JP6136337B2 - Attitude detection control apparatus, polishing apparatus, and attitude detection control method - Google Patents

Attitude detection control apparatus, polishing apparatus, and attitude detection control method Download PDF

Info

Publication number
JP6136337B2
JP6136337B2 JP2013028075A JP2013028075A JP6136337B2 JP 6136337 B2 JP6136337 B2 JP 6136337B2 JP 2013028075 A JP2013028075 A JP 2013028075A JP 2013028075 A JP2013028075 A JP 2013028075A JP 6136337 B2 JP6136337 B2 JP 6136337B2
Authority
JP
Japan
Prior art keywords
contact
output value
movable body
polishing member
swing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013028075A
Other languages
Japanese (ja)
Other versions
JP2014155986A (en
Inventor
浩一郎 林
浩一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013028075A priority Critical patent/JP6136337B2/en
Publication of JP2014155986A publication Critical patent/JP2014155986A/en
Application granted granted Critical
Publication of JP6136337B2 publication Critical patent/JP6136337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

本発明は、可動対象である可動体の接触対象面に対する姿勢を検知する姿勢検知制御装置、研磨装置、および、姿勢検知制御方法に関する。   The present invention relates to a posture detection control device, a polishing device, and a posture detection control method for detecting a posture of a movable body that is a movable target with respect to a contact target surface.

近年、産業用ロボットを利用した製造工程などの自動化が進んでいる。産業用ロボットは、力覚センサなどの検出値に応じてアーム(マニピュレータ)の動作を自動制御して、部材の組立や加工を行う。例えば、特許文献1に記載の構成の場合、アームに作用する力とトルクを検出する力覚センサが設けられている。   In recent years, automation of manufacturing processes using industrial robots has progressed. An industrial robot automatically controls the operation of an arm (manipulator) according to a detection value of a force sensor or the like to assemble and process members. For example, in the case of the configuration described in Patent Document 1, a force sensor that detects force and torque acting on the arm is provided.

例えば、アームに砥石などを取り付け、アームを可動させて砥石の接触面をワークの接触対象面に接触させて研磨する場合、砥石の接触面がワークの接触対象面に片当たりしないような制御が必要となる。従来、力覚センサが、3軸それぞれに対する力とトルクを検出できる6軸力センサの場合において、検出したセンサ位置におけるトルクを、ツールセンタポイントを中心とした回転方向のトルクに変換していた。そして、砥石の接触面とワークの接触対象面が片当たりせずに接触するとき、変換後のトルクが大凡0となることから、変換後のトルクが0となるように砥石の姿勢を制御することで、片当たりの検出、防止を図っていた。   For example, when a grindstone or the like is attached to the arm and the arm is moved and the contact surface of the grindstone is brought into contact with the contact target surface of the workpiece for polishing, the control is performed so that the contact surface of the grindstone does not hit the contact target surface of the workpiece Necessary. Conventionally, in the case where the force sensor is a six-axis force sensor that can detect force and torque for each of the three axes, the detected torque at the sensor position is converted into torque in the rotational direction centered on the tool center point. When the contact surface of the grindstone and the contact target surface of the workpiece come into contact with each other without contacting each other, the converted torque becomes approximately 0, so the posture of the grindstone is controlled so that the converted torque becomes 0. In this way, detection and prevention per piece were attempted.

特開2000−225592号公報Japanese Patent Laid-Open No. 2000-225592

上記のように、砥石をワークに接触させるなど、アームで可動体を可動させて接触対象面に接触させるロボットに関し、片当たり防止などのための姿勢制御に力覚センサを用いた処理が行われる場合がある。この場合、検出したセンサ位置における力とトルクを、センサ座標系から、ツールセンタポイント(可動体の位置)を原点とする座標系に変換する変換処理が行われる。しかし、トルクの変換処理は、ツールセンタポイントが力覚センサから離れているほど、精度が低下してしまう。そのため、ツールセンタポイントと力覚センサを近づけるように、可動体と力覚センサを近くに配置にする必要があり、力覚センサの干渉により、加工できるワーク形状が限定されてしまう。   As described above, with respect to a robot that moves a movable body with an arm and makes contact with a surface to be contacted, such as bringing a grindstone into contact with a workpiece, processing using a force sensor is performed for posture control for preventing one-sided contact, etc. There is a case. In this case, conversion processing is performed for converting the detected force and torque at the sensor position from the sensor coordinate system to a coordinate system having the tool center point (position of the movable body) as the origin. However, the accuracy of the torque conversion process decreases as the tool center point is further away from the force sensor. Therefore, it is necessary to arrange the movable body and the force sensor close to each other so that the tool center point and the force sensor are close to each other, and the work shape that can be processed is limited due to the interference of the force sensor.

一方、可動体におけるワークとの接触面の面積が小さいほど、ワークの接触対象面に対する可動体の接触面の傾きによって生じるトルクの絶対値が小さくなってしまう。そのため、トルクの変換処理の誤差の影響が大きくなり、トルクに基づいた片当たりの抑制が困難となる。また、これを回避するために、接触面の大きな可動体を用いなければならないなど、利用可能な可動体の形状が制約されてしまう。   On the other hand, the smaller the area of the contact surface of the movable body with the workpiece, the smaller the absolute value of the torque generated by the inclination of the contact surface of the movable body with respect to the contact surface of the workpiece. Therefore, the influence of the error in the torque conversion process becomes large, and it is difficult to suppress contact per piece based on the torque. Moreover, in order to avoid this, the shape of the movable body which can be utilized will be restrict | limited, such as having to use the movable body with a large contact surface.

本発明は、このような課題に鑑み、可動体の接触面について、ワークの接触対象面に対する姿勢を高精度に検知することで、利用可能なワーク形状や可動体の形状の制約を減らすことが可能な姿勢検知制御装置、研磨装置、および、姿勢検知制御方法を提供することを目的としている。   In view of such a problem, the present invention reduces the restrictions on the usable workpiece shape and the shape of the movable body by detecting the posture of the movable body with respect to the contact target surface with high accuracy. It is an object of the present invention to provide a possible attitude detection control device, polishing apparatus, and attitude detection control method.

上記課題を解決するために、本発明の姿勢検知制御装置は、接触面を有する可動体を可動して、該接触面を接触対象面に接触させる可動制御部と、前記可動体が前記接触対象面から受ける反力の大きさを示す出力値を出力する力検知出力部と、を備え、前記可動制御部は、前記接触面を前記接触対象面に対向させた基準姿勢から、予め設定された揺動点を中心に、前記可動体を第1の揺動方向、および、該第1の揺動方向と逆方向となる第2の揺動方向に揺動させて、該接触面を該接触対象面に接触させ、前記可動体を前記第1の揺動方向に揺動した際に前記力検知出力部によって出力される第1の出力値と、該可動体を前記第2の揺動方向に揺動した際に該力検知出力部によって出力される第2の出力値とを比較し、該第1の出力値の方が該第2の出力値よりも小さい場合、該可動体の前記基準姿勢を該第1の揺動方向に補正し、該第2の出力値の方が該第1の出力値よりも小さい場合、該可動体の該基準姿勢を該第2の揺動方向に補正して、前記接触面と前記接触対象面を平行に近づけることを特徴とする。 In order to solve the above-described problems, an attitude detection control device according to the present invention includes a movable control unit configured to move a movable body having a contact surface and bring the contact surface into contact with the contact target surface, and the movable body is the contact target. A force detection output unit that outputs an output value indicating the magnitude of the reaction force received from the surface, and the movable control unit is set in advance from a reference posture in which the contact surface is opposed to the contact target surface. around the pivot point, the first oscillating direction the movable body, and is swung in the second swinging direction as the swinging direction opposite to the direction of said 1 wherein contacting the contact surface A first output value output by the force detection output unit when the movable body is brought into contact with the target surface and the movable body is swung in the first swing direction, and the movable body is moved in the second swing direction. When compared with the second output value output by the force detection output unit, and the first output value is When the output value is smaller than the second output value, the reference posture of the movable body is corrected in the first swing direction, and when the second output value is smaller than the first output value, The reference posture of the movable body is corrected in the second swinging direction, and the contact surface and the contact target surface are brought close to each other in parallel .

前記揺動点は、前記第1の揺動方向に揺動した際に前記接触対象面と接触する部位、および、前記第2の揺動方向に揺動した際に該接触対象面と接触する部位それぞれと等距離となる位置に設けられてもよい。   The swing point contacts the contact target surface when swinging in the first swing direction, and contacts the contact target surface when swinging in the second swing direction. You may provide in the position equidistant with each site | part.

前記可動制御部は、前記可動体に対し、前記第1の揺動方向および前記第2の揺動方向への揺動と、前記基準姿勢の補正とを繰り返しながら、該可動体を前記接触対象面との近接方向へ移動させてもよい。   The movable control unit repeats the swinging in the first swinging direction and the second swinging direction and the correction of the reference posture with respect to the movable body, while moving the movable body to the contact target. It may be moved in the direction of proximity to the surface.

上記課題を解決するために、本発明の研磨装置は、接触面をワークに接触させて該ワークを研磨する研磨部材と、前記研磨部材を可動して、前記接触面を前記ワークの接触対象面に接触させる可動制御部と、前記研磨部材が前記接触対象面から受ける反力の大きさを示す出力値を出力する力検知出力部と、を備え、前記可動制御部は、前記接触面を前記接触対象面に対向させた基準姿勢から、予め設定された揺動点を中心に、前記研磨部材を第1の揺動方向に揺動した際に前記力検知出力部によって出力される第1の出力値と、該研磨部材を該第1の揺動方向と逆方向となる第2の揺動方向に揺動した際に該力検知出力部によって出力される第2の出力値とを比較し、該第1の出力値の方が該第2の出力値よりも小さい場合、該研磨部材の該基準姿勢を該第1の揺動方向に補正し、該第2の出力値の方が該第1の出力値よりも小さい場合、該研磨部材の該基準姿勢を該第2の揺動方向に補正して、前記接触面と前記接触対象面を平行に近づけることを特徴とする。 In order to solve the above problems, a polishing apparatus according to the present invention includes a polishing member that contacts a workpiece with a contact surface to polish the workpiece, the polishing member is movable, and the contact surface is a surface to be contacted with the workpiece. And a force detection output unit that outputs an output value indicating a magnitude of a reaction force that the polishing member receives from the contact target surface. from the reference posture in which is opposed to a surface to be contacted, and around an oscillation point that is set in advance, the first output by said force detection output unit upon oscillating the polishing member to the first oscillating direction The output value is compared with the second output value output by the force detection output unit when the polishing member is swung in a second swinging direction opposite to the first swinging direction. If towards the first output value is smaller than the output value of the second, said of the polishing member Corrects the quasi posture swinging direction of the first, if direction of the second output value is smaller than the output value of the first, the reference posture of the polishing member in the swing direction of the second It correct | amends and the said contact surface and the said contact object surface are made close to parallel, It is characterized by the above-mentioned.

上記課題を解決するために、本発明の姿勢検知制御方法は、接触面を有する可動体を可動して、該接触面を接触対象面に対向させた基準姿勢から、予め設定された揺動点を中心に、該可動体を第1の揺動方向、および、該第1の揺動方向と逆方向となる第2の揺動方向に揺動させて、該接触面を該接触対象面に接触させ、前記可動体を前記第1の揺動方向に揺動した際、該可動体が前記接触対象面から受ける反力である第1反力の大きさと、該可動体を前記第2の揺動方向に揺動した際、該可動体が該接触対象面から受ける反力である第2反力の大きさとを比較し、該第1反力の大きさの方が該第2反力の大きさよりも小さい場合、該可動体の前記基準姿勢を該第1の揺動方向に補正し、該第2反力の大きさの方が該第1反力の大きさよりも小さい場合、該可動体の該基準姿勢を該第2の揺動方向に補正して、前記接触面と接触対象面を平行に近づけることを特徴とする。
In order to solve the above-described problem, the posture detection control method of the present invention is configured such that a movable body having a contact surface is moved, and a preset swing point is set from a reference posture in which the contact surface is opposed to the contact target surface. The movable body is swung in a first rocking direction and a second rocking direction opposite to the first rocking direction with the contact surface as the contact target surface. contact is, when the pre-Symbol movable body swung in the first swinging direction, the a size of the first reaction force movable body is a reaction force received from the contacted surface, the movable body first 2, the magnitude of the second reaction force, which is the reaction force that the movable body receives from the contact target surface, is compared with the magnitude of the first reaction force . When the magnitude of the two reaction forces is smaller, the reference posture of the movable body is corrected in the first swinging direction, and the magnitude of the second reaction force is larger than the magnitude of the first reaction force . Also If again, by correcting the reference posture of the movable body in the swing direction of the second, characterized in that the closer parallel to said contact surface and said surface to be contacted.

本発明によれば、可動体の接触面について、ワークの接触対象面に対する姿勢を高精度に検知することで、利用可能なワーク形状や可動体の形状の制約を減らすことが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to reduce the restrictions of the workpiece | work shape which can be utilized, or the shape of a movable body by detecting the attitude | position with respect to the contact target surface of a workpiece | work with high precision about the contact surface of a movable body.

研磨装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of a grinding | polishing apparatus. 姿勢検知および姿勢制御の処理を説明するための第1の図である。It is the 1st figure for explaining processing of posture detection and posture control. 姿勢検知および姿勢制御の処理を説明するための第2の図である。It is a 2nd figure for demonstrating the process of attitude | position detection and attitude | position control. 揺動点の位置を例示する説明図である。It is explanatory drawing which illustrates the position of a rocking | fluctuation point. 研磨方法の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of the grinding | polishing method. 変形例における研磨方法の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of the grinding | polishing method in a modification.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(研磨装置1)
図1は、研磨装置1の全体構成を示す説明図である。図1に示すように、研磨装置1は、ロボットアーム2(可動部)を備える。ロボットアーム2は、複数の関節部2aを有し、関節部2aで連結される節部2bが関節部2aを回転中心として回転することが可能な構造となっている。電動部3(可動部)は、例えばモータで構成され、それぞれの関節部2aに設けられ、アーム本体2cに接続された電源の電力によって、関節部2aを中心に節部2bを回転させる動力を与える。
(Polishing device 1)
FIG. 1 is an explanatory diagram showing the overall configuration of the polishing apparatus 1. As shown in FIG. 1, the polishing apparatus 1 includes a robot arm 2 (movable part). The robot arm 2 has a plurality of joint portions 2a, and has a structure in which a node portion 2b connected by the joint portions 2a can rotate about the joint portion 2a. The electric parts 3 (movable parts) are composed of, for example, motors, and are provided in the respective joint parts 2a. The electric power of the power source connected to the arm body 2c is used to rotate the node parts 2b around the joint parts 2a. give.

ロボットアーム2の先端にも、電動部3の一部を構成するモータ3aが設けられている。また、モータ3aのシャフト先端には保持部4が設けられている。保持部4は、モータ3aによって回転可能に形成され、研磨部材5(可動体)を保持する。研磨部材5は、例えば、砥石などで形成され、研磨部材5の軸心がモータ3aのシャフトの回転軸の延長上に位置するように保持部4に保持される。ここでは、研磨部材5の軸心がモータ3aのシャフトの回転軸と同軸に配される場合について説明するが、研磨部材5とモータ3aとの相対位置関係は特に限定されるものではない。   A motor 3 a that constitutes a part of the electric unit 3 is also provided at the tip of the robot arm 2. A holding portion 4 is provided at the shaft tip of the motor 3a. The holding unit 4 is formed to be rotatable by the motor 3a and holds the polishing member 5 (movable body). The polishing member 5 is formed of, for example, a grindstone, and is held by the holding unit 4 so that the axis of the polishing member 5 is positioned on the extension of the rotation shaft of the shaft of the motor 3a. Here, the case where the axis of the polishing member 5 is arranged coaxially with the rotation axis of the shaft of the motor 3a will be described, but the relative positional relationship between the polishing member 5 and the motor 3a is not particularly limited.

可動制御部7は、例えば、制御PC7a、および、コントローラ7bで構成される。制御PC7aは、後述する力検知出力部8の出力値と、研磨部材5の目標軌道とに基づいて、力制御の制御演算を行い、例えば、X軸、Y軸、Z軸の直交空間の座標における、後述する揺動点Oの位置および姿勢を示す動作指令情報をコントローラ7bに出力する。コントローラ7bは、制御PC7aから出力された動作指令情報に基づいて軸ごとの動きを算出し、当該軸ごとの動きを実行すべく電動部3を制御する。ここでは、可動制御部7が制御PC7aとコントローラ7bで構成される場合について説明するが、制御PC7aを設けず、制御PC7aの機能をコントローラ7bが備えてもよい。この場合、力検知出力部8の出力値はコントローラ7bに出力されることとなる。   The movable control unit 7 includes, for example, a control PC 7a and a controller 7b. The control PC 7a performs a control calculation of force control based on an output value of a force detection output unit 8 described later and a target trajectory of the polishing member 5, and, for example, coordinates in an orthogonal space of the X axis, the Y axis, and the Z axis The operation command information indicating the position and orientation of a swing point O, which will be described later, is output to the controller 7b. The controller 7b calculates the movement for each axis based on the operation command information output from the control PC 7a, and controls the electric unit 3 to execute the movement for each axis. Here, although the case where the movable control part 7 is comprised by control PC7a and the controller 7b is demonstrated, the controller 7b may be provided with the function of control PC7a, without providing control PC7a. In this case, the output value of the force detection output unit 8 is output to the controller 7b.

そして、可動制御部7は、モータ3aを回転させながら、上記ロボットアーム2の可動を制御し、チャック装置6に保持されたワークWの接触対象面Waに、研磨部材5の接触面5aを押し当てた状態で、当該接触面5aを接触対象面Waに対して摺動させる。こうして、ワークWが研磨される。   Then, the movement control unit 7 controls the movement of the robot arm 2 while rotating the motor 3a, and pushes the contact surface 5a of the polishing member 5 against the contact target surface Wa of the workpiece W held by the chuck device 6. In the applied state, the contact surface 5a is slid with respect to the contact target surface Wa. Thus, the workpiece W is polished.

力検知出力部8は、例えば、研磨部材5が、ワークWの接触対象面Waから受ける反力の大きさを示す出力値を、可動制御部7の制御PC7aに出力する。制御PC7aは、力検知出力部8からの出力値に応じ、可動部(電動部3)を制御することで、研磨部材5の姿勢制御を遂行する。   For example, the force detection output unit 8 outputs an output value indicating the magnitude of the reaction force that the polishing member 5 receives from the contact target surface Wa of the workpiece W to the control PC 7 a of the movable control unit 7. The control PC 7 a controls the attitude of the polishing member 5 by controlling the movable part (electric part 3) according to the output value from the force detection output part 8.

具体的に、可動制御部7は、力検知出力部8からの出力値によって、研磨部材5の姿勢を検知し、検知した研磨部材5の姿勢に基づいて、研磨部材5の姿勢を制御する。以下、図2を用いて可動制御部7による研磨部材5の姿勢制御処理について詳述する。   Specifically, the movable control unit 7 detects the posture of the polishing member 5 based on the output value from the force detection output unit 8, and controls the posture of the polishing member 5 based on the detected posture of the polishing member 5. Hereinafter, the attitude control process of the polishing member 5 by the movable control unit 7 will be described in detail with reference to FIG.

図2は、姿勢検知および姿勢制御の処理を説明するための第1の図であり、ワークWに対する研磨部材5の姿勢を示す。   FIG. 2 is a first diagram for explaining the posture detection and posture control processing, and shows the posture of the polishing member 5 with respect to the workpiece W. FIG.

可動制御部7は、図2(a)に示す、接触面5aを接触対象面Waに対向させた基準姿勢から、研磨部材5の内部に位置する揺動点O(ツールセンタポイント、参照点)を中心に、研磨部材5を揺動(回転)する。ここで、揺動点Oの位置は予め設定されており、可動制御部7(制御PC7a)によって計算される座標空間において把握されている。可動制御部7は、揺動点Oを中心として研磨部材5が揺動(回転)するように、電動部3によってロボットアーム2の動作を制御する。   The movable control unit 7 has a swing point O (tool center point, reference point) located inside the polishing member 5 from a reference posture in which the contact surface 5a faces the contact target surface Wa shown in FIG. The polishing member 5 is swung (rotated) around the center. Here, the position of the swing point O is set in advance and is grasped in the coordinate space calculated by the movable control unit 7 (control PC 7a). The movable control unit 7 controls the operation of the robot arm 2 by the electric unit 3 so that the polishing member 5 swings (rotates) around the swing point O.

また、可動制御部7は、研磨部材5の上記座標空間における姿勢を基準姿勢として設定する。基準姿勢は、後述する研磨部材5の揺動が行われる起点となる姿勢である。   Further, the movable control unit 7 sets the posture of the polishing member 5 in the coordinate space as a reference posture. The reference posture is a posture that is a starting point at which the later-described polishing member 5 is swung.

まず、図2(b)に示すように、可動制御部7は、揺動点Oを中心に研磨部材5を第1の揺動方向(図2中、矢印aで示す)に揺動する。このとき、力検知出力部8によって出力される出力値を第1の出力値とする。   First, as shown in FIG. 2B, the movable control unit 7 swings the polishing member 5 around the swing point O in the first swing direction (indicated by the arrow a in FIG. 2). At this time, the output value output by the force detection output unit 8 is set as the first output value.

続いて、可動制御部7は、図2(c)に示すように、揺動点Oを中心に研磨部材5を、第1の揺動方向と逆方向となる第2の揺動方向(図2中、矢印bで示す)に揺動する。このとき、力検知出力部8によって出力される出力値を第2の出力値とする。   Subsequently, as shown in FIG. 2C, the movable controller 7 moves the polishing member 5 around the swing point O in a second swing direction (FIG. 2) that is opposite to the first swing direction. 2 (indicated by arrow b). At this time, the output value output by the force detection output unit 8 is set as the second output value.

図2(a)に示すように、研磨部材5の揺動前の基準姿勢が、図2中下側の方がワークWに近い場合、第2の出力値の方が第1の出力値よりも小さい。すなわち、第2の出力値の方が第1の出力値よりも小さい場合、図2(a)に示すような向きに、研磨部材5が傾斜した姿勢であることが検知されたこととなる。   As shown in FIG. 2A, when the reference posture of the polishing member 5 before swinging is closer to the workpiece W in the lower side in FIG. 2, the second output value is more than the first output value. Is also small. That is, when the second output value is smaller than the first output value, it is detected that the polishing member 5 is tilted in the direction as shown in FIG.

この場合、可動制御部7は、図2(d)に示すように、研磨部材5の基準姿勢を第2の揺動方向に補正する。なお、このときの補正量、すなわち、第2の揺動方向への回転量は、予め設定しておいてもよいし、後述するように、第1の出力値と第2の出力値との差分に応じて算出してもよい。   In this case, as shown in FIG. 2D, the movable control unit 7 corrects the reference posture of the polishing member 5 in the second swinging direction. Note that the correction amount at this time, that is, the rotation amount in the second swinging direction may be set in advance, and as described later, the first output value and the second output value You may calculate according to a difference.

また、図2(e)に示すように、研磨部材5の揺動前の基準姿勢が、図2中上側の方がワークWに近い場合、第2の出力値の方が第1の出力値よりも大きい。すなわち、第1の出力値の方が第2の出力値よりも小さい場合、図2(e)に示すような向きに、研磨部材5が傾斜した姿勢であることが検知されたこととなる。   As shown in FIG. 2E, when the reference posture before the polishing member 5 is swung is closer to the workpiece W in the upper side in FIG. 2, the second output value is the first output value. Bigger than. That is, when the first output value is smaller than the second output value, it is detected that the polishing member 5 is tilted in the direction as shown in FIG.

この場合、可動制御部7は、図2(f)に示すように、研磨部材5の基準姿勢を第1の揺動方向に補正する。   In this case, the movable control unit 7 corrects the reference posture of the polishing member 5 in the first swing direction as shown in FIG.

このように、可動制御部7は、研磨部材5を第1の揺動方向および第2の揺動方向に揺動させ(ウィービング)、第1の出力値と第2の出力値との比較に基づいて基準姿勢を補正することで、研磨部材5の接触面5aとワークWの接触対象面Waを平行に近づけることができる。   In this way, the movable control unit 7 swings the polishing member 5 in the first swing direction and the second swing direction (weaving), and compares the first output value with the second output value. By correcting the reference posture based on this, the contact surface 5a of the polishing member 5 and the contact target surface Wa of the workpiece W can be made parallel to each other.

図3は、姿勢検知および姿勢制御の処理を説明するための第2の図である。上記のように研磨部材5を揺動させる場合、研磨部材5の接触面5aのうち、ワークWの接触対象面Waと接触する部位は、例えば、図3(a)に示すように、接触面5aの端部5b、5cと予め推定できる。   FIG. 3 is a second diagram for explaining processing of posture detection and posture control. When the polishing member 5 is swung as described above, the portion of the contact surface 5a of the polishing member 5 that comes into contact with the contact target surface Wa of the workpiece W is, for example, as shown in FIG. It can be preliminarily estimated as the end portions 5b and 5c of 5a.

端部5bは、研磨部材5を第1の揺動方向(図3(a)に示す矢印aの向き)に揺動した際にワークWの接触対象面Waと接触する部位であり、端部5cは、研磨部材5を第2の揺動方向(図3(a)に示す矢印bの向き)に揺動した際にワークWの接触対象面Waと接触する部位である。   The end 5b is a part that comes into contact with the contact target surface Wa of the workpiece W when the polishing member 5 is swung in the first swinging direction (the direction of the arrow a shown in FIG. 3A). 5c is a portion that contacts the contact target surface Wa of the workpiece W when the polishing member 5 is swung in the second swing direction (the direction of the arrow b shown in FIG. 3A).

そこで、可動制御部7は、揺動点Oを、端部5bおよび端部5cそれぞれと等距離となる位置に設ける。そのため、可動制御部7は、研磨部材5を第1の揺動方向と第2の揺動方向におおよそ同じ動力で揺動させたとき、いずれの揺動方向に対してもバイアスが作用しない出力値を取得でき、簡易な処理で出力値の比較処理を遂行できる。   Therefore, the movable controller 7 provides the swing point O at a position that is equidistant from the end 5b and the end 5c. Therefore, when the polishing member 5 is swung with approximately the same power in the first rocking direction and the second rocking direction, the movable control unit 7 outputs no bias in any rocking direction. Values can be acquired, and output value comparison processing can be performed with simple processing.

ここでは、揺動点Oを、研磨部材5の内部であって、端部5bおよび端部5cそれぞれと等距離となる位置に設ける場合について説明したが、揺動点Oは、制御PC7aがその位置を把握していれば、研磨部材5の内部でなくともよい。   Here, the case where the rocking point O is provided in the polishing member 5 at a position that is equidistant from each of the end 5b and the end 5c has been described. However, the rocking point O is controlled by the control PC 7a. As long as the position is known, it does not have to be inside the polishing member 5.

図4は、揺動点Oの位置を例示する説明図である。図4(a)、(b)に示すように、揺動点Oを研磨部材5の外側に設けてもよい。このとき、揺動点Oは、図4(a)に示すように、研磨部材5の接触面5aと反対側に設けてもよいし、図4(b)に示すように、研磨部材5の接触面5a側(ワークW側)に設けてもよい。   FIG. 4 is an explanatory diagram illustrating the position of the swing point O. As shown in FIGS. 4A and 4B, the swing point O may be provided outside the polishing member 5. At this time, the swing point O may be provided on the side opposite to the contact surface 5a of the polishing member 5 as shown in FIG. 4A, or the swing point O of the polishing member 5 as shown in FIG. You may provide in the contact surface 5a side (work W side).

ただし、揺動点Oを、端部5bからの距離と端部5cからの距離とが異なる位置に設ける場合、第1の出力値と第2の出力値は、それぞれ、揺動点O周りのトルクに変換し、トルクに変換された出力値を、上記の第1の出力値と第2の出力値に置き換えて比較処理を行う。また、揺動点Oを端部5bおよび端部5cそれぞれと等距離となる位置に設ける場合についても、揺動点O周りのトルクに変換してもよい。さらに、端部5b、5cの相対的な距離の比率に応じた定数を乗算するなどして、力検知出力部8の出力値にバイアスをかけてもよい。   However, when the swing point O is provided at a position where the distance from the end portion 5b and the distance from the end portion 5c are different, the first output value and the second output value are respectively around the swing point O. Conversion to torque is performed, and the output value converted to torque is replaced with the first output value and the second output value, and comparison processing is performed. Further, when the swing point O is provided at a position that is equidistant from the end portion 5b and the end portion 5c, the torque may be converted to the torque around the swing point O. Furthermore, the output value of the force detection output unit 8 may be biased by multiplying a constant according to the ratio of the relative distance between the end portions 5b and 5c.

ところで、研磨部材5は、ワークWの接触対象面Waから揺動点Oまでの距離が等しかったとしても、図3(b)に示すように、ワークWに対する傾斜が大きい場合もあれば、図3(c)に示すように、ワークWに対する傾斜が小さい場合もある。可動制御部7は、この傾斜の大きさに応じた基準姿勢の補正を行う。   Incidentally, the polishing member 5 may have a large inclination with respect to the workpiece W, as shown in FIG. 3B, even if the distance from the contact target surface Wa of the workpiece W to the swing point O is equal. As shown in FIG. 3C, the inclination with respect to the workpiece W may be small. The movable control unit 7 corrects the reference posture according to the inclination.

図3(b)に示す基準姿勢においては、図3(c)に示す基準姿勢よりも、上記の研磨部材5に対する揺動処理において、第1の出力値が大きく第2の出力値が小さくなる。すなわち、図3(b)に示す基準姿勢の方が、図3(c)に示す基準姿勢よりも、第1の出力値から第2の出力値を減算した差分値が大きい値となる。   In the reference posture shown in FIG. 3B, the first output value is large and the second output value is small in the swinging process for the polishing member 5 as compared with the reference posture shown in FIG. . That is, the difference value obtained by subtracting the second output value from the first output value is larger in the reference posture shown in FIG. 3B than in the reference posture shown in FIG.

また、図3(b)に示す基準姿勢の方が、図3(c)に示す基準姿勢よりも、補正量を大きくした方が、研磨部材5の接触面5aとワークWの接触対象面Waが平行に近づく。   Also, the reference posture shown in FIG. 3B is larger in the correction amount than the reference posture shown in FIG. 3C, and the contact surface 5a of the polishing member 5 and the contact target surface Wa of the workpiece W are increased. Approaches parallel.

そこで、可動制御部7は、第1の出力値と第2の出力値の差分値に基づいて、基準姿勢を補正する補正量を導出する。具体的には、第1の出力値と第2の出力値の差分値を制御回路の入力値として、基準姿勢の補正量を演算することとする。   Therefore, the movable control unit 7 derives a correction amount for correcting the reference posture based on the difference value between the first output value and the second output value. Specifically, the reference posture correction amount is calculated using the difference value between the first output value and the second output value as the input value of the control circuit.

また、上記の揺動処理による研磨部材5の姿勢検知は、揺動処理によって研磨部材5がワークWに接触する位置まで近接しなければ機能しない。研磨部材5がワークWに接触できない位置では、第1の出力値も第2の出力値も0となり、基準姿勢の補正が行われないためである。しかし、基準姿勢の補正が行われないものの、処理自体は開始しても支障はない。   Further, the posture detection of the polishing member 5 by the above-described swinging process does not function unless the polishing member 5 comes close to the position where the polishing member 5 contacts the workpiece W by the swinging process. This is because at the position where the polishing member 5 cannot contact the workpiece W, the first output value and the second output value are both 0, and the reference posture is not corrected. However, although the reference posture is not corrected, there is no problem even if the processing itself is started.

そこで、可動制御部7は、研磨部材5に対し、第1の揺動方向および第2の揺動方向への揺動と、基準姿勢の補正とを繰り返しながら、研磨部材5をワークWの接触対象面Waとの近接方向へ移動させる(近接処理)。   Therefore, the movable control unit 7 contacts the polishing member 5 with the workpiece W while repeating the swinging in the first swinging direction and the second swinging direction and the correction of the reference posture with respect to the polishing member 5. Move in the proximity direction to the target surface Wa (proximity processing).

可動制御部7は、揺動処理と近接処理とを並行して、もしくは、交互に繰り返して行うことで、揺動処理の開始タイミングを正確に特定せずとも、揺動処理が機能する位置まで近接したタイミングで、揺動処理が有効化する。そのため、可動制御部7は、予めワークWの正確な位置を特定できておらずとも、ワークWに対する研磨部材5の姿勢制御を行うことが可能となる。   The movable control unit 7 performs the swing process and the proximity process in parallel or alternately, so that the swing process can be performed at a position where the swing process can function without accurately specifying the start timing of the swing process. Oscillation processing is activated at close timing. Therefore, the movable control unit 7 can control the posture of the polishing member 5 with respect to the workpiece W even if the accurate position of the workpiece W cannot be specified in advance.

(姿勢検知制御方法)
続いて、上記の研磨装置1を用いた研磨方法(姿勢検知制御方法)について詳述する。図5は、研磨方法の処理の流れを示したフローチャートである。
(Attitude detection control method)
Next, a polishing method (posture detection control method) using the polishing apparatus 1 will be described in detail. FIG. 5 is a flowchart showing a processing flow of the polishing method.

図5に示すように、まず、ワークWをチャック装置6に設置する(S100)。そして、可動制御部7は、電動部3を制御して研磨部材5を可動し、研磨部材5の接触面5aが、ワークWの接触対象面Waに対向する位置に移動させる(S102)。   As shown in FIG. 5, first, the workpiece W is set on the chuck device 6 (S100). Then, the movable control unit 7 controls the electric unit 3 to move the polishing member 5 and moves the contact surface 5a of the polishing member 5 to a position facing the contact target surface Wa of the workpiece W (S102).

続いて、可動制御部7は、モータ3aを駆動して研磨部材5の回転を開始すると共に、研磨部材5の接触面5aをワークWの接触対象面Waに近接させる方向に移動させる近接処理を開始する(S104)。   Subsequently, the movable control unit 7 starts the rotation of the polishing member 5 by driving the motor 3a and moves the contact surface 5a of the polishing member 5 in the direction in which the contact surface 5a of the workpiece W is brought close to the contact target surface Wa. Start (S104).

そして、可動制御部7は、研磨部材5を、ワークWの接触対象面Waとの近接方向へ移動させながら、第1の揺動方向に揺動させ(S106)、力検知出力部8の出力値である第1の出力値を取得する(S108)。この時点で、研磨部材5が回転駆動しており、研磨部材5の接触面5aがワークWの接触対象面Waに片当たりする可能性があるが、例えば、可動制御部7は、ワークWの接触対象面Waの大凡の位置を把握しており、片当たりしても接触対象面Waを傷つけない程度には、接触面5aと接触対象面Waを平行に保っているものとする。   Then, the movable control unit 7 swings the polishing member 5 in the first swinging direction while moving the polishing member 5 in the proximity direction to the contact target surface Wa of the workpiece W (S106), and outputs the force detection output unit 8 A first output value that is a value is acquired (S108). At this time, the polishing member 5 is rotationally driven, and there is a possibility that the contact surface 5a of the polishing member 5 comes into contact with the contact target surface Wa of the workpiece W. It is assumed that the approximate position of the contact target surface Wa is grasped, and the contact surface 5a and the contact target surface Wa are kept parallel to the extent that they do not damage the contact target surface Wa even if they come into contact with each other.

その後、可動制御部7は、研磨部材5を第2の揺動方向に揺動させ(S110)、力検知出力部8の出力値である第2の出力値を取得する(S112)。そして、可動制御部7は、第1の出力値と第2の出力値との差分に基づいて、研磨部材5の基準姿勢を補正する(S114)。具体的には、第2の出力値の方が第1の出力値よりも小さい場合、研磨部材5の基準姿勢を第2の揺動方向に補正する。また、第1の出力値の方が第2の出力値よりも小さい場合、研磨部材5の基準姿勢を第1の揺動方向に補正する。つまり、第1の出力値および第2の出力値のうち、相対的に出力値が小さい方の揺動方向に、研磨部材5を揺動して基準姿勢を補正する。   Thereafter, the movable control unit 7 swings the polishing member 5 in the second swinging direction (S110), and obtains a second output value that is an output value of the force detection output unit 8 (S112). Then, the movable controller 7 corrects the reference posture of the polishing member 5 based on the difference between the first output value and the second output value (S114). Specifically, when the second output value is smaller than the first output value, the reference posture of the polishing member 5 is corrected in the second swing direction. When the first output value is smaller than the second output value, the reference posture of the polishing member 5 is corrected in the first swing direction. That is, the reference posture is corrected by swinging the polishing member 5 in the swing direction in which the output value is relatively smaller of the first output value and the second output value.

本実施形態では、揺動処理と近接処理を並行して行っているため、第1の揺動方向へ揺動させたときと、第2の揺動方向へ揺動させたときとで、研磨部材5からワークWの接触対象面Waまでの距離が異なることがある。したがって、第1の出力値と第2の出力値とを比較する際には、研磨部材5の移動速度と、第1の揺動方向および第2の揺動方向への揺動速度とから、両出力値が出力されたときの距離の差を補正するための演算処理を実行することが望ましい。なお、研磨部材5の移動速度や揺動速度が、両出力値が出力されたときの距離の差を無視できる程度に設定されている場合にはこの限りではない。   In this embodiment, since the swing process and the proximity process are performed in parallel, the polishing is performed when the swing process is performed in the first swing direction and when the swing process is performed in the second swing direction. The distance from the member 5 to the contact target surface Wa of the workpiece W may be different. Therefore, when comparing the first output value and the second output value, from the moving speed of the polishing member 5 and the swing speed in the first swing direction and the second swing direction, It is desirable to execute a calculation process for correcting a difference in distance when both output values are output. This is not the case when the moving speed and swing speed of the polishing member 5 are set to such an extent that the difference in distance when both output values are output can be ignored.

さらに、可動制御部7は、第1の出力値と第2の出力値が、それぞれ予め設定された閾値より小さいか否かを判定する(S116)。第1の出力値および第2の出力値のいずれか一方でも予め設定された閾値以上となると、研磨部材5がワークWに十分に近づいたと判定される。ここで、研磨部材5がワークWに十分近づいた状態というのは、例えば、研磨部材5の接触面5aがワークWの接触対象面Waに接触した状態である。したがって、S116の判定に用いる閾値は、研磨部材5の接触面5aが、ワークWの接触対象面Waに接触した状態で出力される値に設定されることとなる。   Furthermore, the movable control unit 7 determines whether or not the first output value and the second output value are each smaller than a preset threshold value (S116). If either one of the first output value and the second output value is equal to or greater than a preset threshold value, it is determined that the polishing member 5 has sufficiently approached the workpiece W. Here, the state where the polishing member 5 is sufficiently close to the workpiece W is, for example, a state where the contact surface 5a of the polishing member 5 is in contact with the contact target surface Wa of the workpiece W. Therefore, the threshold value used for the determination in S116 is set to a value that is output when the contact surface 5a of the polishing member 5 is in contact with the contact target surface Wa of the workpiece W.

第1の出力値および第2の出力値の双方が閾値より小さい場合(S116におけるYES)、可動制御部7は、研磨部材5をワークWに近接させる方向へ移動させている最中であるか否かを判定し(S118)、移動中でなければ(S118におけるNO)、近接方向への移動を開始し(S120)、第1の揺動処理ステップS106に処理を戻す。移動中であれば(S118におけるYES)、そのまま第1の揺動処理ステップS106に処理を戻す。   If both the first output value and the second output value are smaller than the threshold value (YES in S116), is the movable control unit 7 moving the polishing member 5 in the direction of approaching the workpiece W? If it is not moving (NO in S118), the movement in the proximity direction is started (S120), and the process returns to the first swing processing step S106. If it is moving (YES in S118), the process directly returns to the first swing processing step S106.

また、第1の出力値と第2の出力値のいずれか一方でも、予め設定された閾値以上である場合(S116におけるNO)、可動制御部7は、研磨部材5をワークWに近接させる方向へ移動させている最中であるか否かを判定し(S122)、移動中であれば(S122におけるYES)、近接方向への移動を停止して(S124)、第1の揺動処理ステップS106に処理を戻す。移動中でなければ(S122におけるNO)、そのまま第1の揺動処理ステップS106に処理を戻す。   When either one of the first output value and the second output value is greater than or equal to a preset threshold value (NO in S116), the movable control unit 7 moves the polishing member 5 closer to the workpiece W. Is determined to be in the middle of moving (S122), and if moving (YES in S122), the movement in the proximity direction is stopped (S124), and the first swing processing step The process returns to S106. If not moving (NO in S122), the process directly returns to the first swing processing step S106.

上述した研磨装置1および研磨方法によれば、力検知出力部8は、ワークWの接触対象面Waからの反力を検知すれば、上記の揺動処理によって研磨部材5とワークWの相対的な姿勢を制御し、研磨部材5がワークWに片当たりするなどの事態を回避し、研磨部材5を接触対象面Waに対して常時、平行に維持することができる。   According to the polishing apparatus 1 and the polishing method described above, when the force detection output unit 8 detects a reaction force from the contact target surface Wa of the workpiece W, the relative movement between the polishing member 5 and the workpiece W is performed by the swing process described above. Therefore, it is possible to prevent the situation where the polishing member 5 comes into contact with the workpiece W and keep the polishing member 5 parallel to the contact target surface Wa at all times.

そのため、力検知出力部8を6軸力センサで構成する場合であっても、センサ座標系からツールセンタポイントの座標系にトルクの変換処理を行う必要がない上記の姿勢制御によって、精度低下を回避することができる。また、力検知出力部8を3軸力センサで構成することもでき、研磨装置1の製造コストを抑制することが可能となる。   Therefore, even when the force detection output unit 8 is configured by a six-axis force sensor, the above-described attitude control that does not require the torque conversion processing from the sensor coordinate system to the coordinate system of the tool center point reduces the accuracy. It can be avoided. Further, the force detection output unit 8 can be constituted by a triaxial force sensor, and the manufacturing cost of the polishing apparatus 1 can be suppressed.

さらに、従来の変換処理を行う場合、精度低下を抑制するために6軸力センサと砥石におけるツールセンタポイントを近づけなければならず、6軸力センサが干渉することから加工できるワークWの形状が限定されていた。本実施形態の研磨装置1によれば、力検知出力部8と研磨部材5との間隔が離れていてもよく、加工できるワークWの形状の制約が少ない。また、研磨装置1は、上記のトルクの変換処理による精度低下がないため、研磨部材5の接触面5aが小さく、誤差の影響が大きくなり易い形状の研磨部材5も使用することができる。   Furthermore, when performing the conventional conversion processing, the 6-axis force sensor and the tool center point on the grindstone must be brought close to each other in order to suppress a decrease in accuracy, and the shape of the workpiece W that can be machined because the 6-axis force sensor interferes. It was limited. According to the polishing apparatus 1 of this embodiment, the space | interval of the force detection output part 8 and the grinding | polishing member 5 may be separated, and there are few restrictions on the shape of the workpiece | work W which can be processed. Further, since the accuracy of the polishing apparatus 1 is not reduced by the torque conversion process, it is possible to use the polishing member 5 having a shape in which the contact surface 5a of the polishing member 5 is small and the influence of errors is likely to increase.

(変形例)
上述した実施形態では、揺動処理と近接処理とを並行し行う場合について説明したが、揺動処理と近接処理を交互に繰り返して行うこともできる。以下、研磨装置1が揺動処理と近接処理を交互に繰り返す場合の研磨方法の処理の流れについて、変形例として説明する。
(Modification)
In the above-described embodiment, the case where the swing process and the proximity process are performed in parallel has been described. However, the swing process and the proximity process may be alternately repeated. Hereinafter, the processing flow of the polishing method when the polishing apparatus 1 alternately repeats the swing process and the proximity process will be described as a modification.

図6は、変形例における研磨方法の処理の流れを示したフローチャートである。図6において、ワーク設置ステップS100および対向移動ステップS102は、上述した実施形態において説明した処理と同じであるため、説明を省略する。   FIG. 6 is a flowchart showing a processing flow of the polishing method in the modification. In FIG. 6, the workpiece installation step S100 and the opposing movement step S102 are the same as the processing described in the above-described embodiment, and thus description thereof is omitted.

続いて、可動制御部7は、研磨部材5の接触面5aをワークWの接触対象面Waに近接させる方向に移動させる近接処理を実行する(S204)。続く、第1の揺動処理ステップS106から、基準姿勢補正ステップS114までの処理は、上述した実施形態において説明した処理と同じであるため、説明を省略する。   Subsequently, the movable control unit 7 performs a proximity process for moving the contact surface 5a of the polishing member 5 in a direction in which the contact surface 5a is brought close to the contact target surface Wa of the workpiece W (S204). The subsequent processing from the first swing processing step S106 to the reference posture correction step S114 is the same as the processing described in the above-described embodiment, and thus description thereof is omitted.

そして、可動制御部7は、第1の出力値および第2の出力値の双方が、それぞれ予め設定された閾値より小さいか否かを判定する(S216)。そして、第1の出力値および第2の出力値の双方が、それぞれ予め設定された閾値より小さいと判定された場合(S216におけるYES)には、近接処理ステップS204に処理を戻し、再び、近接処理および揺動処理を繰り返す。   Then, the movable control unit 7 determines whether both the first output value and the second output value are smaller than a preset threshold value (S216). Then, when it is determined that both the first output value and the second output value are smaller than the preset threshold values (YES in S216), the process returns to the proximity process step S204, and again the proximity Repeat the process and the swing process.

また、第1の出力値および第2の出力値のいずれか一方または双方が、それぞれ予め設定された閾値以上であると判定された場合(S216のNO)には、第1の出力値および第2の出力値の双方が、上記の閾値以上であるかを判定する(S218)。ここで、第1の出力値および第2の出力値の双方ともに閾値以上ではない、すなわち、第1の出力値および第2の出力値のうち、いずれか一方のみが閾値以上であると判定した場合(S218におけるNO)には、第1の揺動処理ステップS106に処理を戻し、再び、揺動処理を繰り返す。   Further, when it is determined that one or both of the first output value and the second output value are equal to or greater than a preset threshold value (NO in S216), the first output value and the second output value It is determined whether both of the output values of 2 are equal to or greater than the threshold value (S218). Here, it is determined that both the first output value and the second output value are not equal to or greater than the threshold value, that is, only one of the first output value and the second output value is equal to or greater than the threshold value. In the case (NO in S218), the process returns to the first swing processing step S106, and the swing process is repeated again.

第1の出力値および第2の出力値の双方ともに閾値以上であると判定した場合(S218におけるYES)には、第1の出力値および第2の出力値の差分が、予め設定された許容範囲内であるかを判定する(S220)。ここで、許容範囲とは、研磨部材5の接触面5aが、ワークWの接触対象面Waに対して、ほぼ平行とみなせる範囲である。したがって、ここでは、研磨部材5の接触面5aが、ワークWの接触対象面Waに対して、ほぼ平行となったときに出力される第1の出力値および第2の出力値の差分の最大値以下であるかを判定する。   If it is determined that both the first output value and the second output value are equal to or greater than the threshold value (YES in S218), the difference between the first output value and the second output value is set to a preset allowable value. It is determined whether it is within the range (S220). Here, the allowable range is a range in which the contact surface 5a of the polishing member 5 can be regarded as being substantially parallel to the contact target surface Wa of the workpiece W. Therefore, here, the maximum difference between the first output value and the second output value output when the contact surface 5a of the polishing member 5 is substantially parallel to the contact target surface Wa of the workpiece W. Determine if it is less than or equal to the value.

そして、第1の出力値および第2の出力値の差分が、予め設定された許容範囲内であると判定されれば(S220におけるYES)、当該処理による姿勢検知制御を終了し、以後、研磨部材5を回転駆動しながらワークWに対して摺動させる研磨処理を開始する。これに対して、第1の出力値および第2の出力値の差分が、予め設定された許容範囲内ではないと判定されれば(S220におけるNO)、第1の揺動処理ステップS106に処理を戻し、再び、揺動処理を繰り返す。   Then, if it is determined that the difference between the first output value and the second output value is within a preset allowable range (YES in S220), the posture detection control by the process is terminated, and thereafter polishing is performed. A polishing process is started in which the member 5 is slid with respect to the workpiece W while being rotated. On the other hand, if it is determined that the difference between the first output value and the second output value is not within the preset allowable range (NO in S220), the process proceeds to the first swing processing step S106. And repeat the swinging process again.

かかる変形例の研磨方法によっても、上述した実施形態と同様の効果を有する。   Even the polishing method of this modification has the same effect as the above-described embodiment.

また、上述した実施形態および変形例では、研磨装置1の場合について説明したが、上記の姿勢検知処理を遂行する装置は研磨装置1に限らない。上記した実施形態の構成によれば、可動体の接触面を接触対象面に接触させて、可動体と接触対象面の相対的な姿勢を検知する装置(姿勢検知制御装置)に広く適用可能である。   In the embodiment and the modification described above, the case of the polishing apparatus 1 has been described. However, the apparatus that performs the posture detection process is not limited to the polishing apparatus 1. According to the configuration of the above-described embodiment, it can be widely applied to an apparatus (attitude detection control apparatus) that detects the relative attitude between the movable body and the contact target surface by bringing the contact surface of the movable body into contact with the contact target surface. is there.

例えば、自動車の車体組立工程において、車体に部品(可動体)をロボットアームで組み立てる姿勢検知制御装置等において、車体の接触対象面に対する、部品の接触面の位置の検知および姿勢制御を行う処理にも適用できる。   For example, in a body assembly process of an automobile, in a posture detection control device or the like that assembles a part (movable body) on a vehicle body with a robot arm, a process for detecting the position of the contact surface of the component and the posture control with respect to the contact target surface of the vehicle body Is also applicable.

また、上記のような研磨部材5をドレッシングする姿勢検知制御装置において、ドレッシング面(接触対象面)に対する、研磨部材5の姿勢の検知および制御を行う処理にも適用できる。   In addition, the posture detection control apparatus for dressing the polishing member 5 as described above can be applied to processing for detecting and controlling the posture of the polishing member 5 with respect to the dressing surface (contact target surface).

いずれの場合であっても、姿勢検知制御装置は、6軸力センサを設ける場合であっても、上記の姿勢の検知および制御を行うことで精度を高めることができると共に、3軸力センサを設けることでコスト低減を図ることもできる。そして、トルクの変換処理に伴う精度低下を回避し、利用可能なワークWの形状や可動体の形状の制約を減らすことが可能となる。   In any case, even if the posture detection control device is provided with a six-axis force sensor, accuracy can be improved by performing the above-described posture detection and control, and a three-axis force sensor can be installed. By providing, cost reduction can also be achieved. And it becomes possible to avoid the precision fall accompanying the torque conversion process, and to reduce the restrictions on the shape of the usable workpiece W and the shape of the movable body.

また、上述した実施形態および変形例では、理解を容易とするため、揺動点O周りの揺動方向について、その回転軸は、1軸方向のみを考慮した場合について説明した。具体的には、揺動点の回転軸の軸方向は、ワークWの接触対象面Waに対し、研磨部材5の接触面5aが近接する方向に垂直、かつ、研磨部材5の回転軸方向に垂直な直線方向であった。しかし、揺動点O周りの回転軸の軸方向は、1軸方向のみには限られない。   Further, in the above-described embodiment and modification, for the sake of easy understanding, the description has been given of the case where only one axial direction is considered as the rotation axis around the swing point O. Specifically, the axial direction of the rotation axis of the swing point is perpendicular to the direction in which the contact surface 5a of the polishing member 5 approaches the contact target surface Wa of the workpiece W, and in the rotation axis direction of the polishing member 5. It was a vertical linear direction. However, the axial direction of the rotating shaft around the swing point O is not limited to only one axial direction.

すなわち、揺動点O周りの回転軸の軸方向として、上述した実施形態および変形例の軸方向に加え、当該軸方向と垂直な軸方向についても、上記の揺動処理を伴う研磨部材5の姿勢の検知および制御を行ってもよい(2軸の姿勢制御)。このとき、上述した実施形態および変形例の軸方向に垂直な軸方向として、互いに直交する2つの軸方向それぞれについて、上記の揺動処理を伴う研磨部材5の姿勢の検知および制御を行ってもよい(3軸の姿勢制御)。   That is, as the axial direction of the rotating shaft around the swinging point O, in addition to the axial direction of the above-described embodiment and the modified example, the axial direction perpendicular to the axial direction of the polishing member 5 accompanied by the swinging process is also described. Attitude detection and control may be performed (biaxial attitude control). At this time, even if the axial direction perpendicular to the axial direction of the above-described embodiment and the modified example is used, the posture detection and control of the polishing member 5 accompanied by the swinging process described above are performed in each of two axial directions orthogonal to each other. Good (3-axis attitude control).

また、上述した実施形態および変形例では、研磨部材5の接触面5aと、ワークWの接触対象面Waは、それぞれ、図2、図3において直線となる場合について説明した。しかし、研磨部材5の接触面5aと、ワークWの接触対象面Waは、いずれか一方、または双方が、図2、図3において曲線状に示されるように湾曲していてもよい。この場合であっても、湾曲部分の曲率に対し、研磨部材5が、十分に小さい、または、十分な弾性を有していれば、研磨部材5のワークWに対する片当たりを抑制し、研磨精度を向上することが可能となる。   In the embodiment and the modification described above, the case where the contact surface 5a of the polishing member 5 and the contact target surface Wa of the workpiece W are straight lines in FIGS. 2 and 3, respectively, has been described. However, either or both of the contact surface 5a of the polishing member 5 and the contact target surface Wa of the workpiece W may be curved as shown in a curved shape in FIGS. Even in this case, if the polishing member 5 is sufficiently small or sufficiently elastic with respect to the curvature of the curved portion, the contact of the polishing member 5 with respect to the workpiece W is suppressed, and the polishing accuracy is reduced. Can be improved.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

なお、本明細書の姿勢検知制御方法における各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。   In addition, each process in the attitude | position detection control method of this specification does not necessarily need to process in time series along the order described as a flowchart.

本発明は、可動対象である可動体の接触対象面に対する姿勢を検知する姿勢検知制御装置、研磨装置、および、姿勢検知制御方法に利用することができる。   The present invention can be used for a posture detection control device, a polishing device, and a posture detection control method for detecting a posture of a movable body that is a movable target with respect to a contact target surface.

O …揺動点
W …ワーク
Wa …接触対象面
1 …研磨装置
2 …ロボットアーム(可動部)
3 …電動部(可動部)
5 …研磨部材(可動体)
5a …接触面
7 …可動制御部
8 …力検知出力部
O ... Swing point W ... Work Wa ... Contact target surface 1 ... Polishing device 2 ... Robot arm (movable part)
3 ... Electric part (movable part)
5 ... Polishing member (movable body)
5a ... contact surface 7 ... movable control part 8 ... force detection output part

Claims (5)

接触面を有する可動体を可動して、該接触面を接触対象面に接触させる可動制御部と、
前記可動体が前記接触対象面から受ける反力の大きさを示す出力値を出力する力検知出力部と、を備え、
前記可動制御部は、
前記接触面を前記接触対象面に対向させた基準姿勢から、予め設定された揺動点を中心に、前記可動体を第1の揺動方向、および、該第1の揺動方向と逆方向となる第2の揺動方向に揺動させて、該接触面を該接触対象面に接触させ、
前記可動体を前記第1の揺動方向に揺動した際に前記力検知出力部によって出力される第1の出力値と、該可動体を前記第2の揺動方向に揺動した際に該力検知出力部によって出力される第2の出力値とを比較し、該第1の出力値の方が該第2の出力値よりも小さい場合、該可動体の前記基準姿勢を該第1の揺動方向に補正し、該第2の出力値の方が該第1の出力値よりも小さい場合、該可動体の該基準姿勢を該第2の揺動方向に補正して、前記接触面と前記接触対象面を平行に近づけることを特徴とする姿勢検知制御装置。
A movable control unit configured to move a movable body having a contact surface and bring the contact surface into contact with a contact target surface;
A force detection output unit that outputs an output value indicating a magnitude of a reaction force that the movable body receives from the contact target surface;
The movable control unit is
From a reference posture in which the contact surface faces the contact target surface, the movable body is moved in a first swing direction and a direction opposite to the first swing direction around a preset swing point. Oscillating in the second oscillating direction to be brought into contact with the contact target surface,
When the movable body is swung in the first swing direction, the first output value output by the force detection output unit, and when the movable body is swung in the second swing direction. The second output value output by the force detection output unit is compared. If the first output value is smaller than the second output value, the reference posture of the movable body is set to the first output value. When the second output value is smaller than the first output value, the reference posture of the movable body is corrected in the second swing direction, and the contact is corrected. A posture detection control device characterized in that a surface and the surface to be contacted are brought close to each other in parallel.
前記揺動点は、前記第1の揺動方向に揺動した際に前記接触対象面と接触する部位、および、前記第2の揺動方向に揺動した際に該接触対象面と接触する部位それぞれと等距離となる位置に設けられることを特徴とする請求項1に記載の姿勢検知制御装置。   The swing point contacts the contact target surface when swinging in the first swing direction, and contacts the contact target surface when swinging in the second swing direction. The posture detection control device according to claim 1, wherein the posture detection control device is provided at a position equidistant from each part. 前記可動制御部は、前記可動体に対し、前記第1の揺動方向および前記第2の揺動方向への揺動と、前記基準姿勢の補正とを繰り返しながら、該可動体を前記接触対象面との近接方向へ移動させることを特徴とする請求項1または2に記載の姿勢検知制御装置。   The movable control unit repeats the swinging in the first swinging direction and the second swinging direction and the correction of the reference posture with respect to the movable body, while moving the movable body to the contact target. The posture detection control device according to claim 1, wherein the posture detection control device is moved in a direction close to the surface. 接触面をワークに接触させて該ワークを研磨する研磨部材と、
前記研磨部材を可動して、前記接触面を前記ワークの接触対象面に接触させる可動制御部と、
前記研磨部材が前記接触対象面から受ける反力の大きさを示す出力値を出力する力検知出力部と、を備え、
前記可動制御部は、
前記接触面を前記接触対象面に対向させた基準姿勢から、予め設定された揺動点を中心に、前記研磨部材を第1の揺動方向に揺動した際に前記力検知出力部によって出力される第1の出力値と、該研磨部材を該第1の揺動方向と逆方向となる第2の揺動方向に揺動した際に該力検知出力部によって出力される第2の出力値とを比較し、該第1の出力値の方が該第2の出力値よりも小さい場合、該研磨部材の該基準姿勢を該第1の揺動方向に補正し、該第2の出力値の方が該第1の出力値よりも小さい場合、該研磨部材の該基準姿勢を該第2の揺動方向に補正して、前記接触面と前記接触対象面を平行に近づけることを特徴とする研磨装置。
A polishing member for polishing the workpiece by bringing the contact surface into contact with the workpiece;
A movable control unit that moves the polishing member to bring the contact surface into contact with the contact target surface of the workpiece;
A force detection output unit that outputs an output value indicating the magnitude of the reaction force that the polishing member receives from the contact target surface;
The movable control unit is
Output from the force detection output unit when the polishing member is swung in a first swinging direction around a preset swing point from a reference posture in which the contact surface is opposed to the contact target surface. And a second output that is output by the force detection output unit when the polishing member is swung in a second swinging direction that is opposite to the first swinging direction. When the first output value is smaller than the second output value, the reference posture of the polishing member is corrected in the first swing direction, and the second output When the value is smaller than the first output value, the reference posture of the polishing member is corrected in the second swinging direction to bring the contact surface and the contact target surface closer to parallel. Polishing equipment.
接触面を有する可動体を可動して、該接触面を接触対象面に対向させた基準姿勢から、予め設定された揺動点を中心に、該可動体を第1の揺動方向、および、該第1の揺動方向と逆方向となる第2の揺動方向に揺動させて、該接触面を該接触対象面に接触させ
記可動体を前記第1の揺動方向に揺動した際、該可動体が前記接触対象面から受ける反力である第1反力の大きさと、該可動体を前記第2の揺動方向に揺動した際、該可動体が該接触対象面から受ける反力である第2反力の大きさとを比較し、該第1反力の大きさの方が該第2反力の大きさよりも小さい場合、該可動体の前記基準姿勢を該第1の揺動方向に補正し、該第2反力の大きさの方が該第1反力の大きさよりも小さい場合、該可動体の該基準姿勢を該第2の揺動方向に補正して、前記接触面と接触対象面を平行に近づけることを特徴とする姿勢検知制御方法。
A movable body having a contact surface is moved, and the movable body is moved in a first swing direction around a preset swing point from a reference posture in which the contact surface faces the contact target surface, and Oscillating in a second oscillating direction opposite to the first oscillating direction to bring the contact surface into contact with the contact target surface ;
Upon swinging the previous SL movable body in the first swinging direction, and magnitude of the first reaction force movable body is a reaction force received from the contacted surface, the movable body of the second rocking When the movable body swings in the moving direction, the magnitude of the second reaction force, which is the reaction force that the movable body receives from the contact target surface, is compared, and the magnitude of the first reaction force is greater than the second reaction force. When the reference posture of the movable body is corrected in the first swing direction, and the magnitude of the second reaction force is smaller than the magnitude of the first reaction force corrects the reference posture of the movable body in the swing direction of the second, the attitude detection control method characterized by close parallel to said contact surface and said surface to be contacted.
JP2013028075A 2013-02-15 2013-02-15 Attitude detection control apparatus, polishing apparatus, and attitude detection control method Active JP6136337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028075A JP6136337B2 (en) 2013-02-15 2013-02-15 Attitude detection control apparatus, polishing apparatus, and attitude detection control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028075A JP6136337B2 (en) 2013-02-15 2013-02-15 Attitude detection control apparatus, polishing apparatus, and attitude detection control method

Publications (2)

Publication Number Publication Date
JP2014155986A JP2014155986A (en) 2014-08-28
JP6136337B2 true JP6136337B2 (en) 2017-05-31

Family

ID=51577229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028075A Active JP6136337B2 (en) 2013-02-15 2013-02-15 Attitude detection control apparatus, polishing apparatus, and attitude detection control method

Country Status (1)

Country Link
JP (1) JP6136337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10807249B2 (en) 2018-02-22 2020-10-20 Fanuc Corporation Robot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002053A4 (en) 2019-07-18 2023-12-13 Kabushiki Kaisha Yaskawa Denki Control system, control device, and control method
WO2021107139A1 (en) * 2019-11-27 2021-06-03 株式会社安川電機 Grinding system, correction amount estimation device, computer program, and grinding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254303A (en) * 1985-09-03 1987-03-10 Nissan Motor Co Ltd Robot controller
JP2000225592A (en) * 1998-12-02 2000-08-15 Meidensha Corp Robot controller
JP4264778B2 (en) * 1999-07-26 2009-05-20 東芝機械株式会社 Working robot and teaching point position / posture data measuring method
JP2001038660A (en) * 1999-07-26 2001-02-13 Toshiba Mach Co Ltd Teaching end effector, and robot teaching method
ES2338622B1 (en) * 2008-07-23 2011-07-01 Estudios De Ingenieria Adaptada, S.L. TOOL POSITIONING HEAD ON IRREGULAR SURFACES.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10807249B2 (en) 2018-02-22 2020-10-20 Fanuc Corporation Robot
DE102019103973B4 (en) 2018-02-22 2022-03-31 Fanuc Corporation robot

Also Published As

Publication number Publication date
JP2014155986A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
US10279485B2 (en) Robot system and method of detecting deformation of end effector
US9452532B2 (en) Robot, device and method for controlling robot, and computer-readable non-transitory recording medium
US9782899B2 (en) Calibration method for coordinate system of robot manipulator
US10434646B2 (en) Robot control apparatus, robot, and robot system
US9248572B2 (en) Axis angle determination method for six-axis robot and control apparatus for six-axis robot
US9415518B2 (en) Robot control device and robot
EP3275603A2 (en) Control device, robot, and robot system
US10195744B2 (en) Control device, robot, and robot system
JP5765615B2 (en) Trajectory tracking device and method for machining robot
WO2017047048A1 (en) Device and method for positioning processing tool
JP2015155126A (en) Tool coordinate system correction method of robot system and robot system
TW201641239A (en) Bending processing device
JP6136337B2 (en) Attitude detection control apparatus, polishing apparatus, and attitude detection control method
JP2018034224A (en) Method for controlling positioning control device and positioning control device
JP5765557B2 (en) Trajectory tracking device and method for machining robot
JPH0438553B2 (en)
JP6361207B2 (en) Robot, robot system and robot controller
CN107199562B (en) Robot control device and robot control method
US9827673B2 (en) Robot controller inhibiting shaking of tool tip in robot equipped with travel axis
KR101681076B1 (en) Method of correcting tracking error of scara robot
JP2019162681A (en) Processing device and processing method
JP7035369B2 (en) Processing method
JP2023124026A (en) Robot device
JP5896122B2 (en) Edge line tracing method and control device
TW201641238A (en) Chuck unit and bending processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6136337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250