JP6143066B2 - A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate. - Google Patents

A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate. Download PDF

Info

Publication number
JP6143066B2
JP6143066B2 JP2013052158A JP2013052158A JP6143066B2 JP 6143066 B2 JP6143066 B2 JP 6143066B2 JP 2013052158 A JP2013052158 A JP 2013052158A JP 2013052158 A JP2013052158 A JP 2013052158A JP 6143066 B2 JP6143066 B2 JP 6143066B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
active material
lead
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013052158A
Other languages
Japanese (ja)
Other versions
JP2014179229A (en
Inventor
晃一 尾上
晃一 尾上
鈴木 啓太
啓太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013052158A priority Critical patent/JP6143066B2/en
Publication of JP2014179229A publication Critical patent/JP2014179229A/en
Application granted granted Critical
Publication of JP6143066B2 publication Critical patent/JP6143066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、鉛蓄電池の正極板及びこの正極板を用いた制御弁式鉛蓄電池に関する。   The present invention relates to a positive electrode plate of a lead storage battery and a control valve type lead storage battery using the positive electrode plate.

鉛蓄電池は、コストや安全性及び信頼性に優れた二次電池であり、様々な用途に用いられており、高容量化と長寿命化の要求が強くなっている。
鉛蓄電池を高容量化するには、正極板の活物質の多孔度を高くして活物質の利用率を高くする手法が、有効であり広く知られている。活物質を多孔質化するには、水分量の高いペースト状活物質を集電体に充填し、熟成・乾燥して作製する手法が一般的に用いられる。
しかし、ペースト状活物質中の水分量を高くすると、ペースト状活物質の粘度が低下して柔らかくなるため、集電体に保持することが困難になる。また、正極板に多孔度を高くした活物質を使用すると、活物質の強度が低いため、蓄電池が充放電を繰り返すうちに集電体から活物質が脱落し易くなり、その結果、鉛蓄電池が短期間に寿命に至るという問題がある。
多孔度を上げる他の方法としては、一酸化鉛を主成分とする鉛粉にグラファイトなどの炭素材料を添加し、希硫酸とともに混練したペースト状活物質を集電体に充填して正極板とする方法が開示されている(特許文献1参照)。
Lead storage batteries are secondary batteries that are excellent in cost, safety, and reliability, and are used in various applications, and demands for higher capacity and longer life are increasing.
In order to increase the capacity of the lead storage battery, a technique for increasing the porosity of the active material of the positive electrode plate and increasing the utilization factor of the active material is effective and widely known. In order to make the active material porous, a method of filling a current collector with a paste-like active material having a high water content, aging and drying, is generally used.
However, when the water content in the paste-like active material is increased, the viscosity of the paste-like active material is lowered and softened, so that it is difficult to hold it in the current collector. In addition, when an active material having a high porosity is used for the positive electrode plate, the strength of the active material is low, so that the active material easily falls off from the current collector while the battery is repeatedly charged and discharged. There is a problem that the life span is reached in a short time.
Another method for increasing the porosity is to add a carbon material such as graphite to lead powder mainly composed of lead monoxide, and fill the current collector with a paste-like active material kneaded with dilute sulfuric acid. Is disclosed (see Patent Document 1).

特開2001−155735JP 2001-155735 A

しかしながら、特許文献1に開示される方法は、多孔度が高く活物質の利用率が高くなるので蓄電池の容量を大きくすることができるが、活物質の水分量を高くしたときと同様に活物質強度が低く、充放電の繰り返しにより活物質の脱落が起こり易くなる。充電と放電のサイクルが頻繁に行われ、活物質の劣化速度が速いサイクル用途では長期間の使用ができず、バックアップ電源等のトリクル用途のように、常に充電状態で使用される使用方法に制限されていた。
本発明の目的は、活物質の多孔度を高くすると共に活物質強度の低下を抑制して、高容量で長寿命の鉛蓄電池用正極板及びこの正極板を用いた制御弁式鉛蓄電池を提供することにある。
However, in the method disclosed in Patent Document 1, the capacity of the storage battery can be increased because the porosity is high and the utilization factor of the active material is high, but the active material is the same as when the water content of the active material is increased. The strength is low, and the active material easily falls off due to repeated charge and discharge. It is not possible to use the battery for a long time in a cycle application where charging and discharging cycles are frequently performed and the deterioration rate of the active material is fast. It had been.
An object of the present invention is to provide a positive electrode plate for a lead storage battery having a high capacity and a long life while increasing the porosity of the active material and suppressing a decrease in the strength of the active material, and a control valve type lead storage battery using the positive electrode plate There is to do.

本発明に係る鉛蓄電池用正極板は、格子体に活物質を充填した正極板であって、前記活物質は次の物性を有するものである。
すなわち、化成された状態における正極板の活物質の多孔度が45〜60%の範囲である。そして、化成された状態における正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積割合が13〜48%の範囲であり、前記正極板の活物質の密度が、3.8〜4.4g/cm であることを特徴とする。本発明で言う平面視とは、文字通り活物質層を平面視したものであっても良いし、活物質層のいずれの方向の断面を視たものであっても良い。以下、便宜上、平面視ということにする。
The positive electrode plate for a lead storage battery according to the present invention is a positive electrode plate in which a lattice body is filled with an active material, and the active material has the following physical properties.
That is, the porosity of the active material of the positive electrode plate in the formed state is in the range of 45 to 60%. Then, Ri range der area ratio of lead dioxide crystallization from tetrabasic lead sulfate of 13 to 48 percent which appears in a plan view of the active material layer of the positive electrode plate in the chemical conversion state, utilization of the positive electrode plate density of material, characterized in that it is a 3.8~4.4g / cm 3. The plan view referred to in the present invention may literally be a plan view of the active material layer, or may be a cross section of any direction of the active material layer. Hereinafter, for convenience, it is referred to as a plan view.

上記において、好ましくは、化成された状態における正極板の活物質の多孔度は56〜59%の範囲である。かつ、化成された状態における正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積割合は15〜43%の範囲である。さらに好ましくは、前記正極板の活物質の多孔度は58〜59%の範囲である。
本発明に係る制御弁式鉛蓄電池は、正極板が上記のいずれかの鉛蓄電池用正極板で構成されているものである。
In the above, preferably, the porosity of the active material of the positive electrode plate in the formed state is in the range of 56 to 59%. And the area ratio for which the lead dioxide crystal derived from tetrabasic lead sulfate which appears when planarizing the active material layer of the positive electrode plate in the formed state is in the range of 15 to 43%. More preferably, the porosity of the active material of the positive electrode plate is in the range of 58 to 59%.
The control valve type lead acid battery according to the present invention is one in which the positive electrode plate is composed of any one of the above positive electrode plates for lead acid batteries.

本発明によって得られる効果を説明すれば以下のとおりである。
上記のように、化成された状態における正極板の活物質の多孔度が45〜60%の範囲にあることにより、活物質の多孔度を高くすることができる。これによって、鉛蓄電池の定格容量に対して高容量化が可能となる。そして、四塩基性硫酸鉛は強固な骨格を持つので、化成された状態における正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積割合が13〜48%の範囲であることにより、活物質の強度を向上させることができる。これによって、活物質の脱落が起こり難い長寿命の鉛蓄電池用正極板の実現が可能となる。
The effects obtained by the present invention will be described as follows.
As described above, when the porosity of the active material of the positive electrode plate in the formed state is in the range of 45 to 60%, the porosity of the active material can be increased. Thereby, the capacity can be increased with respect to the rated capacity of the lead storage battery. And since tetrabasic lead sulfate has a firm frame | skeleton, the area ratio which the lead dioxide crystal derived from tetrabasic lead sulfate which appears when planarizing the active material layer of the positive electrode plate in the formed state is 13- By setting the content within the range of 48%, the strength of the active material can be improved. As a result, it is possible to realize a long-life positive electrode plate for a lead-acid battery in which the active material does not easily fall off.

さらに、正極板の活物質の多孔度が56〜59%の範囲であり、四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積割合が15〜43%の範囲であると、活物質中に電解液を多く保持して放電容量を大きくしながら、長寿命を保つ効果が一層顕著になる。ここで、正極板の活物質の多孔度が58〜59%の範囲であると、初期の放電容量をさらに大きくすることができる。   Further, when the porosity of the active material of the positive electrode plate is in the range of 56 to 59% and the area ratio occupied by the lead dioxide crystals derived from tetrabasic lead sulfate is in the range of 15 to 43%, the active material is electrolyzed. The effect of maintaining a long life while maintaining a large amount of liquid and increasing the discharge capacity becomes even more remarkable. Here, when the porosity of the active material of the positive electrode plate is in the range of 58 to 59%, the initial discharge capacity can be further increased.

制御弁式鉛蓄電池の部材構成を示す斜視図である。It is a perspective view which shows the member structure of a control valve type lead acid battery. 本発明の実施の形態において、化成された状態における正極板の活物質の多孔度及び正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の面積割合と、定格容量に対する鉛蓄電池容量比及び充放電サイクル数の相関を示した曲線図である。In the embodiment of the present invention, the porosity of the active material of the positive electrode plate in the formed state and the area ratio of the lead dioxide crystals derived from tetrabasic lead sulfate that appear when the active material layer of the positive electrode plate is viewed in plan view, It is the curve figure which showed the correlation of the lead storage battery capacity ratio with respect to a rated capacity, and the number of charging / discharging cycles. 別の実施の形態における図2と同様の曲線図である。It is the same curve figure as FIG. 2 in another embodiment.

以下、本発明の実施の形態を詳細に説明する。
本発明は、化成された状態における正極板の活物質の多孔度が45〜60%の範囲にあり、化成された状態における正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積割合が13〜48%の範囲にある。このような正極板は、例えば、正極板の製造工程における添加剤の選択、正極活物質ペーストを調製する際の添加剤の配合量、水及び希硫酸の添加量、極板の熟成・乾燥条件等各種のパラメータを調整することにより製造することができる。しかし、製造法は、これに限られるものではない。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, the porosity of the active material of the positive electrode plate in the formed state is in the range of 45 to 60%, and the tetrabasic lead sulfate that appears when the active material layer of the positive electrode plate in the formed state is viewed in plan view The area ratio occupied by the derived lead dioxide crystals is in the range of 13 to 48%. Such a positive electrode plate includes, for example, selection of additives in the manufacturing process of the positive electrode plate, blending amount of the additive when preparing the positive electrode active material paste, addition amount of water and dilute sulfuric acid, aging / drying conditions of the electrode plate It can be manufactured by adjusting various parameters. However, the manufacturing method is not limited to this.

以下の実施例では、化成された状態における正極板の活物質の多孔度と、化成された状態における正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積割合を、次のようにして調整している。
すなわち、一酸化鉛を主成分とする鉛粉に、鉛丹と所定量のグラファイトを加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の格子体に充填して所定の条件で熟成・乾燥を行う。ここで、グラファイト、水、及び希硫酸の添加量を変えることにより、化成された状態における正極板の活物質の多孔度と、正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積割合を種々に調整する。詳細は、以下の実施例記載のとおりである。
In the following examples, the porosity of the active material of the positive electrode plate in the formed state and the lead dioxide crystal derived from tetrabasic lead sulfate that appears when the active material layer of the positive electrode plate in the formed state is viewed in plan view. The area ratio is adjusted as follows.
In other words, lead powder containing lead monoxide as a main component, mixed with lead oxide and a predetermined amount of graphite, mixed with a predetermined amount of water and dilute sulfuric acid, and kneaded the paste-like active material into a grid made of lead alloy. Fill the body and age and dry under specified conditions. Here, by changing the addition amount of graphite, water, and dilute sulfuric acid, the porosity of the active material of the positive electrode plate in the formed state and the tetrabasic sulfuric acid that appears when the active material layer of the positive electrode plate is viewed in plan view The area ratio of lead-derived lead dioxide crystals is variously adjusted. Details are as described in the following examples.

<グラファイト>
本発明にて述べるグラファイトは、炭素から成る元素鉱物であり黒鉛とも呼ばれる。黒鉛は、天然黒鉛と人造黒鉛とがあるが、本願発明では、その何れを用いてもよい。
<Graphite>
The graphite described in the present invention is an elemental mineral made of carbon and is also called graphite. There are natural graphite and artificial graphite, and any of these may be used in the present invention.

<四塩基性硫酸鉛由来の二酸化鉛結晶>
本発明にて述べる四塩基性硫酸鉛由来の二酸化鉛結晶とは、正極活物質ペーストを格子体に充填し、所定の熟成・乾燥条件で処理することにより生成した四塩基性硫酸鉛が、化成工程を経て四塩基性硫酸鉛の骨格を残したまま二酸化鉛に変化した直方体状の結晶であり、その骨格の長さは20〜150μmである。
本例で述べる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積割合は、化成後の正極板を厚さ方向に裁断して断面を観察できる試料を作製し、断面の任意位置の面積40mm中の任意の10箇所を測定して平均値を算出した。
断面観察用試料の作製方法は次のとおりである。前記裁断をして採取した試片を任意の容器に移し、エポキシ樹脂と硬化剤を7:1の質量比で混合して流し込み、水冷下で放置し硬化させることにより、前記試片をエポキシ樹脂硬化物中に埋め込む。
前記硬化物の任意の場所をダイヤモンドカッターで切断し、切断面をバフで研磨して正極板の断面を観察できるようにし、当該断面に現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積を、マイクロスコープを用いて測定し算出した。
<Lead dioxide crystals derived from tetrabasic lead sulfate>
The tetrabasic lead sulfate crystal derived from tetrabasic lead sulfate described in the present invention means that a tetrabasic lead sulfate produced by filling a grid with a positive electrode active material paste and treating it under predetermined aging and drying conditions is formed by chemical conversion. It is a rectangular parallelepiped crystal which has changed to lead dioxide while leaving the skeleton of tetrabasic lead sulfate through the process, and the length of the skeleton is 20 to 150 μm.
The area ratio occupied by the tetrabasic lead sulfate-derived lead dioxide crystal described in this example is a sample in which the positive electrode plate after chemical conversion is cut in the thickness direction to observe a cross section, and the area at an arbitrary position of the cross section is 40 mm 2. The average value was calculated by measuring any 10 locations.
The method for producing the cross-sectional observation sample is as follows. The specimen collected by cutting is transferred to an arbitrary container, and the epoxy resin and the curing agent are mixed and poured at a mass ratio of 7: 1. Embed in the cured product.
Cut an arbitrary place of the cured product with a diamond cutter, polish the cut surface with a buff so that the cross section of the positive electrode plate can be observed, and the area occupied by the lead dioxide crystals derived from tetrabasic lead sulfate appearing in the cross section Measured and calculated using a microscope.

<化成された状態における正極板活物質の密度>
正極板活物質密度の算出方法は、まず、ペースト状活物質を格子体に充填する圧力相当で所定容量のステンレス製容器に充填した後、当該ペースト状活物質の質量を測定してペースト状活物質の密度(D)を算出する。化成後の正極板の活物質体積は格子体に充填されたペースト状活物質の体積とほぼ変わらないので、等しいとして、ペースト状活物質を規定圧力で格子体に充填したときの質量(W)を測定し、ペースト状活物質の充填体積(V)を(式1)を用いて算出した。
ペースト状活物質の充填体積 V=W/D・・・(式1)
そして、化成後の正極板から活物質の全量を採取して質量(W2)を測定し、化成後の正極活物質密度(D2)を(式2)を用いて算出した。
化成後の正極活物質密度 D2=W2/V・・・(式2)
<化成された状態における正極板活物質の多孔度>
本発明にて述べる化成された状態における正極板活物質の多孔度は、見掛けの活物質中の空孔の比率であり、水置換法によって算出した。
算出方法は、まず、化成後の正極板を乾燥し乾燥後質量(W3)を測定する。この正極板を水中に没して減圧下で吸引脱気し、活物質中の空孔に含まれる空気と水を置換する。その後、水中で正極板質量(W4)を測定し、正極板を空中に取り出した後表面の水気を切り、活物質中の空孔を水置換した正極板質量(W5)を測定する。正極板を乾燥させた後活物質を落とし、格子のみの質量(W6)を測定する。水中で格子のみの質量(W7)を測定し、多孔度は(式3)を用いて次のように求められる。
多孔度={(W5−W3)/(W5+W7−W4−W6)}×100・・・(式3)
<ペースト状正極活物質の作製>
ペースト状正極活物質は、一酸化鉛を主成分とする鉛粉に、鉛丹とグラファイト、カットファイバー等の添加剤を加えて混合し、更に当該混合物に水と希硫酸を加え、混練して作製した。
<Density of positive electrode plate active material in the formed state>
The positive electrode plate active material density is calculated by first filling a stainless steel container having a predetermined capacity corresponding to the pressure with which the paste active material is filled into the grid, and then measuring the mass of the paste active material to measure the paste active material. The density (D) of the substance is calculated. Since the volume of the active material of the positive electrode plate after the formation is substantially the same as the volume of the paste-like active material filled in the lattice body, the mass (W) when the paste-like active material is filled into the lattice body at a specified pressure is assumed to be equal. Was measured, and the filling volume (V) of the paste-like active material was calculated using (Formula 1).
Filling volume of pasty active material V = W / D (Formula 1)
And the whole quantity of active material was extract | collected from the positive electrode plate after chemical conversion, mass (W2) was measured, and the positive electrode active material density (D2) after chemical conversion was computed using (Formula 2).
Positive electrode active material density after conversion D2 = W2 / V (Formula 2)
<Porosity of the positive electrode active material in the formed state>
The porosity of the positive electrode active material in the chemical state described in the present invention is the ratio of the pores in the apparent active material, and was calculated by the water substitution method.
In the calculation method, first, the positive electrode plate after chemical conversion is dried, and the mass (W3) after drying is measured. This positive electrode plate is submerged in water and sucked and degassed under reduced pressure to replace the air and water contained in the pores in the active material. Thereafter, the positive electrode plate mass (W4) is measured in water, the positive electrode plate is taken out into the air, the surface is drained, and the positive electrode plate mass (W5) in which the holes in the active material are replaced with water is measured. After the positive electrode plate is dried, the active material is dropped, and the mass (W6) of only the lattice is measured. The mass (W7) of only the lattice is measured in water, and the porosity is obtained using (Equation 3) as follows.
Porosity = {(W5−W3) / (W5 + W7−W4−W6)} × 100 (Equation 3)
<Preparation of paste-like positive electrode active material>
The paste-like positive electrode active material is mixed with lead powder containing lead monoxide as a main component, with additives such as red lead, graphite, and cut fiber added, and water and dilute sulfuric acid are added to the mixture and kneaded. Produced.

<ペースト状負極活物質の作製>
ペースト状負極活物質は、一酸化鉛を主成分とする鉛粉に、カーボン、リグニン、硫酸バリウム、カットファイバー等の添加剤を加えて混合し、更に当該混合物に水と希硫酸を加え、混練して作製した。
<Preparation of pasty negative electrode active material>
The paste-like negative electrode active material is mixed with lead powder mainly composed of lead monoxide by adding additives such as carbon, lignin, barium sulfate, and cut fiber, and water and dilute sulfuric acid are further added to the mixture. And made.

<正負極板>
本発明にて述べる正負極板は、前述したそれぞれのペースト状活物質を格子体に充填して熟成・乾燥させたものである。格子体としては、エキスパンド方式の格子体、鋳造方式の格子体等を用いることができる。
格子体の材質は、鉛を主成分としてスズ、カルシウム、アンチモン等を添加することができ、スズ及びカルシウムを添加するのが好ましい。これは、カルシウムを添加することにより、格子体の強度を保つことができると共に、自己放電減少させることができるが、カルシウムを添加した際の課題である、格子体の骨の腐食をスズの添加により抑制することができるためである。
<Positive electrode plate>
The positive and negative electrode plates described in the present invention are obtained by filling each of the paste-like active materials described above into a lattice and aging and drying. As the lattice, an expanded lattice, a casting lattice, or the like can be used.
As the material of the lattice, tin, calcium, antimony, etc. can be added with lead as a main component, and it is preferable to add tin and calcium. It is possible to maintain the strength of the lattice body by adding calcium and to reduce self-discharge. However, the addition of tin to the corrosion of the bone of the lattice body, which is a problem when adding calcium It is because it can suppress by this.

<鉛蓄電池>
本発明にて述べる鉛蓄電池は、例えば、図1に示すように、正極板2及び負極板3を、セパレータ4を介して交互に積層し、積層した同極性極板の耳同士をストラップで接続して極板群を構成する。この極板群を電槽5に収容し、蓋体6により閉塞して鉛蓄電池を組み立て、所定量の電解液を注入して電槽化成を行い作製する。
電槽に複数のセル室を設けるときは、各セル室内に極板群が収容され、隣接するセル室内に収容された極板群と反対極性のストラップ間を相互に接続することにより、所定の定格電圧と定格容量を持つ鉛蓄電池が構成される。また、単セル電槽のときは、複数の鉛蓄電池の端子間を、導電板を用いて並列あるいは直列に接続し、所定の電圧、容量の電池を構成することができる。
電槽5の材質は、特に制限されるものではなく、具体的には、ポリプロピレン、ABS、変性PPE(ポリフェニレンエーテル)等を用いることができる。
鉛蓄電池が制御弁式鉛蓄電池である場合は、充電時に正極で発生する酸素ガスのうち、負極のガス吸収反応で吸収しきれなかった過剰ガスを、電槽外へ排出するための制御弁を取り付ける。制御弁の材質は、耐薬品性(耐酸性、耐シリコンオイル)、耐磨耗性、耐熱性に優れた材質、具体的には、フッ素ゴムを用いることが好ましい。
<Lead battery>
In the lead storage battery described in the present invention, for example, as shown in FIG. 1, positive plates 2 and negative plates 3 are alternately stacked via separators 4, and the ears of the stacked same polarity plates are connected with straps. Thus, the electrode plate group is configured. The electrode plate group is accommodated in the battery case 5 and closed by the lid 6 to assemble a lead storage battery, and a predetermined amount of electrolyte is injected to form a battery case.
When a plurality of cell chambers are provided in the battery case, electrode plate groups are accommodated in each cell chamber, and a predetermined polarity is obtained by mutually connecting between the electrode plate groups accommodated in the adjacent cell chambers and the opposite polarity straps. A lead-acid battery having a rated voltage and a rated capacity is configured. In the case of a single-cell battery case, terminals of a plurality of lead storage batteries can be connected in parallel or in series using a conductive plate to constitute a battery having a predetermined voltage and capacity.
The material of the battery case 5 is not particularly limited, and specifically, polypropylene, ABS, modified PPE (polyphenylene ether) or the like can be used.
If the lead-acid battery is a control valve-type lead-acid battery, a control valve for discharging excess gas that could not be absorbed by the gas absorption reaction of the negative electrode out of the oxygen gas generated at the positive electrode during charging Install. The material of the control valve is preferably a material excellent in chemical resistance (acid resistance, silicon oil resistance), wear resistance, and heat resistance, specifically, fluororubber.

以下、本発明の詳細な実施例を説明する。
以下の実施例と比較例では、次の負極板を共通して用いた。
鉛−カルシウム−スズ合金(カルシウム含有量:0.1質量%、スズ含有量:0.2質量%)を溶融し、鋳造方式によって、縦:144.0mm、横:147.0mm、厚み:2.1mmの格子体を作製した。
この格子体に、一酸化鉛を主成分とする鉛粉100質量部に対して、ポリエステル繊維を0.03質量部、硫酸バリウムを1.25質量部及び、アセチレンブラックを0.3質量部加えて混合し、次に水にリグニンスルホン酸塩を溶解させた水溶液を10質量部、希硫酸を10質量部加えた後、混練して調製したペースト状活物質を充填した。
ペースト状活物質の充填後に、
熟成条件:温度:40℃、湿度:98%、時間:40時間
乾燥条件:温度:60℃、時間:24時間
の熟成、乾燥条件の工程を経ることにより負極板を作製した。
Hereinafter, detailed examples of the present invention will be described.
In the following examples and comparative examples, the following negative electrode plates were used in common.
A lead-calcium-tin alloy (calcium content: 0.1% by mass, tin content: 0.2% by mass) is melted and length: 144.0 mm, width: 147.0 mm, thickness: 2 depending on the casting method. A 1 mm grid was produced.
0.03 parts by mass of polyester fiber, 1.25 parts by mass of barium sulfate, and 0.3 parts by mass of acetylene black are added to 100 parts by mass of lead powder containing lead monoxide as a main component. Next, 10 parts by mass of an aqueous solution in which lignin sulfonate was dissolved in water and 10 parts by mass of diluted sulfuric acid were added, and then the paste-like active material prepared by kneading was filled.
After filling pasty active material,
Aging condition: temperature: 40 ° C., humidity: 98%, time: 40 hours Drying condition: temperature: 60 ° C., time: aging for 24 hours, a negative electrode plate was produced.

(実施例1)
鉛−カルシウム−スズ合金(カルシウム含有量:0.08質量%、スズ含有量:1.6質量%)を溶融し、鋳造方式によって、縦:143.0mm、横:145.0mm、厚み:3.0mmの格子体を作製した。
この格子体に、一酸化鉛を主成分とする鉛粉100質量部に対して、グラファイト(日本黒鉛工業株式会社製、商品名:ACB50)を0.1質量部、ポリエステル繊維を0.15質量部加えて混合し、次に水を11質量部、希硫酸を10質量部加えた後、混練して作製したペースト状活物質を充填した。
ペースト状活物質を充填後、以下の熟成条件1〜3、乾燥条件の工程を経ることにより正極板を作製した。
熟成条件1:温度:80℃、湿度:98%、時間:10時間
熟成条件2:温度:65℃、湿度:75%、時間:13時間
熟成条件3:温度:40℃、湿度:65%、時間:40時間
乾燥条件:温度:60℃、時間:24時間
上記正極板1枚と先に述べた負極板2枚を、ガラス繊維をマット状にしたセパレータ(リテーナ)を介して交互に積層し、極板群を作製した。
実施例1〜7及び比較例1の正極板と上述した負極板を用いて作製した極板群を、各々電槽へ挿入し、正極端子及び負極端子を極板群に溶接した後、電槽を密閉する。次に排気栓口から希硫酸を主成分とする電解液を注入し、化成・充電した後、制御弁を取り付け、制御弁式鉛蓄電池を作製し、電槽化成を行った。
化成条件は、温度:60℃、課電量:正極活物質の理論化成電気量に対し250%、時間:40時間である。
Example 1
A lead-calcium-tin alloy (calcium content: 0.08 mass%, tin content: 1.6 mass%) is melted and length: 143.0 mm, width: 145.0 mm, thickness: 3 depending on the casting method. A 0.0 mm grid was produced.
In this lattice, 0.1 part by mass of graphite (manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB50) and 0.15 part by mass of polyester fiber with respect to 100 parts by mass of lead powder mainly composed of lead monoxide Then, 11 parts by mass of water and 10 parts by mass of dilute sulfuric acid were added, and then the paste-like active material prepared by kneading was filled.
After filling with the paste-like active material, a positive electrode plate was produced through the following aging conditions 1 to 3 and drying conditions.
Aging condition 1: temperature: 80 ° C., humidity: 98%, time: 10 hours Aging condition 2: temperature: 65 ° C., humidity: 75%, time: 13 hours Aging condition 3: temperature: 40 ° C., humidity: 65%, Time: 40 hours Drying conditions: Temperature: 60 ° C., Time: 24 hours The above positive electrode plate and the above-described negative electrode plate are alternately laminated via separators (retainers) made of glass fiber in a mat shape. A plate group was prepared.
The electrode plate group produced using the positive electrode plate of Examples 1 to 7 and Comparative Example 1 and the negative electrode plate described above was inserted into the battery case, and the positive electrode terminal and the negative electrode terminal were welded to the electrode plate group. To seal. Next, an electrolyte containing dilute sulfuric acid as a main component was injected from the exhaust plug port, and after chemical conversion and charging, a control valve was attached to produce a control valve type lead-acid battery, and a battery case was formed.
The formation conditions are: temperature: 60 ° C., electric charge: 250% with respect to the theoretical chemical formation amount of the positive electrode active material, and time: 40 hours.

(実施例2〜4)
グラファイトの添加量を、一酸化鉛を主成分とする鉛粉100質量部に対して、1.0質量部(実施例2)、1.5質量部(実施例3)、3.0質量部(実施例4)とする以外は、実施例1と同様にして正極板及び制御弁式鉛蓄電池を作製した。
(Examples 2 to 4)
The addition amount of graphite is 1.0 part by mass (Example 2), 1.5 parts by mass (Example 3), 3.0 parts by mass with respect to 100 parts by mass of lead powder containing lead monoxide as a main component. A positive electrode plate and a control valve type lead-acid battery were produced in the same manner as in Example 1 except that (Example 4) was used.

(実施例5)
グラファイトの添加量を、一酸化鉛を主成分とする鉛粉100質量部に対して、3.0質量部、水を9質量部、希硫酸を8質量部とする以外は、実施例1と同様にして正極板及び制御弁式鉛蓄電池を作製した。
(Example 5)
Example 1 is the same as Example 1 except that the amount of graphite is 3.0 parts by mass, water is 9 parts by mass, and dilute sulfuric acid is 8 parts by mass with respect to 100 parts by mass of lead powder containing lead monoxide as a main component. In the same manner, a positive electrode plate and a control valve type lead storage battery were produced.

(実施例6)
グラファイトの添加量を、一酸化鉛を主成分とする鉛粉100質量部に対して、3.0質量部、水を11質量部、希硫酸を13質量部とする以外は、実施例1と同様にして正極板及び制御弁式鉛蓄電池を作製した。
(Example 6)
Example 1 is the same as Example 1 except that the addition amount of graphite is 3.0 parts by mass, 11 parts by mass of water, and 13 parts by mass of dilute sulfuric acid with respect to 100 parts by mass of lead powder containing lead monoxide as a main component. In the same manner, a positive electrode plate and a control valve type lead storage battery were produced.

(実施例7)
グラファイトの添加量を、一酸化鉛を主成分とする鉛粉100質量部に対して、3.0質量部、水を13質量部、希硫酸を17質量部とする以外は、実施例1と同様にして正極板及び制御弁式鉛蓄電池を作製した。
(Example 7)
Example 1 is the same as Example 1 except that the addition amount of graphite is 3.0 parts by mass, 13 parts by mass of water, and 17 parts by mass of dilute sulfuric acid with respect to 100 parts by mass of lead powder containing lead monoxide as a main component. In the same manner, a positive electrode plate and a control valve type lead storage battery were produced.

(比較例1)
一酸化鉛を主成分とする鉛粉100質量部に対して、グラファイトを添加せず、それ以外は、実施例1と同様にして正極板及び制御弁式鉛蓄電池を作製した。
(Comparative Example 1)
A positive electrode plate and a control valve type lead-acid battery were produced in the same manner as in Example 1 except that graphite was not added to 100 parts by mass of lead powder mainly composed of lead monoxide.

前述した実施例、比較例のグラファイト、水及び希硫酸の添加量を下記表1に示す。   The amounts of graphite, water, and dilute sulfuric acid added in the above-described examples and comparative examples are shown in Table 1 below.

上記にて説明した実施例1〜7及び比較例1の化成された状態における正極板について、「グラファイト添加量」、「四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積比率」、「正極活物質密度」、「正極活物質多孔度(%)」を、以下の表2に示す。   About the positive electrode plate in the formed state of Examples 1 to 7 and Comparative Example 1 described above, “graphite addition amount”, “area ratio occupied by tetrabasic lead sulfate-derived lead dioxide crystals”, “positive electrode active “Material density” and “Positive electrode active material porosity (%)” are shown in Table 2 below.

表1、2より、実施例1〜4、比較例について、グラファイトの添加量が増えるに従い正極活物質の多孔度が高くなり、活物質層を平面視したときの四塩基性硫酸鉛由来の二酸化鉛結晶が占める面積比率が小さくなるが、活物質密度はほぼ変化しないことが判る。これは、化成時にグラファイトが膨張して活物質に圧力が加わることにより活物質が密になり、圧力に耐えられなくなった活物質の一部に亀裂が生じて空孔となるため、グラファイト添加量が増えると多孔度が高くなる。そのため、活物質層を平面視したときの活物質の占める部分が相対的に小さくなるが活物質密度はほとんど変化しない。そして、四塩基性硫酸鉛由来の二酸化鉛結晶も密となることから、活物質層を平面視したときの四塩基性硫酸鉛由来の二酸化鉛結晶が占める面積比率は相対的に小さくなる。
また、実施例4〜7のように、グラファイトを添加し活物質混練時の希硫酸量を増やすと、更に多孔度は高くなるが、実施例6、7のように多孔度が非常に高くなると、活物質密度は低くなる。
From Tables 1 and 2, for Examples 1 to 4 and Comparative Examples, the porosity of the positive electrode active material increases as the amount of graphite added increases, and the tetrabasic lead sulfate-derived dioxide when the active material layer is viewed in plan view. It can be seen that the area ratio occupied by the lead crystal is small, but the active material density is hardly changed. This is because graphite expands during chemical conversion and pressure is applied to the active material, so that the active material becomes dense, and some of the active material that cannot withstand the pressure cracks and becomes vacant. As the value increases, the porosity increases. Therefore, when the active material layer is viewed in plan, the portion occupied by the active material becomes relatively small, but the active material density hardly changes. And since the lead dioxide crystal derived from tetrabasic lead sulfate also becomes dense, the area ratio occupied by the lead dioxide crystal derived from tetrabasic lead sulfate when the active material layer is viewed in plan is relatively small.
Moreover, when graphite is added and the amount of the diluted sulfuric acid at the time of kneading the active material is increased as in Examples 4 to 7, the porosity is further increased. However, as in Examples 6 and 7, the porosity is very high. The active material density is lowered.

表2に示すように、グラファイトを添加することにより、水分の添加量を変えずに多孔度を増加させることができる。
特に、水及び希硫酸の添加量が同量である実施例3、4と比較例1の正極活物質の多孔度を比べると、グラファイトを添加した実施例が15%高くなり、特にグラファイトを、1.5〜3.0質量%添加することにより、特に大きな効果が得られることが判る。実施例1〜4を比較すると、グラファイトの添加量が増加するのにつれ四塩基性由来の二酸化鉛結晶の面積比率が減少している。これは、多孔度が高くなったことに起因する。
As shown in Table 2, by adding graphite, the porosity can be increased without changing the amount of moisture added.
In particular, when the porosity of the positive electrode active material of Examples 3 and 4 and Comparative Example 1 in which the addition amounts of water and dilute sulfuric acid are the same, the example in which graphite was added was 15% higher. It can be seen that a particularly large effect can be obtained by adding 1.5 to 3.0% by mass. When Examples 1 to 4 are compared, the area ratio of tetrabasic lead dioxide crystals decreases as the amount of graphite added increases. This is due to the increased porosity.

次に、実施例1〜7及び比較例1の条件で作製した個々の鉛蓄電池について、所定の充放電サイクルごとに放電容量を確認するサイクル寿命試験を行った。
<試験方法>
放電容量確認試験は、5時間率放電によった。すなわち、満充電後の制御弁式鉛蓄電池を雰囲気温度25℃中に24時間放置した後、5時間率放電(0.2CA、終止電圧1.7V)を行い、そのときの放電容量を測定する。その後の回復充電は、雰囲気温度25℃中で、放電量の107%充電量到達までとする。
Next, a cycle life test for confirming the discharge capacity for each predetermined charge / discharge cycle was performed on each lead storage battery manufactured under the conditions of Examples 1 to 7 and Comparative Example 1.
<Test method>
The discharge capacity confirmation test was based on a 5-hour rate discharge. That is, after the fully-charged control valve type lead-acid battery is allowed to stand for 24 hours at an ambient temperature of 25 ° C., a 5-hour rate discharge (0.2 CA, final voltage 1.7 V) is performed, and the discharge capacity at that time is measured. . The subsequent recovery charge is performed until the charge amount reaches 107% of the discharge amount at an ambient temperature of 25 ° C.

充放電サイクル試験条件を、以下の表3に示す。
満充電後の制御弁式鉛蓄電池を雰囲気温度25℃中に24時間放置した後、表3に示す条件で充放電サイクル試験を行った。DODとは「Depth Of Discharge」の略で電池容量に対する放電深度を表す。
表3に示す充放電サイクル試験は、(1)間欠充放電、(2)部分充電、(3)間欠充放電、(4)回復充電及び休止を、(1)−(2)−(3)−(2)−(3)−(2)−(3)−(4)の順番で行い、この都合4回の充放電サイクルを1つの単位として25回繰り返して合計100サイクルとする。
そして、100サイクル毎に、上述した条件の5時間率放電容量確認試験を実施し、5時間率放電容量を測定した。
ここで、(1)と(3)の間欠充放電は、表4に示す条件の間欠充放電の操作とした。表4の間欠充放電条件は、例えば、AGV等の荷役作業用電動車両が物品の運搬作業を行うときを想定し、物品をリフトアップするときの放電電流値1.1CA、物品を目的場所へ搬送するときの放電電流値0.25CA、目的場所で停止する際のブレーキング及び物品のリフトダウン時の電力回生による充電電流値0.35CAを、それぞれ設定したものである。表4の条件による間欠充放電は、鉛蓄電池のDODが75%に達するまで連続して行う。この間欠充放電条件は、放電量が充電量を上回るので、実質的には、平均0.17CAの放電となる。
また、(2)の部分充電は、荷役作業の短い休止時間中に次の稼働に備えて急速充電を行い容量回復(満充電には至らない)することを想定している。そして、(4)の回復充電は、稼働時間外に満充電とすることを想定している。

The charge / discharge cycle test conditions are shown in Table 3 below.
The control valve type lead-acid battery after full charge was allowed to stand at 25 ° C. for 24 hours, and then a charge / discharge cycle test was performed under the conditions shown in Table 3. DOD is an abbreviation for “Depth Of Discharge” and represents the depth of discharge relative to the battery capacity.
The charge / discharge cycle test shown in Table 3 consists of (1) intermittent charge / discharge, (2) partial charge, (3) intermittent charge / discharge, (4) recovery charge and pause, (1)-(2)-(3) -(2)-(3)-(2)-(3)-(4) are carried out in this order, and this charge / discharge cycle is repeated 25 times as one unit for a total of 100 cycles.
Then, every 100 cycles, a 5-hour rate discharge capacity confirmation test under the above-described conditions was performed, and the 5-hour rate discharge capacity was measured.
Here, the intermittent charging / discharging of (1) and (3) was an operation of intermittent charging / discharging under the conditions shown in Table 4. The intermittent charging / discharging conditions in Table 4 assume, for example, a case where an electric vehicle for cargo handling work such as AGV carries an article carrying work, a discharge current value 1.1 CA when lifting the article, and the article to the destination A discharge current value of 0.25 CA when transported, and a charging current value of 0.35 CA due to power regeneration during braking and stopping the article when stopping at the destination are set. The intermittent charge / discharge under the conditions in Table 4 is continuously performed until the DOD of the lead storage battery reaches 75%. In this intermittent charge / discharge condition, since the discharge amount exceeds the charge amount, the discharge is substantially 0.17 CA on average.
In addition, the partial charge (2) assumes that the capacity is restored (does not reach full charge) by performing quick charge in preparation for the next operation during the short suspension time of the cargo handling work. The recovery charge in (4) is assumed to be fully charged outside the operating hours.

<試験結果>
図2、図3に、実施例1〜7と比較例1の制御弁式鉛蓄電池について、上記サイクル充放電試験を実施した結果を示す。これは、化成された状態における正極板の活物質の多孔度及び正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の面積割合と、定格容量に対する鉛蓄電池容量比及び充放電サイクル数の相関を示している。鉛蓄電池の定格容量を100%としたとき、5時間率放電容量の定格容量比が80%になったときを寿命として比較した。
図2は、実施例1〜4及び比較例1の制御弁式鉛蓄電池に関する試験結果であり、これより、活物質混練時の水、希硫酸の添加量を一定にしたときはグラファイトの添加量が増加するにつれて正極活物質の多孔度が高くなり、鉛蓄電池の定格容量比が大きくなることがわかる。また、実施例1〜4は、比較例1と比べて正極活物質の多孔度が高く四塩基性硫酸鉛由来の二酸化鉛結晶面積割合が小さいが、正極活物質の活物質密度がほぼ同じであることから、活物質部分が密になって活物質強度が高くなっているため、長寿命となる。
図3は、実施例4〜7及び比較例1の制御弁式鉛蓄電池に関する試験結果であり、これより、グラファイトを添加して水分量を増加させることにより多孔度が高くなり容量が大きくなることがわかる。
<Test results>
The result of having implemented the said cycle charge / discharge test about the control valve type lead acid battery of Examples 1-7 and Comparative Example 1 is shown in FIG. 2, FIG. This is because of the porosity of the active material of the positive electrode plate in the formed state and the area ratio of the lead dioxide crystal derived from tetrabasic lead sulfate that appears when the active material layer of the positive electrode plate is viewed in plan view, and the lead acid battery for the rated capacity The correlation between the capacity ratio and the number of charge / discharge cycles is shown. When the rated capacity of the lead storage battery was 100%, the lifespan was compared when the rated capacity ratio of the 5-hour rate discharge capacity was 80%.
FIG. 2 is a test result regarding the control valve type lead storage batteries of Examples 1 to 4 and Comparative Example 1, and from this, when the addition amount of water and dilute sulfuric acid during the kneading of the active material is made constant, the addition amount of graphite It can be seen that the porosity of the positive electrode active material increases as the value increases, and the rated capacity ratio of the lead storage battery increases. In Examples 1 to 4, although the porosity of the positive electrode active material is high and the lead dioxide crystal area ratio derived from tetrabasic lead sulfate is small compared to Comparative Example 1, the active material density of the positive electrode active material is almost the same. For this reason, the active material portion becomes dense and the active material strength is increased, so that the life is long.
FIG. 3 is a test result regarding the control valve type lead storage batteries of Examples 4 to 7 and Comparative Example 1. From this, the porosity is increased and the capacity is increased by increasing the water content by adding graphite. I understand.

図2、3より、化成された状態における正極板の活物質の多孔度が45〜60%の範囲にあり、かつ正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の面積割合が13〜48%の範囲にあるときに電池容量が大きく長寿命となることが分かる。   2 and 3, the porosity of the active material of the positive electrode plate in the formed state is in the range of 45 to 60%, and is derived from tetrabasic lead sulfate that appears when the active material layer of the positive electrode plate is viewed in plan view. It can be seen that the battery capacity is large and the life is long when the area ratio of the lead dioxide crystal is in the range of 13 to 48%.

好ましくは、正極板の活物質の多孔度が56〜59%の範囲にあり、かつ正極板の活物質層を平面視したときに現れる四塩基性硫酸鉛由来の二酸化鉛結晶の面積割合が15〜43%の範囲にある実施例2、3、4.6がより電池容量が大きく長寿命となる。
さらに、正極板の活物質の多孔度が58〜59%の範囲にある実施例3、4.6が初期の電池容量がさらに大きく長寿命となる。
Preferably, the porosity of the active material of the positive electrode plate is in the range of 56 to 59%, and the area ratio of the tetrabasic lead sulfate-derived lead dioxide crystal that appears when the active material layer of the positive electrode plate is viewed in plan is 15. In Examples 2, 3, and 4.6 in the range of ˜43%, the battery capacity is larger and the life is longer.
Further, in Examples 3 and 4.6 in which the porosity of the active material of the positive electrode plate is in the range of 58 to 59%, the initial battery capacity is further increased and the life is increased.

ゴルフカート、電動車両等の放電深度が深く、サイクル利用する鉛蓄電池として利用可能である。   The depth of discharge of golf carts, electric vehicles, etc. is deep, and it can be used as a lead storage battery for cycle use.

1…制御弁式鉛蓄電池
2…正極板
3…負極板
4…セパレータ
5…電槽
6…蓋体
DESCRIPTION OF SYMBOLS 1 ... Control valve type lead acid battery 2 ... Positive electrode plate 3 ... Negative electrode plate 4 ... Separator 5 ... Battery case 6 ... Cover

Claims (4)

鉛蓄電池用の正極板において、
化成された状態における前記正極板の活物質の多孔度が45〜60%の範囲であり、
化成された状態における前記正極板の活物質の断面に現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積の割合が13〜48%の範囲であり、
前記正極板の活物質の密度が、3.8〜4.4g/cm であることを特徴とする鉛蓄電池用正極板。
In the positive electrode plate for lead acid batteries,
The porosity of the positive electrode active material in the formed state is in the range of 45-60%,
Wherein the ratio of the area occupied by the lead dioxide crystallization from tetrabasic lead sulfate appearing in the cross section of the active material of the positive electrode plate 13 to 48% range der in chemical state is,
The density of the active material of the positive electrode plate, a positive electrode plate for a lead storage battery, which is a 3.8~4.4g / cm 3.
化成された状態における前記正極板の活物質の多孔度が56〜59%の範囲であり、
化成された状態における前記正極板の活物質の断面に現れる四塩基性硫酸鉛由来の二酸化鉛結晶の占める面積の割合が15〜43%の範囲であることを特徴とする請求項1記載の鉛蓄電池用正極板。
The porosity of the positive electrode active material in the formed state is in the range of 56-59%;
2. The lead according to claim 1, wherein the proportion of the area occupied by tetrabasic lead sulfate-derived lead dioxide crystals in the cross section of the active material of the positive electrode plate in the formed state is in the range of 15 to 43%. Positive electrode plate for storage battery.
化成された状態における前記正極板の活物質の多孔度が58〜59%の範囲である請求項2記載の鉛蓄電池用正極板。   The positive electrode plate for a lead-acid battery according to claim 2, wherein the porosity of the active material of the positive electrode plate in the formed state is in the range of 58 to 59%. 前記正極板が、請求項1乃至3の何れかに記載の鉛蓄電池用正極板で構成されている制御弁式鉛蓄電池。   The control valve type lead acid battery in which the said positive electrode plate is comprised with the positive electrode plate for lead acid batteries in any one of Claims 1 thru | or 3.
JP2013052158A 2013-03-14 2013-03-14 A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate. Expired - Fee Related JP6143066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052158A JP6143066B2 (en) 2013-03-14 2013-03-14 A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052158A JP6143066B2 (en) 2013-03-14 2013-03-14 A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate.

Publications (2)

Publication Number Publication Date
JP2014179229A JP2014179229A (en) 2014-09-25
JP6143066B2 true JP6143066B2 (en) 2017-06-07

Family

ID=51698978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052158A Expired - Fee Related JP6143066B2 (en) 2013-03-14 2013-03-14 A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate.

Country Status (1)

Country Link
JP (1) JP6143066B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447866B2 (en) * 2014-11-14 2019-01-09 日立化成株式会社 Control valve type lead storage battery manufacturing method
JP6628070B2 (en) * 2015-03-03 2020-01-08 日立化成株式会社 Manufacturing method of positive electrode plate for control valve type lead-acid battery
CN114267887A (en) * 2021-12-27 2022-04-01 河南超威正效电源有限公司 Preparation method of high-performance EFB start-stop battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057228A (en) * 1999-08-17 2001-02-27 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2001229920A (en) * 2000-02-21 2001-08-24 Shin Kobe Electric Mach Co Ltd Method of manufacturing sealed lead acid battery
JP2003151617A (en) * 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd Lead-acid battery
EP1799616A2 (en) * 2004-09-23 2007-06-27 Maxtech Inc. Paste curing additive
JP2009070668A (en) * 2007-09-13 2009-04-02 Furukawa Battery Co Ltd:The Method of manufacturing positive electrode plate for control valve type lead-acid storage battery
JP5241264B2 (en) * 2008-02-19 2013-07-17 古河電池株式会社 Control valve type lead storage battery manufacturing method

Also Published As

Publication number Publication date
JP2014179229A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
WO2018229875A1 (en) Liquid-type lead storage battery
TW201138192A (en) Positive active material for a lead-acid battery
JP6143066B2 (en) A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate.
JP7259758B2 (en) lead acid battery
JP6060909B2 (en) Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
JP6628070B2 (en) Manufacturing method of positive electrode plate for control valve type lead-acid battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2014207198A (en) Control valve type lead-acid battery
JP5720947B2 (en) Lead acid battery
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
JP2020167079A (en) Lead-acid battery
JP7128482B2 (en) lead acid battery
JP7124828B2 (en) lead acid battery
JP5787181B2 (en) Lead acid battery
CN103035956B (en) Lead accumulator
WO2020066763A1 (en) Lead battery
JP4812257B2 (en) Sealed lead-acid battery for cycle use
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP6582636B2 (en) Lead acid battery
JP7285206B2 (en) Method for determining electrode performance, lead-acid battery, and method for manufacturing the same
WO2021084877A1 (en) Lead-acid battery
WO2021084878A1 (en) Lead storage battery
JP6699383B2 (en) Lead acid battery
JPH0233859A (en) Lead-acid battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R151 Written notification of patent or utility model registration

Ref document number: 6143066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees