用いても良い。また、金属ナノ粒子ペーストとして、銀ナノ粒子ペーストの例について説明したが、金、銅、ニッケルなどの金属ナノ粒子ペーストを用いても良い。   In the above description, the case of a copper substrate or a polyimide resin substrate has been described as the substrate on which the functional film is formed. However, the substrate is not particularly limited, and examples of the metal substrate include a copper alloy and an iron-based substrate. A metal, an aluminum-based substrate, or the like may be used. Glass epoxy, liquid crystal polymer, ceramic substrate, or the like may be used as a non-metal substrate. Moreover, although the example of the silver nanoparticle paste was demonstrated as a metal nanoparticle paste, you may use metal nanoparticle pastes, such as gold | metal | money, copper, nickel.

さらに、上述の説明では、インクジェット印刷によって金属ナノ粒子ペーストを基板に印刷したが、ディスペンサー装置やスクリーン印刷装置などで印刷しても良い。   Furthermore, in the above description, the metal nanoparticle paste is printed on the substrate by ink jet printing, but it may be printed by a dispenser device or a screen printing device.

1・・・基板
2・・・金属ナノ粒子ペースト膜
3・・・レーザ光照射装置
4・・・酸素濃度計
5・・・雰囲気ガス定量吸入管
6・・・赤外線放射温度計
7・・・赤外線放射温度測定プローブ
8・・・不活性ガスタンク
9・・・制御弁
10・・・不活性ガス供給ノズル
11・・・カバー
12・・・ステージ
15・・・不活性ガス
30・・・パンチ
31・・・ダイス
32・・・接着剤付テープ
100・・・コンピュータ
200・・・温度範囲説明用矢印
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Metal nanoparticle paste film 3 ... Laser beam irradiation apparatus 4 ... Oxygen concentration meter 5 ... Atmospheric gas fixed intake pipe 6 ... Infrared radiation thermometer 7 ... Infrared radiation temperature measuring probe 8 ... Inert gas tank 9 ... Control valve 10 ... Inert gas supply nozzle 11 ... Cover 12 ... Stage 15 ... Inert gas 30 ... Punch 31 ... Dice 32 ... Tape with adhesive 100 ... Computer 200 ... Explanation arrow for temperature range

Claims (2)

基板に金属ナノ粒子ペーストを印刷した後、前記金属ナノ粒子ペーストにレーザ光を照射し、前記基板上に金属ナノ粒子焼結体から成る機能性膜を形成する方法において、
前記レーザ光が照射されている前記金属ナノ粒子ペーストを取り囲む雰囲気に常時不活性ガスを供給すると同時に、前記雰囲気の酸素濃度を測定し、
予め求められている前記基板の酸化劣化と酸素濃度との関係を用いて、前記雰囲気中の酸素濃度が0.1容量%以下になるように、前記雰囲気中への不活性ガスの供給量を制御する、
ことを特徴とする金属ナノ粒子焼結体から成る機能性膜の形成方法。
In a method of printing a metal nanoparticle paste on a substrate, irradiating the metal nanoparticle paste with a laser beam, and forming a functional film made of a metal nanoparticle sintered body on the substrate,
While always supplying an inert gas to the atmosphere surrounding the metal nanoparticle paste that has been irradiated with the laser beam, simultaneously measuring the oxygen concentration of the atmosphere,
Using the relationship between the oxidative degradation of the substrate and the oxygen concentration that has been obtained in advance, the supply amount of the inert gas into the atmosphere is adjusted so that the oxygen concentration in the atmosphere is 0.1% by volume or less. Control,
A method for forming a functional film comprising a metal nanoparticle sintered body.
請求項1に記載の方法において、前記レーザ光が照射されている金属ナノ粒子ペーストの局所的温度を測定し、測定された温度に基づいて前記レーザ光の出力を調整することを特徴とする金属ナノ粒子焼結体から成る機能性膜の形成方法。   The metal according to claim 1, wherein a local temperature of the metal nanoparticle paste irradiated with the laser beam is measured, and an output of the laser beam is adjusted based on the measured temperature. A method for forming a functional film comprising a sintered nanoparticle.
JP2012118587A 2012-05-24 2012-05-24 Method for forming a functional film composed of sintered metal nanoparticles Expired - Fee Related JP6150986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118587A JP6150986B2 (en) 2012-05-24 2012-05-24 Method for forming a functional film composed of sintered metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118587A JP6150986B2 (en) 2012-05-24 2012-05-24 Method for forming a functional film composed of sintered metal nanoparticles

Publications (2)

Publication Number Publication Date
JP2013247181A JP2013247181A (en) 2013-12-09
JP6150986B2 true JP6150986B2 (en) 2017-06-21

Family

ID=49846755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118587A Expired - Fee Related JP6150986B2 (en) 2012-05-24 2012-05-24 Method for forming a functional film composed of sintered metal nanoparticles

Country Status (1)

Country Link
JP (1) JP6150986B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014100241U1 (en) * 2014-01-21 2014-02-03 Illinois Tool Works Inc. Apparatus for measuring and collecting oxygen concentration data in welding processes
JP2016216801A (en) 2015-05-26 2016-12-22 セイコーエプソン株式会社 Three-dimensional forming apparatus and three-dimensional forming method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058062A (en) * 1991-07-03 1993-01-19 Toshiba Corp Laser beam machine
JP4363010B2 (en) * 2002-08-28 2009-11-11 ソニー株式会社 Laser annealing equipment
JP2009000636A (en) * 2007-06-22 2009-01-08 Panasonic Corp Pattern forming apparatus and pattern forming method, device fablicated by using the same, and electronic apparatus with the device
JP5404064B2 (en) * 2008-01-16 2014-01-29 株式会社半導体エネルギー研究所 Laser processing apparatus and semiconductor substrate manufacturing method
JPWO2009122467A1 (en) * 2008-04-04 2011-07-28 ニホンハンダ株式会社 Metal member joining method, metal member joined body, and method of manufacturing electric circuit connecting bump
JP5739641B2 (en) * 2010-10-26 2015-06-24 株式会社東芝 Laser processing apparatus and processing method thereof

Also Published As

Publication number Publication date
JP2013247181A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
Maekawa et al. Drop-on-demand laser sintering with silver nanoparticles for electronics packaging
JP5760060B2 (en) Metal film forming method, metal film forming product manufacturing method and manufacturing apparatus
Bhuiyan et al. A hybrid process for printing pure and high conductivity nanocrystalline copper and nickel on flexible polymeric substrates
CN106133891B (en) Pulsed mode direct write laser metallization
Min et al. Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink
JP2017528902A (en) 3D structure printing by laser-induced forward transfer
JP2009283547A (en) Forming method and forming apparatus for conductive pattern, and conductive substrate
JP2006049892A (en) Method and device for manufacturing laminated structure for flexible circuit board, where metal plated layer is formed by vacuum evaporation
JP6150986B2 (en) Method for forming a functional film composed of sintered metal nanoparticles
Kim et al. Graphene-contact electrically driven microdisk lasers
JP2010161251A (en) Method of forming conductive circuit, and conductive circuit device
JP2016060930A (en) System and method for manufacturing metal film forming product
JP6787922B2 (en) Manufacturing method of base film for printed wiring board, original plate for printed wiring board and original plate for printed wiring board
US11135669B2 (en) Method and device for a high temperature vacuum-safe solder resist utilizing laser ablation of solderable surfaces for an electronic module assembly
Strelchuk et al. Optical characterization of SERS substrates based on porous Au films prepared by pulsed laser deposition
US20220380901A1 (en) Laser induced forward transfer of 2d materials
Yamaguchi et al. On-demand infrared laser sintering of gold nanoparticle paste for electrical contacts
JP6443777B1 (en) Method for producing metal film-formed product
JP2016135562A (en) Laminate, production method of conductive substrate using the same, production method of electronic device, and transfer tool
CN114080115A (en) Method for manufacturing wiring substrate
Schlake et al. Laser Sintering of Various Film Compositions Used in Flexible Printed Electronics
Maekawa et al. Influence of wavelength on laser sintering characteristics of Ag nanoparticles
JP4724831B2 (en) Elemental analysis method of solid surface in liquid
WO2021141064A1 (en) Surface-enhanced raman spectroscopy substrate, fixing jig, and production method for surface-enhanced raman spectroscopy substrate
Makrygianni et al. Laser induced forward transfer of solder paste for microelectronics assembly applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170524

R150 Certificate of patent or registration of utility model

Ref document number: 6150986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees