JP6139344B2 - 電気化学セル - Google Patents

電気化学セル Download PDF

Info

Publication number
JP6139344B2
JP6139344B2 JP2013185500A JP2013185500A JP6139344B2 JP 6139344 B2 JP6139344 B2 JP 6139344B2 JP 2013185500 A JP2013185500 A JP 2013185500A JP 2013185500 A JP2013185500 A JP 2013185500A JP 6139344 B2 JP6139344 B2 JP 6139344B2
Authority
JP
Japan
Prior art keywords
gas
electrolyte membrane
electrochemical cell
flow paths
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013185500A
Other languages
English (en)
Other versions
JP2015053186A (ja
Inventor
吉野 正人
正人 吉野
亀田 常治
常治 亀田
理子 犬塚
理子 犬塚
須山 章子
章子 須山
久夫 渡邉
久夫 渡邉
博之 山内
博之 山内
山田 正彦
正彦 山田
洋介 平田
洋介 平田
小見田 秀雄
秀雄 小見田
隆利 浅田
隆利 浅田
重夫 笠井
重夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013185500A priority Critical patent/JP6139344B2/ja
Publication of JP2015053186A publication Critical patent/JP2015053186A/ja
Application granted granted Critical
Publication of JP6139344B2 publication Critical patent/JP6139344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明の実施形態は、電気化学セルに関する。
固体電解質燃料電池(Solid Oxide Fuel Cell : SOFC)は、通常600〜1000℃前後の運転条件においてイオン導電性(酸素イオンもしくは水素イオン)を有する電解質膜を介して、還元性の燃料ガス(水素もしくは炭化水素など)と酸化性ガス(酸素など)とを反応(燃料電池反応)させ、そのエネルギーを電気として取り出す装置である。
一方、固体電解質電解セル(Solid Oxide Electrolysis Cell : SOEC)は、SOFCの逆反応を動作原理とし、イオン導電性を有する電解質膜を介して、高温の水蒸気を電気分解することにより水素と酸素とを得る装置である。
固体酸化物型の電気化学セルの形状に関しては、固体酸化物(セラミックス)を基本材料としているため、種々の形状に成形することが可能である。一般に、平板型、円筒型、波型、ハニカム型、円筒平板型などが挙げられる。これらの形状の中で、現在、市販されている家庭用燃料電池システムに搭載され、量産され、実績のあるものとして、円筒平板型がある(特許文献1)。
円筒平板型の電気化学セルは、例えば、ガス流通のための流路をもつ多孔質支持体上に燃料極、電解質、空気極が積層され、一端側が開放されるとともに、他端側にガスマニフォールドが配設されたような構成を呈する。
このような円筒平板型の電気化学セルをSOFCに用いる場合は、ガスマニフォールドから多孔質支持体の流路に燃料ガスを供給し、電気化学反応により発電を行う。このとき、ガスマニフォールドが配設された側と相対向する側の端部は開放されているため、電気化学反応で未反応の燃料はこの開放端から排出されてしまう。したがって、SOFCとして利用した場合における燃料ガスの使用効率が低く、発電効率が低下してしまうという問題があった。
また、円筒平板型の電気化学セルをSOECに用いる場合は、原料となる水蒸気を空気極に供給し、電気分解反応により水蒸気を水素と酸素とに分解するが、これらの生成ガスは、製造後に多孔質支持体の流路に保持されるようになる。しかしながら、電気化学セルの一端が開放されているため、特に生成した水素ガスが外部の空気等と接触することにより再酸化されてしまう。このため、水素ガスの生成効率が低下し、上記電気化学セルによる電気分解効率が低下してしまうという問題があった。
特開2003-272668号
本発明は、燃料電池として用いた場合に還元性の燃料ガスの使用効率を向上させ、当該燃料電池の発電効率を向上させることが可能となり、また、電解セルとして用いた場合に生成する水素の生成効率を向上させ、当該電解セルの電気分解効率を向上させることが可能なセル構造を有する電気化学セルを提供することを目的とする。
実施形態の電気化学セルは、電気的に絶縁性であって、酸素イオン導電性を呈する電解質膜と、前記電解質膜の第1の主面に形成された燃料極と、前記電解質膜の、前記第1の主面と相対する側の第2の主面に形成された空気極と、前記燃料極の、前記電解質膜と相対する側の主面に形成され、内部において長さ方向に沿って複数の流路が形成されてなる多孔質支持体とを具える。また、一端側において、前記複数の流路を封止するようにして配設された封止部材と、他端側において、前記複数の流路内に還元性の燃料ガスを供給する、又は生成した水素ガスを回収するように配設されたガス供給/回収部材とを具える。前記多孔質支持体には、前記長さ方向と略垂直な幅方向において前記複数の流路を2つの領域に分断するように、前記複数の流路の何れかに緻密質部材が挿入されており、前記還元性の燃料ガス又は前記水素ガスは、前記複数の流路の、当該緻密質部材よって画定された第1の領域及び第2の領域を順次流れる。
実施形態における電気化学セルの概略構成を示す断面図である。 図1に示す電気化学セルの多孔質支持体の概略構成を示す平面図である。 本実施形態における電気化学セルの概略構成を示す上平面図である。 本実施形態における電気化学セルの概略構成を示す上平面図である。
(第1の実施形態)
図1は、本実施形態における電気化学セルの概略構成を示す断面図であり、図2は、図1に示す電気化学セルの多孔質支持体の概略構成を示す平面図である。
図1に示す電気化学セル10は、電気的に絶縁性であって、電子絶縁性と酸素イオン導電性を呈する電解質膜11と、この電解質膜11の第1の主面11A側に形成された燃料極12と、電解質膜11の、第1の主面11Aと相対する側の第2の主面11B側に形成された空気極13とを含む。また、燃料極12の、電解質膜11と相対する側の主面12A上には、多孔質支持体14が配設されている。多孔質支持体14の内部にはその長さ方向に沿って複数の流路14Aが形成されている。
さらに、電気化学セル10は、一端側に多孔質支持体14の内部に形成された複数の流路14Aを封止するようにして配設された封止部材16を含み、他端側に多孔質支持体14の内部に形成された複数の流路14Aに還元性の燃料ガスを供給する、あるいは生成した水素ガスを回収するように配設されたガス供給/回収部材としてのガスマニフォールド17を含んでいる。
電解質膜11は、例えば安定化ジルコニアから構成することができる。この場合、安定化剤としては、Y、Sc、Yb、Gd、Nd、CaO、MgOなどを挙げることができる。また、安定化ジルコニアに代えて、LaSrGaMg酸化物、LaSrGaMgCo酸化物、LaSrGaMgCoFe酸化物、LaSrGaMgCoFe酸化物などのペロブスカイト型酸化物から構成することもできる。さらに、CeOにSm、Gd、Y、Laなどを固溶させたセリア系電解質固溶体を用いることもできる。但し、電解質膜11は、これらの材料に限定されるものではなく、これら以外の材料から構成してもかまわない。
なお、電解質膜11の厚さは、目的に応じて任意に設定することができるが、例えば0.001mm〜1mmの範囲とすることができる。また、電解質膜11は、主として酸素イオンのみを伝導させ、ガスを透過させないことから、一般に稠密な構造を呈する。
燃料極12は、ニッケル、又は酸化ニッケルとセリア系及びジルコニア系の少なくとも一方のセラミックとのサーメットから構成することができる。燃料極12をサーメットから構成する場合、還元処理前において、酸化ニッケルとセラミックとの質量混合比を、例えば70:30〜30:70とする。なお、還元処理後において、上記酸化ニッケルはニッケルに変換される。
セリア系セラミックスとしては、CeOにSm、Gd、Y、Laなどを固溶させたセラミックスを挙げることができる。また、ジルコニア系セラミックス粒子としては、Y、Sc、Yb、Gd、Nd、CaO、MgOなどの安定化させたセラミックスを挙げることができる。
燃料極12は、電気化学セル10をSOFCとして使用する場合においては、還元性の燃料ガス(水素若しくは炭化水素などを主成分とするガス)を燃料極12の全体に亘って供給し、還元性の燃料ガスの使用効率を向上させるため、また、電気化学セル10をSOECとして使用する場合においては、水蒸気(空気)を燃料極12の全体に亘って供給し、水素ガス等の生成効率を向上させるために、一般には多孔質体として形成する。
なお、燃料極12の厚さは5μm〜100μmとすることができる。
空気極13は、LaSrMn酸化物(以下、LSM)、LaSrCo酸化物(以下、LSC)、LaSrCoFe酸化物(以下、LSCF)、LaSrFe酸化物(以下、LSF)、LaSrMnCo酸化物(以下、LSMC)、LaSrMnCr酸化物(以下、LSMC)、LaCoMn酸化物(以下、LCM)、LaSrCu酸化物(以下、LSC)、LaSrFeNi酸化物(以下、LSFN)、LaNiFe酸化物(以下、LNF)、LaBaCo酸化物(以下、LBC)、LaNiCo酸化物(以下、LNC)、LaSrAlFe酸化物(以下、LSAF)、LaSrCoNiCu酸化物(以下、LSCNC)、LaSr-FeNiCu酸化物(以下、LSFNC)、LaNi酸化物(以下、LN)、GdSrCo酸化物(以下、GSC)、GdSrMn酸化物(以下、GSM)、PrCaMn酸化物(以下、PCaM)、PrSrMn酸化物(以下、PSM)、PrBaCo酸化物(以下、PBC)、SmSrCo酸化物(以下、SSC)、NdSmCo酸化物(以下、NSC)、BiSrCaCu酸化物(以下、BSCC)、BaLaFeCo酸化物(以下、BLFC)、BaSrFeCo酸化物(以下、BSFC)、YSrFeCo酸化物(以下、YLFC)、YCuCoFe酸化物(以下、YCCF)、YBaCu酸化物(以下、YBC)などの電子−イオン混合伝導性を有する材料から構成することもできる。
この場合、空気極13が電子導電性及び酸化物イオン導電性を有するようになるので、空気極13における酸素イオンの電気化学反応が促進され、効率良く酸素を生成することができる。すなわち、SOECとして使用した場合の生成電流、すなわち酸素及び水素の生成量をより向上させることができる。
なお、上述した電子−イオン混合伝導性を有する材料を用いる場合は、組成比などは問わない。また、安定化ジルコニアやセリア系電解質固溶体の混合体でもかまわない。さらに、上述した電子―イオン混合導電性材料には、例えば、Pt、Ru、Au、Ag、Pdなどの金属成分を添加し、上述した電子伝導性及び酸化物イオン導電性を向上させることにより、酸素及び水素の生成量を効率的により増大させることができる。
空気極13は、電気化学セル10をSOECとして使用する場合は、生成した酸素を効率よく取り出すために、一般には多孔質体として形成する。空気極13の厚さは、目的に応じて任意に設定することができるが、例えば0.001mm〜1mmの範囲とすることができる。
多孔質支持体14には、図2に示すように、複数の流路14Aが形成された長さ方向と略垂直な幅方向において、複数の流路14Aを第1の領域14A−1と第2の領域14A−2との2つの領域に分断するように、略中央の流路内に当該流路と同径の長円柱状の緻密質部材141を挿入して緻密質部を形成する。したがって、電気化学セル10をSOFCとして使用した場合、ガスマニフォールド17の導入口17Aから還元性の燃料ガスを導入した際に、当該還元性の燃料ガスがショートカットして直ちに排出口17Bから外部に排出されることなく、第1の領域14A−1を流れて封止部材16にまで至った後、第2の領域14A−2を流れて排出口17Bから排出されるようになる(図中の矢印参照)。
なお、本実施形態では、緻密質部材141は複数の流路14Aの略中央の流路に挿入されているが、第1の領域14A−1及び第2の領域14A−2の2つの領域に分断できれば、複数の流路14Aのうち何れかの流路であればよい。
多孔質支持体14の流路14Aを流れる還元性の燃料ガスは、多孔質支持体14の気孔を通じて燃料極12に到達し、空気は空気極13及び電解質膜11を通って燃料極12に至り、当該燃料極12において燃料電池反応が生じることにより、水(水蒸気)が生成されるようになる。このように、当該燃料極12において燃料電池反応が生じることにより、水(水蒸気)が生成されるようになるが、本実施形態では、上述のように多孔質支持体14の複数の流路14Aのうち何れかに緻密質部材部材141が挿入されていることにより、還元性の燃料ガスは多孔質支持体14の内部に画定された第1の領域14A−1及び第2の領域14A−2を順次に流れるようになる。
したがって、多孔質支持体14に供給した還元性の燃料ガスの多孔質支持体14内での保持時間及び保持量が増大するので、燃料極12への還元性の燃料ガスの到達割合、すなわち多孔質支持体14を介した燃料極12に対する還元性の燃料ガスの供給効率が向上し、電気化学セル10の発電効率が向上する。
なお、電気化学セル10をSOECとして使用する場合、原料となる水蒸気は空気極13に供給されるようになって、多孔質支持体14の緻密質部材141はSOECとしての使用に対して特段の作用効果を及ぼさない。しかしながら、電気化学セル10の一端側に配設した封止部材16によって、多孔質支持体14の複数の流路14Aの一端側封止されるようになるので、生成した水素ガスが多孔質支持体14内に導入された際に、多孔質支持体14の開放端から外部に漏洩してしまうことがない。したがって、水素ガスの生成効率が向上し、さらには電気化学セル10の電気分解効率が向上することになる。
本実施形態において、緻密質部材141における”緻密”とは、上述したような作用効果、すなわち、ガスマニフォールド17の導入口17Aから還元性の燃料ガスを導入した際に、当該還元性の燃料ガスがショートカットして直ちに排出口17Bから外部に排出されることなく、第1の領域14A−1を流れて封止部材16にまで至った後、第2の領域14A−2を流れて排出口17Bから排出されるという作用効果を奏すれば特に限定されるものではなく、例えば、気孔率が10%以下、さらには、5%以下が望ましい。換言すれば、このような気孔率を有することにより、上述のような作用効果を奏することができ、本実施形態における”緻密”なる要件を満足することができる。なお、気孔率は、水銀圧入法などによって測定したものである。
緻密質部材141は、多孔質支持体14の同一の材料を高密度化して得ることができる。この場合、電気化学セル10をSOFCあるいはSOECとして使用した場合の温度上昇によっても、両者の間に熱膨脹差が生じることがなく、当該熱膨張差に起因した多孔質支持体14の破損を抑制することができる。
多孔質支持体14は、燃料極12及び空気極13間に所定の電圧を負荷できるように、少なくとも電子伝導性を有する材料から構成することが必要であり、例えば金属焼結体、金属発泡体、金属繊維体、導電性を有するセラミック焼結体から構成することができ、その気孔率は、例えば成形体を形成する際の成形圧力、及び焼結時の焼結温度、気孔形成材の種類等に起因する。特に、電子−イオン混合導電性のセラミック材料から構成することにより、燃料極12側の三相界面の量が増大することとなる。したがって、燃料極12における電気化学反応が促進され、電気化学セル10の出力特性を向上させることができる。
具体的には、SmドープCeO,GdドープCeO,及びYドープCeOからなる群より選ばれる少なくとも一種から構成することができる。また、上述した多孔質支持体14に対してめっき等を施すことにより、導電性を付与することもできる。
多孔質支持体14の厚さは、例えば100μm以上1000μm以下とすることができる。多孔質支持体14の厚さが100μmよりも小さいとの強度が十分でなく、電気化学セル10の強度が劣化する。一方、多孔質支持体14の厚さが1000μmよりも大きくなると、イオン導電抵抗が増大してしまう。
(第2の実施形態)
図3は、本実施形態における電気化学セルの概略構成を示す上平面図である。なお、図3においては、本実施形態の特徴を明確にすべく、電解質膜11及び燃料極13については記載を省略している。
本実施形態の電気化学セル20においては、空気極13を第1の空気極13−1及び第1の空気極13−2の2つから構成し、緻密質部材141の両側に配設している点で図1等に示す第1の実施形態の電気化学セル10と相違する。
第1の実施形態における電気化学セル10では、当該電気化学セル10をSOFCとして使用する場合、上述のように、多孔質支持体14の流路14Aを流れる還元性の燃料ガスは、多孔質支持体14の気孔を通じて燃料極12に到達し、空気は空気極13及び電解質膜11を通って燃料極12に至り、当該燃料極12において燃料電池反応が生じることにより、水(水蒸気)を生成するようになる。しかしながら、緻密質部材141はガスの透過とは無関係であるため、当該部分に空気極を形成しても上述のような当該部分の空気極は燃料電池反応に寄与しない。
そこで、本実施形態の電気化学セル20では、上述のように、空気極13を第1の空気極13−1及び第1の空気極13−2の2つから構成し、緻密質部材141の両側に配設するようにしている。したがって、空気極13が緻密質部材141が位置する箇所には存在しないようになるので、単位電極面積当たりの発電効率を向上させることができるようになる。2面に分割することで、2面の場合の各々の面内の抵抗分布は、1面の場合の面内分布に対して小さくなる方向となり、集電を各々の面別々でとることで、発電効率を上げることが可能となる。
その他の特徴及び作用効果については第1の実施形態と同様であるので、本実施形態では記載を省略する。
(第3の実施形態)
図4は、本実施形態における電気化学セルの概略構成を示す上平面図である。なお、図4においては、本実施形態の特徴を明確にすべく、電気化学セルの多孔質支持体の概略構成のみを記載するようにしている。
本実施形態の電気化学セル30においては、多孔質支持体14の中央に位置するガス流路内にガス管34を配設し、当該ガス管34によって緻密質部材を構成している点で図1等に示す第1の実施形態の電気化学セル10と相違する。
本実施形態の電気化学セル30においては、緻密質部材をガス管34から構成するようにしているので、ガスマニフォールド17に配設した導入口17Aからではなく、上記ガス管34より図中矢印で示す方向に燃料ガスを多孔質支持体14内に導入することができるので、燃料ガスの取り込みを確実に行うことができる。封止部材16に至った後、図中矢印で示すように、第1の領域14A−1及び第2の領域14A−2を流れてガスマニフォールド17より外部に排出されるようになる。なお、この場合は、導入口17Aは、排出口として機能するようになる。
したがって、多孔質支持体14に供給した還元性の燃料ガスの多孔質支持体14内での保持時間及び保持量が増大するので、燃料極12への還元性の燃料ガスの到達割合、すなわち多孔質支持体14を介した燃料極12に対する還元性の燃料ガスの供給効率が向上し、電気化学セル10の発電効率が向上する。
その他の特徴及び作用効果については第1の実施形態と同様であるので、本実施形態では記載を省略する。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10,20,30 電気化学セル
11 電解質膜
12 燃料極
13 空気極
13−1 第1の空気極
13−2 第2の空気極
14 多孔質支持体
141 緻密質部材
14−1 第1の領域
14−2 第2の領域
34 ガス管

Claims (4)

  1. 電気的に絶縁性であって、酸素イオン導電性を呈する電解質膜と、
    前記電解質膜の第1の主面に形成された燃料極と、
    前記電解質膜の、前記第1の主面と相対する側の第2の主面に形成された空気極と、
    前記燃料極の、前記電解質膜と相対する側の主面に形成され、内部において長さ方向に沿って複数の流路が形成され、導電性を有し、多数の気孔を備える多孔質材料からなる多孔質支持体と、
    一端側において、前記複数の流路を外部に対して封止する封止部材と、
    他端側において、前記複数の流路内に還元性の燃料ガスを供給する、又は生成した水素ガスを回収するように配設されたガス供給/回収部材とを具え、
    前記多孔質支持体には、前記長さ方向と略垂直な幅方向において前記複数の流路を2つの領域に分断するように、前記複数の流路の何れかに緻密質部材が挿入されており、
    前記還元性の燃料ガス又は前記水素ガスは、前記複数の流路の、当該緻密質部材よって画定された第1の領域及び第2の領域を順次流れることを特徴とする、電気化学セル。
  2. 電気的に絶縁性であって、酸素イオン導電性を呈する電解質膜と、
    前記電解質膜の第1の主面に形成された燃料極と、
    前記電解質膜の、前記第1の主面と相対する側の第2の主面に形成された空気極と、
    前記燃料極の、前記電解質膜と相対する側の主面に形成され、内部において長さ方向に沿って複数の流路が形成され、導電性を有し、多数の気孔を備える多孔質材料からなる多孔質支持体と、
    一端側において、前記複数の流路を外部に対して封止する封止部材と、
    他端側において、前記複数の流路内に還元性の燃料ガスを供給する、又は生成した水素ガスを回収するように配設されたガス供給/回収部材とを具え、
    前記多孔質支持体には、前記複数の流路の何れかに緻密質部材からなるガス配管が挿設されており、
    前記還元性の燃料ガス又は前記水素ガスは、前記ガス配管から前記ガス管が挿設されない他の流路への経路を流れることを特徴とする、電気化学セル。
  3. 前記空気極は、前記緻密質部材の非形成領域において2分割して配設されたことを特徴とする、請求項1または請求項2に記載の電気化学セル。
  4. 高温水蒸気電解用セルを構成することを特徴とする、請求項1〜3のいずれか一に記載の電気化学セル。
JP2013185500A 2013-09-06 2013-09-06 電気化学セル Active JP6139344B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185500A JP6139344B2 (ja) 2013-09-06 2013-09-06 電気化学セル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185500A JP6139344B2 (ja) 2013-09-06 2013-09-06 電気化学セル

Publications (2)

Publication Number Publication Date
JP2015053186A JP2015053186A (ja) 2015-03-19
JP6139344B2 true JP6139344B2 (ja) 2017-05-31

Family

ID=52702073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185500A Active JP6139344B2 (ja) 2013-09-06 2013-09-06 電気化学セル

Country Status (1)

Country Link
JP (1) JP6139344B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006790A1 (ja) * 2015-07-03 2017-01-12 日本碍子株式会社 燃料電池スタック
JP6026047B1 (ja) * 2015-07-03 2016-11-16 日本碍子株式会社 燃料電池スタック
JP6239721B1 (ja) * 2016-11-02 2017-11-29 日本碍子株式会社 燃料電池スタック
DE112018001112T5 (de) 2017-12-13 2019-11-14 Ngk Insulators, Ltd. Brennstoffzelle und brennstoffzellenvorrichtung
DE112019000055T5 (de) * 2018-07-12 2020-06-18 Ngk Insulators, Ltd., Elektrochemische zelle und zellenstapelvorrichtung
JP6605084B1 (ja) 2018-07-12 2019-11-13 日本碍子株式会社 セルスタック装置
JP6547052B1 (ja) * 2018-07-12 2019-07-17 日本碍子株式会社 セルスタック装置
JP6630786B1 (ja) * 2018-07-12 2020-01-15 日本碍子株式会社 電気化学セル、及びセルスタック装置
JP6594496B1 (ja) * 2018-07-12 2019-10-23 日本碍子株式会社 燃料電池システム
US10862138B2 (en) 2018-07-12 2020-12-08 Ngk Insulators, Ltd. Electrochemical cell and cell stack device
JP6543752B1 (ja) * 2018-07-12 2019-07-10 日本碍子株式会社 電気化学セル、及びセルスタック装置
US10727524B2 (en) 2018-07-12 2020-07-28 Ngk Insulators, Ltd. Cell stack device
JP6605101B1 (ja) * 2018-09-07 2019-11-13 日本碍子株式会社 マニホールド、及びセルスタック装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802345B2 (ja) * 1989-05-22 1998-09-24 大阪瓦斯株式会社 燃料電池
JP2528986B2 (ja) * 1990-02-15 1996-08-28 日本碍子株式会社 固体電解質型燃料電池
JP4925574B2 (ja) * 2004-11-25 2012-04-25 京セラ株式会社 燃料電池セル及び燃料電池
JP4859413B2 (ja) * 2005-08-29 2012-01-25 京セラ株式会社 セルスタック及び燃料電池
JP2007211268A (ja) * 2006-02-07 2007-08-23 Toshiba Corp 水蒸気電解装置
JP2015025151A (ja) * 2013-07-24 2015-02-05 京セラ株式会社 電解セル、電解セルスタックおよび電解セルスタック装置並びに電解装置

Also Published As

Publication number Publication date
JP2015053186A (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6139344B2 (ja) 電気化学セル
CN108701843B (zh) 固体氧化物型燃料电池
CN110447136B (zh) 电化学元件
JP2017119916A (ja) 導電部材およびセルスタックならびに電気化学モジュール、電気化学装置
KR20110109104A (ko) 금속 산화물-이트리아 안정화 지르코니아 복합체 및 이를 포함하는 고체산화물 연료전지
KR101287286B1 (ko) 경사형 유로를 갖는 평관형 고체 산화물 연료전지 모듈
JP2015183252A (ja) セルスタックおよび電解モジュールならびに電解装置
JP5642855B1 (ja) 燃料電池
JP2013093178A (ja) 燃料電池の構造体
JP6202784B2 (ja) 水素製造装置
JP2014165067A (ja) 固体酸化物形燃料電池セル
JP2012138338A (ja) 燃料電池セル
JP5858862B2 (ja) 電気化学装置
JP5501882B2 (ja) 固体酸化物型燃料電池及びその製造方法
JP5883536B1 (ja) 燃料電池
KR102564764B1 (ko) 전기 화학 장치, 에너지 시스템, 및 고체 산화물형 연료 전지
KR20110022911A (ko) 평관형 고체 산화물 연료전지 모듈
JP2015191693A (ja) セルスタックおよび電解モジュールならびに電解装置
KR101905499B1 (ko) 고체산화물 연료전지용 단전지 모듈 및 스택
JP2016024997A (ja) 固体酸化物形燃料電池セル
JP5732180B1 (ja) 燃料電池
JP2015088321A (ja) セル、セルスタック装置、モジュールおよびモジュール収納装置
JP6907031B2 (ja) 燃料電池スタック
JP2017027854A (ja) 燃料電池
WO2018146809A1 (ja) 電気化学セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R151 Written notification of patent or utility model registration

Ref document number: 6139344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151