JP6135537B2 - Semiconductor device using SiC substrate and method for manufacturing the same - Google Patents

Semiconductor device using SiC substrate and method for manufacturing the same Download PDF

Info

Publication number
JP6135537B2
JP6135537B2 JP2014023875A JP2014023875A JP6135537B2 JP 6135537 B2 JP6135537 B2 JP 6135537B2 JP 2014023875 A JP2014023875 A JP 2014023875A JP 2014023875 A JP2014023875 A JP 2014023875A JP 6135537 B2 JP6135537 B2 JP 6135537B2
Authority
JP
Japan
Prior art keywords
sic substrate
graphene
protective layer
layer
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014023875A
Other languages
Japanese (ja)
Other versions
JP2015153789A (en
Inventor
政人 野田
政人 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014023875A priority Critical patent/JP6135537B2/en
Publication of JP2015153789A publication Critical patent/JP2015153789A/en
Application granted granted Critical
Publication of JP6135537B2 publication Critical patent/JP6135537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本明細書では、SiC基板の表面に直接に金属層を形成すると、SiCと金属がオーミック接触しないという問題に対処する技術を開示する。   The present specification discloses a technique that addresses the problem that SiC and metal do not make ohmic contact when a metal layer is formed directly on the surface of a SiC substrate.

SiC基板の表面に直接に金属層を形成すると、SiCと金属がオーミック接触しない。そこで、特許文献1に記載されているように、基板と金属層の間にシリサイド層を介在させる技術が開発されている。非特許文献1については後記する。   When the metal layer is formed directly on the surface of the SiC substrate, the SiC and the metal do not make ohmic contact. Therefore, as described in Patent Document 1, a technique for interposing a silicide layer between a substrate and a metal layer has been developed. Non-patent document 1 will be described later.

特表2009−535846号公報Special table 2009-535846

乗松航,楠美智子、SiC表面分解法により生成するグラフェン/SiC界面の構造、日本結晶学会誌51巻第6号、313-319(2009)Norimatsu, Tomoko Tomoe, Structure of the graphene / SiC interface produced by the SiC surface decomposition method, Journal of the Crystallographic Society of Japan, Vol. 51, No. 6, 313-319 (2009)

SiC基板の表面にシリサイド層を形成するには多くの工程を必要とする。例えばニッケルシリサイドを形成する場合、(1)Siを含有する半導体基板の表面にスパッタ等によってNi層を形成し、(2)熱処理して合金化し、(3)エッチングして余剰なNiを除去する工程が必要とされる。実際には、さらに(4)再度熱処理し、(5)余剰なNiを再度除去する工程が必要とされる。
より少ない工程数で、SiC基板と金属層がオーミック接触する結果を実現する技術が必要とされている。
Many processes are required to form a silicide layer on the surface of the SiC substrate. For example, in the case of forming nickel silicide, (1) a Ni layer is formed on the surface of a semiconductor substrate containing Si by sputtering, etc., (2) alloyed by heat treatment, and (3) excess Ni is removed by etching. A process is required. Actually, a step of (4) heat treatment again and (5) removing excess Ni again is required.
There is a need for a technique that achieves an ohmic contact between the SiC substrate and the metal layer with a smaller number of steps.

本明細書で開示する技術では、SiC基板と金属層の間にグラフェン層を介在させるとSiC基板と金属層がオーミック接触する現象を利用する。本明細書では、少ない工程数でSiC基板の表面にグラフェン層を生成する技術を開示する。   The technology disclosed in this specification utilizes a phenomenon in which a SiC substrate and a metal layer are in ohmic contact when a graphene layer is interposed between the SiC substrate and the metal layer. The present specification discloses a technique for generating a graphene layer on the surface of a SiC substrate with a small number of steps.

本明細書では、グラフェン生成方法を開示する。その方法は、SiC基板の表面の一部を保護層で被覆する工程と、保護層で被覆されていない範囲のSiC基板の表面近傍をエッチングする工程と、保護層を除去する工程と、SiCに含まれるSiが昇華する温度にSiC基板を加熱する工程を備えている。前記の工程を実施すると、保護層で被覆されていた範囲のSiC基板の表面にグラフェンが成長する。   In this specification, the graphene production | generation method is disclosed. The method includes a step of covering a part of the surface of the SiC substrate with a protective layer, a step of etching the vicinity of the surface of the SiC substrate that is not covered with the protective layer, a step of removing the protective layer, A step of heating the SiC substrate to a temperature at which the contained Si sublimes is provided. When the above process is performed, graphene grows on the surface of the SiC substrate in the range covered with the protective layer.

SiC基板の表面の一部を保護層で被覆しておいてエッチングすると、保護層で被覆されていない範囲のSiC基板の表面近傍がエッチングされて凹所が形成される。その凹所の側面には、保護層で被覆されているSiC基板と保護層の境界が露出される。その境界が露出すると、その境界から保護層とSiC基板に界面に沿ってエッチングが進行する。露出した境界の近傍では、保護層に接していたSiCがエッチングされていき、保護層とSiC基板の間に間隙が形成されていく。その間隔は、前記凹所の側面において最も大きく、側面から離れるほど小さくなる。SiC基板の表面には、保護層に密着する範囲と、保護層との間に間隙が形成されている範囲と、前記凹所の側面と、前記凹所の底面が形成される。保護層との間に間隙が形成されている範囲のSiC基板の表面は、保護層に密着する範囲のSiC基板の表面に対して傾斜している。
上記の表面が形成された時点で保護層を除去して加熱すると、SiC基板の表面からSiが昇華していく。その際にはSiC基板の表面にグラフェンの成長核が形成され、その成長核からSiC基板の表面に沿ってグラフェンが成長していく。上記方法では、保護層に密着していた範囲のSiC基板の表面に対して傾斜する傾斜面を形成しておいて加熱処理する。その場合、傾斜面にグラフェンの成長核が形成される。グラフェンは、傾斜面から保護層に密着していた範囲のSiC基板の表面に向けて広がっていく。保護層に密着していた範囲のSiC基板の表面がグラフェンで被覆される。その一方において、前記傾斜面と前記凹所の側面との間には、大きな角度が存在するために、前記凹所の側面と底面にはグラフェンが伸びづらい。SiCの傾斜面をミクロに観察すると、SiC結晶のステップで形成されている。前記した非特許文献1に、ステップでグラフェンの成長核が成長し、そこからグラフェンが広がっていくことが報告されている。熱処理後に金属層を形成すれば、グラフェンが成長した範囲では金属とSiCがオーミック接触する。オーミック接触させたい金属層の形成範囲を保護層で覆っておけば、その金属層とSiC基板をオーミック接触させることができる。グラフェンの生成に要する工程数は、シリサイドの生成に要する工程数よりも少ない。
本明細書でいうグラフェンは、単層のものに限定されない。非特許文献1に開示されているように、熱処理温度によって生成するグラフェンの層数を調整することができる。SiC基板と金属の間にオーミック接触を実現するグラフェンの層数は単層に限定されていない。
When a part of the surface of the SiC substrate is covered with a protective layer and etched, the vicinity of the surface of the SiC substrate in a range not covered with the protective layer is etched to form a recess. On the side surface of the recess, the boundary between the SiC substrate covered with the protective layer and the protective layer is exposed. When the boundary is exposed, etching proceeds from the boundary to the protective layer and the SiC substrate along the interface. In the vicinity of the exposed boundary, SiC in contact with the protective layer is etched, and a gap is formed between the protective layer and the SiC substrate. The interval is the largest on the side surface of the recess and decreases as the distance from the side surface increases. On the surface of the SiC substrate, a range in close contact with the protective layer, a range in which a gap is formed between the protective layer, a side surface of the recess, and a bottom surface of the recess are formed. The surface of the SiC substrate in a range where a gap is formed with the protective layer is inclined with respect to the surface of the SiC substrate in a range in close contact with the protective layer.
When the protective layer is removed and heated when the surface is formed, Si sublimates from the surface of the SiC substrate. At that time, graphene growth nuclei are formed on the surface of the SiC substrate, and graphene grows along the surface of the SiC substrate from the growth nuclei. In the above method, a heat treatment is performed by forming an inclined surface that is inclined with respect to the surface of the SiC substrate in a range in close contact with the protective layer. In this case, graphene growth nuclei are formed on the inclined surface. Graphene spreads from the inclined surface toward the surface of the SiC substrate in the range in close contact with the protective layer. The surface of the SiC substrate that is in close contact with the protective layer is covered with graphene. On the other hand, since a large angle exists between the inclined surface and the side surface of the recess, graphene hardly extends on the side surface and the bottom surface of the recess. When the inclined surface of SiC is observed microscopically, it is formed by a step of SiC crystal. Non-Patent Document 1 reports that the growth nuclei of graphene grow in steps, and the graphene spreads from there. If the metal layer is formed after the heat treatment, the metal and SiC are in ohmic contact in the range where the graphene is grown. If the formation range of the metal layer to be brought into ohmic contact is covered with a protective layer, the metal layer and the SiC substrate can be brought into ohmic contact. The number of steps required for generating graphene is smaller than the number of steps required for generating silicide.
The graphene referred to in this specification is not limited to a single layer. As disclosed in Non-Patent Document 1, the number of graphene layers generated by the heat treatment temperature can be adjusted. The number of graphene layers that realize ohmic contact between the SiC substrate and the metal is not limited to a single layer.

SiC基板の表面に形成された酸化層を前記保護層とすることができる。その場合は、
SiC基板の表面の全域にCVD法によって酸化層を形成する。次に、ホトレジストを利用して酸化層を残存させたい範囲をレジスト層で被覆する。その状態で、酸化層をエッチングする。するとレジスト層で覆われていなかった酸化層がエッチングされ、SiC基板の表面の一部を被覆する酸化層が形成される。その酸化層を保護層にしてSiC基板をエッチングする。レジスト層ではSiC基板のエッチング範囲を決める保護層とならない場合には、酸化層を保護層にしてエッチングすることができる。
An oxide layer formed on the surface of the SiC substrate can be used as the protective layer. In that case,
An oxide layer is formed over the entire surface of the SiC substrate by a CVD method. Next, the resist layer is used to cover a region where the oxide layer is desired to remain using a photoresist. In this state, the oxide layer is etched. Then, the oxide layer not covered with the resist layer is etched, and an oxide layer covering a part of the surface of the SiC substrate is formed. The SiC substrate is etched using the oxide layer as a protective layer. When the resist layer does not serve as a protective layer that determines the etching range of the SiC substrate, it can be etched using the oxide layer as a protective layer.

酸化層をエッチングする際に、酸化層のみならずSiCまでエッチングするエッチャント等を用いることができる。この場合は、レジスト層で覆われていなかった酸化層がエッチングされた後もエッチングを継続すると(オーバーエッチングすると)、SiC基板の表面近傍がエッチングされていく。レジスト層で覆われていた範囲では、残存した酸化層によってSiC基板が被覆されている状態を維持しながら、レジスト層で覆われていなかった範囲ではSiC基板をエッチングすることができ、前記の凹所を形成することができる。   When etching the oxide layer, an etchant or the like that etches not only the oxide layer but also SiC can be used. In this case, when the etching is continued even after the oxide layer not covered with the resist layer is etched (over-etching), the vicinity of the surface of the SiC substrate is etched. In the range covered with the resist layer, the SiC substrate can be etched in the range not covered with the resist layer while maintaining the state where the SiC substrate is covered with the remaining oxide layer. Can be formed.

グラフェン層が形成されたSiC基板の表面に金属層を形成すると、その金属層がSiC基板とオーミック接触する電極層となる。SiC基板を利用する半導体装置を製造することができる。
上記方法で製造される半導体装置自体も新規である。その半導体装置は、SiC基板の表面に凹凸が形成されており、凸部を断面視したときの頂点近傍に凸部表面と凹部表面の双方に対して傾斜する傾斜面が形成されており、傾斜面と凸部表面がグラフェンで被覆されており、凹部表面はグラフェンで被覆されておらず、グラフェンの表面が金属層で被覆されているという特徴を備えている。
When a metal layer is formed on the surface of the SiC substrate on which the graphene layer is formed, the metal layer becomes an electrode layer in ohmic contact with the SiC substrate. A semiconductor device using a SiC substrate can be manufactured.
The semiconductor device itself manufactured by the above method is also novel. In the semiconductor device, irregularities are formed on the surface of the SiC substrate, and an inclined surface that is inclined with respect to both the convex surface and the concave surface is formed near the apex when the convex portion is viewed in cross section. The surface and the convex surface are coated with graphene, the concave surface is not coated with graphene, and the graphene surface is coated with a metal layer.

実施例の半導体装置の製造工程の第1段階を示す図。The figure which shows the 1st step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第2段階を示す図。The figure which shows the 2nd step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第3段階を示す図。The figure which shows the 3rd step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第4段階を示す図。The figure which shows the 4th step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第5段階を示す図。The figure which shows the 5th step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第6段階を示す図。The figure which shows the 6th step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第7段階を示す図。The figure which shows the 7th step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第8段階を示す図。The figure which shows the 8th step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第9段階を示す図。The figure which shows the 9th step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第10段階を示す図。The figure which shows the 10th step of the manufacturing process of the semiconductor device of an Example. 実施例の半導体装置の製造工程の第11段階を示す図。The figure which shows the 11th step of the manufacturing process of the semiconductor device of an Example. グラフェンの成長過程の第1段階を示す図。The figure which shows the 1st step of the growth process of graphene. グラフェンの成長過程の第2段階を示す図。The figure which shows the 2nd step of the growth process of a graphene. グラフェンの成長過程の第3段階を示す図。The figure which shows the 3rd step of the growth process of a graphene.

以下、本明細書で開示する技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
(第1特徴)p型のSiC領域の表面にグラフェンを成長させ、n型のSiC領域の表面にシリサイドを成長させる。
The features of the technology disclosed in this specification will be summarized below. The items described below have technical usefulness independently.
(First Feature) Graphene is grown on the surface of the p-type SiC region, and silicide is grown on the surface of the n-type SiC region.

図11は、実施例の半導体装置2の断面図を示している。半導体装置2は、MOSとして機能し、半導体基板16の表面に形成されている表面電極4と、半導体基板16の裏面に形成されている裏面電極18と、n型のソース領域22と、p-型のボディ領域10と、n-型のドリフト領域12と、n型のドレイン領域14と、トレンチゲート電極24と、ゲート絶縁層26と、p型のボディコンタクト領域8と、層間絶縁層28を備えている。p型のボディコンタクト領域8の表面はグラフェン6で覆われており、ボディコンタクト領域8と表面電極4がオーミック接触する。n型のソース領域22の表面にはチタンシリサイド20が形成されており、ソース領域22と表面電極4がオーミック接触する。n型のドレイン領域14の裏面にチタンシリサイド17が形成されており、ドレイン領域14と裏面電極18がオーミック接触する。層間絶縁層28が、表面電極4とトレンチゲート電極24を絶縁している。 FIG. 11 shows a cross-sectional view of the semiconductor device 2 of the embodiment. The semiconductor device 2 functions as a MOS, and includes a front surface electrode 4 formed on the surface of the semiconductor substrate 16, a back surface electrode 18 formed on the back surface of the semiconductor substrate 16, an n + type source region 22, and p Type body region 10, n type drift region 12, n + type drain region 14, trench gate electrode 24, gate insulating layer 26, p + type body contact region 8, and interlayer insulation Layer 28 is provided. The surface of the p + -type body contact region 8 is covered with graphene 6, and the body contact region 8 and the surface electrode 4 are in ohmic contact. Titanium silicide 20 is formed on the surface of the n + -type source region 22, and the source region 22 and the surface electrode 4 are in ohmic contact. A titanium silicide 17 is formed on the back surface of the n + -type drain region 14, and the drain region 14 and the back electrode 18 are in ohmic contact. An interlayer insulating layer 28 insulates the surface electrode 4 and the trench gate electrode 24.

トレンチゲート電極24に電圧を加えないと、n型のソース領域22とn-型のドリフト領域12がp-型のボディ領域10で分離され、表面電極4と裏面電極18の間が高抵抗となる。トレンチゲート電極24に電圧を加えると、n型のソース領域22とn-型のドリフト領域12を分離しているp-型のボディ領域10に反転層が形成され、表面電極4と裏面電極18の間が低抵抗となる。半導体装置2はMOSとして機能する。 If no voltage is applied to the trench gate electrode 24, the n + -type source region 22 and the n -type drift region 12 are separated by the p -type body region 10, and the resistance between the front electrode 4 and the back electrode 18 is high. It becomes. When a voltage is applied to the trench gate electrode 24, an inversion layer is formed in the p type body region 10 separating the n + type source region 22 and the n type drift region 12, and the front electrode 4 and the back electrode Between 18 is low resistance. The semiconductor device 2 functions as a MOS.

図1〜図10は、製造工程を示している。図1は、n-型のSiC半導体基板16の上表面からp型不純物を注入してP-型ボディ領域10を形成した段階を示している。
図2は、ボディコンタクト領域の形成範囲以外の表面をレジスト層30で被覆し、p型不純物を注入してp型のボディコンタクト領域8を形成した段階を示している。
図3は、レジスト層30(図2参照)を除去し、SiC半導体基板16の上表面にCVD法によって酸化層32を形成し、p型のボディコンタクト領域8の形成範囲に、レジスト層34を形成した段階を示している。
図4は、レジスト層34を保護層として酸化層32をエッチングした段階を示している。レジスト層34で被覆されていなかった範囲では、酸化層32が除去され、レジスト層34で被覆されている範囲では、酸化層32が残存する。図4では、残存した酸化層を参照番号32aで示している。図4に至るまでの間に、レジスト層34は薄くなる。図4では、薄くなったレジスト層34を参照番号34aで示している。
1 to 10 show the manufacturing process. FIG. 1 shows a stage in which a p - type body region 10 is formed by implanting p-type impurities from the upper surface of the n -type SiC semiconductor substrate 16.
FIG. 2 shows a stage where a surface other than the formation range of the body contact region is covered with a resist layer 30 and p type impurities are implanted to form a p + type body contact region 8.
In FIG. 3, the resist layer 30 (see FIG. 2) is removed, an oxide layer 32 is formed on the upper surface of the SiC semiconductor substrate 16 by the CVD method, and the resist layer 34 is formed within the formation range of the p + -type body contact region 8. The stage in which is formed is shown.
FIG. 4 shows a stage where the oxide layer 32 is etched using the resist layer 34 as a protective layer. In a range not covered with the resist layer 34, the oxide layer 32 is removed, and in a range covered with the resist layer 34, the oxide layer 32 remains. In FIG. 4, the remaining oxide layer is indicated by reference numeral 32a. Until reaching FIG. 4, the resist layer 34 becomes thin. In FIG. 4, the thinned resist layer 34 is indicated by reference numeral 34a.

本実施例では、図4の状態となった以降もエッチングを続ける(オーバーエッチングする)。図5の矢印36に示すように、ボディコンタクト領域8以外では、SiC半導体基板16の表面近傍がエッチングされ、凹所40が形成される。本実施例では、図5の状態に至る過程で、レジスト層34aが除去され、それ以降は、酸化層32aが保護層となって半導体基板16のエッチングが進行する。
凹所40の側面40aに、保護層32aと半導体基板16の境界が露出する。境界が露出した後もエッチングを継続すると、その境界から保護層32aとSiC基板16の界面に沿ってエッチングが進行する。露出した境界の近傍では、保護層32aに接していたSiCがエッチングされて、保護層32aとSiC基板16の間に間隙38が形成されていく。その間隔は、前記凹所40の側面40aにおいて最も大きく、側面40aから離れるほど(間隙38に深く侵入するほど)狭くなる。SiC基板16の表面には、保護層32aに密着する面42が形成されている範囲Aと、保護層32aとの間に間隙38が形成されている範囲Bと、凹所40の側面40aが延びている範囲Cと、前記凹所40の底面44が形成されている範囲Dが形成される。保護層32aとの間に間隙38が形成されている範囲BのSiC基板16の表面39は、保護層32aに密着する範囲AのSiC基板16の表面42に対して傾斜している。
In this embodiment, the etching is continued (over-etched) even after the state shown in FIG. As shown by an arrow 36 in FIG. 5, except for the body contact region 8, the vicinity of the surface of the SiC semiconductor substrate 16 is etched to form a recess 40. In this embodiment, the resist layer 34a is removed in the process of reaching the state of FIG. 5, and thereafter, the etching of the semiconductor substrate 16 proceeds with the oxide layer 32a serving as a protective layer.
The boundary between the protective layer 32 a and the semiconductor substrate 16 is exposed at the side surface 40 a of the recess 40. If the etching is continued even after the boundary is exposed, the etching proceeds along the interface between the protective layer 32a and the SiC substrate 16 from the boundary. In the vicinity of the exposed boundary, SiC in contact with the protective layer 32 a is etched, and a gap 38 is formed between the protective layer 32 a and the SiC substrate 16. The interval is the largest on the side surface 40a of the recess 40, and becomes narrower as the distance from the side surface 40a increases (the deeper the gap 38 is entered). On the surface of the SiC substrate 16, there are a range A in which a surface 42 in close contact with the protective layer 32 a is formed, a range B in which a gap 38 is formed between the protective layer 32 a, and a side surface 40 a of the recess 40. An extending range C and a range D in which the bottom surface 44 of the recess 40 is formed are formed. The surface 39 of the SiC substrate 16 in the range B in which the gap 38 is formed between the protective layer 32a and the surface 42 of the SiC substrate 16 in the range A in close contact with the protective layer 32a.

図6は、保護層32aごしにn型不純物を注入してソース領域22を形成した段階を示している。
図7は、ソース領域22を形成した後に保護層32aを除去し(その段階では、上記の範囲A,B,C,Dがすでに形成されている)、SiC基板16を加熱した段階を示している。SiCからSiが昇華する温度まで加熱すると、SiC基板16の表面からSiが昇華していく。
表面42と44は、SiCが結晶成長していく際の結晶面であり、グラフェンが成長しづらい。側面40aもまた、グラフェンが成長しづらい。それに対して、結晶成長面42,44に対して傾斜する傾斜面39ではグラフェンが成長しやすい。その詳細は、非特許文献1に開示されている。
図12〜14はグラフェン成長過程を模式的に示している。SiCからSiが昇華していくと、残ったCがグラフェン核を形成する。そのグラフェン核は、結晶成長面42でなく、それに対して傾斜する面39上に形成される。図12は、傾斜面39上にグラフェン核6a,6bが形成された段階を模式的に示している。
FIG. 6 shows a stage in which the source region 22 is formed by implanting an n-type impurity through the protective layer 32a.
FIG. 7 shows a stage in which the protective layer 32a is removed after the source region 22 is formed (the above ranges A, B, C, and D are already formed), and the SiC substrate 16 is heated. Yes. When heating from SiC to a temperature at which Si sublimes, Si sublimates from the surface of SiC substrate 16.
The surfaces 42 and 44 are crystal planes when SiC is crystal-grown, and graphene is difficult to grow. Also on the side surface 40a, graphene is difficult to grow. On the other hand, graphene tends to grow on the inclined surface 39 inclined with respect to the crystal growth surfaces 42 and 44. The details are disclosed in Non-Patent Document 1.
12 to 14 schematically show the graphene growth process. As Si sublimates from SiC, the remaining C forms graphene nuclei. The graphene nucleus is formed not on the crystal growth surface 42 but on a surface 39 inclined with respect to the crystal growth surface 42. FIG. 12 schematically shows a stage in which the graphene nuclei 6 a and 6 b are formed on the inclined surface 39.

グラフェン核6a,6bが成長すると、そのグラフェン核6a、6bからSiCの表面に沿ってグラフェンが成長する。図13に示すように、傾斜面39となす角が小さな面42では、グラフェンが成長する。矢印46は、グラフェンの成長方向を示している。その結果、図14に示すように、表面42の全域にグラフェンが成長する。
それに対して、傾斜面39と側面40aは大きな角度で接している。傾斜面39で成長し始めたグラフェンは、側面40aの側には伸びにくい。図14に示すように、表面42の全域がグラフェン6で覆われ、側面40aにはグラフェンが成長しない関係を得ることができる。図7は、上記の段階を示している。
非特許文献1に記載されているように、熱処理温度によって生成するグラフェンの層数が決定される。グラフェンの層数が管理されると、電極とSiC間の接触抵抗が安定化する。熱処理温度を管理することで、接触抵抗が管理された半導体装置を量産することができる。本実施例では、SiC基板16を1350℃に加熱する。その結果、2層グラフェンが安定的に得られる。
When the graphene nuclei 6a and 6b grow, graphene grows along the surface of SiC from the graphene nuclei 6a and 6b. As shown in FIG. 13, graphene grows on the surface 42 having a small angle with the inclined surface 39. An arrow 46 indicates the growth direction of graphene. As a result, as shown in FIG. 14, graphene grows over the entire surface 42.
In contrast, the inclined surface 39 and the side surface 40a are in contact with each other at a large angle. The graphene that has begun to grow on the inclined surface 39 is difficult to extend toward the side surface 40a. As shown in FIG. 14, the entire surface 42 is covered with the graphene 6, and a relationship in which graphene does not grow on the side surface 40 a can be obtained. FIG. 7 shows the above steps.
As described in Non-Patent Document 1, the number of graphene layers generated is determined by the heat treatment temperature. When the number of graphene layers is controlled, the contact resistance between the electrode and SiC is stabilized. By managing the heat treatment temperature, it is possible to mass-produce semiconductor devices with controlled contact resistance. In this embodiment, the SiC substrate 16 is heated to 1350 ° C. As a result, bilayer graphene can be obtained stably.

図8は、ソース領域22の中央にトレンチを形成し、トレンチの側面と底面にゲート絶縁層を26を形成し、その内部に導体を充填してゲート電極24を形成した段階を示している。
図9は、トレンチの両サイドに残ったn型ソース領域22の上面にチタンシリサイド層
20を形成した段階を示す。
図10は、層間絶縁層28を形成し、基板16の裏面から不純物を注入してドレイン領域14を作り、ドレイン領域14の裏面にチタンシリサイド層17を形成した段階を示す。
図11は、表面電極4と裏面電極18を形成した段階を示し、MOS半導体装置2が完成した段階を示す。表面電極4はグラフェン6を介してp型ボディコンタクト領域8にオーミック接触し、チタンシリサイド層20を介してソース領域22にオーミック接触する。裏面電極18はチタンシリサイド層17を介してドレイン領域14にオーミック接触する。
上記の実施例によると、n型のSiCに対してはグラフェン6を利用して金属をオーミック接触させ、p型のSiCに対してはシリサイドを利用して金属をオーミック接触させる。n型のSiCに対してシリサイドを形成しなくてもよいことから、必要工程数が少なくてすむ。少ない工程数で、表面電極4をSiC基板16にオーミック接触させることができる。
FIG. 8 shows a stage in which a trench is formed in the center of the source region 22, a gate insulating layer 26 is formed on the side and bottom surfaces of the trench, and a gate electrode 24 is formed by filling a conductor therein.
FIG. 9 shows a stage in which the titanium silicide layer 20 is formed on the upper surface of the n-type source region 22 remaining on both sides of the trench.
FIG. 10 shows a stage in which the interlayer insulating layer 28 is formed, impurities are implanted from the back surface of the substrate 16 to form the drain region 14, and the titanium silicide layer 17 is formed on the back surface of the drain region 14.
FIG. 11 shows a stage where the front electrode 4 and the back electrode 18 are formed, and shows a stage where the MOS semiconductor device 2 is completed. The surface electrode 4 is in ohmic contact with the p-type body contact region 8 through the graphene 6 and is in ohmic contact with the source region 22 through the titanium silicide layer 20. The back electrode 18 is in ohmic contact with the drain region 14 through the titanium silicide layer 17.
According to the above-described embodiment, metal is ohmic contacted with n-type SiC using graphene 6 and metal is ohmic contacted with p-type SiC using silicide. Since it is not necessary to form silicide for n-type SiC, the number of necessary steps can be reduced. The surface electrode 4 can be brought into ohmic contact with the SiC substrate 16 with a small number of steps.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

2:半導体装置(MOS)
4:表面電極
6:グラフェン
8:ボディコンタクト領域
10:ボディ領域
12:ドリフト領域
14:ドレイン領域
16:SiC基板
17:チタンシリサイド層
18:裏面電極
20:チタンシリサイド層
22:ソース領域
24:ゲート電極
26:ゲート絶縁層
28:層間絶縁層
30:レジスト層
32:酸化層
34:レジスト層
36:オーバ−エッチングを現わす矢印
38:間隙
39:傾斜面
40:凹所
40a:側面
42:保護層と密着する面
44:底面
46:成長方向
2: Semiconductor device (MOS)
4: Front electrode 6: Graphene 8: Body contact region 10: Body region 12: Drift region 14: Drain region 16: SiC substrate 17: Titanium silicide layer 18: Back electrode 20: Titanium silicide layer 22: Source region 24: Gate electrode 26: gate insulating layer 28: interlayer insulating layer 30: resist layer 32: oxide layer 34: resist layer 36: over-etching arrow 38: gap 39: inclined surface 40: recess 40a: side surface 42: protective layer Contact surface 44: Bottom surface 46: Growth direction

Claims (5)

SiC基板の表面の一部を保護層で被覆する被覆工程と、
前記保護層で被覆されていない範囲の前記SiC基板の表面近傍をエッチングするエッチング工程と、
前記保護層を除去する除去工程と、
SiCに含まれるSiが昇華する温度に前記SiC基板を加熱する加熱工程を備えており、
前記エッチング工程において、前記保護層と前記SiC基板の積層構造の側面から前記保護層と前記SiC基板の界面に沿ってエッチングが進行して前記界面に対して傾斜する傾斜面が形成され、
前記加熱工程において、前記傾斜面でグラフェンが成長し、次いで、前記保護層で被覆されていた範囲の前記SiC基板の表面にグラフェンが成長することを特徴とするグラフェン生成方法。
A coating step of coating a part of the surface of the SiC substrate with a protective layer;
An etching step of etching the vicinity of the surface of the SiC substrate in a range not covered with the protective layer;
A removing step of removing the protective layer;
A heating step of heating the SiC substrate to a temperature at which Si contained in SiC sublimes;
In the etching step, etching proceeds from the side surface of the laminated structure of the protective layer and the SiC substrate along the interface between the protective layer and the SiC substrate to form an inclined surface that is inclined with respect to the interface.
In the heating step, graphene grows on the inclined surface, and then graphene grows on the surface of the SiC substrate in a range covered with the protective layer.
前記SiC基板の表面に形成された酸化層で前記保護層を形成することを特徴とする請求項1のグラフェン生成方法。   The graphene generation method according to claim 1, wherein the protective layer is formed of an oxide layer formed on a surface of the SiC substrate. SiC基板の表面の一部を保護層で被覆する被覆工程と、
前記保護層で被覆されていない範囲の前記SiC基板の表面近傍をエッチングするエッチング工程と、
前記保護層を除去する除去工程と、
SiCに含まれるSiが昇華する温度に前記SiC基板を加熱する加熱工程と、
前記加熱工程後の前記SiC基板の表面に金属層を形成する金属層形成工程を備えており、
前記エッチング工程において、前記保護層と前記SiC基板の積層構造の側面から前記保護層と前記SiC基板の界面に沿ってエッチングが進行して前記界面に対して傾斜する傾斜面が形成され、
前記加熱工程において、前記傾斜面でグラフェンが成長し、次いで、前記保護層で被覆されていた範囲の前記SiC基板の表面にグラフェンが成長し、
前記金属層形成工程において、前記グラフェンを介して前記SiC基板に対向する電極層が生成することを特徴とする半導体装置の製造方法。
A coating step of coating a part of the surface of the SiC substrate with a protective layer;
An etching step of etching the vicinity of the surface of the SiC substrate in a range not covered with the protective layer;
A removing step of removing the protective layer;
A heating step of heating the SiC substrate to a temperature at which Si contained in SiC sublimes;
A metal layer forming step of forming a metal layer on the surface of the SiC substrate after the heating step;
In the etching step, etching proceeds from the side surface of the laminated structure of the protective layer and the SiC substrate along the interface between the protective layer and the SiC substrate to form an inclined surface that is inclined with respect to the interface.
In the heating step, graphene grows on the inclined surface, and then graphene grows on the surface of the SiC substrate in a range covered with the protective layer,
In the metal layer forming step, an electrode layer facing the SiC substrate is generated through the graphene, and a method for manufacturing a semiconductor device is provided.
SiC基板の表面に凹凸が形成されており、
凸部を断面視したときの頂点に、凸部表面と凹部表面の双方に対して傾斜する傾斜面が形成されており、
前記傾斜面と前記凸部表面がグラフェンで被覆されており、
前記凹部表面がグラフェンで被覆されておらず、
前記グラフェンの表面が金属層で被覆されている半導体装置。
Concavities and convexities are formed on the surface of the SiC substrate,
An inclined surface that is inclined with respect to both the convex surface and the concave surface is formed at the apex when the convex portion is viewed in cross section,
The inclined surface and the convex surface are covered with graphene,
The concave surface is not coated with graphene,
A semiconductor device in which a surface of the graphene is covered with a metal layer.
p型の凸部表面がグラフェンで覆われ、n型の凹部表面がシリサイドで覆われていることを特徴とする請求項4の半導体装置。  5. The semiconductor device according to claim 4, wherein the surface of the p-type convex portion is covered with graphene and the surface of the n-type concave portion is covered with silicide.
JP2014023875A 2014-02-10 2014-02-10 Semiconductor device using SiC substrate and method for manufacturing the same Active JP6135537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023875A JP6135537B2 (en) 2014-02-10 2014-02-10 Semiconductor device using SiC substrate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023875A JP6135537B2 (en) 2014-02-10 2014-02-10 Semiconductor device using SiC substrate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2015153789A JP2015153789A (en) 2015-08-24
JP6135537B2 true JP6135537B2 (en) 2017-05-31

Family

ID=53895783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023875A Active JP6135537B2 (en) 2014-02-10 2014-02-10 Semiconductor device using SiC substrate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6135537B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9917170B2 (en) 2016-04-22 2018-03-13 Infineon Technologies Ag Carbon based contact structure for silicon carbide device technical field
JP6830390B2 (en) * 2017-03-28 2021-02-17 エイブリック株式会社 Semiconductor device
CN108793057A (en) * 2018-07-06 2018-11-13 江苏心磁超导体有限公司 Silicon carbide-based graphene superconduction TES devices and preparation method thereof
CN110137076A (en) * 2019-05-30 2019-08-16 深圳爱仕特科技有限公司 Novel SiC power device high annealing protective film and preparation method thereof
IT202000004696A1 (en) 2020-03-05 2021-09-05 St Microelectronics Srl MANUFACTURING METHOD OF AN ELECTRONIC DEVICE IN SiC WITH REDUCED HANDLING PHASES, AND ELECTRONIC DEVICE IN SiC
IT202000008167A1 (en) * 2020-04-17 2021-10-17 St Microelectronics Srl DRUG ACTIVATION AND FORMATION OF OHMIC CONTACT IN AN ELECTRONIC DEVICE IN SIC, AND ELECTRONIC DEVICE IN SIC

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071281A (en) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2015153789A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6135537B2 (en) Semiconductor device using SiC substrate and method for manufacturing the same
TWI623102B (en) Semiconductor device and method for manufacturing the same
JP6193163B2 (en) Insulated gate semiconductor device
WO2013073216A1 (en) Silicon carbide substrate, semiconductor device and methods for producing same
WO2013011740A1 (en) Method for manufacturing semiconductor device
JP2015060859A (en) Silicon carbide semiconductor device and method of manufacturing the same
US20160190446A1 (en) Method of forming a graphene structure
JP2011134809A (en) Method of manufacturing semiconductor device
JP2012160485A (en) Semiconductor device and manufacturing method of the same
JP5961563B2 (en) Manufacturing method of semiconductor device
JP5870672B2 (en) Semiconductor device
JP5880311B2 (en) Silicon carbide semiconductor device
JP2016082096A (en) Insulated gate switching element and method for manufacturing the same
JP5680457B2 (en) Diode manufacturing method
JP6035763B2 (en) Method for forming gate oxide film and method for manufacturing silicon carbide semiconductor device
JP2015065318A (en) Method for manufacturing silicon carbide semiconductor device
JP2017117963A (en) Semiconductor device manufacturing method
JP5643140B2 (en) Diode manufacturing method
JP2015153783A (en) Semiconductor device and semiconductor device manufacturing method
WO2015045653A1 (en) Silicon carbide semiconductor device manufacturing method
JP6092680B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN102222619B (en) Semiconductor device manufacturing method
JP6796311B2 (en) Manufacturing method of semiconductor devices
KR102422422B1 (en) Semiconductor device including graphene and method of manufacturing the semiconductor device
JP2016082099A (en) Method for manufacturing insulated gate switching element including trench gate electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R151 Written notification of patent or utility model registration

Ref document number: 6135537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250