JP6133661B2 - Heat source equipment - Google Patents

Heat source equipment Download PDF

Info

Publication number
JP6133661B2
JP6133661B2 JP2013075118A JP2013075118A JP6133661B2 JP 6133661 B2 JP6133661 B2 JP 6133661B2 JP 2013075118 A JP2013075118 A JP 2013075118A JP 2013075118 A JP2013075118 A JP 2013075118A JP 6133661 B2 JP6133661 B2 JP 6133661B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
passage
set temperature
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075118A
Other languages
Japanese (ja)
Other versions
JP2014199162A (en
Inventor
誠 寺内
誠 寺内
翼 内山
翼 内山
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2013075118A priority Critical patent/JP6133661B2/en
Publication of JP2014199162A publication Critical patent/JP2014199162A/en
Application granted granted Critical
Publication of JP6133661B2 publication Critical patent/JP6133661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

本発明は、貯湯槽と、貯湯槽から出湯される湯をさらに加熱する機能を備えた補助熱源装置とを備えた熱源装置に関するものである。   The present invention relates to a heat source device including a hot water storage tank and an auxiliary heat source device having a function of further heating hot water discharged from the hot water storage tank.

貯湯槽を備えた熱源装置が用いられており(例えば、特許文献1参照)、図3には、開発中の熱源装置が模式的なシステム構成図により示されている。同図において、貯湯槽2と出湯通路9とを備えた主熱源装置としてのタンクユニット4が、熱回収用通路3を介して燃料電池(FC)1と熱的に接続されている。燃料電池1は、例えば固体高分子型燃料電池(PEFC)等により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。   A heat source device having a hot water storage tank is used (see, for example, Patent Document 1), and FIG. 3 shows a heat source device under development by a schematic system configuration diagram. In the figure, a tank unit 4 as a main heat source device including a hot water tank 2 and a hot water discharge passage 9 is thermally connected to a fuel cell (FC) 1 via a heat recovery passage 3. The fuel cell 1 is formed of, for example, a polymer electrolyte fuel cell (PEFC) or the like, and reacts hydrogen extracted from fuel such as city gas with oxygen in the air by reverse reaction of water electrolysis. It is a power generation device that generates electricity.

熱回収用通路3は、燃料電池1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる通路であり、熱回収用通路3には、熱回収用通路3内に液体を循環させる図示されていないポンプが介設されている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して燃料電池1に導入して冷却水とし、この水を燃料電池1の発電時に生じる廃熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば60℃といった温度の湯として貯湯槽2に蓄積する。なお、熱回収用通路3には、三方弁6を介してバイパス通路7が設けられ、燃料電池1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに燃料電池1に戻すことができるように形成されている。   The heat recovery passage 3 is a passage that circulates liquid (here, hot water) between the fuel cell 1 and the hot water tank 2 as indicated by arrows A and A ′ in the figure. Is provided with a pump (not shown) for circulating the liquid in the heat recovery passage 3. Then, by driving the pump, the water in the hot water tank 2 is introduced into the fuel cell 1 through the heat recovery passage 3 as shown by an arrow A ′ in the figure to be cooling water, and this water is used when the fuel cell 1 generates power. After being heated by the generated waste heat, it passes through the heat recovery passage 3 as indicated by an arrow A in the figure, and accumulates in the hot water tank 2 as hot water having a temperature of 60 ° C., for example. The heat recovery passage 3 is provided with a bypass passage 7 through a three-way valve 6 so that the liquid flowing from the fuel cell 1 side to the hot water tank 2 side can be passed through the fuel cell without passing through the hot water tank 2 as necessary. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯水の温度を検出する貯湯槽内湯水温検出手段5が、貯湯槽2の上下方向に互いに間隔を介して複数(図3では5個)設けられている。なお、最上位に設けられている貯湯槽内湯水温検出手段5aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。   In the hot water tank 2, hot water temperature detecting means 5 in the hot water tank 2 for detecting the temperature of the hot water in the hot water tank 2 is provided in the hot water tank 2 or on the outer wall of the hot water tank 2 with a space therebetween in the vertical direction of the hot water tank 2. A plurality (five in FIG. 3) are provided. The hot water temperature detection means 5a in the hot water tank provided at the top is filled with hot water up to a position lower than the upper end of the hot water tank 2 by a predetermined set length, that is, for example, to the upper end of the hot water tank 2. The amount of hot water 20 liters less than that of the hot water is provided at the position of the hot water surface when the hot water tank 2 is introduced.

貯湯槽2の上部側に接続されている出湯通路9は、貯湯槽2で形成された湯を出湯する(送水する)通路と成しており、出湯通路9には、出湯通路9を通る湯(湯水)の温度を検出する貯湯槽出湯水温検出手段11と、出湯通路9を通して送水される湯の流量を(例えば弁開度により)調節する貯湯槽出湯水流量調節器としてのタンク湯水混合器12と、出湯通路9を通しての湯の送水の有無を弁の開閉により切り替える貯湯槽出側湯水電磁弁としてのタンク側電磁弁13とが介設されている。なお、同図には図示されていないが、貯湯槽2を備えた熱源装置には、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁が適宜の位置(例えば出湯通路9に接続された圧力逃がし用の通路等)に設けられている。   The hot water passage 9 connected to the upper side of the hot water storage tank 2 is a passage for discharging (watering) the hot water formed in the hot water storage tank 2, and the hot water passage 9 includes hot water passing through the hot water passage 9. A hot water tank outlet hot water temperature detecting means 11 for detecting the temperature of the hot water and a tank hot water mixer as a hot water tank outgoing hot water flow controller for adjusting the flow rate of hot water fed through the hot water passage 9 (for example, by valve opening). 12 and a tank-side solenoid valve 13 serving as a hot water tank outlet-side hot water electromagnetic valve for switching the presence or absence of hot water supply through the hot water passage 9 by opening and closing the valve. Although not shown in the figure, the heat source device having the hot water tank 2 has an overpressure relief valve for releasing the pressure to the outside when the pressure in the hot water tank 2 exceeds the allowable pressure. It is provided at an appropriate position (for example, a pressure relief passage connected to the hot water passage 9).

また、この熱源装置への給水通路8は給水通路8aと給水通路8bとに分岐され、一方側の給水通路8(8a)が貯湯槽2の下部側に接続されて、他方側の給水通路8(8b)は、合流部10で出湯通路9に合流するように形成されている。給水通路8bには、給水通路8bから合流部10側へ流れる水の量を(例えば弁開度により)可変するための給水量調節器としての水混合器14が介設されている。   Further, the water supply passage 8 to the heat source device is branched into a water supply passage 8a and a water supply passage 8b, one water supply passage 8 (8a) is connected to the lower side of the hot water tank 2, and the other water supply passage 8 is connected. (8b) is formed so as to merge into the hot water passage 9 at the merging portion 10. In the water supply passage 8b, a water mixer 14 is interposed as a water supply amount regulator for changing the amount of water flowing from the water supply passage 8b to the merging portion 10 (for example, depending on the valve opening).

合流部10には、補助熱源装置としての給湯器16の湯水導入側が、湯水導入通路15を介して接続されており、湯水導入通路15には混合湯水温検出手段としての混合サーミスタ28(28a,28b)が介設されている。給湯器16は、通水する水を例えば給湯バーナの燃焼熱により加熱する加熱手段としての給湯熱交換器17を備え、図の矢印Bに示されるように、貯湯槽2から出湯通路9を通して送水される(タンクユニット4から送水される)湯水を、図の矢印B”に示されるように、湯水導入通路15を介して給湯器16に導入して給湯熱交換器17で加熱する追い加熱の機能を有している。   A hot water introduction side of a water heater 16 as an auxiliary heat source device is connected to the junction 10 via a hot water introduction passage 15, and a mixed thermistor 28 (28 a, 28 a, 28) serving as a mixed hot water temperature detection means is connected to the hot water introduction passage 15. 28b) is interposed. The water heater 16 includes a hot water heat exchanger 17 as a heating means for heating the water to be passed by, for example, the combustion heat of the hot water burner, and supplies water from the hot water tank 2 through the hot water passage 9 as indicated by an arrow B in the figure. As shown by the arrow B ″ in the figure, the hot water to be supplied (supplied from the tank unit 4) is introduced into the hot water heater 16 through the hot water introduction passage 15 and heated by the hot water supply heat exchanger 17. It has a function.

この追い加熱機能により加熱された湯は、通路18と給湯通路19とを順に通って一つ以上の給湯先に給湯される。なお、同図には図示されていないが、給湯通路19の先端側には給湯栓が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯水が給水圧を受けて前記のように出湯通路9を通り、前記の如く、給水通路8bからの水と混合されたり、給湯器16により追い加熱されたりして給湯される。   Hot water heated by the additional heating function passes through the passage 18 and the hot water supply passage 19 in order, and is supplied to one or more hot water supply destinations. Although not shown in the figure, a hot water tap is provided at the front end side of the hot water passage 19, and the hot water stored in the hot water tank 2 is supplied with the feed water pressure by opening the hot water tap. As described above, the hot water is supplied by passing through the hot water supply passage 9 and being mixed with the water from the water supply passage 8b as described above or being additionally heated by the water heater 16.

なお、周知の如く、給湯器16には、給湯熱交換器17を加熱する給湯バーナ(ガスバーナ)や給湯バーナへの空気の給排気を行う燃焼ファン等の適宜の構成要素(図示せず)が設けられ、その構成要素を制御することにより前記追い加熱機能の動作が行われるものであるが、ガスバーナで給湯熱交換器17を加熱する給湯器16は、最小燃焼号数に対応する燃焼熱量より小さい燃焼熱量でガスバーナの燃焼(つまり、ガスバーナによる給湯熱交換器17の加熱)を行うことはできないものである。   As is well known, the water heater 16 includes appropriate components (not shown) such as a hot water burner (gas burner) for heating the hot water heat exchanger 17 and a combustion fan for supplying and exhausting air to and from the hot water burner. Although the operation of the additional heating function is performed by controlling the components, the hot water heater 16 for heating the hot water supply heat exchanger 17 with a gas burner is based on the amount of combustion heat corresponding to the minimum combustion number. The combustion of the gas burner (that is, heating of the hot water supply heat exchanger 17 by the gas burner) cannot be performed with a small amount of combustion heat.

なお、図3の図中、符号25は入水温度サーミスタ、符号26は燃料電池1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号27は貯湯槽2から燃料電池1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号29は給水流量センサ、符号50は減圧弁、符号30は給湯器16から浴槽31への注湯通路、符号32は暖房装置と給湯器16とを接続する暖房用通路、符号42は通路18と給湯通路19を通して給湯される給湯流量を検出する流量検出手段をそれぞれ示している。   In FIG. 3, reference numeral 25 denotes an incoming water temperature thermistor, reference numeral 26 denotes an FC high temperature thermistor for detecting hot water temperature introduced from the fuel cell 1 to the hot water tank 2, and reference numeral 27 denotes the hot water tank 2 to the fuel cell 1 side. Each of the FC low temperature thermistors for detecting the hot water temperature is shown. Reference numeral 29 is a water supply flow rate sensor, reference numeral 50 is a pressure reducing valve, reference numeral 30 is a pouring passage from the water heater 16 to the bathtub 31, and reference numeral 32 is a heating device and hot water supply. Reference numeral 42 denotes a heating passage for connecting the heater 16, and reference numeral 42 denotes a flow rate detecting means for detecting the flow rate of hot water supplied through the passage 18 and the hot water supply passage 19.

図4には、図3に示したシステム構成における配管および構成要素の一部を省略または破線で示したシステム構成図が示されており、図4に示されるように、前記通路18には分岐継手20を介して接続通路21の一端側が接続され、接続通路21の他端側は、熱回収用通路3において湯水を燃料電池1側から貯湯槽2側に通す通路の途中部に接続されている。また、熱回収用通路3において湯水を貯湯槽2側から燃料電池1側に通す通路の途中部と前記出湯通路9の先端側とを接続する接続通路22が設けられ、接続通路22には、湯水を循環させる循環ポンプ23と、水電磁弁24とが介設されている。   FIG. 4 shows a system configuration diagram in which some of the piping and components in the system configuration shown in FIG. 3 are omitted or shown by broken lines, and as shown in FIG. One end side of the connection passage 21 is connected via the joint 20, and the other end side of the connection passage 21 is connected to a middle portion of the passage through which the hot water passes from the fuel cell 1 side to the hot water tank 2 side in the heat recovery passage 3. Yes. In addition, a connection passage 22 is provided in the heat recovery passage 3 to connect a middle portion of the passage for passing hot water from the hot water storage tank 2 side to the fuel cell 1 side and the front end side of the hot water discharge passage 9. A circulation pump 23 for circulating hot water and a water solenoid valve 24 are interposed.

そして、通路18、接続通路21、熱回収用通路3のうちの通路3a、3b(接続通路21との接続部および接続通路22との接続部よりも貯湯槽2側の領域の一部)と、バイパス通路7、接続通路22、湯水導入通路15を有して、同図の矢印Cに示されるように湯水を循環させる湯水循環通路40が形成されている。水電磁弁24は、循環ポンプ23の駆動による湯水循環通路40への水の循環の有無を弁の開閉により切り替える電磁弁であり、水電磁弁24を開いた状態で循環ポンプ23を駆動させて湯水循環通路40を循環する湯水を、給湯器16が給湯熱交換器17により加熱する循環湯水加熱機能を有している。この循環湯水加熱機能の動作も、給湯器16の前記構成要素を制御することにより行われる。   Of the passage 18, the connection passage 21, and the heat recovery passage 3, the passages 3 a and 3 b (part of the region closer to the hot water tank 2 than the connection portion to the connection passage 21 and the connection portion to the connection passage 22) Further, a hot water circulation passage 40 that has the bypass passage 7, the connection passage 22, and the hot water introduction passage 15 and circulates the hot water as shown by an arrow C in the figure is formed. The water electromagnetic valve 24 is an electromagnetic valve that switches the presence or absence of water circulation to the hot water circulation passage 40 by driving the circulation pump 23 by opening and closing the valve. The water electromagnetic valve 24 is opened to drive the circulation pump 23. The hot water supply device 16 has a circulating hot water heating function in which the hot water supply device 16 heats the hot water circulating through the hot water circulation passage 40 by the hot water supply heat exchanger 17. The operation of the circulating hot water heating function is also performed by controlling the components of the water heater 16.

なお、図3、図4において、加熱により温められた湯水が主に通る通路部分にはドットを記しており、湯水循環通路40においては温められた湯水の温度が湯水循環通路40内を通るときに徐々に冷めていくが、湯水循環通路40のうち給湯器16の湯水導出側の通路18からバイパス通路7の入口までの領域にドットを記している。   3 and 4, dots are marked in the passage portion through which hot water heated mainly by heating passes, and in the hot water circulation passage 40, the temperature of the heated hot water passes through the hot water circulation passage 40. In the hot water circulation passage 40, dots are marked in the region from the hot water outlet side passage 18 of the hot water heater 16 to the inlet of the bypass passage 7.

また、図3、図4に示す熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器12を制御して出湯通路9から合流部10側に流れる湯水の流量を制御すると共に、水混合器14を制御して給水通路8bから合流部10側に流れる水の流量を制御し、合流部10で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。   Further, the heat source device shown in FIGS. 3 and 4 is provided with a control device (not shown). The control device controls the tank hot water / water mixer 12 to flow from the hot water passage 9 to the junction 10 side. In addition to controlling the flow rate of hot water, the water mixer 14 is controlled to control the flow rate of water flowing from the water supply passage 8b to the merge portion 10 so that mixed hot water having an appropriate temperature is formed at the merge portion 10. Mixing flow rate control means is provided.

このミキシング流量制御手段は、給湯停止時には例えばタンク側電磁弁13を閉じて出湯通路9から合流部10側に流れる湯(貯湯槽2からの出湯湯水)の流量がゼロとなる状態にする。また、給湯通路19の先端側に設けられている給湯栓が開かれると、ミキシング流量制御手段は、タンク湯水混合器12の制御により、図3の矢印Bに示されるように出湯通路9から合流部10側に流れる湯水の流量を調節すると共に、水混合器14の制御により、図3の矢印B’に示されるように給水通路8bから合流部10側に流れる水の流量を調節し、合流部10で形成される混合湯水の温度が例えば給湯設定温度と同じまたはその近傍に設定される混合設定温度になるようにする。   This mixing flow rate control means closes the tank side solenoid valve 13 when hot water supply is stopped, for example, so that the flow rate of hot water flowing from the hot water passage 9 to the junction 10 side (the hot water from the hot water storage tank 2) becomes zero. When the hot water tap provided at the front end side of the hot water supply passage 19 is opened, the mixing flow rate control means joins from the hot water supply passage 9 as shown by the arrow B in FIG. The flow rate of hot water flowing to the section 10 side is adjusted, and the flow rate of water flowing from the water supply passage 8b to the merge section 10 side is adjusted by the control of the water mixer 14 as shown by the arrow B ′ in FIG. The temperature of the mixed hot water formed in the section 10 is set to a mixed set temperature set to be the same as or close to the hot water supply set temperature, for example.

なお、貯湯槽2内に貯湯されている湯水には、例えば図5の模式図に示されるような温度の層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには燃料電池1の発電時に生じる廃熱によって加熱された高温Ta(例えば60℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。   Note that the hot water stored in the hot water tank 2 is formed with layers Wa, Wb, and Wc having temperatures as shown in the schematic diagram of FIG. (High temperature layer) Wa stores hot water of high temperature Ta (for example, 60 ° C.) heated by waste heat generated during power generation of the fuel cell 1, and a lower layer (low temperature layer) Wc of the hot water tank 2 stores a hot water tank. Water having the same temperature Tc (for example, 15 ° C.) as the temperature of the water supplied in 2 is stored, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from temperature Ta to temperature Tc. .

そこで、前記混合湯水の温度調節は、例えば層Waと層Wbとの境界が貯湯槽内湯水温検出手段5aの配設領域よりも下にあって、貯湯槽内湯水温検出手段5aの検出温度が給湯設定温度より例えば2℃高く設定される閾値(追い加熱基準温度)より高い温度のときには、まず、例えば貯湯槽出湯水温検出手段11の検出温度と、混合設定温度と、給湯流量と、入水温度サーミスタ25の検出温度と、これらの値に対応させて予め与えられている混合流量調節データに基づき、タンク湯水混合器12と水混合器14を制御することによって出湯通路9から合流部10側に流れる湯水の流量と給水通路8bから合流部10側に流れる水の流量とを調節するミキシング流量フィードフォワード制御を行う。   Therefore, the temperature adjustment of the mixed hot water is performed, for example, when the boundary between the layer Wa and the layer Wb is below the area where the hot water temperature detecting means 5a in the hot water tank is disposed, and the detected temperature of the hot water temperature detecting means 5a in the hot water tank is the hot water supply temperature. When the temperature is higher than a threshold value (following heating reference temperature) set, for example, 2 ° C. higher than the set temperature, first, for example, the detection temperature of the hot water tank tapping water temperature detecting means 11, the mixed set temperature, the hot water flow rate, and the incoming water temperature thermistor Based on the detected temperature of 25 and the mixing flow rate adjustment data given in advance corresponding to these values, the tank hot water mixer 12 and the water mixer 14 are controlled to flow from the hot water passage 9 to the junction 10 side. Mixing flow rate feedforward control is performed to adjust the flow rate of hot water and the flow rate of water flowing from the water supply passage 8b to the junction 10 side.

その後、混合サーミスタ28(28a,28b)の検出温度と混合設定温度との差に基づいて、混合サーミスタ28(28a,28b)の検出温度が混合設定温度になるように、タンク湯水混合器12と水混合器14を制御して出湯通路9から合流部10側に流れる湯水の流量と給水通路8bから合流部10側に流れる水の流量とを調節するミキシング流量フィードバック制御を行うことにより、合流部10で形成される混合湯水の温度調節を行う。   Then, based on the difference between the detected temperature of the mixed thermistor 28 (28a, 28b) and the set mixing temperature, the tank hot water / water mixer 12 is set so that the detected temperature of the mixed thermistor 28 (28a, 28b) becomes the mixed set temperature. By performing the mixing flow rate feedback control for controlling the water mixer 14 to adjust the flow rate of hot water flowing from the outlet hot water passage 9 to the merging portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merging portion 10 side, The temperature of the mixed hot water formed at 10 is adjusted.

なお、ミキシング流量制御手段は、前記ミシキシング流量フィードフォワード制御を行う代わりに、給湯開始時には、混合設定温度に対応させて、予め設定された流量の湯水が出湯通路9側からと給水通路8b側からそれぞれ合流部10に流れるように、タンク湯水混合器12と水混合器14を制御し(例えばタンク湯水混合器12と水混合器14の流量調節が、段階的に設定されている調節レベルのうちの混合比に対応するレベルを選択することにより行われる場合には、タンク湯水混合器12と水混合器14のレベルを混合比に対応させて合わせ)、その後、前記ミキシング流量フィードバック制御を行うようにしてもよい。また、ミキシング流量フィードフォワード制御を行わずにミキシング流量フィードバック制御のみを行うようにしてもよい。   The mixing flow rate control means, instead of performing the mixing flow rate feedforward control, at the start of hot water supply, hot water of a preset flow rate is supplied from the outlet hot water passage 9 side and from the water supply passage 8b side in accordance with the mixing set temperature. The tank hot water / water mixer 12 and the water mixer 14 are controlled so as to flow to the junction 10 respectively (for example, the flow rate adjustment of the tank hot water / water mixer 12 and the water mixer 14 is adjusted among the adjustment levels set in stages. If the level corresponding to the mixing ratio is selected, the levels of the tank hot water mixer 12 and the water mixer 14 are matched with the mixing ratio), and then the mixing flow rate feedback control is performed. It may be. Further, only the mixing flow rate feedback control may be performed without performing the mixing flow rate feedforward control.

そして、このようなキシング流量制御手段による制御によって、合流部10で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度)またはその近傍温度とされると、その混合湯水は、図3の矢印B”に示されるように、合流部10から湯水導入通路15を通して給湯器16に導入されるが、このとき、給湯器16において給湯熱交換器17による加熱は行われずに、通路18と給湯通路19を通して給湯先に給湯される。   When the temperature of the mixed hot water formed in the merging portion 10 is set to the mixed set temperature (for example, the same temperature as the hot water supply set temperature) or the vicinity thereof by the control by the kissing flow rate control means, the mixed hot water is 3, as shown by an arrow B ″ in FIG. 3, the hot water is introduced from the junction 10 through the hot water introduction passage 15 into the hot water heater 16. At this time, the hot water heater 16 is not heated by the hot water heat exchanger 17. Hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19.

一方、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下であり、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができない場合には、混合設定温度を、給湯設定温度から給湯器16のmin号数(最小燃焼号数)で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで下げる。そして、その混合湯水が給湯器16の前記追い加熱機能の動作によって給湯熱交換器17により加熱されて給湯設定温度の湯が作り出され、この湯が通路18と給湯通路19を通して給湯先に給湯される。   On the other hand, the detected temperature of the hot water temperature detecting means 5a in the hot water tank is below the threshold value, and hot water having a mixed set temperature set to a temperature equivalent to the hot water set temperature can be supplied only by the flow rate control by the mixing flow rate control means. If the temperature cannot be increased, the mixing set temperature is lowered to a value obtained by subtracting the temperature that rises when water at the hot water supply flow rate is heated by the min number (minimum combustion number) of the water heater 16 from the hot water supply set temperature. The mixed hot water is heated by the hot water supply heat exchanger 17 by the operation of the additional heating function of the hot water heater 16 to produce hot water having a hot water supply set temperature, and this hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19. The

図6には、貯湯槽2内の湯水の出湯による給湯の途中で貯湯槽2内の層Waの湯が無くなってしまったときの、ミキシング流量制御手段によるタンク湯水混合器12の弁開度の制御例と、給湯器16の燃焼熱量制御例と、これらの制御に伴う給湯温度がタイムチャートにより示されている。この制御例は、特許文献1に記載されているものであり、貯湯槽2内の層Waの湯が十分にある場合には(図のt、参照)、特性線aに示されるように、貯湯槽内湯水温検出手段5aの検出温度Tdは温度Taとなる。このとき、混合設定温度Tsが給湯設定温度Tqsと同じになるように設定されてミキシング流量制御手段による制御が行われ、実際の混合湯水の温度(混合サーミスタ28の検出温度Tmix)も、特性線bに示されるように、給湯設定温度Tqsとほぼ同じになる。 FIG. 6 shows the valve opening degree of the tank hot water mixer 12 by the mixing flow rate control means when the hot water of the layer Wa in the hot water storage tank 2 is exhausted during the hot water supply by the hot water discharge in the hot water storage tank 2. A control example, a combustion heat amount control example of the water heater 16, and a hot water temperature associated with these controls are shown in a time chart. This control example is described in Patent Document 1, and when the hot water of the layer Wa in the hot water tank 2 is sufficient (see t 0 in the figure), as indicated by the characteristic line a. The detected temperature Td of the hot water temperature detection means 5a in the hot water tank is the temperature Ta. At this time, the mixing set temperature Ts is set to be the same as the hot water supply setting temperature Tqs, and control is performed by the mixing flow rate control means, and the actual mixed hot water temperature (the detected temperature Tmix of the mixing thermistor 28) is also a characteristic line. As shown in b, it is substantially the same as the hot water supply set temperature Tqs.

また、貯湯槽2内の層Waの湯が無くなり、層Wbが貯湯槽内湯水温検出手段5aの位置に達すると(図のt1’参照)、特性線aに示されるように、貯湯槽内湯水温検出手段5aの検出温度Tdが低下し始めるが、貯湯槽内湯水温検出手段5aは、貯湯槽2の頂端より設定距離だけ下側に設けられているので、貯湯槽2から合流部10に流れる湯の温度は、特性線a’に示されるように高いまま(Ta)である。このときにも、混合設定温度Tsは給湯設定温度Tqsと同じになるように設定されて、ミキシング流量制御手段による制御が行われ、特性線bに示されるように、混合サーミスタ28の検出温度Tmixも、前記と同様に、給湯設定温度Tqsとほぼ同じになる。   When the hot water of the layer Wa in the hot water tank 2 runs out and the layer Wb reaches the position of the hot water temperature detecting means 5a in the hot water tank (see t1 ′ in the figure), the hot water temperature in the hot water tank is as shown by the characteristic line a. Although the detection temperature Td of the detection means 5a begins to decrease, the hot water temperature detection means 5a in the hot water tank is provided below the top end of the hot water tank 2 by a set distance, so hot water flowing from the hot water tank 2 to the junction 10 The temperature remains high (Ta) as shown by the characteristic line a ′. Also at this time, the mixing set temperature Ts is set to be the same as the hot water supply setting temperature Tqs and is controlled by the mixing flow rate control means, and as shown by the characteristic line b, the detected temperature Tmix of the mixing thermistor 28 is detected. Similarly to the above, it is substantially the same as the hot water supply set temperature Tqs.

その後、貯湯槽内湯水温検出手段5aの検出温度Tdがさらに低下して閾値に達した時点t1で、給湯器16による追い加熱動作を開始する(図6(c)の特性線d、参照)と共に、図6(b)の特性線cに示されるように、タンク湯水混合器12を介して出湯通路9側から合流部10に流れる混合湯水の流量を急速に減じ(特性線cに示されるようにタンク湯水混合器12の弁開度を急速に小さくし)、混合設定温度を式(1)に示すような混合設定温度Tsになるように設定する。つまり、給湯器16が最小燃焼号数の燃焼熱量(Qmin)で給湯流量(F)の湯を作ったときの温度分(ΔT=Qmin/F)だけ給湯設定温度(Tqs)より低くなるように、混合設定温度を一気に下降させ、その状態を維持する。   Thereafter, at the time t1 when the detected temperature Td of the hot water temperature detecting means 5a in the hot water tank further decreases and reaches the threshold value, the follow-up heating operation by the water heater 16 is started (see the characteristic line d in FIG. 6C). As shown by the characteristic line c in FIG. 6B, the flow rate of the mixed hot water flowing from the outlet hot water passage 9 side to the junction 10 through the tank hot water mixer 12 is rapidly reduced (as shown by the characteristic line c). The valve opening of the tank hot water / water mixer 12 is rapidly reduced), and the mixing set temperature is set to the mixing set temperature Ts as shown in the equation (1). That is, the hot water heater 16 becomes lower than the hot water supply set temperature (Tqs) by a temperature (ΔT = Qmin / F) when hot water having a hot water supply flow rate (F) is made with the combustion heat quantity (Qmin) of the minimum combustion number. Then, the mixing set temperature is lowered at once and the state is maintained.

Ts=Tqs−Qmin/F・・・(1) Ts = Tqs−Qmin / F (1)

なお、貯湯槽内湯水温検出手段5aは、前記の如く、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置に設けられているので、貯湯槽内湯水温検出手段5aの検出温度Tdが閾値に達した時点t1においても、貯湯槽2内には温度Taの湯が残っている。そのため、ミキシング流量制御手段により形成される混合湯水の温度Tminは、給湯設定温度Tqsより前記温度差(ΔT=Qmin/F)だけ低い混合設定温度Tsに一定に維持され、この温度差分を給湯器16により加熱する(温度差分を給湯器16により補う)ことにより、特性線eに示されるように、給湯温度(給湯器16の出口側温度)は給湯設定温度に安定に維持される。 Since the hot water temperature detecting means 5a in the hot water tank is provided at a position lower than the upper end of the hot water tank 2 by a predetermined length as described above, the hot water temperature detecting means 5a in the hot water tank is detected. even at the time t1 the temperature Td reaches the threshold value, and amount of hot temperature Ta is in the hot water storage tank 2. For this reason, the temperature Tmin of the mixed hot water formed by the mixing flow rate control means is kept constant at the mixed set temperature Ts that is lower than the hot water set temperature Tqs by the temperature difference (ΔT = Qmin / F). When heated by 16 (a temperature difference is compensated by the hot water heater 16), the hot water temperature (the outlet side temperature of the water heater 16) is stably maintained at the hot water set temperature as shown by the characteristic line e.

そして、貯湯槽2の湯が消費されて層Wbの湯が貯湯槽2から出てくると(図のt2の時点になると)、出湯通路9側から合流部10に流れる湯水温が低下するので、ミキシング流量制御手段の制御によってタンク湯水混合器12を介して出湯通路9側から合流部10に流れる混合湯水の流量を変えなければ(特性線c、参照)合流部10で形成される混合湯水温は特性線bに示されるように低下することになる。そこで、特性線dに示されるように、その分だけ給湯器16の燃焼熱量を増加させて混合湯水を加熱し、前記温度低下分を補うことにより給湯温度を給湯設定温度に安定に維持する(図のt2〜t3の期間の特性線d、参照)。   When the hot water in the hot water storage tank 2 is consumed and the hot water in the layer Wb comes out of the hot water storage tank 2 (at time t2 in the figure), the temperature of the hot water flowing from the hot water passage 9 to the junction 10 decreases. If the flow rate of the mixed hot water flowing from the outlet hot water passage 9 side to the junction 10 through the tank hot water mixer 12 is not changed by the control of the mixing flow rate control means (see characteristic line c), the mixed hot water formed in the junction 10 The water temperature decreases as shown by the characteristic line b. Therefore, as shown by the characteristic line d, the amount of combustion heat of the hot water heater 16 is increased by that amount to heat the mixed hot water, and the temperature drop is compensated for so that the hot water temperature is stably maintained at the hot water supply set temperature ( (See characteristic line d in the period from t2 to t3 in the figure).

また、貯湯槽2内の層Wbの湯も消費されて層Wcの水が出てくると、貯湯槽出湯水温検出手段11や混合サーミスタ28の検出温度が給水温度Tcに低下するので(図のt3の時点)、ミキシング流量制御手段は、タンク湯水混合器12を介して出湯通路9側から合流部10に流れる水の流量を急激に増やして(例えばタンク湯水混合器12の弁開度を全開にして)、貯湯槽2内の水を給水通路8a側から貯湯槽2に給水される水と置換しながら、貯湯槽2から合流部10を介して給湯器16に導入される水を給湯器16により加熱して給湯設定温度に湯を作り、給湯する。   Further, when the hot water of the layer Wb in the hot water tank 2 is also consumed and the water of the layer Wc comes out, the temperature detected by the hot water tank hot water temperature detecting means 11 and the mixed thermistor 28 is lowered to the water supply temperature Tc (in the figure). At the time of t3, the mixing flow rate control means suddenly increases the flow rate of water flowing from the outlet hot water passage 9 side to the junction 10 through the tank hot water mixer 12 (for example, fully opens the valve opening of the tank hot water mixer 12). The water introduced from the hot water tank 2 to the hot water heater 16 through the junction 10 is replaced with water supplied from the hot water tank 8 to the hot water tank 2 from the side of the water supply passage 8a. No. 16 is used to make hot water at a hot water supply set temperature, and hot water is supplied.

なお、従来は、タンクユニット4と給湯器16とが隣接配置されたタイプ(一体型)の熱源装置が用いられていたが、開発中の熱源装置は、タンクユニット4と給湯器16と燃料電池1とをそれぞれ個別に配置し、互いに配管により接続する個別配置型の熱源装置も可能とするものである。このようにすると、例えば複数種あるタンクユニット4のうち、利用者が必要な容量の貯湯槽2を備えたタンクユニット4を選択し、そのタンクユニット4と、複数種ある給湯器16のうち選択された給湯器16と、複数種ある燃料電池1のうち選択された燃料電池1とを組み合わせるといったことができ、バリエーションを増やすことができる。   Conventionally, a type (integrated type) heat source device in which the tank unit 4 and the water heater 16 are disposed adjacent to each other has been used. However, the heat source device under development includes the tank unit 4, the water heater 16, and the fuel cell. 1 can be individually arranged and connected to each other by pipes. If it does in this way, the tank unit 4 provided with the hot water storage tank 2 of the capacity | capacitance which a user requires among several types of tank units 4 will be selected, for example, and it will select among the tank units 4 and multiple types of water heaters 16 The water heater 16 thus made and the fuel cell 1 selected from the plural types of fuel cells 1 can be combined, and variations can be increased.

また、前記のような個別配置型の熱源装置は、既設の給湯器16にタンクユニット4等を接続して熱源装置を形成することもできるといったメリットもある。この場合、例えば給湯器16は建物の北側に配置されてタンクユニット4は建物の東側や西側に配置されるといったように、タンクユニット4と給湯器16とが離れて配置されることも想定されるが、そのような場合には、冬場等に、湯水導入通路15および接続通路21内の水が、給湯停止中に凍結することを防止するため等に、水電磁弁24を開いて循環ポンプ23を駆動させ、図4の矢印Cに示したように、湯水循環通路40に湯水を循環させながら給湯熱交換器17により加熱する前記循環湯水加熱機能の動作が適宜行われるような構成が必要となると考えられる。   Further, the individual arrangement type heat source device as described above has an advantage that the heat source device can be formed by connecting the tank unit 4 or the like to the existing water heater 16. In this case, it is assumed that the tank unit 4 and the water heater 16 are arranged apart from each other, for example, the water heater 16 is arranged on the north side of the building and the tank unit 4 is arranged on the east side or the west side of the building. However, in such a case, the water solenoid valve 24 is opened to prevent the water in the hot water introduction passage 15 and the connection passage 21 from freezing during the hot water supply stop in winter and the like. As shown by an arrow C in FIG. 4, the circulating hot water heating function for heating the hot water supply heat exchanger 17 while circulating hot water in the hot water circulation passage 40 is appropriately performed. It is thought that it becomes.

特許第4359339号公報Japanese Patent No. 4359339 特開平8−20113号公報Japanese Patent Laid-Open No. 8-20113

ところで、従来のように、タンクユニット4と給湯器16とが隣接配置されたタイプの熱源装置においては、合流部10で形成された混合湯水の温度と給湯器16に導入される給湯器入水温度とがほぼ等しかったが、タンクユニット4と給湯器16とが離れて配置されて湯水導入通路15の長さが例えば4m以上といった長い長さになると、合流部10で形成された混合湯水が湯水導入通路15を通って給湯器16の入水部まで達するまでには例えば20秒〜30秒といった時間がかかることになる。   By the way, in the type of heat source device in which the tank unit 4 and the water heater 16 are disposed adjacent to each other as in the prior art, the temperature of the mixed hot water formed at the junction 10 and the water heater incoming temperature introduced into the water heater 16 are as follows. However, when the tank unit 4 and the water heater 16 are arranged apart from each other and the length of the hot water introduction passage 15 becomes a long length of, for example, 4 m or more, the mixed hot water formed in the junction 10 is hot water. It takes 20 seconds to 30 seconds to reach the water inlet of the water heater 16 through the introduction passage 15.

このような場合、前記のように、貯湯槽内湯水温検出手段5aの検出温度Tdが低下して閾値に達した時点t1で混合設定温度を前記式(1)に示した値に下げることにより(図7(a)の特性線b、参照)、混合サーミスタ28の検出温度Tminが混合設定温度と同様に低下しても、その湯水が給湯器16の入水部まで達するまでには湯水が湯水導入通路15を通るのに要する時間Δt(例えば20秒〜30秒)がかかるため、図7(b)の特性線b’に示されるように、この時間Δtは、時点t1で混合設定温度を下げる前に形成されて湯水導入通路15内に入っていた給湯設定温度の湯が給湯器16の入水部に導入され、時間Δtの経過後に、温度が低下した湯水が導入されることになる。そのため、図7(c)の特性線d’に示されるように、時点t1で給湯器16による追い加熱動作を開始すると、給湯器16による追い加熱分(前記ΔT)だけ高い温度の湯が形成されてしまう。   In such a case, as described above, by decreasing the detected temperature Td of the hot water temperature detecting means 5a in the hot water tank and reaching the threshold value, the mixing set temperature is lowered to the value shown in the above equation (1) ( Even if the detection temperature Tmin of the mixing thermistor 28 decreases in the same manner as the mixing set temperature, the hot and cold water is introduced before the hot water reaches the water inlet of the water heater 16 (see the characteristic line b in FIG. 7A). Since it takes time Δt (for example, 20 seconds to 30 seconds) required to pass through the passage 15, as shown by the characteristic line b ′ in FIG. 7B, this time Δt lowers the mixing set temperature at the time point t1. Hot water having a hot water supply set temperature that has been formed before and entered the hot water introduction passage 15 is introduced into the water inlet portion of the hot water heater 16, and hot water having a lowered temperature is introduced after the elapse of time Δt. Therefore, as shown by the characteristic line d ′ in FIG. 7C, when the additional heating operation by the hot water heater 16 is started at the time t1, hot water having a temperature higher by the additional heating amount (ΔT) by the hot water heater 16 is formed. Will be.

そこで、図7(c)の特性線dに示されるように、時点t1から時間Δtが経過した後に給湯器16の追い加熱動作を開始することも考えられるが、時点t1で混合設定温度を急激に下げると、温度を急激に下げられた湯水が給湯器16に導入されることになるので、追い加熱動作開始直後は給湯器16に導入された低い温度の混合湯水の給湯設定温度との温度差分を追い加熱動作により即座に補うことはできないため、図7(d)の特性線eに示されるように、大きなアンダーシュート発生するといった問題が生じた。   Thus, as shown by the characteristic line d in FIG. 7C, it is conceivable to start the additional heating operation of the water heater 16 after the time Δt has elapsed from the time point t1, but at the time point t1, the mixing set temperature is rapidly increased. When the temperature is lowered, the hot water whose temperature has been drastically lowered is introduced into the hot water heater 16, and immediately after the start of the follow-up heating operation, the temperature is equal to the hot water set temperature of the low-temperature mixed hot water introduced into the hot water heater 16. Since the difference cannot be compensated immediately by the follow-up heating operation, there is a problem that a large undershoot occurs as shown by the characteristic line e in FIG.

なお、特許文献2に記載されているように、給湯器16に給湯器入水温度の検出手段を設けずに、入水温度をリアルタイムで検出せずに演算によって求める方式の給湯器を適用すると、給湯器入水温度の検出手段を設けない分だけコストダウンを図ることができるメリットがある。そこで、本発明は、その種の給湯器16を開発中の熱源装置に適用することも考えているが、そうすると、演算により求めた入水温度に基づいて給湯器16の燃焼量を制御することになるため、実際の入水温度に基づく燃焼量制御方式に比べると入水温度に対応する燃焼量制御が少し遅れるために、前記アンダーシュートがより一層発生しやくなってしまう、といった問題が生じる。   In addition, as described in Patent Document 2, when a water heater of a method in which the water heater temperature is obtained by calculation without detecting the water temperature in real time without providing the water heater 16 with a detecting means for the water heater water temperature, There is an advantage that the cost can be reduced by the amount not provided with the means for detecting the water temperature in the vessel. Therefore, the present invention also considers applying such a water heater 16 to a heat source device under development, but in that case, the combustion amount of the water heater 16 is controlled based on the incoming water temperature obtained by calculation. Therefore, compared with the combustion amount control method based on the actual incoming water temperature, the combustion amount control corresponding to the incoming water temperature is slightly delayed, so that the problem that the undershoot is more likely to occur occurs.

本発明は、上記課題を解決するためになされたものであり、その目的は、貯湯槽内の湯水の出湯途中で貯湯槽内の高温の湯が無くなってしまったときでも、給湯温度の大きな変動が生じることを防げる熱源装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and the purpose of the present invention is to provide a large fluctuation in hot water supply temperature even when hot water in the hot water tank disappears during the hot water discharge in the hot water tank. It is an object of the present invention to provide a heat source device that can prevent the occurrence of the above.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、貯湯槽を備えて該貯湯槽からの湯水を出湯通路を通して送水する機能を有する主熱源装置と、該主熱源装置から送水される湯水を導入して給湯熱交換器で加熱する追い加熱動作の機能を有する補助熱源装置とを備え、該補助熱源装置の湯水導入部側には給水通路と前記出湯通路とが合流する合流部が湯水導入通路を介して接続され、前記補助熱源装置の湯水導出部側には湯水を給湯先に導く給湯通路が接続されており、前記出湯通路から前記合流部側に流れる湯水の流量と前記給水通路から前記合流部側に流れる水の流量を制御することによって混合設定温度設定手段により予め定められる混合設定温度の混合湯水が前記合流部で形成されるようにするミキシング流量制御手段と、前記貯湯槽内の湯水の温度を検出する貯湯槽内湯水温検出手段とを有し、前記混合設定温度設定手段は、前記貯湯槽内湯水温検出手段の検出温度が予め定められる追い加熱基準温度よりも高い温度のときの給湯時の前記混合設定温度を給湯設定温度に対応させた第1の設定温度に設定し、前記貯湯槽内湯水温検出手段の検出温度が給湯途中で前記追い加熱基準温度よりも高い温度から前記追い加熱基準温度以下に低下したときには、前記混合設定温度が前記補助熱源装置の動作開始時の動作加熱号数で給湯流量の湯を作ったときの温度分だけ前記第1の設定温度よりも低い第2の設定温度になるまで前記湯水導入通路の長さに応じて該長さが長くなるにつれて小さくなる温度勾配で前記貯湯槽内湯水温検出手段の検出温度低下時から徐々に低下するように前記混合設定温度を設定する構成を有し、前記貯湯槽内湯水温検出手段の検出温度低下時に前記合流部を通った湯水が前記湯水導入通路内を通って前記補助熱源装置の湯水導入部に達する時間が経過したときに前記補助熱源装置の追い加熱機能による加熱を開始させる構成をもって課題を解決する手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention includes a main heat source device that has a hot water storage tank and has a function of supplying hot water from the hot water tank through a hot water outlet passage, and hot water supplied from the main heat source device to introduce a hot water supply heat exchanger. An auxiliary heat source device having the function of a follow-up heating operation to be heated at a hot water supply portion side of the auxiliary heat source device is connected via a hot water introduction passage to a junction where the water supply passage and the hot water supply passage join. A hot water supply passage that guides hot water to a hot water supply destination is connected to the hot water outlet of the auxiliary heat source device, and the amount of hot water that flows from the hot water passage to the merging portion and the water that flows from the water supply passage to the merging portion. The mixing flow rate control means for controlling the flow rate of the mixing set temperature setting means so that the mixed hot water having a predetermined mixing set temperature is formed at the junction, and the temperature of the hot water in the hot water tank is detected. Hot water temperature detection means in the hot water storage tank, the mixing set temperature setting means is the mixing at the time of hot water supply when the detected temperature of the hot water temperature detection means in the hot water tank is higher than a predetermined additional heating reference temperature The set temperature is set to a first set temperature corresponding to the hot water supply set temperature, and the detected temperature of the hot water temperature detecting means in the hot water tank is lower than the additional heating reference temperature from a temperature higher than the additional heating reference temperature during hot water supply. When the temperature drops, the mixing set temperature is set to a second set temperature lower than the first set temperature by a temperature corresponding to the temperature when hot water having a hot water supply flow rate is made with the operation heating number at the start of operation of the auxiliary heat source device. The mixing set temperature is gradually decreased from the time when the detected temperature of the hot water tank detecting water temperature decreases with a temperature gradient that decreases as the length increases according to the length of the hot water introducing passage. When the time for the hot water passing through the joining portion to reach the hot water introduction portion of the auxiliary heat source device through the hot water introduction passage when the detected temperature of the hot water temperature detecting means in the hot water tank is lowered is determined. In addition, a configuration for starting heating by the additional heating function of the auxiliary heat source device is used as means for solving the problem.

また、第2の発明は、前記第1の発明の構成に加え、前記混合設定温度を第1の設定温度から第2の設定温度まで下げる期間は、出湯通路と給水通路との合流部から補助熱源装置の湯水導入部までの湯水導入通路内の湯水容量が流れる期間としたことを特徴とする。   Further, in the second invention, in addition to the configuration of the first invention, the period during which the mixed set temperature is lowered from the first set temperature to the second set temperature is assisted from the junction of the hot water supply passage and the water supply passage. The hot water capacity in the hot water introduction passage to the hot water introduction part of the heat source device is a period.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記補助熱源装置は、追い加熱機能の動作時に給湯温度と給湯流量と給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を演算により求める構成を有することを特徴とする。   Furthermore, the third invention is based on the hot water supply temperature, the hot water supply flow rate, and the heating amount of the hot water heat exchanger during the operation of the additional heating function, in addition to the configuration of the first or second invention. It has the structure which calculates | requires the temperature of the hot water introduce | transduced into an auxiliary heat source apparatus by a calculation.

本発明によれば、貯湯槽からの湯水を出湯通路を通して送水される湯水と給湯通路からの水とを合流部に導いて混合湯水を形成する構成と、合流部に湯水導入通路を介して接続された補助熱源装置により混合湯水を追い加熱する構成とを有し、ミキシング流量制御手段によって、前記出湯通路から前記合流部側に流れる湯水の流量と前記給水通路から前記合流部側に流れる水の流量を制御して前記合流部で混合湯水が形成されるようにするが、混合湯水の温度を混合設定温度設定手段により以下のように適切に設定することによって、給湯温度を安定化できる。   According to the present invention, the hot water supplied from the hot water tank through the outlet passage and the water from the hot water supply passage are guided to the joining portion to form the mixed hot water, and connected to the joining portion via the hot water introduction passage. The mixed hot water is additionally heated by the auxiliary heat source device, and the flow rate of the hot water flowing from the outlet passage to the merging portion and the water flowing from the supply passage to the merging portion are mixed by the mixing flow rate control means. Although the mixed hot water is formed at the junction by controlling the flow rate, the hot water supply temperature can be stabilized by appropriately setting the temperature of the mixed hot water as follows by the mixed set temperature setting means.

つまり、混合設定温度設定手段は、貯湯槽内の湯水温を検出する貯湯槽内湯水温検出手段の検出温度が追い加熱基準温度よりも高い温度のときの給湯時の前記混合設定温度を給湯設定温度に対応させた第1の設定温度に設定し、この第1の設定温度になるように形成された混合湯水を補助熱源装置に通し、補助熱源装置による加熱を行わずに給湯することにより、給湯設定温度の湯を給湯できる。   That is, the mixing set temperature setting means uses the mixing set temperature at the time of hot water supply when the detected temperature of the hot water temperature detection means in the hot water tank is higher than the follow-up heating reference temperature to detect the hot water temperature in the hot water tank. The first set temperature corresponding to the first set temperature is set, the mixed hot water formed so as to be the first set temperature is passed through the auxiliary heat source device, and hot water is supplied without heating by the auxiliary heat source device. Hot water at the set temperature can be supplied.

また、混合設定温度設定手段は、前記貯湯槽内湯水温検出手段の検出温度が給湯途中で追い加熱基準温度よりも高い温度から前記追い加熱基準温度以下に低下したときには、混合設定温度が前記補助熱源装置の動作開始時の動作加熱号数で給湯流量の湯を作ったときの温度分だけ前記第1の設定温度よりも低い第2の設定温度になるまで、前記湯水導入通路の長さに応じて該長さが長くなるにつれて小さくなる温度勾配で前記貯湯槽内湯水温検出手段の検出温度低下時から徐々に低下するように混合設定温度を設定する。そして、前記貯湯槽内湯水温検出手段の検出温度低下時に前記合流部を通った湯水が前記湯水導入通路内を通って前記補助熱源装置の湯水導入部に達する時間が経過したときに補助熱源装置による追い加熱動作が開始される。   The mixing set temperature setting means is configured such that when the detected temperature of the hot water temperature detection means in the hot water storage tank is lowered from a temperature higher than the additional heating reference temperature to below the additional heating reference temperature during hot water supply, the mixing set temperature is set to the auxiliary heat source. Depending on the length of the hot water introduction passage until the second set temperature is lower than the first set temperature by the temperature when hot water of the hot water supply flow rate is made with the operating heating number at the start of operation of the apparatus. Thus, the mixing set temperature is set so as to gradually decrease from the time when the detected temperature of the hot water temperature detecting means in the hot water tank decreases with a temperature gradient that decreases as the length increases. When the time for the hot water that has passed through the merging portion to reach the hot water introduction portion of the auxiliary heat source device has passed through the hot water introduction passage when the temperature detected by the hot water temperature detection means in the hot water tank is lowered, the auxiliary heat source device The follow-up heating operation is started.

つまり、本発明において、混合湯水を形成する合流部と補助熱源装置の湯水導入部側を接続する湯水導入通路の長さについて限定されるものではないが、例えば4mといった長い長さの湯水導入通路であることも想定しており、その場合、合流部で形成された混合設定温度の湯水(混合湯水)が補助熱源装置に到達するまでに例えば20〜30秒といった時間がかかる。   That is, in the present invention, the length of the hot water introduction passage that connects the joining portion that forms the mixed hot water and the hot water introduction portion side of the auxiliary heat source device is not limited. In such a case, it takes 20 to 30 seconds for hot water (mixed hot water) having a mixed set temperature formed at the junction to reach the auxiliary heat source device.

そこで、合流部で形成された混合設定温度の湯水が湯水導入通路内を通って補助熱源装置の湯水導入部に達する時間が経過したとき(到達する頃)に補助熱源装置による追い加熱動作が開始されるようにし、かつ、混合湯水の温度を前記第1の設定温度から第2の設定温度になるまで、前記湯水導入通路の長さに応じて該長さが長くなるにつれて小さくなる温度勾配で、前記貯湯槽内湯水温検出手段の検出温度低下時から徐々に低下させることにより、徐々に温度が低下する混合湯水を補助熱源装置により追い加熱して混合湯水の温度低下分を補助熱源装置の追い加熱動作により補うことができるので、貯湯槽内湯水温検出手段の検出温度が給湯途中で追い加熱基準温度よりも高い温度から追い加熱基準温度以下に低下したときに急激に混合設定温度を低下させる場合に生じるアンダーシュート発生を抑制でき、給湯温度の安定化を図ることができる。   Therefore, the additional heating operation by the auxiliary heat source device starts when the time for the hot water of the mixed set temperature formed at the junction to reach the hot water introduction portion of the auxiliary heat source device passes through the hot water introduction passage (when it reaches). And the temperature of the mixed hot water becomes a temperature gradient that decreases as the length increases according to the length of the hot water introduction passage until the temperature of the mixed hot water reaches the second set temperature from the first set temperature. The temperature of the hot water in the hot water storage tank is gradually lowered from the time when the temperature is lowered, so that the mixed hot water whose temperature is gradually lowered is additionally heated by the auxiliary heat source device, and the temperature decrease of the mixed hot water is replaced by the auxiliary heat source device. Since it can be compensated by heating operation, mixing rapidly when the temperature detected by the hot water temperature detection means in the hot water tank drops from a temperature higher than the additional heating reference temperature to below the additional heating reference temperature during hot water supply. It is possible to suppress the undershoot occurs resulting in lowering the constant temperature, it is possible to stabilize the hot water temperature.

なお、本発明においては、前記のように温度を前記第1の設定温度から第2の設定温度になるまで、前記湯水導入通路の長さに応じて該長さが長くなるにつれて小さくなる温度勾配で徐々に低下させる(言い換えれば、混合設定温度を徐々に低下させる期間を湯水導入通路の長さに応じて該長さが長くなるにつれて長くなるようにする)ことを特徴としているが、その効果についての詳細説明は後述する。   In the present invention, as described above, the temperature gradient decreases as the length increases according to the length of the hot water introduction passage until the temperature changes from the first set temperature to the second set temperature. (In other words, the period for gradually lowering the mixing set temperature is made longer as the length becomes longer according to the length of the hot water introduction passage). A detailed description will be given later.

また、補助熱源装置を、追い加熱機能の動作時に給湯温度と給湯流量と給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を演算により求める構成とすると、演算により求めた入水温度に基づいて燃焼量を制御する際に、演算により求めた値と、実際に補助熱源装置に入水される湯水の温度とのずれ(検出タイミングの遅れ)が生じ、補助熱源装置による追い加熱動作開始時に給湯温度が不安定になりやすいが、本発明を適用することにより、適切に給湯開始時の給湯温度の安定化を図ることができる。   Further, when the auxiliary heat source device is configured to obtain the temperature of hot water introduced into the auxiliary heat source device based on the hot water supply temperature, the hot water supply flow rate, and the heating amount of the hot water heat exchanger during the operation of the additional heating function, When controlling the amount of combustion based on the calculated incoming water temperature, a deviation (delay in detection timing) between the value obtained by calculation and the temperature of hot water actually entering the auxiliary heat source device occurs. Although the hot water temperature tends to become unstable at the start of the follow-up heating operation, by applying the present invention, it is possible to appropriately stabilize the hot water temperature at the start of hot water supply.

本発明に係る熱源装置の一実施例の制御構成を示すブロック図である。It is a block diagram which shows the control structure of one Example of the heat-source apparatus which concerns on this invention. 実施例の熱源装置による混合湯水温設定制御特性および追い加熱動作制御特性ならびに給湯温度特性を説明するためのタイムチャートである。It is a time chart for demonstrating the mixing hot water temperature setting control characteristic by the heat-source apparatus of an Example, follow-up heating operation control characteristic, and hot water supply temperature characteristic. 実施例および開発中の熱源装置のシステム構成例を説明するための説明図である。It is explanatory drawing for demonstrating the system configuration example of the heat source apparatus in an Example and development. 図3に示す熱源装置に設けられている湯水循環通路と貯湯槽の出湯通路とを説明するために、図3の一部構成を簡略化して示すシステム構成図である。FIG. 4 is a system configuration diagram showing a partial configuration of FIG. 3 in a simplified manner in order to explain a hot water circulation passage and a hot water discharge passage of a hot water storage tank provided in the heat source device shown in FIG. 3. 貯湯槽内の温度層の分布例を模式的に示す説明図である。It is explanatory drawing which shows typically the example of distribution of the temperature layer in a hot water storage tank. 従来例の熱源装置による追い加熱動作開始時の制御特性及び温度特性を示すタイムチャートである。It is a time chart which shows the control characteristic and temperature characteristic at the time of the follow-up heating operation | movement start by the heat-source apparatus of a prior art example. 図6に示した制御またはその制御に近い制御を開発中の熱源装置に適用した場合の問題点を説明するためのタイムチャートである。It is a time chart for demonstrating a problem at the time of applying the control shown in FIG. 6, or control close | similar to the control to the heat-source apparatus under development. 混合設定温度の低下割合と補助熱源装置の加熱速度との関係を説明するためのグラフである。It is a graph for demonstrating the relationship between the fall rate of mixing preset temperature, and the heating rate of an auxiliary heat source apparatus.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same constituent elements as those in the above-described examples, and the duplicate description is omitted or simplified.

図1には、本発明に係る熱源装置の一実施例のシステム構成が模式的に示されている。本実施例は、図3に示した熱源装置と同様のシステム構成を有し、さらに、図1に示されるように、タンクユニット60内の制御装置33に、ミキシング流量制御手段35、混合設定温度設定手段36、メモリ部37、積算流量検出手段38を設けている。また、制御装置33には給湯器16の制御装置46とリモコン装置43とが信号接続され、リモコン装置43には給湯設定温度設定操作手段45が設けられ、給湯器16の制御装置46には給湯燃焼制御手段47が設けられている。なお、リモコン装置43は、屋内において、リビングや、浴室、台所、洗面所等の適宜の場所に設置されている。   FIG. 1 schematically shows a system configuration of an embodiment of a heat source device according to the present invention. This embodiment has a system configuration similar to that of the heat source device shown in FIG. 3, and further, as shown in FIG. 1, the controller 33 in the tank unit 60 includes a mixing flow rate control means 35, a mixing set temperature. A setting unit 36, a memory unit 37, and an integrated flow rate detection unit 38 are provided. The control device 33 is connected to the control device 46 of the water heater 16 and the remote control device 43 by signal, the remote control device 43 is provided with a hot water supply set temperature setting operation means 45, and the control device 46 of the water heater 16 is supplied with hot water supply. Combustion control means 47 is provided. The remote control device 43 is installed indoors at an appropriate place such as a living room, a bathroom, a kitchen, or a washroom.

給湯設定温度設定操作手段45は、利用者等により給湯設定温度を設定するための操作手段であり、例えばリモコン装置43の表面側に設けられている操作ボタン等により形成されている。この給湯設定温度設定操作手段45により設定された給湯設定温度の値は、制御装置33の混合設定温度設定手段36と給湯器16の燃焼制御手段47とに加えられる。   The hot water supply set temperature setting operation means 45 is an operation means for setting a hot water supply set temperature by a user or the like, and is formed by an operation button or the like provided on the surface side of the remote control device 43, for example. The value of the hot water set temperature set by the hot water set temperature setting operation means 45 is added to the mixture set temperature setting means 36 of the control device 33 and the combustion control means 47 of the hot water heater 16.

混合設定温度設定手段36は、混合湯水の設定温度(混合設定温度)を設定するものであり、貯湯槽内湯水温検出手段5aの検出温度が前記追い加熱基準温度(前記閾値)よりも高い温度のときの給湯時の前記混合設定温度を給湯設定温度に対応させて第1の設定温度(T1)に設定する。この第1の設定温度は、例えば図2(a)の特性線bに示されるような、時点t1以前の期間における温度であり、例えば給湯設定温度設定操作手段45によって設定された給湯設定温度Tqsの値と同じ値に(または、それより0.5℃といった温度だけ高めに)設定する。   The mixed set temperature setting means 36 sets a set temperature (mixed set temperature) of the mixed hot water, and the detected temperature of the hot water temperature detecting means 5a in the hot water tank is higher than the follow-up heating reference temperature (the threshold). The mixing set temperature at the time of hot water supply is set to the first set temperature (T1) in correspondence with the hot water supply set temperature. The first set temperature is a temperature in a period before the time point t1, for example, as shown by the characteristic line b in FIG. 2A. For example, the hot water set temperature Tqs set by the hot water set temperature setting operation means 45 is used. Set to the same value as (or higher by 0.5 ° C).

また、混合設定温度設定手段36は、貯湯槽内湯水温検出手段5aの検出温度が、給湯途中で前記追い加熱基準温度よりも高い温度から前記追い加熱基準温度以下に低下したとき(時点t1)には、図2(a)の特性線bに示されるように、混合設定温度が、第1の設定温度よりも給湯器16の動作開始時の動作加熱号数である最小燃焼号数で給湯流量の湯を作ったときの温度分(ΔT)だけ低い第2の設定温度(T2)になるように、前記温度低下時から徐々に低下する値に設定する。   Further, the mixing set temperature setting means 36, when the temperature detected by the hot water temperature detection means 5a in the hot water tank is lowered from the temperature higher than the additional heating reference temperature to the additional heating reference temperature or lower during the hot water supply (time point t1). As shown by the characteristic line b in FIG. 2 (a), the mixing set temperature is the minimum combustion number that is the operation heating number at the start of the operation of the water heater 16 than the first set temperature. The temperature is set to a value that gradually decreases from the time of the temperature decrease so that the second set temperature (T2) is lowered by the temperature (ΔT) when the hot water is made.

この温度低下割合(温度下降勾配)は、前記湯水導入通路の長さに応じて該長さが長くなるにつれて緩やかに設定されるものであり、本実施例では、出湯通路9と給水通路8bとの合流部10から給湯器16の湯水導入部までの湯水導入通路15内の湯水容量が流れる期間(積算流量対応期間)Δtが経過したときに混合設定温度が第2の設定温度となるように、混合設定温度設定手段36が、第1の設定温度から第2の設定温度まで混合設定温度を低下させる温度勾配を決定する。   This temperature decrease rate (temperature decrease gradient) is set gradually as the length increases according to the length of the hot water introduction passage. In this embodiment, the hot water supply passage 9 and the water supply passage 8b So that the mixed set temperature becomes the second set temperature when a period (tcumulated flow rate corresponding period) Δt in which hot water capacity flows in the hot water introduction passage 15 from the merging section 10 to the hot water introduction section of the water heater 16 passes. The mixed set temperature setting means 36 determines a temperature gradient for decreasing the mixed set temperature from the first set temperature to the second set temperature.

前記積算流量対応期間Δtは、積算流量検出手段38により検出されるものであり、積算流量検出手段38は、メモリ部37に格納されている湯水導入通路15の長さ(この長さは熱源装置の施工業者によって入力される)と管路径とから湯水導入通路15の容量を求め、この容量の湯水が流れる前記積算流量対応期間(言い換えれば、時点t1の時に合流部10にあった湯水が給湯器16の湯水導入部に達するまでの時間)を、その容量と流量検出手段42により検出される流量とから求め、その値を混合設定温度設定手段36に加えると共に、積算流量対応期間が経過したときには、期間経過信号を燃焼制御手段47に加える。   The integrated flow rate corresponding period Δt is detected by the integrated flow rate detecting means 38, and the integrated flow rate detecting means 38 is the length of the hot water introduction passage 15 stored in the memory unit 37 (this length is the heat source device). The capacity of the hot water introduction passage 15 is obtained from the pipe diameter and the flow rate corresponding to the integrated flow rate in which the hot water of this capacity flows (in other words, the hot water in the junction 10 at the time t1 is supplied with hot water) Time to reach the hot water introduction part of the vessel 16) is obtained from the capacity and the flow rate detected by the flow rate detection means 42, and the value is added to the mixed set temperature setting means 36 and the integrated flow rate corresponding period has elapsed. Sometimes, a period elapsed signal is applied to the combustion control means 47.

混合設定温度設定手段36は、積算流量検出手段38から加えられる積算流量対応期間の値を受けて、この期間経過中に混合設定温度が第1の設定温度から第2の設定温度に低下するような温度勾配を求め、これらの情報に基づいて、前記の如く混合設定温度を設定する。混合設定温度設定手段36によって設定された混合設定温度(混合設定温度情報)は、ミキシング流量制御手段35に加えられる。   The mixed set temperature setting unit 36 receives the value of the integrated flow rate corresponding period applied from the integrated flow rate detecting unit 38, and the mixed set temperature is lowered from the first set temperature to the second set temperature during this period. A proper temperature gradient is obtained, and based on this information, the mixing set temperature is set as described above. The mixed set temperature (mixed set temperature information) set by the mixed set temperature setting unit 36 is applied to the mixing flow rate control unit 35.

ミキシング流量制御手段35は、合流部10側に出湯通路9から流れる湯水の流量と給水通路8bから合流部10側に流れる水の流量を制御し、混合設定温度設定手段36により設定される設定混合温度の混合湯水が合流部10で形成されるようにするものである。ミキシング流量制御手段35は、前記の如く、タンク側電磁弁13の開閉制御とタンク湯水混合器12および水混合器14の制御による湯水流量と水流量との制御により、合流部10で形成される混合湯水の温度が混合設定温度となるように制御する。   The mixing flow rate control means 35 controls the flow rate of hot water flowing from the outlet hot water passage 9 to the merging portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merging portion 10 side, and is set by the set mixing temperature setting means 36. The mixed hot and cold water is formed at the junction 10. As described above, the mixing flow rate control means 35 is formed in the merging portion 10 by controlling the opening and closing of the tank side solenoid valve 13 and the hot water flow rate and the water flow rate by the control of the tank hot water mixer 12 and the water mixer 14. Control is performed so that the temperature of the mixed hot water becomes the set mixing temperature.

給湯器16の燃焼制御手段47は、混合設定温度設定手段36から前記積算流量対応期間が経過したとき加えられる期間経過信号を受けて、図2(c)の特性線dに示されるように、積算流量対応期間Δtの経過後に前記追い加熱機能による加熱を開始させる。このようにすることで、混合設定温度の低下が開始されたときに合流部10を通った湯水が湯水導入通路15内を通って給湯器16の湯水導入部に達したときに、図2(c)の特性線dに示されるように、追い加熱機能動作が開始される。   The combustion control means 47 of the water heater 16 receives a period elapse signal added when the integrated flow rate corresponding period elapses from the mixture set temperature setting means 36, as shown by the characteristic line d in FIG. Heating by the additional heating function is started after elapse of the integrated flow rate corresponding period Δt. In this way, when the hot water that has passed through the merging portion 10 reaches the hot water introduction portion of the water heater 16 through the hot water introduction passage 15 when the mixing set temperature starts to be lowered, FIG. As indicated by the characteristic line d in c), the additional heating function operation is started.

なお、図2(b)の特性線b’は、給湯器の湯水導入部における温度(入水温度)を示しており、図2(a)の特性線bと比較するとわかるように、合流部10で形成された混合湯水が湯水導入通路15を通って給湯器16に導入されるまでのタイムラグ(前記積算流量対応期間Δt)だけ温度がずれ、設定期間経過時から徐々に温度が低下する。そのため、このときに給湯器16の追い加熱動作を開始させることにより、混合湯水の温度低下分を給湯器16の追い加熱動作により補うが、それにより、給湯温度は、図2(d)の特性線eに示されるように、矢印Eに示す時点で若干の温度変動が生じたとしても大きな温度変動が無い、安定した値(給湯設定温度)に制御される。   Note that the characteristic line b ′ in FIG. 2 (b) indicates the temperature (incoming water temperature) in the hot water introduction part of the water heater, and as can be seen from comparison with the characteristic line b in FIG. The temperature deviates by a time lag (the integrated flow rate corresponding period Δt) until the mixed hot water formed in step 1 is introduced into the water heater 16 through the hot water introduction passage 15, and the temperature gradually decreases from the elapse of the set period. Therefore, by starting the additional heating operation of the hot water heater 16 at this time, the temperature drop of the mixed hot water is compensated by the additional heating operation of the hot water heater 16, whereby the hot water temperature is the characteristic of FIG. As indicated by line e, even if a slight temperature fluctuation occurs at the time indicated by arrow E, the temperature is controlled to a stable value (hot water supply set temperature) without a large temperature fluctuation.

なお、本実施例は、前記の如く、混合設定温度を第1の設定温度から第2の設定温度に低下させるときの温度勾配を、合流部10と給湯器16の湯水導入部とを接続する湯水導入通路15の長さに応じて長さが長くなるにつれて小さくなるように定め、貯湯槽2からの給湯途中で貯湯槽内湯水温検出手段5aの検出温度が追い加熱基準温度よりも高い温度から追い加熱基準温度以下に低下したときには、その定めた温度勾配で、混合設定温度を第1の設定温度から第2の設定温度まで徐々に低下させることを特徴とする。言い換えれば、混合設定温度を低下させる期間を湯水導入通路15の長さに対応する値として、この期間における混合設定温度の低下速度を湯水導入通路15の長さが長くなるにつれて遅くするものである。   In the present embodiment, as described above, the temperature gradient when the mixing set temperature is lowered from the first set temperature to the second set temperature is connected to the junction 10 and the hot water introduction section of the water heater 16. In accordance with the length of the hot water introduction passage 15, it is determined so as to become smaller as the length becomes longer, and the temperature detected by the hot water temperature detection means 5 a in the hot water tank is higher than the reference heating reference temperature during hot water supply from the hot water tank 2. When the temperature drops below the follow-up heating reference temperature, the mixing set temperature is gradually lowered from the first set temperature to the second set temperature with the determined temperature gradient. In other words, the period during which the mixed set temperature is lowered is a value corresponding to the length of the hot water introduction passage 15, and the rate of decrease in the mixed set temperature during this period is slowed as the length of the hot water introduction passage 15 increases. .

それに対し、例えば図8(a)の特性線a’に示されるような給湯器の加熱速度(JIS S2109 7.12.1d加熱速度試験、参照)と同じ温度勾配(角度θ)で、図8(b)の特性線b’に示されるように、混合設定温度を第1の設定温度から第2の設定温度まで低下させることも考えられ(図8(b)の角度θ、参照)、この場合、図8(a)の加熱速度θと図8(b)の温度降下速度θとが打ち消しあうことから、給湯器16の燃焼開始時の切り替えが最短時間ででき、給湯温度も図8(c)の特性線c’に示されるように、安定するのではないかと理論上は考えられる。   On the other hand, for example, with the same temperature gradient (angle θ) as the heating rate of the water heater (see JIS S2109 7.12.1d heating rate test) as shown by the characteristic line a ′ in FIG. )), The mixing set temperature may be decreased from the first set temperature to the second set temperature (see the angle θ in FIG. 8B). In this case, Since the heating rate θ in FIG. 8 (a) and the temperature drop rate θ in FIG. 8 (b) cancel each other, the hot water heater 16 can be switched at the start of combustion in the shortest time, and the hot water temperature is also shown in FIG. 8 (c). As indicated by the characteristic line c ′, it is theoretically considered that the line may stabilize.

なお、図8(a)〜(d)において、横軸は全て時間を示しているが、合流部10と給湯器16の湯水導入口との間には湯水導入通路15が設けられており、その長さが長くなるほど合流部10を通った湯水が給湯器16の湯水導入口まで達するには時間がかかり、図8(b)の点Bで温度を下げ始めても、その湯はなかなか給湯器16の入り口には達せず、点Bで温度を下げ始めた湯は例えばその30秒後に給湯器16に達する。このとき(図8(a)の点A)に給湯器16の加熱作動が開始されるものであり(燃焼開始)、温度が下がり始める混合湯水が給湯器16に達し、その湯水が給湯器16で加熱された後の出湯時の温度が、図8(c)の点Cとして表されている。また、合流部10を通った湯水が給湯器16の湯水導入口まで達するまでの時間(前記では30秒)は、配管を流れる流量が多ければ短時間となり、少なければ給湯器16に達する時間は長くなる。   8A to 8D, the horizontal axis indicates time, but a hot water introduction passage 15 is provided between the junction 10 and the hot water introduction port of the water heater 16, As the length increases, it takes time for hot water that has passed through the junction 10 to reach the hot water inlet of the water heater 16, and even if the temperature starts to decrease at point B in FIG. The hot water which has not reached the entrance of 16 and has started to decrease the temperature at the point B reaches the water heater 16 after 30 seconds, for example. At this time (point A in FIG. 8 (a)), the heating operation of the water heater 16 is started (combustion start), the mixed hot water whose temperature starts to fall reaches the water heater 16, and the hot water is supplied to the water heater 16 The temperature at the time of hot water after being heated at is expressed as point C in FIG. Further, the time (30 seconds in the above) for hot water passing through the junction 10 to reach the hot water inlet of the water heater 16 is short if the flow rate flowing through the pipe is large, and if it is small, the time to reach the water heater 16 is short. become longer.

ここで、本実施例のように、タンクユニット4と給湯器16とを個別に配置して配管によって接続するタイプの熱源装置においては、以下に述べるような状況となることがあり、そのため、本実施例のような混合設定温度の設定が重要となる。例えば既設の給湯器16と貯湯槽2を備えたタンクユニット4を組み合わせることもできるが、既設の給湯器16が家屋の北側の浴室近傍の壁に取り付けられており、北側の隣地境界が迫っている場合には、大型の貯湯槽2を既設の給湯器16の近傍に取付けできず、貯湯槽2は南側の庭に設置する等の対応が必要となる。その場合、給湯器16と貯湯槽2との間の長い距離を配管(湯水導入通路15の配管)で接続しなければならない場合がある。   Here, in this type of heat source device in which the tank unit 4 and the water heater 16 are individually arranged and connected by piping as in this embodiment, the situation described below may occur. The setting of the mixing set temperature as in the embodiment is important. For example, the existing water heater 16 and the tank unit 4 having the hot water tank 2 can be combined, but the existing water heater 16 is attached to the wall near the bathroom on the north side of the house, and the border on the north side is approaching. If it is, the large hot water tank 2 cannot be installed in the vicinity of the existing water heater 16, and the hot water tank 2 needs to be installed in the garden on the south side. In that case, it may be necessary to connect a long distance between the water heater 16 and the hot water tank 2 by piping (pipe of the hot water introduction passage 15).

給湯器16の加熱速度は給湯器16が配設されている場所の外気条件により変わるものであるが、例えば南側の庭に設置された貯湯槽2を備えたタンクユニット4側で、例えば北側の浴室近傍の壁に取り付けられた給湯器16の給気温度等の給気条件を検出することはできないため、たとえ、市販等されている様々な給湯器16の中から利用者が使用している給湯器16がどの給湯器なのかを把握して、その給湯器16の固有の加熱速度をタンクユニット4側の制御装置33に入力しても、外気条件による給湯器16の加熱速度の変化についてタンクユニット4側で判断することはできない。   The heating speed of the water heater 16 varies depending on the outside air conditions where the water heater 16 is disposed. For example, the tank unit 4 provided with the hot water tank 2 installed in the south garden, Since it is not possible to detect the air supply conditions such as the air supply temperature of the water heater 16 attached to the wall in the vicinity of the bathroom, the user uses the water heater 16 from various commercially available water heaters 16. Even if the hot water heater 16 is grasped and the specific heating rate of the hot water heater 16 is input to the controller 33 on the tank unit 4 side, the change in the heating rate of the hot water heater 16 due to the outside air condition It cannot be judged on the tank unit 4 side.

つまり、タンクユニット4側の制御装置33において、販売されている複数の種類の給湯器16の中から指定された給湯器16の想定される加熱速度を求める際には、例えば貯湯槽2の配設領域周囲の外気温を参考として求めるが、実際の加熱速度は給湯器16の周囲の外気温で左右され、貯湯槽2の周囲の外気温と給湯器16の周囲の外気温の差は、給湯器16と貯湯槽2が離れれば離れるほど大きくなる可能性があるため、正確な値を求めることはできない。   That is, when the control unit 33 on the tank unit 4 side obtains the assumed heating rate of the specified hot water heater 16 from among a plurality of types of hot water heaters 16 sold, for example, the arrangement of the hot water tank 2 is arranged. The actual heating speed depends on the outside air temperature around the water heater 16, and the difference between the outside air temperature around the hot water tank 2 and the outside air temperature around the water heater 16 is Since the hot water heater 16 and the hot water tank 2 may be separated as they are separated from each other, an accurate value cannot be obtained.

なお、外気条件による給湯器16の加熱速度の変化の例として、以下のようなことがある。例えば、給湯器16として、潜熱を回収する熱交換器を搭載した、潜熱回収式給湯暖房機を使用した場合、夏場の給気が湿度が高くて35℃の場合であっても、冬場の給気が湿度が低くて5℃の場合であっても、給水温度が同じならば、排気温度がほぼ同じになるがごとく、熱効率は(例えば給気が湿度80%35℃の場合と湿度50%5℃の場合では効率が3%近く違う等)給気する外気条件に大きく左右される。なお、潜熱回収熱交換器を搭載した場合には、顕熱熱交から出た排気ガスの熱を潜熱回収熱交換器で回収するために吸熱最終段が潜熱回収熱交換器であるのに対し(排気温度や熱効率は給水温度に大きく左右されるのに対し)、顕熱熱交換器のみの場合には、吸熱最終段が出湯部であるために、排気温度や熱効率は出湯温度に大きく左右される。   Note that examples of changes in the heating rate of the water heater 16 due to outside air conditions include the following. For example, when a latent heat recovery hot water heater equipped with a heat exchanger that recovers latent heat is used as the hot water heater 16, even if the summer air supply is high and humidity is 35 ° C, Even when the humidity is 5 ° C with low humidity, if the water supply temperature is the same, the exhaust temperature will be almost the same, and the thermal efficiency (for example, when the supply air is 80% humidity and 35 ° C, the humidity is 50%. In the case of 5 ℃, the efficiency is different by nearly 3%. When a latent heat recovery heat exchanger is installed, the final heat absorption stage is a latent heat recovery heat exchanger in order to recover the exhaust gas heat from the sensible heat exchange with the latent heat recovery heat exchanger. (Exhaust temperature and thermal efficiency greatly depend on the feed water temperature) In the case of only the sensible heat exchanger, since the final endothermic stage is the tapping part, the exhaust temperature and thermal efficiency greatly depend on the tapping temperature. Is done.

本願発明者は、このような外気条件による給湯器16の加熱速度への影響により、給湯器16と貯湯槽2との間の距離が離れれば離れるほど、給湯器16の想定される加熱速度と実際の加熱速度とに差異が生じる点にも着目し、給湯器16と貯湯槽2の間の配管距離に相当する流量(積算流量)が貯湯槽2から流れ出る間(前記積算流量対応期間)に渡って、ミキシング温度を徐々に下げるようにした。   The inventor of the present application considers the heating rate assumed for the water heater 16 as the distance between the water heater 16 and the hot water tank 2 increases as the distance between the water heater 16 and the hot water tank 2 increases due to the influence of the outside air condition on the heating rate of the water heater 16. Paying attention to the difference in the actual heating rate, the flow rate (integrated flow rate) corresponding to the piping distance between the water heater 16 and the hot water tank 2 flows out of the hot water tank 2 (the integrated flow rate corresponding period). The mixing temperature was gradually lowered.

なお、貯湯槽2の周囲の外気温に比して給湯器16の周囲の外気温が高い方向に差が生じた場合には実際の加熱速度は速くなるので、加熱速度が速ければ、入水してくる給水温度変化に十分対応できるので、出湯温度は設定温度を保つことができる。しかし、その逆に、給湯器16の周囲の外気温が低い場合には(給湯器16は北側に配設されることも多く、このような場合が多いが)、図8(a)の特性線aに示されるように、実際の加熱速度は特性線a’に示した理論上の加熱速度よりも遅くなり、その結果、図8(b)の特性線b’に示されるように低下していく混合湯水の温度を給湯器16による追い加熱動作によって十分に補償することができず、図8(c)の特性線cに示されるように、給湯温度にアンダーシュートが発生してしまう。   Note that the actual heating rate increases when the outside air temperature around the hot water heater 16 is higher than the outside air temperature around the hot water tank 2, so if the heating rate is high, the water will enter. Since it can sufficiently cope with the incoming water temperature change, the hot water temperature can be kept at the set temperature. However, conversely, when the outside air temperature around the water heater 16 is low (the water heater 16 is often disposed on the north side in many cases), the characteristics shown in FIG. As shown by the line a, the actual heating rate becomes slower than the theoretical heating rate shown by the characteristic line a ′, and as a result, decreases as shown by the characteristic line b ′ in FIG. 8B. The temperature of the mixed hot water cannot be sufficiently compensated by the follow-up heating operation by the water heater 16, and an undershoot occurs in the hot water temperature as shown by the characteristic line c in FIG.

そこで、本願発明者は、貯湯槽2の周囲の外気温と給湯器16の周囲の外気温の差を合流部10から給湯器16の湯水導入口までを接続する湯水導入通路15の長さ(配管距離)に対応する値として考え、配管距離を工事業者にタンクユニット4の制御装置33に入力してもらい、湯水導入通路15の長さ(配管距離)に応じて、前記第1の設定温度から第2の設定温度まで混合設定温度を下げる割合を長さが長くなるほど小さく(緩やかに温度が低下するように)することで、給湯温度の安定化を図るようにしている。   Therefore, the inventor of the present application connects the difference between the outside air temperature around the hot water tank 2 and the outside air temperature around the water heater 16 to the length of the hot water introduction passage 15 that connects the junction 10 to the hot water inlet of the water heater 16 ( The pipe distance is considered to be a value corresponding to the pipe distance), and the contractor inputs the pipe distance to the control device 33 of the tank unit 4, and the first set temperature is determined according to the length (pipe distance) of the hot water introduction passage 15. The ratio of lowering the mixing set temperature from the first set temperature to the second set temperature is decreased as the length increases (so that the temperature gradually decreases), thereby stabilizing the hot water supply temperature.

つまり、前記のように、給湯器16の周囲の外気温が貯湯槽2の周囲の外気温に比して低い場合に生じるアンダーシュート対策として、配管距離として入力された数値が大きければ大きいほど、例えば図8(b)の特性線bに示されるように、合流部10により形成される混合湯水の温度を下げる度合いを小さくする(干満方向に補正する)ことで、給湯器16の追い加熱動作による温度補償を適切に行えるようにして給湯温度の安定を図るようにし、給湯温度のアンダーシュートが出ないようにした。   That is, as described above, as a measure against undershoot that occurs when the outside air temperature around the water heater 16 is lower than the outside air temperature around the hot water tank 2, the larger the numerical value input as the piping distance, For example, as shown by the characteristic line b in FIG. 8B, the follow-up heating operation of the water heater 16 can be performed by reducing the degree of lowering the temperature of the mixed hot water formed by the merging portion 10 (correcting in the tidal direction). The hot water temperature was stabilized by properly performing temperature compensation by using the hot water temperature so that the hot water temperature did not undershoot.

すなわち、貯湯槽2と給湯器16との間は、例えば架橋ポリエチレン管16A(外径が16mmの管)で配管工事がされるので、前記制御装置33に入力してもらってメモリ部37に格納されている配管距離は、配管内に貯留する湯水容量に相当し、流量が一定であれば、工事業者に入力してもらった配管距離が長ければ長いほど、前記第1の設定温度から前記第2の設定温度まで混合設定温度を干満に下げることで、前記アンダーシュートを防止することができる。   That is, between the hot water tank 2 and the water heater 16, piping work is performed with, for example, a cross-linked polyethylene pipe 16A (a pipe having an outer diameter of 16 mm), so that it is input to the control device 33 and stored in the memory unit 37. The pipe distance is equivalent to the hot water capacity stored in the pipe, and if the flow rate is constant, the longer the pipe distance input by the construction contractor, the longer the first set temperature to the second. The undershoot can be prevented by lowering the mixed set temperature up to the set temperature.

また、混合設定温度を前記第1の設定温度から第2の設定温度に下げるまでに要する期間を前記積算流量対応期間とする場合には、給湯流量が同じならば湯水導入通路15の長さが長くなるほど積算流量対応期間が長くなり、また、同じ配管距離であっても、流量が少ない場合には湯水導入通路15内の湯水容量が流れる積算流量対応期間が長いので時間をかけて温度を下げることになり、その逆に、流量が多い場合には前記設定期間が短く設定されて短時間で温度を下げることになる。このように、湯水導入通路15の長さに対応させることに加えて給湯流量に応じても混合設定温度の制御を行ってもよい。   Further, when the period required for the mixing set temperature to be lowered from the first set temperature to the second set temperature is the integrated flow rate corresponding period, if the hot water supply flow rate is the same, the length of the hot water introduction passage 15 is long. The longer the integrated flow rate correspondence period is, the longer the integrated flow rate correspondence period is, the longer the integrated flow rate correspondence period in which the hot water capacity in the hot water introduction passage 15 flows when the flow rate is small even at the same piping distance. Conversely, when the flow rate is large, the set period is set short and the temperature is lowered in a short time. Thus, in addition to making it correspond to the length of the hot water introduction channel | path 15, you may control mixing preset temperature also according to a hot_water | molten_metal supply flow volume.

また、貯湯槽2の周囲の外気温と給湯器16周囲の外気温の差は、配管距離に比して無制限に温度差が広がるものではないので、第1の設定温度から第2の設定温度まで混合設定温度を下げる温度勾配(温度下降勾配)は必ずしも一定にする必要はない(第1の設定温度から第2の設定温度まで混合設定温度が直線性をもって下がるようにする必要性はない)。   In addition, the difference between the outside air temperature around the hot water tank 2 and the outside air temperature around the water heater 16 is not an unlimited temperature difference compared to the piping distance, so the first set temperature to the second set temperature. It is not always necessary to make the temperature gradient (temperature descending gradient) for lowering the mixing set temperature up to (there is no need to make the mixing set temperature drop linearly from the first set temperature to the second set temperature) .

さらに、以下のような方法で、混合設定温度を第1の設定温度から第2の設定温度まで下げるときの温度下降勾配等の設定を行ってもよい。例えば給湯器16の施工業者によって熱源装置に適用されている給湯器16の種類を制御装置33に入力してもらい、この入力情報に基づき、制御装置33が給湯器16を最小燃焼号数で加熱開始した時の加熱速度(温度上昇勾配)情報を検出する。そして、第1の設定温度から第2の設定温度まで混合設定温度を下げる温度下降勾配を前記温度上昇勾配よりも小さくなるように設定することにし、かつ、温度下降勾配を小さくする割合を湯水導入通路15の長さが長くなるほど大きくする(つまり、温度下降勾配は湯水導入通路15の長さが長くなるほど小さくなる)ようにしてもよい。   Furthermore, a temperature decreasing gradient or the like for lowering the mixing set temperature from the first set temperature to the second set temperature may be set by the following method. For example, the type of the water heater 16 applied to the heat source device is input to the control device 33 by the contractor of the water heater 16, and the control device 33 heats the water heater 16 with the minimum combustion number based on this input information. The heating rate (temperature rise gradient) information at the start is detected. Then, the temperature descending gradient for lowering the mixing set temperature from the first set temperature to the second set temperature is set to be smaller than the temperature increasing gradient, and the ratio for decreasing the temperature descending gradient is introduced into the hot water. You may make it enlarge, so that the length of the channel | path 15 becomes long (that is, a temperature fall gradient becomes so small that the length of the hot-water supply channel | path 15 becomes long).

このようにすると、熱源装置に適用されている給湯器16の加熱速度に対応し、かつ、湯水導入通路15の長さが長くなるほど異なる傾向にある貯湯槽2の配設外部環境と給湯器16の配設外部環境との差(一般には給湯器16の配設されている場所が北側等で外気温が低い等、といった差)にも対応した温度下降勾配で、第1の設定温度から第2の設定温度まで混合設定温度を下げることができるので、前記アンダーシュート発生の抑制をより一層適切に行うことができる。   If it does in this way, the arrangement | positioning external environment of the hot water tank 2 and the water heater 16 which respond | correspond to the heating rate of the water heater 16 applied to the heat source apparatus, and tend to differ, so that the length of the hot water introduction channel | path 15 becomes long. It is a temperature descending gradient corresponding to a difference from the external environment (generally, a difference such as a place where the water heater 16 is disposed on the north side or the like, and the outside air temperature is low, etc.). Since the mixing set temperature can be lowered to the set temperature of 2, the occurrence of the undershoot can be more appropriately suppressed.

なお、給湯器16の加熱速度は、本来は直線ではないが、図8()の特性線aのように、略直線として給湯器16の加熱による温度上昇勾配(角度θ)の値のみ記憶し、第1の設定温度から第2の設定温度まで混合設定温度を下げる角度(温度下降勾配)を、施工業者に入力してもらった配管距離に応じて前記角度θより小さい値となるように補正し、この補正された角度に基づいて混合設定温度を干満に下げるようにしてもよい(本来は直線ではなく点火時に急速に温度が上昇し、設定温度が近づくと上昇程度が緩やかになるが、加熱速度の説明を明確にしやすくするために図8(a)では直線で示している)。 The heating rate of the water heater 16 is not a straight line originally as the characteristic line a in FIG. 8 (a), the memory only the value of the temperature increase gradient (angle theta) by heating water heater 16 as a substantially straight Then, the angle (temperature decreasing gradient) for lowering the mixed set temperature from the first set temperature to the second set temperature is set to a value smaller than the angle θ according to the piping distance inputted by the contractor. It is also possible to correct and set the mixing set temperature to full on the basis of this corrected angle (instead of a straight line, the temperature rises rapidly at the time of ignition, and when the set temperature approaches, the degree of increase becomes moderate In order to make the explanation of the heating rate clear, it is shown by a straight line in FIG.

さらに、熱源装置に適用されている給湯器16の情報を入力する代わりに、複数種ある給湯器16のそれぞれにおける外気温別の複数の加熱速度の中から、最も遅い加熱速度を予めメモリ部38に記憶しておき(例えば図8(a)に示した温度上昇勾配θが最も小さい特性を記憶したり、その温度上昇勾配の値を記憶したりし)、施工業者に入力してもらった配管距離(湯水導入通路15の長さ)が長くなる場合には、長さに応じて長さが長くなるほど、混合設定温度設定を第1の設定温度から第2の設定温度に下げる際の前記温度下降勾配θを小さい値となるように補正して、混合設定温度を干満に下げるようにしてもよい。   Furthermore, instead of inputting information on the water heater 16 applied to the heat source device, the memory unit 38 previously stores the slowest heating rate among a plurality of heating rates for each outside air temperature in each of the plurality of types of water heaters 16. (For example, memorize | store the characteristic with the smallest temperature rising gradient (theta) shown in FIG. 8 (a), or memorize | store the value of the temperature rising gradient), and the piping which the construction contractor input When the distance (the length of the hot water introduction passage 15) is increased, the temperature at which the mixing set temperature setting is lowered from the first set temperature to the second set temperature as the length increases according to the length. You may make it correct | amend so that descent | fall gradient (theta) may become a small value, and may reduce mixing preset temperature to a tidal range.

なお、このように、最も遅い加熱速度を予めメモリ部38に記憶しておく場合には、湯水導入通路15の長さが短い場合には、給湯器16の加熱速度がメモリ部38に記憶してある最も遅い加熱速度よりは速い加熱速度となる場合もあるので、温度下降勾配を、記憶してある温度上昇勾配の値と同じ値(図8(d)の特性線d)よりも大きい値に補正してもよい(図8(d)の特性線d”参照)。なお、図8(d)のd’は湯水導入通路15の長さが長いときの補正例を示す。 As described above, when the slowest heating rate is stored in the memory unit 38 in advance, when the length of the hot water introduction passage 15 is short, the heating rate of the water heater 16 is stored in the memory unit 38. In some cases, the heating rate is faster than the slowest heating rate, so the temperature decreasing gradient is larger than the same value as the stored temperature increasing gradient (characteristic line d 0 in FIG. 8D). (Refer to the characteristic line d ″ in FIG. 8D.) Note that d ′ in FIG. 8D indicates a correction example when the length of the hot water introduction passage 15 is long.

さらに、例えばアンダーシュートがマイナス3℃まで許されるのならば、必ずしも最も悪い加熱速度を選択記憶させるのではなく、許される範囲のアンダーシュートを実現できる加熱速度のみを記憶しておき、その角度を、施工業者に入力してもらった配管距離(湯水導入通路15の長さ)が長くなる場合には長さに応じて補正して、混合設定温度を干満に下げるようにしてもよい。   Further, for example, if undershoot is allowed up to minus 3 ° C., the worst heating rate is not necessarily selected and stored, but only the heating rate capable of realizing the allowable undershoot is stored, and the angle is set. When the piping distance (the length of the hot water introduction passage 15) input by the contractor becomes long, the mixing set temperature may be lowered to the full.

これらのように、複数ある給湯器16の中から熱源装置に適用されている給湯器16の加熱速度を入力して設定するのではなく、予め制御装置33に設定しておいた値を基準となる温度勾配を用いて前記補正を行うようにすれば、給湯器16の情報を入力する必要がなくなるために、例えば貯湯槽2の工事業者と給湯器16の工事業者が異なる場合の、給湯器16の施工業者への入力依頼を不必要とすることができる。   Instead of inputting and setting the heating rate of the water heater 16 applied to the heat source device from among the plurality of water heaters 16 as described above, the value set in the control device 33 in advance is used as a reference. If the correction is performed using the temperature gradient, it is not necessary to input information on the water heater 16, so that, for example, when the construction company of the hot water tank 2 and the construction company of the water heater 16 are different, The input request to 16 construction companies can be made unnecessary.

さらに、本実施例をはじめとし、本発明では、混合設定温度設定を第1の設定温度から第2の設定温度まで下げる際の温度下降勾配を決定する際に、給湯器16の周囲の外気温を検出してこの検出情報に基づき給湯器16の加熱速度を求め、その加熱速度に応じて温度下降勾配を決定するのではなく、湯水導入通路15の長さに応じて前記温度下降勾配を決定するので、外気温センサを省略できる。仮に、外気温センサがあったとしても用いないことで、貯湯槽2の複数の加熱速度を記憶するメモリ容量を増やす必要性がなくなる。   Further, including the present embodiment, in the present invention, the outside air temperature around the water heater 16 is determined when determining the temperature decreasing gradient when the mixed set temperature setting is lowered from the first set temperature to the second set temperature. Is detected and the heating rate of the water heater 16 is obtained based on the detected information, and the temperature decreasing gradient is determined according to the length of the hot water introduction passage 15 instead of determining the temperature decreasing gradient according to the heating rate. Therefore, the outside air temperature sensor can be omitted. Even if there is an outside air temperature sensor, it is not necessary to increase the memory capacity for storing a plurality of heating rates of the hot water tank 2.

さらに、混合設定温度設定を第1の設定温度から第2の設定温度に低下させる際の温度下降勾配を決定する際に、貯湯槽2に供給されるAC100Vの周波数が50Hzなのか60Hzなのかで値を変えるようにしてもよい。   Furthermore, whether the frequency of AC100V supplied to the hot water tank 2 is 50 Hz or 60 Hz when determining the temperature descending gradient when the mixed set temperature setting is lowered from the first set temperature to the second set temperature. The value may be changed.

なお、本発明は、前記実施例に限定されるものでなく、適宜設定されるものである。例えば、本発明の熱源装置の詳細なシステム構成は適宜設定されるものであり、貯湯槽2と出湯通路9と、該出湯通路9と給水通路8bとが合流する合流部10とを備え、ミキシング流量制御手段によって出湯通路9と給水通路8bとから合流部10側に流れる湯水や水の流量を制御して設定混合温度の混合湯水が合流部10で形成されるようにし、かつ、合流部10を通った混合湯水を必要に応じて給湯器16等の補助熱源装置で追い加熱する構成を有していればよい。したがって、給湯器16は、給湯熱交換器17を例えば石油燃焼式のバーナ装置により加熱するタイプの給湯器としてもよいし、電気ヒータにより加熱するタイプの給湯器としてもよい。   In addition, this invention is not limited to the said Example, It sets suitably. For example, the detailed system configuration of the heat source device of the present invention is appropriately set, and includes a hot water storage tank 2, a hot water passage 9, and a merging portion 10 where the hot water passage 9 and the water supply passage 8b merge, and is mixed. The flow rate control means controls the flow rate of hot water and water flowing from the outlet hot water passage 9 and the water supply passage 8b to the merging portion 10 side so that the mixed hot water at the set mixed temperature is formed in the merging portion 10, and the merging portion 10 It suffices if the mixed hot water passing therethrough is additionally heated by an auxiliary heat source device such as the hot water heater 16 as necessary. Therefore, the hot water heater 16 may be a hot water heater of a type that heats the hot water heat exchanger 17 by, for example, an oil combustion type burner device, or may be a hot water heater of a type that is heated by an electric heater.

また、給湯器16等の補助熱源装置の動作開始時の動作加熱号数は、通常、最小燃焼号数であり、前記実施例においても最小燃焼号数で加熱動作を開始しているが、最小燃焼号数とは異なる号数で加熱動作の開始を行ってもよい。その場合、その動作加熱号数に対応させて、前記第2の設定温度を設定することになる。   In addition, the operation heating number at the start of the operation of the auxiliary heat source device such as the water heater 16 is usually the minimum combustion number, and in the above-described embodiment, the heating operation is started with the minimum combustion number. The heating operation may be started with a number different from the combustion number. In that case, the second set temperature is set in correspondence with the operating heating number.

さらに、前記実施例では、貯湯槽2は燃料電池1に熱的に接続されていたが、燃料電池1の代わりに、太陽熱の集熱機やヒートポンプ等を接続してもよい。   Furthermore, in the said Example, although the hot water tank 2 was thermally connected to the fuel cell 1, you may connect a solar heat collector, a heat pump, etc. instead of the fuel cell 1. FIG.

本発明の熱源装置は、貯湯槽の湯水を必要に応じて加熱または非加熱状態で給湯でき、非加熱状態から追い加熱有りの動作に切り替える際の温度変動も小さいため、使い勝手が良好であり、例えば家庭用の熱源装置として利用できる。   The heat source device of the present invention can supply hot water in a hot water tank in a heated or non-heated state as necessary, and since the temperature fluctuation when switching from the non-heated state to the operation with additional heating is small, the usability is good. For example, it can be used as a household heat source device.

1 燃料電池
2 貯湯槽
3 熱回収用通路
4 タンクユニット
5 貯湯槽内湯水温検出手段
6 三方弁
7 バイパス通路
8,8a,8b 給水通路
9 出湯通路
10 合流部
11 貯湯槽出湯水温検出手段
12 タンク湯水混合器
13 タンク電磁弁
14 水混合器
15 湯水導入通路
16 給湯器
17 給湯熱交換器
23 循環ポンプ
24 電磁弁
26 FC高温サーミスタ
27 FC低温サーミスタ
28 混合サーミスタ
33 制御装置
35 ミキシング流量制御手段
36 混合設定温度設定手段
37 メモリ部
38 積算流量検出手段
40 湯水循環通路
42 流量検出手段
45 給湯設定温度設定操作手段
47 燃焼制御手段
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Hot water storage tank 3 Heat recovery passage 4 Tank unit 5 Hot water temperature detection means 6 in a hot water tank 6 Three-way valve 7 Bypass passage 8, 8a, 8b Water supply passage 9 Hot water discharge passage 10 Junction part 11 Mixer 13 Tank solenoid valve 14 Water mixer 15 Hot water introduction passage 16 Water heater 17 Hot water heat exchanger 23 Circulating pump 24 Solenoid valve 26 FC high temperature thermistor 27 FC low temperature thermistor 28 Mixed thermistor 33 Controller 35 Mixing flow rate control means 36 Mixing setting Temperature setting means 37 Memory unit 38 Integrated flow rate detection means 40 Hot water circulation passage 42 Flow rate detection means 45 Hot water supply set temperature setting operation means 47 Combustion control means

Claims (3)

貯湯槽を備えて該貯湯槽からの湯水を出湯通路を通して送水する機能を有する主熱源装置と、該主熱源装置から送水される湯水を導入して給湯熱交換器で加熱する追い加熱動作の機能を有する補助熱源装置とを備え、該補助熱源装置の湯水導入部側には給水通路と前記出湯通路とが合流する合流部が湯水導入通路を介して接続され、前記補助熱源装置の湯水導出部側には湯水を給湯先に導く給湯通路が接続されており、前記出湯通路から前記合流部側に流れる湯水の流量と前記給水通路から前記合流部側に流れる水の流量を制御することによって混合設定温度設定手段により予め定められる混合設定温度の混合湯水が前記合流部で形成されるようにするミキシング流量制御手段と、前記貯湯槽内の湯水の温度を検出する貯湯槽内湯水温検出手段とを有し、前記混合設定温度設定手段は、前記貯湯槽内湯水温検出手段の検出温度が予め定められる追い加熱基準温度よりも高い温度のときの給湯時の前記混合設定温度を給湯設定温度に対応させた第1の設定温度に設定し、前記貯湯槽内湯水温検出手段の検出温度が給湯途中で前記追い加熱基準温度よりも高い温度から前記追い加熱基準温度以下に低下したときには、前記混合設定温度が前記補助熱源装置の動作開始時の動作加熱号数で給湯流量の湯を作ったときの温度分だけ前記第1の設定温度よりも低い第2の設定温度になるまで前記混合設定温度が前記湯水導入通路の長さに応じて該長さが長くなるにつれて小さくなる温度勾配で前記貯湯槽内湯水温検出手段の検出温度低下時から徐々に低下するように前記混合設定温度を設定する構成を有し、前記貯湯槽内湯水温検出手段の検出温度低下時に前記合流部を通った湯水が前記湯水導入通路内を通って前記補助熱源装置の湯水導入部に達する時間が経過したときに前記補助熱源装置の追い加熱機能による加熱を開始させることを特徴とする熱源装置。   A main heat source device having a hot water storage tank and having a function of feeding hot water from the hot water tank through a hot water passage, and a function of a follow-up heating operation in which hot water supplied from the main heat source device is introduced and heated by a hot water supply heat exchanger An auxiliary heat source device, and a hot water introduction portion of the auxiliary heat source device is connected to a joining portion where the water supply passage and the hot water discharge passage are joined via a hot water introduction passage, and the hot water outlet portion of the auxiliary heat source device A hot water supply passage that guides hot water to the hot water supply destination is connected to the side, and mixing is performed by controlling the flow rate of hot water flowing from the hot water supply passage to the merging portion side and the flow amount of water flowing from the water supply passage to the merging portion side. Mixing flow rate control means for forming mixed hot water having a preset mixing temperature by the set temperature setting means at the junction, and hot water temperature detecting means for detecting hot water temperature in the hot water tank And the mixing set temperature setting means uses the mixing set temperature at the time of hot water supply when the detected temperature of the hot water temperature detection means in the hot water tank is higher than a predetermined additional heating reference temperature as the hot water supply set temperature. When the detected temperature of the hot water temperature detection means in the hot water storage tank is set to the corresponding first set temperature and falls below the reference heating reference temperature from a temperature higher than the reference heating reference temperature during hot water supply, the mixing setting The mixing set temperature is maintained until the temperature reaches a second set temperature lower than the first set temperature by a temperature corresponding to the temperature when hot water having a hot water supply flow rate is produced with the operation heating number at the start of operation of the auxiliary heat source device. The mixing set temperature is set so as to gradually decrease from the time when the detected temperature of the hot water temperature in the hot water tank is decreased with a temperature gradient that decreases as the length increases according to the length of the hot water introduction passage. The hot water passing through the junction when the temperature of the hot water temperature detection means in the hot water tank is lowered and passing through the hot water introduction passage to reach the hot water introduction part of the auxiliary heat source device has elapsed. A heat source device that starts heating by a follow-up heating function of the auxiliary heat source device. 混合設定温度を第1の設定温度から第2の設定温度まで下げる期間は、出湯通路と給水通路との合流部から補助熱源装置の湯水導入部までの湯水導入通路内の湯水容量が流れる期間としたことを特徴とする請求項1記載の熱源装置。   The period during which the mixed set temperature is lowered from the first set temperature to the second set temperature is a period during which the hot water capacity in the hot water introduction passage from the junction between the hot water supply passage and the water supply passage to the hot water introduction section of the auxiliary heat source device flows. The heat source device according to claim 1, wherein: 補助熱源装置は、追い加熱機能の動作時に給湯温度と給湯流量と給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を演算により求める構成を有することを特徴とする請求項1または請求項2記載の熱源装置。   The auxiliary heat source device has a configuration in which the temperature of hot water introduced into the auxiliary heat source device is obtained by calculation based on the hot water supply temperature, the hot water supply flow rate, and the heating amount of the hot water heat exchanger during the operation of the additional heating function. The heat source device according to claim 1 or 2.
JP2013075118A 2013-03-29 2013-03-29 Heat source equipment Active JP6133661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075118A JP6133661B2 (en) 2013-03-29 2013-03-29 Heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075118A JP6133661B2 (en) 2013-03-29 2013-03-29 Heat source equipment

Publications (2)

Publication Number Publication Date
JP2014199162A JP2014199162A (en) 2014-10-23
JP6133661B2 true JP6133661B2 (en) 2017-05-24

Family

ID=52356175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075118A Active JP6133661B2 (en) 2013-03-29 2013-03-29 Heat source equipment

Country Status (1)

Country Link
JP (1) JP6133661B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095046B2 (en) * 2004-06-21 2008-06-04 リンナイ株式会社 Hot water system
JP4359339B2 (en) * 2004-06-23 2009-11-04 株式会社ガスター Hot water system

Also Published As

Publication number Publication date
JP2014199162A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP2010210182A (en) Hot water supply system
JP2014016075A (en) Hybrid system
JP6055356B2 (en) Heat source equipment
JP6858621B2 (en) Heat source device
JP6209117B2 (en) Heat source equipment
JP5358883B2 (en) Water heater
JP6228881B2 (en) Heat source equipment
JP6133661B2 (en) Heat source equipment
JP6147541B2 (en) Heat source equipment
JP4359341B2 (en) Hot water system
JP2008045841A (en) Hot water storage type hot water supply system and cogeneration system
JP4880312B2 (en) Hot water storage hot water source
JP2017009215A (en) Auxiliary heat source machine
JP6138548B2 (en) Heat source equipment
JP6125877B2 (en) Heat source equipment
JP6228880B2 (en) Heat source equipment
JP6498133B2 (en) Hot water storage type water heater and hot water supply method with hot water storage type water heater
JP6800795B2 (en) Heat source device
JP4359340B2 (en) Hot water system
JP6088889B2 (en) Heat source equipment
JP6138550B2 (en) Heat source equipment
JP6320118B2 (en) Heat source equipment
JP6843679B2 (en) Heat source device
JP6062787B2 (en) Heat source equipment
KR101588538B1 (en) Storage type hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170420

R150 Certificate of patent or registration of utility model

Ref document number: 6133661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250