JP6150182B2 - Method and apparatus for separating lead from lead glass - Google Patents

Method and apparatus for separating lead from lead glass Download PDF

Info

Publication number
JP6150182B2
JP6150182B2 JP2015004356A JP2015004356A JP6150182B2 JP 6150182 B2 JP6150182 B2 JP 6150182B2 JP 2015004356 A JP2015004356 A JP 2015004356A JP 2015004356 A JP2015004356 A JP 2015004356A JP 6150182 B2 JP6150182 B2 JP 6150182B2
Authority
JP
Japan
Prior art keywords
lead
glass
glass powder
particles
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015004356A
Other languages
Japanese (ja)
Other versions
JP2016130335A (en
Inventor
裕一 秦
裕一 秦
青倉 勇
勇 青倉
環生 小島
環生 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015004356A priority Critical patent/JP6150182B2/en
Priority to CN201510754042.9A priority patent/CN105779769B/en
Publication of JP2016130335A publication Critical patent/JP2016130335A/en
Application granted granted Critical
Publication of JP6150182B2 publication Critical patent/JP6150182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ブラウン管テレビ等に用いられる鉛含有ガラス(鉛ガラス)から、鉛を分離して回収する、鉛ガラスからの鉛の分別方法及び装置に関する。   The present invention relates to a method and apparatus for separating lead from lead glass, in which lead is separated and recovered from lead-containing glass (lead glass) used in a cathode ray tube television or the like.

ブラウン管に用いられる鉛ガラス中には、20重量%程度の酸化鉛が含まれている。これまで、使用済みのブラウン管テレビは解体され、鉛ガラス部分は再溶融されブラウン管ガラスに水平リサイクルされてきた。しかし、近年、ブラウン管テレビから液晶テレビなどの薄型テレビへの置き換えに伴い、ブラウン管テレビの需要が減少している。   The lead glass used for the cathode ray tube contains about 20% by weight of lead oxide. Until now, used CRT televisions have been dismantled, and lead glass has been remelted and horizontally recycled to CRT glass. However, in recent years, the demand for cathode ray tube televisions has decreased with the replacement of cathode ray tube televisions with flat-screen televisions such as liquid crystal televisions.

鉛溶出と環境汚染の懸念から、通常の埋め立て処理も難しいため、鉛ガラスをリサイクルし、再資源化する事が重要である。   It is important to recycle and recycle lead glass because normal landfill treatment is difficult due to concerns about lead elution and environmental pollution.

しかしながら、鉛はRoHS法では規制物質であり、製品中の鉛含有量を1000ppm以下にする必要がある。よって、鉛ガラスをリサイクルするためには、鉛を抽出し、分離し、鉛ガラス中の鉛含有量を低減する必要がある。   However, lead is a regulated substance in the RoHS method, and the lead content in the product needs to be 1000 ppm or less. Therefore, in order to recycle lead glass, it is necessary to extract and separate lead to reduce the lead content in the lead glass.

この鉛ガラスの鉛の抽出と分別方法とに関しては、特許文献1及び特許文献2で提案されている。   Patent Literature 1 and Patent Literature 2 have proposed the lead extraction and separation method of this lead glass.

特許文献1には、比重差を利用して鉛ガラスから鉛を抽出する方法が記載されている。これは、鉛ガラスと還元材とを混合し、1000℃〜1700℃に加熱する事で、ガラス中の酸化鉛が還元し、還元された金属鉛が比重により沈殿し、溶融ガラスから分離される。この処理は、ガラス溶融などで主に用いられる、ジュール式加熱の電気炉が用いられる。   Patent Document 1 describes a method of extracting lead from lead glass using a specific gravity difference. This is because lead glass and a reducing material are mixed and heated to 1000 ° C. to 1700 ° C., whereby lead oxide in the glass is reduced, and reduced metal lead is precipitated by specific gravity and separated from the molten glass. . For this treatment, a joule heating electric furnace mainly used for glass melting or the like is used.

特許文献2には、鉛ガラス廃棄物を高温高圧のアルコールで処理することにより、鉛ガラス内部の鉛成分を還元して表面に濃縮し、分離回収する手法が提案されている。   Patent Document 2 proposes a method of treating lead glass waste with high-temperature and high-pressure alcohol to reduce the lead component inside the lead glass, concentrate it on the surface, and separate and recover it.

これらの方法により、鉛ガラスから鉛を選択的に抽出する事ができる。   By these methods, lead can be selectively extracted from lead glass.

特開2012−92406号公報JP 2012-92406 A 特許第3663434号公報Japanese Patent No. 3663434

しかしながら、特許文献1に記載の発明では、1000℃を越える高温が必要になるために、多くの消費エネルギーが必要である。   However, since the invention described in Patent Document 1 requires a high temperature exceeding 1000 ° C., a large amount of energy is required.

特許文献2に記載の発明では、プロセスに用いるアルコール及び酸などの溶剤が必要となる。   In the invention described in Patent Document 2, a solvent such as alcohol and acid used in the process is required.

本発明の目的は、前記従来の課題を解決するもので、鉛の抽出と分別との両方において、アルコール及び酸を使わず、ガラスの溶融温度以下の低温で処理可能な、鉛ガラスからの鉛の分別方法及び装置を提供するものである。   An object of the present invention is to solve the above-mentioned conventional problems, and lead from lead glass that can be processed at a low temperature below the melting temperature of glass without using alcohol and acid in both extraction and fractionation of lead. The present invention provides a separation method and apparatus.

前記課題を解決するために、本発明の一態様にかかる鉛ガラスからの鉛の分別方法は、鉛ガラス粉に、炭素を含む還元剤を、前記鉛ガラス粉が100gに対して30g以上の割合で添加して混合して混合物とするとともに、前記混合物を300℃以上でかつガラスの溶融温度未満の第一の温度で加熱することで、前記混合物中の前記鉛ガラス粉中の鉛を前記鉛ガラス粉の粒子の表面に抽出し、
その後、前記鉛ガラス粉の前記粒子の前記表面に前記鉛が抽出された前記鉛ガラス粉を、前記鉛の溶融温度以上でかつガラスの溶融温度未満の第二の温度で、前記鉛と親和性の高い鉛吸着物質に接触させて、前記鉛ガラス粉の前記鉛を前記鉛吸着物質に吸着させることで、前記鉛ガラス粉から前記鉛を分別する。
In order to solve the above-mentioned problems, a method for separating lead from lead glass according to one aspect of the present invention includes a reducing agent containing carbon in lead glass powder, and a ratio of 30 g or more to 100 g of the lead glass powder. And mixing the mixture into a mixture, and heating the mixture at a first temperature of 300 ° C. or higher and lower than the melting temperature of the glass to convert the lead in the lead glass powder in the mixture into the lead. Extracted on the surface of the particles of glass powder,
Thereafter, the lead glass powder from which the lead has been extracted on the surface of the particles of the lead glass powder is compatible with the lead at a second temperature that is equal to or higher than the melting temperature of the lead and lower than the melting temperature of the glass. The lead is separated from the lead glass powder by bringing it into contact with a high lead adsorbing substance and adsorbing the lead of the lead glass powder onto the lead adsorbing substance.

前記課題を解決するために、本発明の別の態様にかかる鉛ガラスからの鉛の分別装置は、鉛ガラス粉に、炭素を含む還元剤を、前記鉛ガラス粉が100gに対して30g以上の割合で添加して混合して混合物とする撹拌装置と、
前記混合物を300℃以上でかつガラスの溶融温度未満の第一の温度で加熱することで、前記混合物中の前記鉛ガラス粉中の鉛を前記鉛ガラス粉の粒子の表面に抽出する加熱装置と、
前記鉛ガラス粉の前記粒子の前記表面に前記鉛が抽出された前記鉛ガラス粉を、前記鉛の溶融温度以上でかつガラスの溶融温度未満の第二の温度で、前記鉛と親和性の高い鉛吸着物質に接触させて、前記鉛ガラス粉の前記鉛を前記鉛吸着物質に吸着させることで、前記鉛ガラス粉から前記鉛を分別する吸着装置とを備える。
In order to solve the above-mentioned problem, a lead separation apparatus for lead glass according to another aspect of the present invention is a lead glass powder containing a reducing agent containing carbon, and the lead glass powder is 30 g or more per 100 g. A stirrer that is added and mixed in a proportion to form a mixture;
A heating device for extracting the lead in the lead glass powder in the mixture to the surface of the particles of the lead glass powder by heating the mixture at a first temperature of 300 ° C. or higher and lower than the melting temperature of the glass; ,
The lead glass powder from which the lead has been extracted on the surface of the particles of the lead glass powder is highly compatible with the lead at a second temperature that is equal to or higher than the melting temperature of the lead and lower than the melting temperature of the glass. An adsorbing device that separates the lead from the lead glass powder by contacting the lead adsorbent and adsorbing the lead of the lead glass powder to the lead adsorbent.

以上のように、本発明の前記態様により、廃ブラウン管ガラスなどの鉛含有ガラスから、ガラスの溶融温度以下の低温で、なおかつアルコール及び酸などを使う事なく、鉛をガラスから抽出して分別する事ができる。   As described above, according to the above-described aspect of the present invention, lead is extracted from glass from lead-containing glass such as waste cathode ray tube glass at a low temperature below the melting temperature of the glass and without using alcohol, acid, or the like, and fractionated. I can do things.

第1実施形態にかかる鉛ガラスからの鉛の分別方法において、鉛ガラス粉から金属鉛を抽出し、回収する工程図。The process drawing which extracts metallic lead from lead glass powder and collects it in the separation method of lead from lead glass concerning a 1st embodiment. 第1実施形態にかかる鉛ガラスからの鉛の分別方法において、鉛ガラス粉から金属鉛を鉛ガラス粉の粒子表面に抽出する加熱ステップで用いる加熱装置の概略図。In the classification method of the lead from the lead glass concerning 1st Embodiment, the schematic of the heating apparatus used at the heating step which extracts metal lead from the lead glass powder to the particle | grain surface of lead glass powder. 第1実施形態にかかる鉛ガラスからの鉛の分別方法において、鉛抽出ガラスから鉛を吸着させる吸着ステップで用いる吸着装置の概略図。The schematic diagram of the adsorption | suction apparatus used in the adsorption | suction step which adsorb | sucks lead from lead extraction glass in the separation method of the lead from the lead glass concerning 1st Embodiment. 第2実施形態にかかる鉛ガラスからの鉛の分別方法において、鉛ガラスから鉛を抽出したのち、抽出鉛を肥大化させてから回収する工程図。In the method for separating lead from lead glass according to the second embodiment, after extracting lead from lead glass, the extracted lead is enlarged and then recovered. 鉛が抽出されたガラスを撹拌する工程で用いる加熱撹拌装置を示す図。The figure which shows the heating stirring apparatus used at the process which stirs the glass from which lead was extracted. 鉛ガラス粉から金属鉛を鉛ガラス粉の粒子表面に抽出する加熱ステップで用いる加熱装置の概略図。The schematic of the heating apparatus used at the heating step which extracts metallic lead from the lead glass powder to the particle | grain surface of lead glass powder. 鉛抽出ガラスから鉛を吸着させる吸着ステップ用いる吸着装置の概略図。The schematic diagram of the adsorption device using the adsorption step which makes lead adsorb from lead extraction glass.

以下、図面を参照しながら、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態にかかる鉛ガラスからの鉛の分別方法において、鉛ガラス粉から金属鉛を抽出し、回収する工程を表す図である。
(First embodiment)
FIG. 1 is a diagram showing a process of extracting and recovering metallic lead from lead glass powder in the method for separating lead from lead glass according to the first embodiment of the present invention.

この分別方法は、少なくとも、混合撹拌ステップS001と、加熱ステップS002と、吸着ステップS003とを備えている。   This separation method includes at least a mixing and stirring step S001, a heating step S002, and an adsorption step S003.

まず、混合撹拌ステップS001は、鉛ガラス粉と還元剤とを混合し、鉛ガラス粉と還元剤とが凝集したガラス集合体を混合撹拌する。撹拌鉛ガラス粉の粒子の平均粒子径は、一例として、0μmを越えて300μm以下とする。   First, in the mixing and stirring step S001, the lead glass powder and the reducing agent are mixed, and the glass aggregate in which the lead glass powder and the reducing agent are aggregated is mixed and stirred. As an example, the average particle diameter of the particles of the stirred lead glass powder is more than 0 μm and not more than 300 μm.

次いで、加熱ステップS002は、混合撹拌した鉛ガラス粉と還元剤とを300℃以上の、ガラスの溶融温度未満の第一の温度の範囲内で加熱し、鉛ガラス粉から金属鉛を表面に抽出させて、鉛ガラス粉を鉛抽出ガラスとする。   Next, the heating step S002 heats the mixed and stirred lead glass powder and the reducing agent within a first temperature range of 300 ° C. or higher and lower than the melting temperature of the glass, and extracts metallic lead from the lead glass powder to the surface. Let lead glass powder be lead-extracted glass.

この加熱ステップS002を経た後、吸着ステップS003は、前記鉛抽出ガラスと還元剤との混合物を、鉛の溶融温度以上の、ガラスの溶融温度未満の第二の温度の範囲内で鉛吸着物質に接触させて、鉛抽出ガラス表面の金属鉛を鉛吸着物質に吸着し、鉛抽出ガラスを金属鉛とガラス粉とに分離させる。   After this heating step S002, the adsorption step S003 converts the mixture of the lead-extracted glass and the reducing agent into a lead-adsorbing substance within a second temperature range that is equal to or higher than the melting temperature of lead and lower than the melting temperature of the glass. Contact is made to adsorb metal lead on the surface of the lead-extracted glass to the lead adsorbing substance, and the lead-extracted glass is separated into metal lead and glass powder.

以下、それぞれのステップについて詳細に説明する。   Hereinafter, each step will be described in detail.

(混合撹拌ステップS001)
まず、混合撹拌ステップS001では、鉛ガラス粉と還元剤とを混合して混合物とする。この混合物は、鉛ガラス粉と還元剤とが凝集したガラス集合体である。このガラス集合体を混合撹拌する。
(Mixing and stirring step S001)
First, in the mixing and stirring step S001, lead glass powder and a reducing agent are mixed to form a mixture. This mixture is a glass aggregate in which lead glass powder and a reducing agent are aggregated. The glass aggregate is mixed and stirred.

還元剤の例としては、炭素を含む還元剤である。還元剤は、ガラス中の酸化鉛と化学反応して、酸化鉛中の酸素原子を取り除く機能を有し、具体的な例としては、おが屑などのバイオマス、塩化ビニール、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ABS樹脂などのプラスチック等を使用することができる。   An example of the reducing agent is a reducing agent containing carbon. The reducing agent has a function of chemically reacting with lead oxide in glass to remove oxygen atoms in lead oxide. Specific examples include biomass such as sawdust, vinyl chloride, polypropylene (PP), polyethylene ( PE), polystyrene (PS), plastics such as ABS resin, and the like can be used.

前記ガラス集合体を構成するガラス粒子の粒子径は小さい程、処理時間が短くなるため、消費エネルギーが少なくなり、好ましい。逆に、ガラス集合体の粒子の粒子径が500μmを超えると、次の加熱ステップS002での鉛の抽出に必要なエネルギーが大きくなる。   The smaller the particle diameter of the glass particles constituting the glass aggregate, the shorter the treatment time, and thus the less energy consumption is preferable. Conversely, when the particle size of the glass aggregate particles exceeds 500 μm, the energy required for lead extraction in the next heating step S002 increases.

また、還元剤を構成する粒子の平均粒子径は、鉛ガラス粉の粒子の平均粒子径の0%を越えて40%以下が好ましい。還元剤の粒子の平均粒子径が鉛ガラス粉の粒子の平均粒子径の40%を超えると、還元剤が鉛ガラス粉の粒子の表面を覆うことができず、鉛ガラス粉の粒子同士が凝集肥大化し、次の加熱ステップS002での鉛の抽出に必要なエネルギーが大きくなる。   The average particle size of the particles constituting the reducing agent is preferably more than 0% and 40% or less of the average particle size of the lead glass powder particles. When the average particle diameter of the reducing agent particles exceeds 40% of the average particle diameter of the lead glass powder particles, the reducing agent cannot cover the surface of the lead glass powder particles, and the lead glass powder particles aggregate together. It enlarges and the energy required for lead extraction in the next heating step S002 increases.

また、還元剤と鉛ガラス粉との混合比は、鉛ガラス粉が100gに対して還元剤を30g以上の割合とすることが好ましい。鉛ガラス100gに対する還元剤の割合が30gを下回ると、還元剤が鉛ガラスの粒子の表面を十分に覆うことができず、鉛ガラスの粒子同士が凝集肥大化し、次の加熱ステップS002での鉛の抽出に必要なエネルギーが大きくなる。   Moreover, it is preferable that the mixing ratio of a reducing agent and lead glass powder makes a reducing agent the ratio of 30g or more with respect to 100g of lead glass powder. If the ratio of the reducing agent to 100 g of lead glass is less than 30 g, the reducing agent cannot sufficiently cover the surface of the lead glass particles, and the lead glass particles agglomerate and enlarge, and lead in the next heating step S002 The energy required for extraction becomes larger.

また、還元剤の量は、鉛ガラス粉100gに対して還元剤を添加して混合する割合が70gを超えると、鉛ガラスの粒子同士が凝集肥大化するのを抑制する効果に差はなく、70gを超えると、後の吸着ステップS003において鉛吸着物質に金属鉛が吸着するのを阻害する要因となる。   Moreover, the amount of the reducing agent is not different in the effect of suppressing the aggregation and enlargement of the particles of the lead glass when the ratio of adding and mixing the reducing agent with respect to 100 g of the lead glass powder exceeds 70 g. If it exceeds 70 g, it becomes a factor that inhibits the adsorption of metallic lead on the lead-adsorbing substance in the subsequent adsorption step S003.

従って、鉛ガラス粉と前記還元剤との混合比は、前記鉛ガラス粉が100gに対して前記還元剤は30g以上でかつ70g以下の割合とする。   Therefore, the mixing ratio between the lead glass powder and the reducing agent is such that the reducing agent is 30 g or more and 70 g or less with respect to 100 g of the lead glass powder.

(加熱ステップS002)
次の加熱ステップS002は、混合撹拌した鉛ガラス粉と還元剤とを、300℃以上の、ガラスの溶融温度未満の第一の温度の範囲内で加熱する。その加熱により、鉛ガラス粉の各粒子から金属鉛を粒子表面に抽出させて、鉛ガラス粉を鉛抽出ガラスとする。
(Heating step S002)
In the next heating step S002, the mixed and stirred lead glass powder and the reducing agent are heated within a first temperature range of 300 ° C. or higher and lower than the melting temperature of the glass. By the heating, metallic lead is extracted from the particles of the lead glass powder onto the particle surface, and the lead glass powder is used as lead-extracted glass.

また、加熱ステップS002において、加熱温度(第一の温度)をガラスの溶融温度未満の温度にすることで、鉛ガラス粉を溶融させることなく、鉛ガラス粉の各粒子から鉛を抽出でき、消費エネルギーを少なくすることができる。しかし、加熱温度が300℃未満であれば、鉛ガラス粉中の酸化鉛を還元して金属鉛を抽出することができず、ガラスから鉛を分離することができない。   Moreover, in heating step S002, lead can be extracted from each particle | grain of lead glass powder, without melting lead glass powder by making heating temperature (1st temperature) temperature lower than the melting temperature of glass, and consumption. Energy can be reduced. However, if the heating temperature is lower than 300 ° C., lead oxide in the lead glass powder cannot be reduced to extract metallic lead, and lead cannot be separated from the glass.

従って、加熱温度(第一の温度)は、300℃以上でかつガラスの溶融温度未満の温度とする。   Accordingly, the heating temperature (first temperature) is set to 300 ° C. or higher and lower than the melting temperature of the glass.

なお、混合撹拌ステップS001と加熱ステップS002とは、同時に実施しても良い。この2つのステップS001とS002とを同時に実施することで、加熱の際に、前記鉛ガラス粉と還元剤との混合物を均温化できるため、金属鉛を一様に生成することができる。また、加熱に伴い発生する不活性ガス又は還元ガスが混合物中に拡散するため、金属鉛が生成する速度を向上させ、消費エネルギーを減らすことができる。   In addition, you may implement mixing stirring step S001 and heating step S002 simultaneously. By performing these two steps S001 and S002 simultaneously, the temperature of the mixture of the lead glass powder and the reducing agent can be equalized during heating, so that metallic lead can be uniformly generated. Moreover, since the inert gas or reducing gas generated with heating diffuses into the mixture, the rate at which metallic lead is generated can be improved, and the energy consumption can be reduced.

(吸着ステップS003)
吸着ステップS003では、鉛抽出ガラスと還元剤との混合物を、鉛の溶融温度以上でかつガラスの溶融温度未満の第二の温度の範囲内で鉛吸着物質に接触させる。この接触により、鉛抽出ガラスの粒子の表面の金属鉛を、鉛吸着物質に吸着させて、鉛抽出ガラスを金属鉛とガラス粉とに分離させる。
(Suction Step S003)
In the adsorption step S003, the mixture of the lead-extracted glass and the reducing agent is brought into contact with the lead-adsorbing substance within a second temperature range that is equal to or higher than the melting temperature of lead and lower than the melting temperature of glass. By this contact, the metallic lead on the surface of the lead-extracted glass particles is adsorbed by the lead-adsorbing substance, and the lead-extracted glass is separated into metallic lead and glass powder.

吸着ステップS003において使用する鉛吸着物質は、溶融鉛との接触角が0°を越えて140°以下の、鉛と親和性の高い物質である。ここで、鉛吸着物質が、溶融鉛との接触角が140°を超える物質の場合、金属鉛がガラス粉及び還元剤に吸着し、金属鉛を分離することができない。   The lead-adsorbing substance used in the adsorption step S003 is a substance having a high affinity for lead with a contact angle with molten lead exceeding 0 ° and not more than 140 °. Here, when the lead adsorbing substance is a substance having a contact angle with molten lead exceeding 140 °, the metallic lead is adsorbed on the glass powder and the reducing agent, and the metallic lead cannot be separated.

また、吸着ステップS003において、温度が鉛の溶融温度未満であれば、金属鉛が固体になり、鉛吸着物質に吸着されず、金属鉛を分離することができない。   Further, in the adsorption step S003, if the temperature is lower than the melting temperature of lead, the metal lead becomes solid and is not adsorbed by the lead adsorbing substance, and the metal lead cannot be separated.

また、吸着ステップS003において、温度がガラスの溶融温度以上であれば、金属鉛が溶融したガラス粉の内部に取り込まれるうえ、金属鉛を取り込んだガラス粉と鉛吸着物質とが融着するため、金属鉛を分離することができない。   In addition, in the adsorption step S003, if the temperature is equal to or higher than the melting temperature of the glass, the metal lead is taken into the molten glass powder, and the glass powder incorporating the metal lead and the lead adsorbing material are fused, Metal lead cannot be separated.

従って、吸着ステップS003での第二の温度は、鉛の溶融温度以上でかつガラスの溶融温度未満の温度とする。   Accordingly, the second temperature in the adsorption step S003 is set to a temperature not lower than the melting temperature of lead and lower than the melting temperature of glass.

また、吸着ステップS003において、前記鉛抽出ガラスと還元剤との混合物を、鉛吸着物質上で接触させて、前記鉛抽出ガラスの少なくとも全周以上を動かすほうが好ましい。前記鉛抽出ガラスと還元剤との混合物を鉛吸着物質上で前記鉛抽出ガラスの少なくとも全周以上動かすことで、鉛抽出ガラスの表面の全面の金属鉛と鉛吸着物質とを接触させることができ、金属鉛の分離量を増加させることができる。   In the adsorption step S003, it is preferable that the mixture of the lead-extracted glass and the reducing agent is brought into contact with the lead-adsorbing substance to move at least the entire circumference of the lead-extracted glass. By moving the mixture of the lead-extracted glass and the reducing agent on the lead-adsorbing material at least around the entire circumference of the lead-extracting glass, the metal lead on the entire surface of the lead-extracted glass can be brought into contact with the lead-adsorbing material. The amount of separation of metal lead can be increased.

図1にかかる、鉛ガラスからの鉛の分別方法を実施する、鉛ガラスからの鉛の分別装置は、撹拌装置30と、撹拌装置30を有する加熱装置1と、供給装置と回収装置とを有する吸着装置31とを備えて構成している。   An apparatus for separating lead from lead glass according to FIG. 1 for carrying out a method for separating lead from lead glass includes a stirring device 30, a heating device 1 having the stirring device 30, a supply device, and a recovery device. An adsorption device 31 is provided.

図2は、鉛ガラス粉と還元剤とを混合して混合物とする混合撹拌ステップS001と、鉛ガラス粉から金属鉛を鉛ガラス粉の表面に抽出する加熱ステップS002とで用いる加熱装置1の概略図を示す。加熱装置1は、加熱チャンバー1aと、ヒーター2aと、撹拌羽3とを有する撹拌装置30とを備えて構成している。   FIG. 2 shows an outline of the heating apparatus 1 used in a mixing and stirring step S001 in which lead glass powder and a reducing agent are mixed to form a mixture, and in a heating step S002 in which metallic lead is extracted from the lead glass powder onto the surface of the lead glass powder. The figure is shown. The heating device 1 includes a heating chamber 1 a, a heater 2 a, and a stirring device 30 having a stirring blade 3.

加熱装置1は、ヒーター2aを加熱チャンバー1aに備えている。ヒーター2aは、加熱チャンバー1aの内部を加熱する。加熱チャンバー1aの内部には、内容物を混合撹拌できる撹拌装置30の撹拌羽3が1個又は複数個設けられている。加熱チャンバー1a内に、鉛ガラス粉と還元剤との混合物4を投入し、ヒーター2aで300℃以上でかつガラスの溶融温度未満の第一の温度の範囲内になるように加熱チャンバー1a内の混合物4を加熱しながら、撹拌装置30を駆動して撹拌羽3で混合物4を混合撹拌する。この過程で、混合物4の鉛ガラス粉中の酸化鉛が還元され、鉛ガラス粉の粒子の表面に金属鉛が抽出されて、鉛抽出ガラスとなる。   The heating device 1 includes a heater 2a in the heating chamber 1a. The heater 2a heats the inside of the heating chamber 1a. In the heating chamber 1a, one or a plurality of stirring blades 3 of a stirring device 30 capable of mixing and stirring the contents are provided. A mixture 4 of lead glass powder and a reducing agent is put into the heating chamber 1a, and the heating chamber 1a has a first temperature range of 300 ° C. or higher and lower than the melting temperature of the glass by the heater 2a. While the mixture 4 is heated, the stirring device 30 is driven to mix and stir the mixture 4 with the stirring blade 3. In this process, lead oxide in the lead glass powder of the mixture 4 is reduced, and metal lead is extracted on the surface of the particles of the lead glass powder to form lead-extracted glass.

図3は、粒子の表面に金属鉛が抽出された鉛抽出ガラスから、金属鉛を吸着させる吸着ステップS003で用いる吸着装置31の概略図を示す。吸着装置31は、吸着処理室である加熱チャンバー1bと、鉛抽出ガラス9を保持する供給装置の一例としての供給ホッパー5と、ガラス粉の粒子を回収する回収装置の一例としての回収バッチ6とで構成されている。吸着装置31では、加熱チャンバー1b内には加熱部の一例としてのヒーター2bと鉛吸着物質7aを有し、加熱チャンバー1bの上部には材料供給口8が設けられ、下部には材料流出口10が設けられている。材料供給口8の上方には、供給ホッパー5の供給口5aが配置されて、供給ホッパー5の供給口5aから材料供給口8に、鉛抽出ガラス9が供給される。材料流出口10の下方には、回収バッチ6が配置されている。   FIG. 3 shows a schematic view of the adsorption device 31 used in the adsorption step S003 for adsorbing metallic lead from lead-extracted glass from which metallic lead is extracted on the surface of the particles. The adsorption device 31 includes a heating chamber 1b that is an adsorption processing chamber, a supply hopper 5 as an example of a supply device that holds lead-extracted glass 9, and a collection batch 6 as an example of a collection device that collects glass powder particles. It consists of The adsorption device 31 has a heater 2b as an example of a heating unit and a lead adsorbing substance 7a in the heating chamber 1b, a material supply port 8 is provided in the upper part of the heating chamber 1b, and a material outlet 10 is provided in the lower part. Is provided. Above the material supply port 8, a supply port 5 a of the supply hopper 5 is arranged, and lead extraction glass 9 is supplied from the supply port 5 a of the supply hopper 5 to the material supply port 8. A collection batch 6 is disposed below the material outlet 10.

鉛吸着物質7aは、鉛との接触角が0度を越えて140度以下になる物質で形成され、一例として、傾斜板として構成されている。材料供給口8から供給された鉛抽出ガラス9がその傾斜板7a上を転がり、材料流出口10へと落下するよう、材料供給口8から材料流出口10に向けて傾斜を持たせて、鉛吸着物質の傾斜板7aが配置されている。鉛吸着物質7aの材料の例としては、ステンレス鋼、又は、鉄等が挙げられる。   The lead-adsorbing substance 7a is formed of a substance whose contact angle with lead exceeds 0 degree and is 140 degrees or less, and is configured as an inclined plate as an example. The lead extraction glass 9 supplied from the material supply port 8 rolls on the inclined plate 7a and is inclined toward the material outlet 10 from the material supply port 8 so that the lead extraction glass 9 falls to the material outlet 10. An inclined plate 7a for adsorbing material is disposed. Examples of the material of the lead adsorbing substance 7a include stainless steel or iron.

また、鉛吸着物質の傾斜板7aは、鉛吸着物質の傾斜板7aを振動させることができる振動機構11を裏面に有する。   Further, the inclined plate 7a made of lead adsorbing material has a vibration mechanism 11 on the back surface that can vibrate the inclined plate 7a made of lead adsorbing material.

加熱チャンバー1b内の雰囲気温度は、ヒーター2bによって、鉛の融点である328℃以上でかつガラスの溶融温度未満の第二の温度の範囲内に保持されている。   The atmospheric temperature in the heating chamber 1b is maintained by the heater 2b within a second temperature range of 328 ° C. or higher, which is the melting point of lead, and less than the melting temperature of glass.

鉛抽出ガラス9の粒子は、供給ホッパー5に供給されると、材料供給口8を通って鉛吸着物質の傾斜板7aの上に落下する。鉛吸着物質の傾斜板7a上に落下した鉛抽出ガラス9の粒子は、鉛吸着物質の傾斜板7a上を下方に移動し、その際に鉛抽出ガラス9の各粒子の表面の金属鉛が鉛吸着物質の傾斜板7aに吸着され、鉛抽出ガラス9の各粒子はガラス粉の粒子になって、材料流出口10を通り、回収バッチ6に回収される。   When the particles of the lead extraction glass 9 are supplied to the supply hopper 5, they pass through the material supply port 8 and fall on the inclined plate 7 a of the lead adsorbing substance. The particles of the lead-extracted glass 9 that have fallen on the lead-adsorbing material inclined plate 7a move downward on the lead-adsorbing material inclined plate 7a, and the lead metal on the surface of each particle of the lead-extracting glass 9 is lead. The particles of the lead-extracted glass 9 are adsorbed by the inclined plate 7a of the adsorbing substance, become particles of glass powder, and are collected in the collection batch 6 through the material outlet 10.

なお、前記鉛吸着物質の傾斜板7aの傾斜角は、30度以上70度以下に設定されている。鉛吸着物質の傾斜板7aの傾斜角が30度を下回ると、鉛抽出ガラスは鉛吸着物質の傾斜板7a上を転がらずに静止してしまい、ガラス粉の粒子の表面の金属鉛が鉛吸着物質の傾斜板7aへ十分に吸着されない。   The inclination angle of the inclined plate 7a of the lead adsorbing substance is set to 30 degrees or more and 70 degrees or less. If the inclination angle of the lead-adsorbing material inclined plate 7a is less than 30 degrees, the lead-extracted glass will remain stationary without rolling on the lead-adsorbing material inclined plate 7a, and the metallic lead on the surface of the glass powder particles will be lead-adsorbed. The substance is not sufficiently adsorbed on the inclined plate 7a.

また、鉛吸着物質の傾斜板7aの傾斜角が70度を超えると鉛抽出ガラスは鉛吸着物質の傾斜板7a上をすべり落ちてしまい、鉛ガラス粉の粒子の表面の金属鉛が鉛吸着物質の傾斜板7aへ十分に吸着されない。   Further, if the inclination angle of the lead adsorbing material inclined plate 7a exceeds 70 degrees, the lead-extracted glass slides on the lead adsorbing material inclined plate 7a, and the metallic lead on the surface of the lead glass powder particles is the lead adsorbing material. Is not sufficiently adsorbed to the inclined plate 7a.

また、振動機構11により鉛吸着物質の傾斜板7aを振動させることで、鉛吸着物質の傾斜板7aへ吸着された金属鉛の影響で、鉛吸着物質の傾斜板7a上に鉛抽出ガラスの粒子が滞留することを防ぐことができる。   Further, by vibrating the lead adsorbing material inclined plate 7a by the vibration mechanism 11, the lead extracted glass particles on the lead adsorbing material inclined plate 7a due to the influence of metallic lead adsorbed on the lead adsorbing material inclined plate 7a. Can be prevented from staying.

ここで、供給される鉛抽出ガラス9には、前記還元剤も混在している方が、加熱チャンバー1b内の雰囲気を不活性雰囲気にし、鉛の酸化を抑制できるため好ましい。
以上のように、第1実施形態によれば、廃ブラウン管ガラスなどの鉛含有ガラスの鉛ガラス粉中から、ガラスの溶融温度以下の低温で、なおかつアルコール及び酸などを使う事なく、鉛を抽出して、金属鉛としてガラスとは分別して回収する事ができる。
Here, it is preferable that the lead extraction glass 9 to be supplied also contains the reducing agent because the atmosphere in the heating chamber 1b can be made an inert atmosphere and lead oxidation can be suppressed.
As described above, according to the first embodiment, lead is extracted from lead glass powder of lead-containing glass such as waste cathode ray tube glass at a low temperature below the melting temperature of the glass and without using alcohol or acid. Then, it can be collected separately from glass as metallic lead.

(第2実施形態)
図4は、本発明の第2実施形態にかかる鉛ガラスからの鉛の分別方法において、鉛ガラス粉から抽出した金属鉛を肥大化させ、回収する工程図である。
(Second Embodiment)
FIG. 4 is a process diagram for enlarging and recovering metallic lead extracted from lead glass powder in the method for separating lead from lead glass according to the second embodiment of the present invention.

第1実施形態で説明した混合撹拌ステップS001と加熱ステップS002とを経た後、吸着ステップS003の前に、鉛の融点である328℃以上でかつガラスの軟化点未満の第三の温度の範囲内で加熱しながら撹拌して、鉛を肥大化させる加熱撹拌ステップS004を実施し、その後、第1実施形態で説明した吸着ステップS003を行う。   After the mixing and stirring step S001 and the heating step S002 described in the first embodiment, and before the adsorption step S003, within a third temperature range that is 328 ° C. or higher, which is the melting point of lead, and less than the softening point of the glass The heating and stirring step S004 for agitation of lead is performed by heating while heating, and then the adsorption step S003 described in the first embodiment is performed.

図5は、第2実施形態で用いる加熱撹拌装置32の概略図を示す。   FIG. 5 shows a schematic diagram of the heating and stirring device 32 used in the second embodiment.

加熱撹拌装置32は、加熱チャンバー1cと、ヒーター2cと、ドラム12と、撹拌装置33とを備えて構成している。   The heating and stirring device 32 includes a heating chamber 1c, a heater 2c, a drum 12, and a stirring device 33.

加熱撹拌装置32は、加熱チャンバー1c内には、加熱チャンバー1cの内部を加熱できるヒーター2cと、モータなどの回転駆動装置33で回転可能なドラム12とが設けられている。また、ドラム12の内周面には、所定間隔をあけて複数個の撹拌羽13が立設して固定して備えられており、ドラム12の回転により、ドラム12の内部の被処理物14を撹拌羽13で撹拌できるようになっている。   In the heating and stirring device 32, a heater 2c that can heat the inside of the heating chamber 1c and a drum 12 that can be rotated by a rotation driving device 33 such as a motor are provided in the heating chamber 1c. A plurality of stirring blades 13 are provided upright and fixed at predetermined intervals on the inner peripheral surface of the drum 12, and the workpiece 14 inside the drum 12 is rotated by the rotation of the drum 12. Can be stirred with the stirring blade 13.

まず、ドラム12内に、被処理物14として鉛ガラス粉と還元剤とを投入し、ドラム12を回転させ、撹拌羽13で鉛ガラス粉と還元剤とを混合撹拌させて混合物とする、混合撹拌ステップS001を実施する。   First, lead glass powder and a reducing agent are put into the drum 12 as an object to be processed 14, the drum 12 is rotated, and the lead glass powder and the reducing agent are mixed and stirred with a stirring blade 13 to form a mixture. Stirring step S001 is performed.

次に、ヒーター2cで、鉛ガラス粉と還元剤との混合物である被処理物14を、300℃以上でかつガラスの溶融温度未満の第一温度の範囲内で加熱し、鉛ガラス粉の各粒子から金属鉛を粒子表面に抽出させて、鉛ガラス粉の粒子を鉛抽出ガラスの粒子とする加熱ステップS002を行う。加熱ステップS002を行うとき、ドラム12を回転させたままでも、回転を停止させてもよいが、停止させた方が金属鉛の抽出量が多くなるため好ましい。   Next, with the heater 2c, the to-be-processed object 14 which is a mixture of lead glass powder and a reducing agent is heated within a first temperature range of 300 ° C. or higher and lower than the melting temperature of the glass. Metallic lead is extracted from the particles onto the particle surface, and heating step S002 is performed in which lead glass powder particles are used as lead-extracted glass particles. When the heating step S002 is performed, the rotation may be stopped while the drum 12 is rotated, but it is preferable to stop the rotation because the amount of extracted lead metal increases.

ここで、混合撹拌ステップS001を実施する際に、ヒーター2cで加熱し、加熱ステップS002を同時に実施しても良い。   Here, when the mixing and stirring step S001 is performed, the heating step S002 may be performed simultaneously by heating with the heater 2c.

次に、鉛抽出ガラスと還元剤との混合物となっている被処理物14を、ヒーター2cで鉛の融点である328℃以上でかつガラスの軟化点未満の第三の温度の範囲内にし、溶融した金属鉛を凝集させ、肥大化させる加熱撹拌ステップS004を実施する。加熱撹拌ステップS004を行うとき、ドラム12を回転させたままでも、回転を停止させてもよいが、回転させていた方が処理時間が短くなるため好ましい。   Next, the object 14 to be treated, which is a mixture of the lead-extracted glass and the reducing agent, is brought into a third temperature range that is not less than 328 ° C. that is the melting point of lead and less than the softening point of the glass by the heater 2c. A heating and stirring step S004 for agglomerating and enlarging the molten metal lead is performed. When performing the heating and stirring step S004, the rotation may be stopped while the drum 12 is rotated, but it is preferable that the drum 12 is rotated because the processing time is shortened.

吸着ステップS003の前に、鉛を肥大化させる加熱撹拌ステップS004を実施することで、その次の吸着ステップS003において、鉛吸着物質7aと被処理物14中の鉛抽出ガラス粒子表面の溶融鉛との接触頻度が向上し、鉛の分離量を増加させることができる。   Before the adsorption step S003, by carrying out a heating and agitation step S004 for enlarging lead, in the next adsorption step S003, the lead-adsorbing substance 7a and the molten lead on the surface of the lead-extracted glass particles in the workpiece 14 The contact frequency is improved, and the amount of lead separated can be increased.

ここで、ドラム12を回転させ、被処理物14を撹拌することで、被処理物14中の鉛抽出ガラスの粒子同士の接触機会がさらに増加し、金属鉛を、より効率良く肥大化させることができる。   Here, by rotating the drum 12 and stirring the object 14, the contact opportunity between the particles of the lead-extracted glass in the object 14 is further increased, and the metallic lead is enlarged more efficiently. Can do.

さらに、被処理物14に鉛を添加し、ドラム12を回転させ、被処理物14を撹拌することで、添加した鉛を核とし、金属鉛の肥大化を促進する事ができる。   Furthermore, lead is added to the workpiece 14, the drum 12 is rotated, and the workpiece 14 is agitated, so that the added lead can be used as a nucleus, and the enlargement of metallic lead can be promoted.

また、被処理物14の温度は、鉛が十分に溶融し、且つガラスが軟化しない500℃から600℃の温度の範囲内であれば、鉛を、より効率良く肥大化させることができる。   Moreover, if the temperature of the to-be-processed object 14 exists in the temperature range of 500 to 600 degreeC in which lead melt | dissolves sufficiently and glass does not soften, lead can be enlarged more efficiently.

次に、鉛が肥大化している鉛抽出ガラスと還元剤の混合物となっている被処理物14を、ヒーター2cで鉛の融点である328℃以上でかつガラスの溶融温度未満の第二の温度の範囲内にし、粉末状の鉛吸着物質7aを添加し、被処理物14中の金属鉛を鉛吸着物質7aに吸着させる、吸着ステップS003を実施する。吸着ステップS003を行うとき、ドラム12を回転させたままでも、回転を停止させてもよいが、回転させていた方が金属鉛と鉛吸着物質7aとの接触頻度が上がり、金属鉛の吸着速度が上がるため好ましい。なお、鉛が吸着した鉛吸着物質7aと、被処理物14のガラスとを分離するときは、被処理物14と鉛吸着物質7aとの混合物を冷却した後、比重分離などを利用すれば、両者を分離することができる。   Next, the to-be-processed object 14 used as the mixture of the lead extraction glass and the reducing agent in which lead is enlarged is set to a second temperature which is not less than 328 ° C. which is the melting point of lead by the heater 2c and less than the melting temperature of the glass. The adsorption step S003 is performed in which the powdery lead adsorbing material 7a is added and the metallic lead in the workpiece 14 is adsorbed on the lead adsorbing material 7a. When the adsorption step S003 is performed, the rotation may be stopped while the drum 12 is rotated. However, when the drum 12 is rotated, the contact frequency between the metal lead and the lead adsorbing substance 7a is increased, and the adsorption rate of the metal lead is increased. Is preferable. In addition, when separating the lead adsorbing material 7a on which lead is adsorbed and the glass of the object to be treated 14, after cooling the mixture of the object to be treated 14 and the lead adsorbing substance 7a, using specific gravity separation, etc., Both can be separated.

ここで、鉛吸着物質7aは粉末状で粒子径が小さい程、被処理物14との接触面積が大きくなり好ましい。   Here, the lead-adsorbing substance 7a is preferably in the form of powder and has a smaller particle size because the contact area with the workpiece 14 is larger.

ここで、鉛を吸着させた鉛吸着物質7aから、鉛を分離回収するには、溶融鉛との接触角が鉛吸着物質7aよりも低い物質(例えば、ステンレス鋼又は鉄など)と接触させることで回収できる。   Here, in order to separate and recover lead from the lead adsorbing material 7a on which lead has been adsorbed, the lead adsorbing material 7a is brought into contact with a material (for example, stainless steel or iron) whose contact angle with molten lead is lower than that of the lead adsorbing material 7a. Can be recovered.

以上のように、第2実施形態によれば、前記アルコール及び酸を使わず、ガラスの溶融温度以下の低温で、廃ブラウン管ガラスなどの鉛ガラス粉より金属鉛とガラス粉とを、より効率良く分離することができる。   As described above, according to the second embodiment, metallic alcohol and glass powder are more efficiently used than lead glass powder such as waste cathode ray tube glass at a low temperature below the melting temperature of glass without using the alcohol and acid. Can be separated.

以下、前記第1及び第2実施形態にかかる実施例について説明する。なお、以下の実施例で使用した装置は、第1又は第2実施形態で説明した装置とは異なるが、それぞれのステップは同様に行えるものである。   Examples according to the first and second embodiments will be described below. The apparatus used in the following examples is different from the apparatus described in the first or second embodiment, but each step can be performed in the same manner.

(第1実施例)
第1実施形態にかかる第1実施例を、以下に説明する。
(First embodiment)
A first example according to the first embodiment will be described below.

鉛ガラス粉として、家電リサイクル工場から排出された、ブラウン管ガラスの前面ガラスと背面ガラスとの切断クズであるビリガラスを用いた。   As the lead glass powder, billiglass which was cut from the front glass and back glass of CRT glass discharged from a home appliance recycling factory was used.

ビリガラスの含有鉛量を蛍光X線で測定したところ、23%であった。ビリガラスの粒子の平均粒子径は0μmを越えて300μm以下であった。   When the amount of lead contained in the billiglass was measured by fluorescent X-ray, it was 23%. The average particle diameter of the billiglass particles was more than 0 μm and not more than 300 μm.

還元剤としては、グラファイト粉末を用いた。グラファイト粉末の粒子の平均粒子径は、前記ビリガラスの粒子の平均粒子径の40%以下とした。   As the reducing agent, graphite powder was used. The average particle size of the graphite powder particles was 40% or less of the average particle size of the billiglass particles.

まず、混合撹拌ステップS001として、前記のビリガラス粉末及びグラファイト粉末を、各10gずつ試験管内で十分に混合し、混合物の被処理物14とした。   First, as the mixing and stirring step S001, 10 g of the billiglass powder and the graphite powder were sufficiently mixed in a test tube to obtain an object to be processed 14 of the mixture.

次に、被処理物14に対して加熱ステップS002を実施した。図6は、前記加熱ステップS002で用いた加熱装置34の概略図である。   Next, the heating step S002 was performed on the workpiece 14. FIG. 6 is a schematic diagram of the heating device 34 used in the heating step S002.

加熱装置34の内壁面には、断熱材15と、断熱材15のさらに内側にヒーター2dとが設置され、加熱装置34の内部を一定温度に加熱できるようになっていた。また、加熱装置34の内部には、雰囲気調整容器16が配置され、フタ17aが被せられていた。雰囲気調整容器16内には、グラファイト粉末18が3g、敷き詰められており、雰囲気調整容器16内が不活性雰囲気に保たれていた。さらに、雰囲気調整容器16内には、被処理物14を入れる処理容器19が配置され、不活性雰囲気下で加熱処理が行えるようになっていた。   On the inner wall surface of the heating device 34, the heat insulating material 15 and the heater 2d are installed further inside the heat insulating material 15, so that the inside of the heating device 34 can be heated to a constant temperature. Moreover, the atmosphere adjustment container 16 was arrange | positioned inside the heating apparatus 34, and the cover 17a was covered. In the atmosphere adjustment container 16, 3 g of graphite powder 18 was spread, and the atmosphere adjustment container 16 was maintained in an inert atmosphere. Further, a processing container 19 for placing the workpiece 14 is disposed in the atmosphere adjustment container 16 so that heat treatment can be performed in an inert atmosphere.

ここで、雰囲気調整容器16には、130mlのアルミナ坩堝を用い、処理容器19には30mlのアルミナ坩堝を用いた。   Here, a 130 ml alumina crucible was used for the atmosphere adjustment container 16, and a 30 ml alumina crucible was used for the processing container 19.

被処理物14を処理容器19に入れ、被処理物14を800℃まで20℃/分で昇温した後、800℃を3時間保持した。その後、被処理物14を20℃/分で冷却した。   The processing object 14 was put in the processing container 19 and the processing object 14 was heated to 800 ° C. at 20 ° C./min, and then held at 800 ° C. for 3 hours. Thereafter, the workpiece 14 was cooled at 20 ° C./min.

冷却後、被処理物14の鉛の抽出状況をSEM-EDX(走査型電子顕微鏡-エネルギー分散型X線分光法)で分析したところ、金属鉛が10μm程度の粒子として分離し、被処理物14中のビリガラス内の残留鉛濃度は、初期の23%から15%まで低下していることを確認した。   After cooling, the lead extraction state of the object to be processed 14 was analyzed by SEM-EDX (scanning electron microscope-energy dispersive X-ray spectroscopy). As a result, the metal lead was separated into particles of about 10 μm, and the object 14 to be processed was separated. It was confirmed that the residual lead concentration in the billiglass was lowered from the initial 23% to 15%.

次に、被処理物14に対して、吸着ステップS003を実施した。図7は前記吸着ステップで用いた吸着装置35の概略図を示す。   Next, the adsorption step S003 was performed on the workpiece 14. FIG. 7 shows a schematic view of the adsorption device 35 used in the adsorption step.

吸着装置35は、加熱チャンバー1cの内部にヒーター2eが設置され、加熱チャンバー1cの内部を加熱できるようになっていた。また、加熱チャンバー1c内には吸着容器20が配置され、吸着容器20の内部には、グラファイト粉末18が敷き詰められ、グラファイト粉末18上には鉛吸着物質7bが配置され、フタ17bが吸着容器20に被せられていた。   The adsorption device 35 is provided with a heater 2e inside the heating chamber 1c so that the inside of the heating chamber 1c can be heated. Further, an adsorption container 20 is disposed in the heating chamber 1 c, graphite powder 18 is spread inside the adsorption container 20, a lead adsorbing substance 7 b is disposed on the graphite powder 18, and a lid 17 b is disposed in the adsorption container 20. It was put on.

ここで、鉛吸着物質7bには、30mm角のSUS(ステンレス鋼)板を用いていた。   Here, a 30 mm square SUS (stainless steel) plate was used as the lead adsorbing substance 7b.

まず、被処理物14を3g、鉛吸着物質7bの上に、厚さ3mm以下になるように広げて保持し、ヒーター2eで被処理物14を500℃まで20℃/分の速度で昇温した後、被処理物14を500℃で30分間保持し、被処理物14を20℃/分の速度で冷却した。   First, 3 g of the object to be processed 14 is spread and held on the lead adsorbing material 7 b so that the thickness is 3 mm or less, and the temperature of the object to be processed 14 is increased to 500 ° C. at a rate of 20 ° C./min with the heater 2 e After that, the workpiece 14 was held at 500 ° C. for 30 minutes, and the workpiece 14 was cooled at a rate of 20 ° C./min.

冷却後、被処理物14を鉛吸着物質7bから真鍮ブラシ(図示せず)を用いて落とし、蛍光X線で被処理物14中の鉛含有量を測定した。   After cooling, the workpiece 14 was dropped from the lead adsorbing material 7b using a brass brush (not shown), and the lead content in the workpiece 14 was measured with fluorescent X-rays.

その結果、吸着ステップS003の前後で、被処理物14中の鉛の含有量が23.3%から21.4%まで減少した。   As a result, before and after the adsorption step S003, the lead content in the workpiece 14 decreased from 23.3% to 21.4%.

今回、被処理物14は鉛吸着物質7b上で静止した状態だったが、図3に示すように、鉛吸着物質7bを傾斜板として傾斜させて配置し、その上を被処理物14が転がるように移動させることで、連続的に鉛を鉛吸着物質7bに吸着させ、鉛を分離することが可能である。さらに、鉛吸着物質7bを振動させることで、鉛吸着物質7bへの鉛の吸着に伴う鉛吸着物質7bの表面状態の変化により、被処理物14の移動が阻害されることを防ぐために、鉛吸着物質7bを振動させても良い。   At this time, the object to be treated 14 was stationary on the lead adsorbing material 7b, but as shown in FIG. 3, the lead adsorbing substance 7b is disposed as an inclined plate, and the object to be treated 14 rolls thereon. By moving in this way, lead can be continuously adsorbed on the lead adsorbing substance 7b and lead can be separated. Furthermore, in order to prevent the movement of the workpiece 14 from being hindered by the change in the surface state of the lead adsorbing substance 7b accompanying the adsorption of lead to the lead adsorbing substance 7b by vibrating the lead adsorbing substance 7b, lead The adsorbing substance 7b may be vibrated.

(第2実施例)
第2実施形態にかかる第2実施例を、以下に説明する。
(Second embodiment)
A second example according to the second embodiment will be described below.

鉛ガラス粉として、市販の鉛ガラスを砕き、粒子の平均粒子径を300μm以下にした粉を用い、還元剤には第1実施例と同様にグラファイト粉末を用いた。   As the lead glass powder, a powder obtained by crushing commercially available lead glass and having an average particle diameter of 300 μm or less was used, and graphite powder was used as the reducing agent in the same manner as in the first example.

鉛ガラス粉の含有鉛量を蛍光X線で測定したところ、23%であった。グラファイト粉末の粒子の平均粒子径は前記鉛ガラスを砕いた粉の粒子の平均粒子径の40%以下とした。   The amount of lead contained in the lead glass powder was measured by fluorescent X-ray and found to be 23%. The average particle diameter of the graphite powder particles was set to 40% or less of the average particle diameter of the powder particles obtained by pulverizing the lead glass.

まず、図4に示す混合撹拌ステップS001として、前記の鉛ガラス粉末及びグラファイト粉末を、各10gずつ試験管内で十分に混合し、被処理物14とした。   First, as the mixing and stirring step S001 shown in FIG. 4, 10 g of the lead glass powder and graphite powder were sufficiently mixed in a test tube to obtain an object to be processed 14.

次に、被処理物14に対して、図6に示す加熱装置34で、図4に示す加熱ステップS002を実施した。加熱装置34の詳細な説明は、前述と同じであるため省略する。雰囲気調整容器16には130mlのアルミナ坩堝を用い、処理容器19には30mlのアルミナ坩堝を用いた。   Next, the heating step S002 shown in FIG. 4 was performed on the workpiece 14 with the heating device 34 shown in FIG. Since the detailed description of the heating apparatus 34 is the same as the above, it abbreviate | omits. A 130 ml alumina crucible was used for the atmosphere adjustment container 16, and a 30 ml alumina crucible was used for the processing container 19.

被処理物14を処理容器19に入れ、被処理物14を800℃まで20℃/分で昇温した後、800℃を3時間保持した。その後、被処理物14を20℃/分で冷却した。   The processing object 14 was put in the processing container 19 and the processing object 14 was heated to 800 ° C. at 20 ° C./min, and then held at 800 ° C. for 3 hours. Thereafter, the workpiece 14 was cooled at 20 ° C./min.

前記加熱ステップS002の後の被処理物14について、次に図5に示す加熱撹拌装置32を使い、図4に示す加熱撹拌ステップS004を実施した。加熱撹拌装置32の詳細な説明は、前述と同じであるため省略する。   With respect to the object 14 after the heating step S002, the heating and stirring step S004 shown in FIG. 4 was performed using the heating and stirring device 32 shown in FIG. Since the detailed description of the heating and stirring device 32 is the same as described above, the description thereof will be omitted.

被処理物14を、ドラム12内に保持し、ドラム12の回転数を15rpmにしたうえで、被処理物14を500℃に加熱しながら、30分間保持した。   The object to be processed 14 was held in the drum 12, and the number of rotations of the drum 12 was set to 15 rpm, and then the object to be processed 14 was held at 500 ° C. for 30 minutes.

ここで、被処理物14中のグラファイト粉末により、加熱撹拌装置32内は不活性雰囲気になり、抽出した鉛の再酸化を防止する事ができた。   Here, due to the graphite powder in the object 14 to be processed, the inside of the heating and stirring device 32 became an inert atmosphere, and reoxidation of the extracted lead could be prevented.

前記の混合撹拌ステップS001と、加熱ステップS002と、加熱撹拌ステップS004との後のサンプルは、SEM-EDXで鉛の抽出状況を分析した。   The sample after the mixing and stirring step S001, heating step S002, and heating and stirring step S004 was analyzed for lead extraction by SEM-EDX.

分析の結果、ガラスの粒子の粒子径は500μm以下を保ち、鉛の粒子の粒子径が60〜100μmになった。   As a result of the analysis, the particle diameter of the glass particles was kept at 500 μm or less, and the particle diameter of the lead particles became 60 to 100 μm.

次に、図4に示す吸着ステップS003として、被処理物14について図7に示す吸着装置35で鉛を吸着分離した。吸着装置35の詳細な説明は、前述と同じであるため省略する。   Next, as an adsorption step S003 shown in FIG. 4, lead was adsorbed and separated from the object 14 by the adsorption device 35 shown in FIG. 7. Since the detailed description of the adsorption device 35 is the same as described above, a description thereof will be omitted.

鉛吸着物質7bには、30mm角のSUS板を用いた。被処理物14の重量は3gとし、厚さは3mm以下に広げて保持し、20℃/分の速度で500℃まで被処理物14を加熱したのち、被処理物14を500℃で30分キープし、その後、被処理物14を20℃/分の速度で冷却した。   A 30 mm square SUS plate was used as the lead adsorbing material 7b. The weight of the workpiece 14 is 3 g, the thickness is spread to 3 mm or less, the workpiece 14 is heated to 500 ° C. at a rate of 20 ° C./min, and then the workpiece 14 is heated at 500 ° C. for 30 minutes. After that, the workpiece 14 was cooled at a rate of 20 ° C./min.

冷却後、被処理物14を鉛吸着物質7bから真鍮ブラシ(図示せず)を用いて落とし、蛍光X線で被処理物14中の鉛含有量を測定した。   After cooling, the workpiece 14 was dropped from the lead adsorbing material 7b using a brass brush (not shown), and the lead content in the workpiece 14 was measured with fluorescent X-rays.

その結果、吸着ステップS003の前後で、被処理物14中の鉛含有量が23.3%から20.1%まで減少した。   As a result, the lead content in the workpiece 14 decreased from 23.3% to 20.1% before and after the adsorption step S003.

第1実施例の結果と比較して、吸着ステップS003後の被処理物14の中の鉛の鉛含有量が低下していることから、吸着ステップS003の前に加熱撹拌ステップS004を設けて、前記のように鉛の粒子の粒子径を大きくすることで、吸着ステップS003における被処理物14中の鉛含有量の低減に効果がある事が確認できた。今回、処理サンプル720は、板状の鉛吸着物質7bの上で静止した状態だったが、図3に示すように、鉛吸着物質7aの傾斜板を傾斜させて配置し、その上を被処理物14が転がるように移動させるようにすれば、連続的に、鉛を吸着させ、鉛を分離することが可能である。   Compared with the result of the first example, the lead content of the lead 14 in the workpiece 14 after the adsorption step S003 is reduced, so the heating and stirring step S004 is provided before the adsorption step S003, It was confirmed that increasing the particle diameter of the lead particles as described above has an effect of reducing the lead content in the workpiece 14 in the adsorption step S003. At this time, the processing sample 720 was in a stationary state on the plate-like lead adsorbing material 7b, but as shown in FIG. If the object 14 is moved so as to roll, lead can be continuously adsorbed and lead can be separated.

(第3実施例)
第2実施形態にかかる第3実施例を、以下に説明する。
(Third embodiment)
A third example according to the second embodiment will be described below.

鉛ガラス粉として、市販の鉛ガラスを砕き、平均粒子径を300μm以下にした粉を用い、還元剤には第1実施例と同様にグラファイト粉末を用いた。   As lead glass powder, commercially available lead glass was crushed and the average particle size was 300 μm or less, and graphite powder was used as the reducing agent in the same manner as in the first example.

鉛ガラス粉の含有鉛量を蛍光X線で測定したところ、23%であった。グラファイト粉末の粒子の平均粒子径は、前記鉛ガラスを砕いた粉の粒子の平均粒子径の40%以下とした。   The amount of lead contained in the lead glass powder was measured by fluorescent X-ray and found to be 23%. The average particle size of the graphite powder particles was set to 40% or less of the average particle size of the powder particles obtained by pulverizing the lead glass.

まず、図5に示す加熱撹拌装置32を用いて、混合撹拌ステップS001を実施した。加熱撹拌装置32の詳細な説明は、前述と同じであるため省略する。   First, mixing stirring step S001 was implemented using the heating stirring apparatus 32 shown in FIG. Since the detailed description of the heating and stirring device 32 is the same as described above, the description thereof will be omitted.

まず、前記の鉛ガラス粉50g及びグラファイト粉末50gを、ドラム12内に、被処理物14として投入した。その後、ドラム12を15rpmで1分間回転させ、被処理物14を混合撹拌した。   First, 50 g of the lead glass powder and 50 g of the graphite powder were put into the drum 12 as the workpiece 14. Then, the drum 12 was rotated at 15 rpm for 1 minute, and the to-be-processed object 14 was mixed and stirred.

その後、図5に示す加熱撹拌装置32で引き続き加熱ステップS002を実施した。すなわち、混合撹拌ステップS001の後の被処理物14を、図5に示す加熱撹拌装置32のドラム12内に保持して加熱した。ドラム12の回転数は0rpmとした。被処理物14の温度は800℃にし、3時間保持した。   Thereafter, the heating step S002 was continued with the heating and stirring device 32 shown in FIG. That is, the workpiece 14 after the mixing and stirring step S001 was heated while being held in the drum 12 of the heating and stirring device 32 shown in FIG. The rotation speed of the drum 12 was 0 rpm. The temperature of the workpiece 14 was set to 800 ° C. and held for 3 hours.

その後、引き続き図5に示す加熱撹拌装置32を用いて、図4に示す加熱撹拌ステップS004を実施した。加熱ステップS002後の被処理物14をドラム12内に保持し、ドラム12の回転数を15rpmにしたうえで、被処理物14を500℃に加熱しながら、30分間保持した。   Thereafter, the heating and stirring step S004 shown in FIG. 4 was performed using the heating and stirring device 32 shown in FIG. The object 14 to be processed after the heating step S002 was held in the drum 12, the number of revolutions of the drum 12 was set to 15 rpm, and the object 14 was held for 30 minutes while being heated to 500 ° C.

混合撹拌ステップS001と、加熱ステップS002と、加熱撹拌ステップS004との雰囲気は、全て大気中で実施しているが、グラファイト粉末の添加により、不活性雰囲気になり、抽出した鉛の再酸化を防止する事ができた。   The atmospheres of the mixing and stirring step S001, the heating step S002, and the heating and stirring step S004 are all carried out in the air, but the addition of graphite powder makes the atmosphere inert and prevents reoxidation of the extracted lead. I was able to do it.

混合撹拌ステップS001と、加熱ステップS002と、加熱撹拌ステップS004との後のサンプルは、SEM-EDXで鉛の抽出状況を分析した。   The sample after the mixing and stirring step S001, the heating step S002, and the heating and stirring step S004 was analyzed for lead extraction by SEM-EDX.

分析の結果、ガラスの粒子の粒子径は500μm以下を保ち、鉛の粒子の粒子径は60〜100μmとなり、第2実施例と同様の大きさになった。   As a result of the analysis, the particle diameter of the glass particles was kept at 500 μm or less, and the particle diameter of the lead particles was 60 to 100 μm, which was the same size as in the second example.

吸着ステップS003における被処理物14中の鉛含有量の変化量は、第1実施例及び第2実施例よりも、粒子径が大きくなるにしたがって減少したことから、前記のように鉛の粒子の粒子径を大きくすることで、吸着ステップS003における被処理物14中の鉛含有量の低減に効果があった。   Since the amount of change in the lead content in the object to be treated 14 in the adsorption step S003 has decreased as the particle diameter becomes larger than in the first and second examples, as described above, Increasing the particle size was effective in reducing the lead content in the workpiece 14 in the adsorption step S003.

(第4実施例)
第2実施形態にかかる第4実施例を、以下に説明する。
(Fourth embodiment)
A fourth example according to the second embodiment will be described below.

鉛ガラス粉として、市販の鉛ガラスを砕き、粒子の平均粒子径を300μm以下にした粉を用い、還元剤には第1実施例と同様にグラファイト粉末を用いた。   As the lead glass powder, a powder obtained by crushing commercially available lead glass and having an average particle diameter of 300 μm or less was used, and graphite powder was used as the reducing agent in the same manner as in the first example.

鉛ガラス粉の含有鉛量を蛍光X線で測定したところ、23%であった。グラファイト粉末の粒子の平均粒子径は前記鉛ガラスを砕いた粉の平均粒子径の40%以下とした。   The amount of lead contained in the lead glass powder was measured by fluorescent X-ray and found to be 23%. The average particle diameter of the graphite powder particles was 40% or less of the average particle diameter of the powder obtained by pulverizing the lead glass.

図5は、図4に示す混合撹拌ステップS001に用いた加熱撹拌装置32を示す。加熱撹拌装置32の詳細な説明は、前述と同じであるため省略する。   FIG. 5 shows the heating and stirring device 32 used in the mixing and stirring step S001 shown in FIG. Since the detailed description of the heating and stirring device 32 is the same as described above, the description thereof will be omitted.

まず、前記の鉛ガラス粉50g及びグラファイト粉末50gを、図5に示す加熱撹拌装置32のドラム12内に、被処理物14として投入した。その後、ドラムを15rpmで1分間回転させ、被処理物14を混合撹拌した。   First, 50 g of the lead glass powder and 50 g of the graphite powder were charged as the workpiece 14 into the drum 12 of the heating and stirring device 32 shown in FIG. Thereafter, the drum was rotated at 15 rpm for 1 minute, and the workpiece 14 was mixed and stirred.

その後、図5に示す加熱撹拌装置32で、引き続き図4に示す加熱ステップS002を実施した。すなわち、混合撹拌ステップS001の後の被処理物14を、図5に示す加熱撹拌装置32のドラム12内に保持して加熱した。ドラム12の回転数は0rpmとした。被処理物14の温度は800℃にし、3時間保持した。   Thereafter, the heating step S002 shown in FIG. 4 was continuously performed by the heating and stirring device 32 shown in FIG. That is, the workpiece 14 after the mixing and stirring step S001 was heated while being held in the drum 12 of the heating and stirring device 32 shown in FIG. The rotation speed of the drum 12 was 0 rpm. The temperature of the workpiece 14 was set to 800 ° C. and held for 3 hours.

次に、加熱ステップS002後の被処理物14に、金属鉛を4.4g加えて、図4に示す加熱撹拌ステップS004を実施した。装置としては、図5に示す加熱撹拌装置32を引き続き使用した。前記の金属粒の粒子径は1.8mmであった。   Next, 4.4 g of metallic lead was added to the workpiece 14 after the heating step S002, and the heating and stirring step S004 shown in FIG. 4 was performed. As the apparatus, the heating and stirring apparatus 32 shown in FIG. 5 was continuously used. The particle diameter of the metal particles was 1.8 mm.

金属鉛を加えた、加熱ステップS002後の被処理物14は、ドラム12内に保持した。ドラム12の回転数を15rpmにしたうえで、被処理物14を500℃に加熱しながら、30分間保持した。   The workpiece 14 after the heating step S002 to which metallic lead was added was held in the drum 12. After the rotational speed of the drum 12 was set to 15 rpm, the workpiece 14 was held for 30 minutes while being heated to 500 ° C.

混合撹拌ステップS001と、加熱ステップS002と、加熱撹拌ステップS004との雰囲気は、全て大気中で実施しているが、被処理物14中のグラファイト粉末により、不活性雰囲気になり、抽出した鉛の再酸化を防止する事ができた。   The atmospheres of the mixing and stirring step S001, the heating step S002, and the heating and stirring step S004 are all carried out in the atmosphere. However, the graphite powder in the workpiece 14 becomes an inert atmosphere, and the extracted lead It was possible to prevent reoxidation.

加熱撹拌ステップS004の後のサンプルは、SEM-EDXで鉛の抽出状況を分析した。   The sample after the heating and stirring step S004 was analyzed for lead extraction by SEM-EDX.

分析の結果、ガラスの粒子の粒子径は500μm以下を保ち、鉛の粒子の粒子径が200μm以上になった。   As a result of the analysis, the particle diameter of the glass particles was maintained at 500 μm or less, and the particle diameter of the lead particles was 200 μm or more.

吸着ステップS003における被処理物14中の鉛含有量の変化量は、第1実施例及び第2実施例よりも、粒子径が大きくなるにしたがって減少したことから、前記のように鉛の粒子の粒子径を大きくすることで、吸着ステップS003における被処理物14中の鉛含有量の低減に効果があった。   Since the amount of change in the lead content in the object to be treated 14 in the adsorption step S003 has decreased as the particle diameter becomes larger than in the first and second examples, as described above, Increasing the particle size was effective in reducing the lead content in the workpiece 14 in the adsorption step S003.

(第5実施例)
第2実施形態にかかる第5実施例を、以下に説明する。
(5th Example)
A fifth example according to the second embodiment will be described below.

鉛ガラス粉として、市販の鉛ガラスを砕き、平均粒子径を300μm以下にした粉を用い、還元剤には、第1実施例と同様にグラファイト粉末を用いた。   As lead glass powder, commercially available lead glass was crushed and the average particle diameter was 300 μm or less, and graphite powder was used as the reducing agent in the same manner as in the first example.

鉛ガラス粉の含有鉛量を蛍光X線で測定したところ、23%であった。グラファイト粉末の粒子の平均粒子径は、前記鉛ガラスを砕いた粉の粒子の平均粒子径の40%以下とした。   The amount of lead contained in the lead glass powder was measured by fluorescent X-ray and found to be 23%. The average particle size of the graphite powder particles was set to 40% or less of the average particle size of the powder particles obtained by pulverizing the lead glass.

図5は、図4に示す混合撹拌ステップS001に用いた加熱撹拌装置32を示す。加熱撹拌装置32の詳細な説明は、前述と同じであるため省略する。   FIG. 5 shows the heating and stirring device 32 used in the mixing and stirring step S001 shown in FIG. Since the detailed description of the heating and stirring device 32 is the same as described above, the description thereof will be omitted.

まず、前記の鉛ガラス粉50g及びグラファイト粉末50gを、図5に示す加熱撹拌装置32のドラム12内に、被処理物14として投入した。その後、ドラムを15rpmで1分間回転させ、被処理物14を混合撹拌した。   First, 50 g of the lead glass powder and 50 g of the graphite powder were charged as the workpiece 14 into the drum 12 of the heating and stirring device 32 shown in FIG. Thereafter, the drum was rotated at 15 rpm for 1 minute, and the workpiece 14 was mixed and stirred.

その後、図5に示す加熱撹拌装置32で、引き続き図4に示す加熱ステップS002を実施した。すなわち、混合撹拌ステップS001の後の被処理物14を、図5に示す加熱撹拌装置32のドラム12内に保持して加熱した。ドラム12の回転数は0rpmとした。被処理物14の温度は800℃にし、3時間保持した。   Thereafter, the heating step S002 shown in FIG. 4 was continuously performed by the heating and stirring device 32 shown in FIG. That is, the workpiece 14 after the mixing and stirring step S001 was heated while being held in the drum 12 of the heating and stirring device 32 shown in FIG. The rotation speed of the drum 12 was 0 rpm. The temperature of the workpiece 14 was set to 800 ° C. and held for 3 hours.

次に、加熱ステップS002後の被処理物14に、鉛吸着物質の例としてSUSの粉末を50g加えて、図4に示す加熱撹拌ステップS004及び吸着ステップS003を実施した。装置としては、図5に示す加熱撹拌装置32を引き続き使用した。前記のSUSの粉末の粒子の平均粒子径は100μm以下であった。   Next, 50 g of SUS powder as an example of a lead adsorbing substance was added to the workpiece 14 after the heating step S002, and the heating and stirring step S004 and the adsorption step S003 shown in FIG. 4 were performed. As the apparatus, the heating and stirring apparatus 32 shown in FIG. 5 was continuously used. The average particle diameter of the SUS powder particles was 100 μm or less.

SUS粉末を加えた、加熱ステップS002後の被処理物14は、ドラム12内に保持した。ドラム12の回転数を15rpmにしたうえで、被処理物14を500℃に加熱しながら、30分間保持した。   The workpiece 14 after the heating step S002 to which the SUS powder was added was held in the drum 12. After the rotational speed of the drum 12 was set to 15 rpm, the workpiece 14 was held for 30 minutes while being heated to 500 ° C.

混合撹拌ステップS001と、加熱ステップS002と、加熱撹拌ステップS004との雰囲気は、全て大気中で実施しているが、被処理物14中のグラファイト粉末により、不活性雰囲気になり、抽出した鉛の再酸化を防止する事ができた。   The atmospheres of the mixing and stirring step S001, the heating step S002, and the heating and stirring step S004 are all carried out in the atmosphere. However, the graphite powder in the workpiece 14 becomes an inert atmosphere, and the extracted lead It was possible to prevent reoxidation.

加熱撹拌ステップS004の後のサンプルは、SEM-EDXで鉛の抽出状況を分析した。   The sample after the heating and stirring step S004 was analyzed for lead extraction by SEM-EDX.

分析の結果、SUS粉末上に鉛の付着を確認した。   As a result of the analysis, adhesion of lead was confirmed on the SUS powder.

加熱撹拌ステップS004及び吸着ステップS003において、加熱ステップS002後の被処理物14に粉末状の鉛吸着物質を添加することで、ガラス粉の粒子の表面に抽出された金属鉛を鉛吸着物質へ吸着させることができた。   In the heating and stirring step S004 and the adsorption step S003, by adding a powdered lead adsorbing substance to the workpiece 14 after the heating step S002, the metallic lead extracted on the surface of the glass powder particles is adsorbed on the lead adsorbing substance. I was able to.

前記実施例1〜5においては、それぞれ、対応する実施形態の作用効果を奏することができた。   In the said Examples 1-5, there existed the effect of corresponding embodiment, respectively.

なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。   In addition, it can be made to show the effect which each has by combining arbitrary embodiment or modification of the said various embodiment or modification suitably. In addition, combinations of the embodiments, combinations of the examples, or combinations of the embodiments and examples are possible, and combinations of features in different embodiments or examples are also possible.

本発明にかかる鉛ガラスからの鉛の分別方法及び装置は、ガラスの溶融点以上の温度への加熱及びアルコールなどを用いる事なく、ブラウン管テレビ等に用いられる鉛含有ガラス等の廃棄物などから、鉛を分離して回収する方法及び装置として適用できる。   The method and apparatus for separating lead from lead glass according to the present invention can be used from wastes such as lead-containing glass used in CRT televisions, etc., without using alcohol, etc., heating to a temperature above the melting point of the glass, It can be applied as a method and apparatus for separating and recovering lead.

1 加熱装置
1a 加熱チャンバー
1b 加熱チャンバー
1c 加熱チャンバー
2a ヒーター
2b ヒーター
2c ヒーター
2d ヒーター
2e ヒーター
3 撹拌羽
4 鉛ガラス粉と還元剤の混合物
5 供給ホッパー
6 回収バッチ
7a 鉛吸着物質(傾斜板)
7b 鉛吸着物質
8 材料供給口
9 鉛抽出ガラス
10 材料流出口
11 振動機構
1c 加熱チャンバー
12 ドラム
13 撹拌羽
14 被処理物
15 断熱材
16 雰囲気調整容器
17a フタ
17b フタ
18 グラファイト粉末
19 処理容器
20 吸着容器
30 撹拌装置
31 吸着装置
32 加熱撹拌装置
33 回転駆動装置
34 加熱装置
35 吸着装置
S001 混合撹拌ステップ
S002 加熱ステップ
S003 吸着ステップ
S004 加熱撹拌ステップ
DESCRIPTION OF SYMBOLS 1 Heating apparatus 1a Heating chamber 1b Heating chamber 1c Heating chamber 2a Heater 2b Heater 2c Heater 2d Heater 2e Heater 3 Stirring blade 4 Mixture of lead glass powder and reducing agent 5 Supply hopper 6 Collection batch 7a Lead adsorbed substance (tilting plate)
7b Lead adsorbing material 8 Material supply port 9 Lead extraction glass 10 Material outflow port 11 Vibration mechanism 1c Heating chamber 12 Drum 13 Stirring blade 14 Object 15 Thermal insulation material 16 Atmosphere adjusting container 17a Cover 17b Cover 18 Graphite powder 19 Process container 20 Adsorption Container 30 Stirring device 31 Adsorbing device 32 Heating stirring device 33 Rotation drive device 34 Heating device 35 Adsorbing device S001 Mixing stirring step S002 Heating step S003 Adsorption step S004 Heating and stirring step

Claims (11)

鉛ガラス粉に、炭素を含む還元剤を、前記鉛ガラス粉が100gに対して30g以上の割合で添加して混合して混合物とするとともに、前記混合物を300℃以上でかつガラスの溶融温度未満の第一の温度で加熱することで、前記混合物中の前記鉛ガラス粉中の鉛を前記鉛ガラス粉の粒子の表面に抽出し、
その後、前記鉛ガラス粉の前記粒子の前記表面に前記鉛が抽出された前記鉛ガラス粉を、前記鉛の溶融温度以上でかつガラスの溶融温度未満の第二の温度で、前記鉛と親和性の高い鉛吸着物質に接触させて、前記鉛ガラス粉の前記鉛を前記鉛吸着物質に吸着させることで、前記鉛ガラス粉から前記鉛を分別する、鉛ガラスからの鉛の分別方法。
The lead glass powder is mixed with a reducing agent containing carbon at a ratio of 30 g or more with respect to 100 g of the lead glass powder to obtain a mixture, and the mixture is 300 ° C. or higher and lower than the melting temperature of the glass. The lead in the lead glass powder in the mixture is extracted on the surface of the particles of the lead glass powder by heating at the first temperature of
Thereafter, the lead glass powder from which the lead has been extracted on the surface of the particles of the lead glass powder is compatible with the lead at a second temperature that is equal to or higher than the melting temperature of the lead and lower than the melting temperature of the glass. A method for separating lead from lead glass, wherein the lead is separated from the lead glass powder by contacting the lead adsorbent with the lead adsorbent having a high lead content and adsorbing the lead of the lead glass powder onto the lead adsorbent.
前記鉛吸着物質は、溶融鉛との接触角が0度を越えて140度以下となる材料である、請求項1に記載の鉛ガラスからの鉛の分別方法。   2. The method for separating lead from lead glass according to claim 1, wherein the lead adsorbing material is a material having a contact angle with molten lead of more than 0 degree and not more than 140 degrees. 前記炭素を含む還元剤の粒子の平均粒子径は、前記鉛ガラス粉の粒子の平均粒子径の0%を越えて40%以下である、請求項1又は2に記載の鉛ガラスからの鉛の分別方法。   The average particle size of the particles of the reducing agent containing carbon is more than 0% of the average particle size of the particles of the lead glass powder and 40% or less, The lead of lead from the lead glass according to claim 1 or 2 Separation method. 前記鉛ガラス粉の前記粒子の平均粒子径は、0μmを越えて300μm以下とする、請求項1〜3のいずれか1つに記載の鉛ガラスからの鉛の分別方法。   The method for fractionating lead from lead glass according to any one of claims 1 to 3, wherein an average particle diameter of the particles of the lead glass powder is more than 0 µm and not more than 300 µm. 前記鉛ガラス粉と前記還元剤の混合比は、前記鉛ガラス粉が100gに対して前記還元剤は30g以上でかつ70g以下の割合とする、請求項1〜4のいずれか1つに記載の鉛ガラスからの鉛の分別方法。   5. The mixing ratio of the lead glass powder and the reducing agent is set to a ratio of 30 g or more and 70 g or less of the reducing agent with respect to 100 g of the lead glass powder. A method for separating lead from lead glass. 前記鉛を前記鉛吸着物質に吸着させる工程の前に、前記粒子の前記表面に前記鉛が抽出された前記鉛ガラス粉を、前記鉛の融点以上でかつガラスの軟化点未満の第三の温度で撹拌することで、前記鉛を肥大化させる、請求項1〜5のいずれか1つに記載の鉛ガラスからの鉛の分別方法。   Prior to the step of adsorbing the lead to the lead adsorbing substance, the lead glass powder from which the lead has been extracted on the surface of the particles is a third temperature not lower than the melting point of the lead and lower than the softening point of the glass. The method for fractionating lead from lead glass according to any one of claims 1 to 5, wherein the lead is enlarged by agitating. 前記第三の温度で撹拌する工程において、鉛を加える、請求項6に記載の鉛ガラスからの鉛の分別方法。   The method for separating lead from lead glass according to claim 6, wherein lead is added in the step of stirring at the third temperature. 前記鉛吸着物質に、前記粒子の前記表面に前記鉛が抽出された前記鉛ガラス粉を接触させ、前記鉛吸着物質の上を前記鉛ガラス粉の少なくとも全周以上移動させ、前記鉛ガラス粉の前記粒子の前記表面の前記鉛を前記鉛吸着物質に吸着させる、請求項1〜7のいずれか1つに記載の鉛ガラスからの鉛の分別方法。   The lead adsorbent is brought into contact with the lead glass powder from which the lead has been extracted on the surface of the particles, and the lead adsorbent is moved over at least the entire circumference of the lead glass powder. The method for fractionating lead from lead glass according to any one of claims 1 to 7, wherein the lead on the surface of the particles is adsorbed to the lead adsorbing substance. 前記粒子の前記表面に前記鉛が抽出された前記鉛ガラス粉に、前記鉛吸着物質を加えてから前記鉛の融点以上でかつ前記ガラスの溶融温度未満の温度で撹拌することで、前記鉛を前記鉛吸着物質に吸着させる、請求項1〜7のいずれか1つに記載の鉛ガラスからの鉛の分別方法。   The lead glass powder from which the lead has been extracted on the surface of the particles is added with the lead-adsorbing substance and then stirred at a temperature not lower than the melting point of the lead and lower than the melting temperature of the glass. The method for separating lead from lead glass according to any one of claims 1 to 7, wherein the lead-adsorbing substance is adsorbed. 鉛ガラス粉に、炭素を含む還元剤を、前記鉛ガラス粉が100gに対して30g以上の割合で添加して混合して混合物とする撹拌装置と、
前記混合物を300℃以上でかつガラスの溶融温度未満の第一の温度で加熱することで、前記混合物中の前記鉛ガラス粉中の鉛を前記鉛ガラス粉の粒子の表面に抽出する加熱装置と、
前記鉛ガラス粉の前記粒子の前記表面に前記鉛が抽出された鉛ガラス粉を、前記鉛の溶融温度以上でかつガラスの溶融温度未満の第二の温度で、前記鉛と親和性の高い鉛吸着物質に接触させて、前記鉛ガラス粉の前記鉛を前記鉛吸着物質に吸着させることで、前記鉛ガラス粉から前記鉛を分別する吸着装置とを備える、鉛ガラスからの鉛の分別装置。
A stirrer that adds a reducing agent containing carbon to lead glass powder at a ratio of 30 g or more with respect to 100 g of the lead glass powder and mixes the mixture,
A heating device for extracting the lead in the lead glass powder in the mixture to the surface of the particles of the lead glass powder by heating the mixture at a first temperature of 300 ° C. or higher and lower than the melting temperature of the glass; ,
Lead glass powder in which the lead is extracted on the surface of the particles of the lead glass powder, lead having a high affinity with the lead at a second temperature not lower than the melting temperature of the lead and lower than the melting temperature of the glass. An apparatus for separating lead from lead glass, comprising: an adsorbing device that separates the lead from the lead glass powder by contacting the adsorbed substance and adsorbing the lead of the lead glass powder to the lead adsorbing substance.
前記吸着装置は、
加熱部を有するチャンバーと、
鉛ガラス粉末を前記チャンバー内に供給する供給装置と、
前記ガラス粉末を前記チャンバー内から回収する回収装置とを備え、
前記鉛吸着物質は、前記チャンバー内において、溶融した金属鉛との接触角が0度を超えて140度以下になる傾斜板として備えられ、前記チャンバー内に供給された前記ガラス粉末の粒子が前記傾斜板上を移動して前記回収装置に回収されるように30〜70度に傾斜して配置されている、請求項10に記載の鉛ガラスからの鉛の分別装置。
The adsorption device is:
A chamber having a heating section;
A supply device for supplying lead glass powder into the chamber;
A recovery device for recovering the glass powder from the chamber;
The lead adsorbing material is provided as an inclined plate having a contact angle with molten metal lead exceeding 0 degree and 140 degrees or less in the chamber, and the glass powder particles supplied into the chamber are The apparatus for separating lead from lead glass according to claim 10, wherein the apparatus separates lead from lead glass and is disposed at an angle of 30 to 70 degrees so as to move on an inclined plate and be collected by the collecting device.
JP2015004356A 2015-01-13 2015-01-13 Method and apparatus for separating lead from lead glass Expired - Fee Related JP6150182B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015004356A JP6150182B2 (en) 2015-01-13 2015-01-13 Method and apparatus for separating lead from lead glass
CN201510754042.9A CN105779769B (en) 2015-01-13 2015-11-09 The separation method and separator of lead are separated from lead glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004356A JP6150182B2 (en) 2015-01-13 2015-01-13 Method and apparatus for separating lead from lead glass

Publications (2)

Publication Number Publication Date
JP2016130335A JP2016130335A (en) 2016-07-21
JP6150182B2 true JP6150182B2 (en) 2017-06-21

Family

ID=56389857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004356A Expired - Fee Related JP6150182B2 (en) 2015-01-13 2015-01-13 Method and apparatus for separating lead from lead glass

Country Status (2)

Country Link
JP (1) JP6150182B2 (en)
CN (1) CN105779769B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307180B2 (en) * 2017-01-07 2018-04-04 国立大学法人福井大学 Method for recovering lead from lead-containing glass
CN108732188B (en) * 2018-07-31 2023-10-10 苏州中汽检测技术服务有限公司 Device and method for extracting and measuring pollutants of rubber parts for vehicles
CN112080647A (en) * 2020-09-15 2020-12-15 太和县大华能源科技有限公司 Method for preparing high-oxidation-degree lead powder by using waste battery lead paste

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796264A (en) * 1993-09-29 1995-04-11 Nkk Corp Removal of lead from lead glass cut refuse
JP2006161080A (en) * 2004-12-03 2006-06-22 Univ Nihon Method for extracting lead from lead-containing glass
CN101613802A (en) * 2009-07-13 2009-12-30 中国科学院生态环境研究中心 The technology of reclaiming lead and producing environment-friendly building material by waste flint glass and support equipment
JP2012021176A (en) * 2010-07-12 2012-02-02 Mitsui Mining & Smelting Co Ltd Method for producing metallic lead
CN102372431B (en) * 2010-08-09 2013-06-26 深圳市格林美高新技术股份有限公司 Method for treating waste and old lead-containing glass
JP5482619B2 (en) * 2010-10-28 2014-05-07 Jfeエンジニアリング株式会社 How to recover lead from lead-containing glass
JP5541090B2 (en) * 2010-10-29 2014-07-09 Jfeエンジニアリング株式会社 How to recover lead from lead-containing glass
CN102051487B (en) * 2010-11-19 2012-09-05 北京工业大学 Method for extracting lead from waste CRT (Cathode Ray Tube) glass
CN201952472U (en) * 2010-12-28 2011-08-31 东华大学 Reduction furnace for recovering lead glass
JP2012239945A (en) * 2011-05-16 2012-12-10 Hokkaido Research Organization Lead removal method for lead containing glass
JP2012245494A (en) * 2011-05-31 2012-12-13 Hokkaido Research Organization Lead elution suppression method of lead-containing glass
CN102199707A (en) * 2011-05-31 2011-09-28 北京矿冶研究总院 Recycling and harmless treatment method for waste electronic glass
KR101659748B1 (en) * 2012-02-06 2016-09-26 톳토리 프리펙쳐 Method for separating heavy metal from glass
CN102676826A (en) * 2012-05-15 2012-09-19 同济大学 Method for extracting lead from waste CRT (Cathode Ray Tube) cone glass
JP6088250B2 (en) * 2013-01-11 2017-03-01 国立大学法人福井大学 Method for recovering lead from lead-containing glass

Also Published As

Publication number Publication date
CN105779769A (en) 2016-07-20
JP2016130335A (en) 2016-07-21
CN105779769B (en) 2017-10-27

Similar Documents

Publication Publication Date Title
JP6150182B2 (en) Method and apparatus for separating lead from lead glass
KR101782234B1 (en) Processing method of electric and electronic parts scraps
CN101417284B (en) Recovery method of waste circuit board value resource
TW201529474A (en) Synthetic amorphous silica powder and process for manufacturing same
JP2015170480A (en) Valuable material recovery method from lithium ion secondary battery
JP2007098243A (en) Recovering apparatus of metal aluminum, and recycling system of aluminum dross
JP2017527442A (en) Method for processing and removing electrical and electronic equipment waste for the purpose of recovering components contained in electrical and electronic equipment waste
US20120024108A1 (en) Process and system for material reclamation and recycling
JP2005163130A (en) Method for manufacturing pellet for steelmaking
JP2002355661A (en) Method for recovering metal from electronic or electric part with resin
US6354523B1 (en) Method and apparatus for recycling rubber
WO2008041407A1 (en) METHOD FOR PRODUCTION OF Ti GRANULE OR Ti ALLOY GRANULE, METHOD FOR PRODUCTION OF METAL Ti OR Ti ALLOY, AND PRODUCTION APPARATUS
JP6591675B2 (en) Method for producing metal manganese
JP2001283871A (en) Disposal method and system of waste cell
JPH11192469A (en) Treatment of plastics, and solid fuel and reducing agent for ore obtained by the treatment
CN1772453A (en) Mixed waste plastic separating method and apparatus thereof
JP2011167661A (en) Recycling method of thin-type panel
KR20060025097A (en) Recovery of wasted lcd trim glass
JP2000107736A (en) Treatment of shredder dust dry distillate
JP2005169246A (en) Method of crushing composite material and apparatus therefor
JP2006272561A (en) Method for treating waste plastics
KR101969106B1 (en) Method for processing sludge
JP4890745B2 (en) Method and apparatus for separating mixed plastic waste
JP2009292656A (en) Method for manufacturing silicon ingot
JP2005179757A (en) Method for producing sponge-titanium particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170511

R151 Written notification of patent or utility model registration

Ref document number: 6150182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees