JP6121333B2 - Microwave heating apparatus and microwave heating method - Google Patents

Microwave heating apparatus and microwave heating method Download PDF

Info

Publication number
JP6121333B2
JP6121333B2 JP2013539708A JP2013539708A JP6121333B2 JP 6121333 B2 JP6121333 B2 JP 6121333B2 JP 2013539708 A JP2013539708 A JP 2013539708A JP 2013539708 A JP2013539708 A JP 2013539708A JP 6121333 B2 JP6121333 B2 JP 6121333B2
Authority
JP
Japan
Prior art keywords
microwave
film
substrate
waveguide
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013539708A
Other languages
Japanese (ja)
Other versions
JPWO2013058379A1 (en
Inventor
内田 博
博 内田
篠崎 研二
研二 篠崎
和章 仙田
和章 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Fuji Electronics Industry Co Ltd
Original Assignee
Showa Denko KK
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Fuji Electronics Industry Co Ltd filed Critical Showa Denko KK
Publication of JPWO2013058379A1 publication Critical patent/JPWO2013058379A1/en
Application granted granted Critical
Publication of JP6121333B2 publication Critical patent/JP6121333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/102Using microwaves, e.g. for curing ink patterns or adhesive

Description

本発明は、マイクロ波加熱装置及びマイクロ波加熱方法に関する。   The present invention relates to a microwave heating apparatus and a microwave heating method.

従来より、マイクロ波を使用して金属等の材料、またはそれらの薄膜を加熱処理する技術が知られている。マイクロ波を使用する場合、電界または磁界の作用により、加熱対象物を内部発熱させて選択的に加熱することができる。   2. Description of the Related Art Conventionally, a technique for heat-treating materials such as metals or their thin films using microwaves is known. When the microwave is used, the heating object can be selectively heated by generating heat internally by the action of an electric field or a magnetic field.

マイクロ波加熱の例としては、下記特許文献1(特に段落0073等)に、金属酸化物半導体の前駆体となる無機金属塩材料から形成された薄膜に、大気圧下(酸素の存在下)でマイクロ波を照射して半導体に変換する技術が開示されている。   As an example of microwave heating, in Patent Document 1 (particularly paragraph 0073, etc.) described below, a thin film formed from an inorganic metal salt material that is a precursor of a metal oxide semiconductor is subjected to atmospheric pressure (in the presence of oxygen). A technique for irradiating a microwave and converting it into a semiconductor is disclosed.

また、下記特許文献2(特に段落0024等)には、等間隔にマイクロ波源(マグネトロン)が配設されたトンネル内に超硬合金、サーメット又はセラミック製切断板等の加工材を通過させながら加熱する技術が開示されている。   Further, in Patent Document 2 (particularly, paragraph 0024), heating is performed while passing a workpiece such as a cemented carbide, cermet, or ceramic cutting plate through a tunnel in which microwave sources (magnetrons) are arranged at equal intervals. Techniques to do this are disclosed.

また、下記特許文献3(特に段落0019等)には、定在波(入射波と反射波の合成)の電界最大又は磁界最大の位置に砥石材料を設置し、効率よく加熱を行うマイクロ波加熱装置が開示されている。   Further, in the following Patent Document 3 (particularly paragraph 0019, etc.), microwave heating is performed by efficiently installing a grindstone material at a position where the electric field or magnetic field of a standing wave (combining incident wave and reflected wave) is maximum. An apparatus is disclosed.

特開2009−177149号公報JP 2009-177149 A 特開2006−300509号広報JP 2006-300509 A 特開2010−274383号広報JP 2010-274383 PR

一般に、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜をマイクロ波により加熱する場合、スパークの発生によりこれらの膜や膜を形成した基板が破損され、適切に加熱することが困難であるという問題がある。上記従来の技術には、この問題を解決する構成が開示されていない。   In general, when a conductor or semiconductor film or a film of a dispersion in which a conductor or semiconductor is dispersed is heated by microwaves, the substrate on which these films or films are formed due to the occurrence of sparks may be appropriately heated. There is a problem that it is difficult. The above conventional technology does not disclose a configuration that solves this problem.

本発明の目的は、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜を適切に加熱することができるマイクロ波加熱装置及びマイクロ波加熱方法を提供することにある。   An object of the present invention is to provide a microwave heating apparatus and a microwave heating method capable of appropriately heating a conductor or semiconductor film or a dispersion film in which a conductor or semiconductor is dispersed.

上記目的を達成するために、本発明の一実施形態は、マイクロ波加熱装置であって、導波管と、前記導波管に波長範囲1m〜1mmのマイクロ波を供給するマイクロ波供給手段と、前記導波管内に、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜を形成した基板を、前記膜の形成面が前記マイクロ波の電気力線方向と略平行に配置し、または移動させる基板供給手段と、を備えることを特徴とする。   In order to achieve the above object, one embodiment of the present invention is a microwave heating apparatus, comprising: a waveguide; and a microwave supply unit that supplies a microwave having a wavelength range of 1 m to 1 mm to the waveguide. A substrate in which a conductor or semiconductor film or a dispersion film in which a conductor or semiconductor is dispersed is formed in the waveguide, and the film forming surface is arranged substantially parallel to the direction of the electric lines of force of the microwave. Or a substrate supply means to be moved.

また、上記マイクロ波加熱装置は、前記マイクロ波の進行方向に平行に、かつマイクロ波の進行方向と直交する方向に複数の前記導波管を隣接して並べ、複数の前記導波管内のマイクロ波の位相を互いに90度ずれた状態に維持し、前記基板供給手段は、前記基板を前記複数の導波管に連続して通過させることを特徴とする。   Further, the microwave heating apparatus includes a plurality of the waveguides arranged adjacent to each other in a direction parallel to the microwave traveling direction and perpendicular to the microwave traveling direction, and the microwaves in the plurality of waveguides are arranged. The phase of the waves is maintained at a state shifted by 90 degrees from each other, and the substrate supply means passes the substrate continuously through the plurality of waveguides.

また、前記膜の厚さは10nm〜1mmであるのが好適である。   The thickness of the film is preferably 10 nm to 1 mm.

また、前記基板はポリイミド、ポリエステル、ポリカーボネート、紙フェノール、ガラスエポキシ、アルミナ、シリカ、ジルコニア、チタニア、シリコンまたは炭化ケイ素を含む基材で構成されていることを特徴とする。   The substrate is made of a base material containing polyimide, polyester, polycarbonate, paper phenol, glass epoxy, alumina, silica, zirconia, titania, silicon or silicon carbide.

また、前記導体または半導体が金、銀、銅、アルミニウム、ニッケル、グラファイト、グラフェン、カーボンナノチューブ、酸化亜鉛、酸化スズ、酸化インジウムスズであることを特徴とする。   The conductor or semiconductor is gold, silver, copper, aluminum, nickel, graphite, graphene, carbon nanotube, zinc oxide, tin oxide, or indium tin oxide.

また、本発明の一実施形態は、マイクロ波加熱方法であって、導波管中に波長範囲1m〜1mmのマイクロ波を供給し、前記導波管内に、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜を形成した基板を、前記膜の形成面が前記マイクロ波の電気力線方向と略平行に配置し、または移動させる、ことを特徴とする。   Another embodiment of the present invention is a microwave heating method, in which a microwave having a wavelength range of 1 m to 1 mm is supplied into a waveguide, and a conductor or a semiconductor film or a conductor or semiconductor is provided in the waveguide. The substrate on which the film of the dispersion in which the film is dispersed is arranged or moved substantially parallel to the direction of the electric lines of force of the microwave.

本発明によれば、膜が形成された基板の面をマイクロ波の電気力線方向と略平行とすることによりスパークの発生を抑制し、適切に加熱することができる。   According to the present invention, the generation of sparks can be suppressed and heated appropriately by making the surface of the substrate on which the film is formed substantially parallel to the direction of the lines of electric force of microwaves.

実施形態にかかるマイクロ波加熱装置の構成例を示す図である。It is a figure showing the example of composition of the microwave heating device concerning an embodiment. 加熱部を構成する導波管の構成例を示す図である。It is a figure which shows the structural example of the waveguide which comprises a heating part. 導波管中に発生するマイクロ波の電磁界分布の説明図である。It is explanatory drawing of the electromagnetic field distribution of the microwave which generate | occur | produces in a waveguide. 導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜が形成された基板の断面図である。It is sectional drawing of the board | substrate with which the film | membrane of the dispersion | distribution which disperse | distributed the film | membrane of a conductor or a semiconductor or a conductor or a semiconductor was formed. 実施形態にかかるマイクロ波加熱装置の他の構成例を示す図である。It is a figure which shows the other structural example of the microwave heating device concerning embodiment. スライドガラスに形成したインクの塗布領域の説明図である。It is explanatory drawing of the application | coating area | region of the ink formed in the slide glass. 比較例1における導波管内の基板の配置の説明図である。6 is an explanatory diagram of the arrangement of substrates in a waveguide in Comparative Example 1. FIG. 比較例1における導波管内の基板の配置の説明図である。6 is an explanatory diagram of the arrangement of substrates in a waveguide in Comparative Example 1. FIG.

以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1には、本実施形態にかかるマイクロ波加熱装置の構成例が示される。図1において、マイクロ波加熱装置は、マイクロ波発生部10、モニタ部12、チューナ部14、加熱部16、被加熱対象物供給部18及び可動短絡部20を含んで構成されている。   FIG. 1 shows a configuration example of a microwave heating apparatus according to this embodiment. In FIG. 1, the microwave heating apparatus includes a microwave generation unit 10, a monitor unit 12, a tuner unit 14, a heating unit 16, a heated object supply unit 18, and a movable short-circuit unit 20.

マイクロ波発生部10は、加熱部16を構成する導波管に供給するマイクロ波を発生する。ここで、マイクロ波とは、波長範囲が1m〜1mm(周波数が300MHz〜300GHz)の電磁波である。   The microwave generation unit 10 generates a microwave to be supplied to the waveguide constituting the heating unit 16. Here, the microwave is an electromagnetic wave having a wavelength range of 1 m to 1 mm (frequency is 300 MHz to 300 GHz).

モニタ部12は、マイクロ波発生部10が発生したマイクロ波の入射電力と、加熱部16からの反射電力を監視する装置である。   The monitor unit 12 is a device that monitors the incident power of the microwave generated by the microwave generation unit 10 and the reflected power from the heating unit 16.

チューナ部14は、加熱部16を構成する導波管に上記マイクロ波が進入する際に発生する反射波と逆位相の電磁波を発生させて反射波を打ち消し、反射波がマイクロ波発生部10に戻ることを防止する。   The tuner unit 14 generates an electromagnetic wave having a phase opposite to that of the reflected wave generated when the microwave enters the waveguide constituting the heating unit 16 to cancel the reflected wave, and the reflected wave is transmitted to the microwave generating unit 10. Prevent return.

加熱部16は、上述の通り、導波管により構成され、被加熱対象物をマイクロ波により加熱する。後述するように、本実施形態では、マイクロ波のエネルギーのうち電界のエネルギーを使用し被加熱対象物を加熱する。   As described above, the heating unit 16 is configured by a waveguide, and heats an object to be heated by microwaves. As will be described later, in the present embodiment, an object to be heated is heated using energy of an electric field among microwave energy.

被加熱対象物供給部18は、マイクロ波の漏洩防止機構を備え、加熱部16を構成する導波管に被加熱対象物を供給する。この被加熱対象物供給部18は、例えば導波管に形成した被加熱対象物の供給用の開口であってよい。この場合には、人手により被加熱対象物を上記開口から導波管内に挿入する。また、ロールツーロール等の適宜な供給装置により、被加熱対象物を導波管内に供給する構成としてもよい。なお、本実施形態において、被加熱対象物は、基板面上に形成された導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜である。   The heated object supply unit 18 includes a microwave leakage prevention mechanism, and supplies the heated object to the waveguide constituting the heating unit 16. The heated object supply unit 18 may be, for example, an opening for supplying the heated object formed in the waveguide. In this case, the object to be heated is manually inserted into the waveguide from the opening. Moreover, it is good also as a structure which supplies a to-be-heated target object in a waveguide with appropriate supply apparatuses, such as roll-to-roll. In the present embodiment, the object to be heated is a conductor or semiconductor film formed on the substrate surface or a dispersion film in which the conductor or semiconductor is dispersed.

また、本願において半導体とは、抵抗率が10−3Ωcm〜10Ωcmの範囲の物質をいい、導体とは、半導体より抵抗率が小さい(10−3Ωcm未満)の物質をいう。In the present application, a semiconductor means a substance having a resistivity in the range of 10 −3 Ωcm to 10 6 Ωcm, and a conductor means a substance having a resistivity lower than that of the semiconductor (less than 10 −3 Ωcm).

可動短絡部20は、被加熱対象物の材質により加熱部16を構成する導波管内のマイクロ波の波長に短縮が生じ、定在波が変化したときに、導波管内に定在波を維持するための部材であり、モニタ部12の反射電力を監視し、定在波を維持するための最適な位置に先端部20aが配置される。   The movable short-circuit portion 20 maintains the standing wave in the waveguide when the wavelength of the microwave in the waveguide constituting the heating portion 16 is shortened due to the material of the object to be heated and the standing wave changes. The tip portion 20a is arranged at an optimum position for monitoring the reflected power of the monitor unit 12 and maintaining a standing wave.

図2には、加熱部16を構成する導波管の構成例(TE10モードの空洞共振器)が示される。図2において、導波管には、マイクロ波を受け入れる側に上記チューナ部14が設けられている。また、マイクロ波の入り口には、アイリス部22が形成され、マイクロ波はこのアイリス部22の開口から導波管16aに進入する。図2中のマイクロ波Mwの波は電界強度の曲線(波(振幅)の最高点(曲線の最上点)が電界最大点、最下点(曲線の最下限)が電界最小点)を示している。   FIG. 2 shows a configuration example (TE10 mode cavity resonator) of a waveguide constituting the heating unit 16. In FIG. 2, the tuner section 14 is provided on the side of receiving a microwave in the waveguide. In addition, an iris portion 22 is formed at the entrance of the microwave, and the microwave enters the waveguide 16 a through the opening of the iris portion 22. The wave of the microwave Mw in FIG. 2 shows a curve of electric field intensity (the highest point of the wave (amplitude) (the highest point of the curve) is the maximum electric field point, and the lowest point (the lowest limit of the curve is the lowest electric field point)). Yes.

導波管16aのアイリス部22と反対側の端部付近には、上記可動短絡部20が設けられており、アイリス部22と可動短絡部20の先端部20aとの間に存在するマイクロ波Mwの電界により被加熱対象物供給部18から供給された被加熱対象物すなわち基板24上に形成された上記膜が加熱される。なお、アイリス部22と先端部20aとの間にマイクロ波Mwの定在波を発生させるためには、アイリス部22と先端部20aとの距離Lを、
L=(2n−1)λg/2
λgはマイクロ波Mwの導波管内における波長、nは自然数
とすればよい。ただし、導波管16a中に発生するマイクロ波は、定在波に限定されず、進行波であってもよい。
The movable short-circuit portion 20 is provided in the vicinity of the end of the waveguide 16a opposite to the iris portion 22, and the microwave Mw existing between the iris portion 22 and the distal end portion 20a of the movable short-circuit portion 20 is provided. The object to be heated supplied from the object supply unit 18 to be heated, that is, the film formed on the substrate 24 is heated by the electric field. In order to generate a standing wave of the microwave Mw between the iris part 22 and the tip part 20a, the distance L between the iris part 22 and the tip part 20a is set as follows:
L = (2n−1) λg / 2
λg may be a wavelength of the microwave Mw in the waveguide, and n may be a natural number. However, the microwave generated in the waveguide 16a is not limited to a standing wave, and may be a traveling wave.

図3(a)、(b)、(c)には、導波管16a中に発生するマイクロ波の電磁界分布の説明図が示される。   FIGS. 3A, 3B and 3C are explanatory diagrams of the electromagnetic field distribution of the microwave generated in the waveguide 16a.

図3(a)は、導波管16aの斜視図であり、図のx−y平面に直交する方向(z軸方向)に導波管16aが伸びている。導波管16aにマイクロ波が供給されると、y軸方向(x−z平面に直交する方向)に電界が発生する。このときの電界の方向及び強さを表す電気力線が実線の矢印で表示されている。また、磁界は電界と直交するx軸方向に発生し、磁界の方向及び強さを表す磁力線が破線の矢印で表示されている。   FIG. 3A is a perspective view of the waveguide 16a, and the waveguide 16a extends in a direction (z-axis direction) orthogonal to the xy plane of the drawing. When microwaves are supplied to the waveguide 16a, an electric field is generated in the y-axis direction (direction perpendicular to the xz plane). The electric lines of force representing the direction and strength of the electric field at this time are indicated by solid arrows. Further, the magnetic field is generated in the x-axis direction orthogonal to the electric field, and the lines of magnetic force representing the direction and strength of the magnetic field are indicated by broken arrows.

図3(b)は、導波管16aのx−z平面に平行な面での断面図である。図3(b)では、マイクロ波の電気力線が白丸(○)と黒丸(●)で示されており、白丸が紙面の手前側から裏側に向かう向き、黒丸が紙面の裏側から手前側に向かう向きの電気力線である。なお、磁力線は破線で示されている。   FIG. 3B is a cross-sectional view taken along a plane parallel to the xz plane of the waveguide 16a. In FIG. 3 (b), the microwave electric field lines are indicated by white circles (◯) and black circles (●), the white circles are directed from the front side of the paper to the back side, and the black circles are directed from the back side of the paper to the front side. It is an electric field line in the direction of heading. The magnetic field lines are indicated by broken lines.

基板24は、図3(b)に示されるように、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜が形成された面をマイクロ波の電気力線方向(電界の方向)と略平行に維持した状態で導波管16a中に配置し、または導波管16a中を移動させる。ここで、略平行とは、基板24の面とマイクロ波の電気力線方向とが平行または電気力線方向に対して30度以内の角度を維持した状態をいう。なお、上記30度以内の角度とは、基板24の面に立てた法線と電気力線方向とが60度以上の角度をなしている状態をいう。基板24の面には、被加熱対象物である、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜が形成されている。このため、電界によるジュール損失及び/または誘電損失により、基板24の面に形成された被加熱対象物である上記膜の加熱を行うことができる。なお、上記膜の抵抗率が1MΩcm未満の場合にはジュール損失が主となり、1MΩcm以上の場合は誘電損失が主となると考えられる。これにより、上記膜の電気抵抗が、絶縁体の状態から導体の状態まで加熱及び焼結を行うことができる。この結果、導体もしくは半導体を分散させた分散物の膜においても、その抵抗率を下げることができる。   As shown in FIG. 3B, the substrate 24 has a surface on which a conductor or semiconductor film or a dispersion film in which the conductor or semiconductor is dispersed is formed on the surface of the microwave in the direction of electric lines of force (direction of electric field). Are arranged in the waveguide 16a in a state of being maintained substantially parallel to or moved in the waveguide 16a. Here, “substantially parallel” refers to a state in which the surface of the substrate 24 and the direction of the electric force lines of the microwave are parallel or maintain an angle within 30 degrees with respect to the direction of the electric force lines. Note that the angle within 30 degrees refers to a state in which the normal line standing on the surface of the substrate 24 and the direction of the electric force lines form an angle of 60 degrees or more. On the surface of the substrate 24, a conductor or semiconductor film or a dispersion film in which the conductor or semiconductor is dispersed is formed as an object to be heated. For this reason, the said film | membrane which is a to-be-heated object formed in the surface of the board | substrate 24 can be heated by the Joule loss and / or dielectric loss by an electric field. When the resistivity of the film is less than 1 MΩcm, Joule loss is dominant, and when it is 1 MΩcm or more, dielectric loss is dominant. Thereby, the electrical resistance of the film can be heated and sintered from the state of the insulator to the state of the conductor. As a result, the resistivity can be lowered even in a dispersion film in which conductors or semiconductors are dispersed.

上述したように、被加熱対象物として形成されている導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜の面は、マイクロ波の電気力線方向と平行または30度以内の角度で交わっている(略平行である)ので、上記膜を貫通する電気力線の本数が制限され、スパークの発生を抑制できる。また、マイクロ波の電界では、上記導体もしくは半導体を含む膜を内部発熱により選択的に加熱できる。従って、オーブン等により基板24ごと加熱する必要はない。なお、シリコンまたは炭化ケイ素等の半導体基板を使用した場合には、マイクロ波で加熱する際に基板自体も発熱するが、短時間で膜の焼結が完了する。これらのことから、基板24及びその表面に形成された導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜を破損せずに適切に加熱することができる。   As described above, the surface of the conductor or semiconductor film formed as the object to be heated or the film of the dispersion film in which the conductor or semiconductor is dispersed is parallel to the direction of the electric lines of microwave or an angle within 30 degrees. Are intersected (substantially parallel), the number of lines of electric force passing through the film is limited, and the occurrence of sparks can be suppressed. In addition, in a microwave electric field, the film containing the conductor or semiconductor can be selectively heated by internal heat generation. Therefore, it is not necessary to heat the entire substrate 24 with an oven or the like. When a semiconductor substrate such as silicon or silicon carbide is used, the substrate itself generates heat when heated by microwaves, but the film is completely sintered in a short time. Accordingly, the substrate 24 and the conductor or semiconductor film formed on the surface thereof or the dispersion film in which the conductor or semiconductor is dispersed can be appropriately heated without being damaged.

図3(c)は、導波管16aのy−z平面に平行な面での断面図である。図3(c)でも、マイクロ波の電気力線が実線の矢印で示されている。なお、図2、図3(b)および図3(c)では基板表面に形成された導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜の面がy−z平面に平行である場合を例示しているが、マイクロ波の電気力線方向と略平行になるような他の配置、例えばx−y平面に平行となるように配置してもよい。   FIG. 3C is a cross-sectional view taken along a plane parallel to the yz plane of the waveguide 16a. Also in FIG. 3C, the microwave electric field lines are indicated by solid arrows. In FIGS. 2, 3B and 3C, the surface of the conductor or semiconductor film formed on the substrate surface or the dispersion film in which the conductor or semiconductor is dispersed is parallel to the yz plane. Although a certain case is illustrated, other arrangements that are substantially parallel to the direction of the lines of electric force of the microwave, for example, may be arranged to be parallel to the xy plane.

基板24は、電気力線の密度が高い(電界強度が高い)領域を通過させるのが、より短時間で加熱でき、好適である。この際、上述のように、基板24の面がマイクロ波の電気力線方向と略平行に配置される。図2および図3では、y軸方向(x−z平面に直交する方向)に電界が発生、x軸方向(y−z平面に直交する方向)に磁界が発生する場合を例示しているが、x軸方向(y−z平面に直交する方向)に電界が発生、y軸方向(x−z平面に直交する方向)に磁界が発生する構成とすることもできる。   The substrate 24 is preferably passed through a region having a high density of electric lines of force (high electric field strength) because it can be heated in a shorter time. At this time, as described above, the surface of the substrate 24 is disposed substantially parallel to the direction of the electric lines of force of the microwave. 2 and 3 illustrate the case where an electric field is generated in the y-axis direction (direction orthogonal to the xz plane) and a magnetic field is generated in the x-axis direction (direction orthogonal to the yz plane). The electric field is generated in the x-axis direction (direction orthogonal to the yz plane), and the magnetic field is generated in the y-axis direction (direction orthogonal to the xz plane).

図4には、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜が形成された基板24の断面図が示される。図4において、基板24の少なくとも一方の面には、導体もしくは半導体の膜26または導体もしくは半導体を分散させた分散物の膜26が形成されている。上記基板の厚さは0.01〜10mmの範囲が好適である。また、上記膜の厚さは10nm〜1mmの範囲、好ましくは100nm〜100μmの範囲とする。10nmより薄い膜は形成しにくく、1mmより厚い膜は、貫通する電気力線の数が増え、スパークが生じやすいからである。   FIG. 4 shows a cross-sectional view of a substrate 24 on which a conductor or semiconductor film or a dispersion film in which a conductor or semiconductor is dispersed is formed. In FIG. 4, a conductor or semiconductor film 26 or a dispersion film 26 in which a conductor or semiconductor is dispersed is formed on at least one surface of a substrate 24. The thickness of the substrate is preferably in the range of 0.01 to 10 mm. The thickness of the film is in the range of 10 nm to 1 mm, preferably in the range of 100 nm to 100 μm. This is because it is difficult to form a film thinner than 10 nm, and a film thicker than 1 mm increases the number of lines of electric force passing therethrough and easily causes sparks.

導体または半導体の例としては、金、銀、銅、アルミニウム、ニッケル、グラファイト、グラフェン、カーボンナノチューブ、酸化亜鉛、酸化スズ、酸化インジウムスズ等を挙げることができる。また、上記導体または半導体を分散させる分散媒としては、公知の樹脂を用いることができる。これらの樹脂の例としては、セルロース、ポリビニルピロリドン、ポリエチレングリコール、ポリプロピレングリコール、エポキシ樹脂等を挙げることができる。また、上記基板24の材料の例としては、ポリイミド、ポリエステル、ポリカーボネート、紙フェノール、ガラスエポキシ、アルミナ、シリカ、ジルコニア、チタニア、シリコンまたは炭化ケイ素を含む基材を挙げることができる。上記基板24は、導波管に設けられた被加熱対象物供給部18から導波管16a中に挿入され、図示していない基板保持、移動手段によって上記膜の形成面が導波管中のマイクロ波の電気力線方向と略平行になるようにして導波管中に配置または導波管中を移動させてもよい。   Examples of the conductor or semiconductor include gold, silver, copper, aluminum, nickel, graphite, graphene, carbon nanotube, zinc oxide, tin oxide, and indium tin oxide. A known resin can be used as a dispersion medium for dispersing the conductor or semiconductor. Examples of these resins include cellulose, polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol, and epoxy resin. Examples of the material of the substrate 24 include base materials containing polyimide, polyester, polycarbonate, paper phenol, glass epoxy, alumina, silica, zirconia, titania, silicon, or silicon carbide. The substrate 24 is inserted into the waveguide 16a from the heated object supply unit 18 provided in the waveguide, and the film formation surface is not in the waveguide by the substrate holding and moving means (not shown). It may be arranged in the waveguide or moved in the waveguide so as to be substantially parallel to the direction of the electric lines of force of the microwave.

図5には、本実施形態にかかるマイクロ波加熱装置の他の構成例が示される。図5において、特徴的な点は、二つの導波管16aがマイクロ波の進行方向(図の矢印A1、A2の方向)に平行に、かつマイクロ波の進行方向と直交する方向に隣接して並べられており、二つの導波管16a中のマイクロ波の位相が互いに90度ずれた状態に維持されていることである。なお、上記説明では、「マイクロ波の進行方向」との文言を使用しているが、これはマイクロ波が定在波であることを否定していない。定在波は互いに反対方向に進行する進行波の合成により生じるからである。また、本実施形態では、二つの導波管16aが平行に並べられているが、導波管16aの数は二つに限るものではない。被加熱対象物である上記膜が形成された基板24等の形状、被加熱面積その他の事情により適宜な数の導波管16aを使用することができる。   FIG. 5 shows another configuration example of the microwave heating apparatus according to this embodiment. In FIG. 5, the characteristic point is that the two waveguides 16a are parallel to the traveling direction of the microwave (directions of arrows A1 and A2 in the figure) and adjacent to the direction orthogonal to the traveling direction of the microwave. In other words, the microwave phases in the two waveguides 16a are maintained in a state of being shifted by 90 degrees from each other. In the above description, the term “traveling direction of microwave” is used, but this does not deny that the microwave is a standing wave. This is because the standing wave is generated by the synthesis of traveling waves traveling in opposite directions. In the present embodiment, the two waveguides 16a are arranged in parallel, but the number of the waveguides 16a is not limited to two. An appropriate number of waveguides 16a can be used depending on the shape of the substrate 24 or the like on which the above-mentioned film, which is the object to be heated, is formed, the area to be heated, and other circumstances.

図5に示された実施形態においても、被加熱対象物供給部18が設けられており、基板24を、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜が形成されている面が各導波管16a中のマイクロ波の電気力線方向と略平行に維持した状態で図示していない基板保持、移動手段によって導波管16a中を連続して通過させる。ここで、連続して通過とは、基板24が一つの導波管16aを通過した後、これに隣接するマイクロ波の位相が90度ずれた導波管16aを続けて通過することをいう。図5の例では、基板24が、図の上から下の方向(矢印B方向)に移動している。なお、本実施形態における被加熱対象物供給部18も、導波管に形成した被加熱対象物の供給用の開口であってよい。   Also in the embodiment shown in FIG. 5, the heated object supply unit 18 is provided, and the substrate 24 is formed with a conductor or semiconductor film or a dispersion film in which the conductor or semiconductor is dispersed. The surface is continuously passed through the waveguide 16a by the substrate holding and moving means (not shown) in a state where the surface is maintained substantially parallel to the direction of the electric lines of microwaves in each waveguide 16a. Here, “continuous passage” means that the substrate 24 passes through one waveguide 16a, and then passes through the waveguide 16a adjacent to this where the phase of the microwave is shifted by 90 degrees. In the example of FIG. 5, the substrate 24 moves in the direction from the top to the bottom (arrow B direction). In addition, the to-be-heated object supply part 18 in this embodiment may also be an opening for supplying the to-be-heated object formed in the waveguide.

以下、本発明の実施例を具体的に説明する。なお、以下の実施例及び比較例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。   Examples of the present invention will be specifically described below. In addition, the following examples and comparative examples are for facilitating understanding of the present invention, and the present invention is not limited to these examples.

実施例1
基板として東レ・デュポン社製ポリイミドフィルム;カプトン150EN(フィルム厚 37.5μm)を使用し、この基板の表面に銀(Ag)ペースト(ドータイトFA−353N 藤倉化成株式会社製)を塗布した。
Example 1
A polyimide film manufactured by Toray DuPont Co., Ltd .; Kapton 150EN (film thickness: 37.5 μm) was used as a substrate, and a silver (Ag) paste (Dotite FA-353N manufactured by Fujikura Kasei Co., Ltd.) was applied to the surface of the substrate.

上記銀ペーストの塗布は、上記基板にスクリーン印刷により2cm×2cmの正方パターンを印刷することにより行った。印刷したパターン(銀ペースト層)の厚さは、乾燥後で15μm(3点平均値)であった。   The silver paste was applied by printing a 2 cm × 2 cm square pattern on the substrate by screen printing. The thickness of the printed pattern (silver paste layer) was 15 μm (three-point average value) after drying.

以上のようにして銀ペーストを塗布して銀ペースト層を形成した基板を、図2に示した装置によりマイクロ波加熱を行った。この際、基板24は、マイクロ波の電界の最大点を含み、かつ上述したように、銀ペーストを塗布した面が、マイクロ波の電気力線方向と略平行となる方向に配置した。使用したマイクロ波の周波数は2.45GHzであり、このときの電界の最大点は理論上アイリス部22からλg/4離れた位置(2.45GHzのマイクロ波を使用する場合λgは148mm)となるが、基板をセットすると基板の中を進むマイクロ波が波長短縮し、共振位置がずれる。そのため、アイリス部22からλg/4離れた電界の最大点にマイクロ波検出器を配置し、マイクロ波検出器に接続した導波管内電圧計の電圧が最大値を示す位置にプランジャーの位置を微調整する。加熱時間は30秒〜60秒である。これにより、銀ペースト層の表面温度が200℃程度まで上昇し、銀粒子が焼結して銀膜を生成した。このとき、基板24には熱変形等の損傷が生じなかった。また、マイクロ波加熱中にスパークの発生はなく、基板24を破損させずにその表面上に銀膜が形成できた。形成された銀膜の膜厚は16μmであった。加熱処理前後の銀ペースト層及び銀膜の抵抗率を、三菱化学アナリテック株式会社製ロレスタGPを用いて3点平均値として測定した。測定結果を表1に示す。   The substrate on which the silver paste was applied as described above to form the silver paste layer was subjected to microwave heating using the apparatus shown in FIG. At this time, the substrate 24 was disposed in a direction including the maximum point of the microwave electric field and having the surface coated with the silver paste substantially parallel to the direction of the electric lines of force of the microwave, as described above. The frequency of the used microwave is 2.45 GHz, and the maximum point of the electric field at this time is theoretically a position away from the iris part 22 by λg / 4 (λg is 148 mm when using a microwave of 2.45 GHz). However, when the substrate is set, the microwave traveling through the substrate shortens the wavelength, and the resonance position shifts. Therefore, a microwave detector is arranged at the maximum point of the electric field that is λg / 4 away from the iris part 22, and the position of the plunger is set at the position where the voltage of the voltmeter in the waveguide connected to the microwave detector shows the maximum value. Make fine adjustments. The heating time is 30 to 60 seconds. Thereby, the surface temperature of the silver paste layer rose to about 200 ° C., and the silver particles were sintered to produce a silver film. At this time, the substrate 24 was not damaged by thermal deformation or the like. Further, no spark was generated during microwave heating, and a silver film could be formed on the surface of the substrate 24 without damaging it. The film thickness of the formed silver film was 16 μm. The resistivity of the silver paste layer and the silver film before and after the heat treatment was measured as a three-point average value using a Loresta GP manufactured by Mitsubishi Chemical Analytech Co., Ltd. The measurement results are shown in Table 1.

実施例2
以下の手順によりアルミニウム粒子を分散させたインクを作製した。
Example 2
An ink in which aluminum particles were dispersed was prepared by the following procedure.

アルミニウムパウダー(RD10−3560 東洋アルミニウム株式会社製 D50=13μm)4.0g、フェノキシタイプエポキシ樹脂(jER1256 三菱化学株式会社製)の35%γ−ブチロラクトン溶液4.0g、γ−ブチロラクトン4.0gを良く混合して、均一な分散剤とした。なお、上記アルミニウムパウダーの粒径は、日機装株式会社製 マイクロトラック粒度分布測定装置 MT3000IIシリーズ USVRを使用して測定した。   4.0 g of aluminum powder (RD10-3560 manufactured by Toyo Aluminum Co., Ltd., D50 = 13 μm), 4.0 g of 35% γ-butyrolactone solution of phenoxy type epoxy resin (jER1256 manufactured by Mitsubishi Chemical Corporation), and 4.0 g of γ-butyrolactone are better. Mix to make a uniform dispersant. The particle size of the aluminum powder was measured using a Microtrack particle size distribution measuring device MT3000II series USVR manufactured by Nikkiso Co., Ltd.

上記分散剤を、実施例1と同様にして、東レ・デュポン社製 カプトン150EN(フィルム厚 37.5μm)の基板表面にスクリーン印刷により2cm×2cmの正方パターンで印刷し、アルミニウムが分散された膜(アルミニウム分散層)を形成した。乾燥後の膜厚は83μm(3点平均値)であった。その後、実施例1と同様にして、マイクロ波加熱を行った。マイクロ波加熱中に基板を熱変形させず、またスパークの発生もなく、基板を損傷させずにその表面上にアルミニウム膜を形成できた。形成されたアルミニウム膜の膜厚は102μmであった。実施例1と同様にして加熱処理前後のアルミニウム分散層及びアルミニウム膜の抵抗率を測定した。測定結果を表1に示す。   In the same manner as in Example 1, the above dispersant was printed on a substrate surface of Kapton 150EN (film thickness 37.5 μm) manufactured by Toray DuPont with a square pattern of 2 cm × 2 cm by screen printing, and a film in which aluminum was dispersed (Aluminum dispersion layer) was formed. The film thickness after drying was 83 μm (three-point average value). Thereafter, microwave heating was performed in the same manner as in Example 1. The substrate was not thermally deformed during microwave heating, no spark was generated, and an aluminum film could be formed on the surface without damaging the substrate. The formed aluminum film had a thickness of 102 μm. The resistivity of the aluminum dispersion layer and the aluminum film before and after the heat treatment was measured in the same manner as in Example 1. The measurement results are shown in Table 1.

実施例3
以下の手順により銅粒子を分散させたインクを作製した。
Example 3
An ink in which copper particles were dispersed was prepared by the following procedure.

銅パウダー(1100Y 三井金属鉱業株式会社製 D50=1.1μm)4.0g、フェノキシタイプエポキシ樹脂(jER1256 三菱化学株式会社製)の20%γ−ブチロラクトン溶液2.0g、グリセリン1.0gを良く混合して、均一な分散剤とした。なお、上記銅パウダーの粒径は、日機装株式会社製 ナノ粒度分布測定装置 UPA-UT151を使用して測定した。   Copper powder (1100Y, Mitsui Mining & Smelting Co., Ltd., D50 = 1.1 μm) 4.0 g, phenoxy type epoxy resin (jER1256, manufactured by Mitsubishi Chemical Corporation) 20% γ-butyrolactone solution 2.0 g, glycerin 1.0 g are mixed well. Thus, a uniform dispersant was obtained. The particle size of the copper powder was measured using a nano particle size distribution measuring device UPA-UT151 manufactured by Nikkiso Co., Ltd.

上記分散剤を、実施例1と同様にして、東レ・デュポン社製 カプトン150EN(フィルム厚 37.5μm)の基板表面にスクリーン印刷により2cm×2cmの正方パターンで印刷し、銅が分散された膜(銅分散層)を形成した。乾燥後の膜厚は14μm(3点平均値)であった。その後、実施例1と同様にして、マイクロ波加熱を行った。マイクロ波加熱中に基板を熱変形させず、またスパークの発生もなく、基板を損傷させずにその表面上に銅膜を形成できた。形成された銅膜の膜厚は17μmであった。実施例1と同様にして加熱処理前後の銅分散層及び銅膜の抵抗率を測定した。測定結果を表1に示す。   In the same manner as in Example 1, the above dispersant was printed on a substrate surface of Kapton 150EN (film thickness: 37.5 μm) manufactured by Toray DuPont with a square pattern of 2 cm × 2 cm by screen printing, and a film in which copper was dispersed (Copper dispersion layer) was formed. The film thickness after drying was 14 μm (three-point average value). Thereafter, microwave heating was performed in the same manner as in Example 1. A copper film could be formed on the surface of the substrate without causing thermal deformation of the substrate during microwave heating, generation of sparks, and damage to the substrate. The film thickness of the formed copper film was 17 μm. In the same manner as in Example 1, the resistivity of the copper dispersion layer and the copper film before and after the heat treatment was measured. The measurement results are shown in Table 1.

Figure 0006121333
Figure 0006121333

表1に示されるように、実施例1の加熱処理前の銀ペースト層は、抵抗率が2.12E−04(2.12×10−4)Ωcmであったものが、マイクロ波加熱処理後の銀膜では6.81×10−6Ωcmまで抵抗率が低下した。また、実施例2のアルミニウム粒子を分散させたインクで形成したアルミニウム分散層では、抵抗率が測定できなかった(上記測定装置の測定上限より高い抵抗率であった)が、マイクロ波加熱処理後のアルミニウム膜では抵抗率が4.39×10−5Ωcmまで低下した。また、実施例3の銅粒子を分散させたインクで形成した銅分散層では、抵抗率が測定できなかった(上記測定装置の測定上限より高い抵抗率であった)が、マイクロ波加熱処理後の銅膜では抵抗率が3.42×10−3Ωcmまで低下した。As shown in Table 1, the silver paste layer before the heat treatment of Example 1 had a resistivity of 2.12E-04 (2.12 × 10 −4 ) Ωcm after the microwave heat treatment. In the silver film, the resistivity decreased to 6.81 × 10 −6 Ωcm. Moreover, in the aluminum dispersion layer formed with the ink in which the aluminum particles of Example 2 were dispersed, the resistivity could not be measured (the resistivity was higher than the upper limit of measurement of the measurement apparatus), but after the microwave heat treatment In the aluminum film, the resistivity decreased to 4.39 × 10 −5 Ωcm. Moreover, in the copper dispersion layer formed with the ink in which the copper particles of Example 3 were dispersed, the resistivity could not be measured (the resistivity was higher than the measurement upper limit of the measuring device), but after the microwave heat treatment In the copper film, the resistivity decreased to 3.42 × 10 −3 Ωcm.

以上のように、銀、アルミニウム、銅の分散物の膜を基板上に形成し、マイクロ波加熱することにより、抵抗率の低い金属膜を形成できた。本実施例によれば、マイクロ波によるスパークを発生させずに各金属粒子を内部発熱させることができ、効率よく金属膜の抵抗率を下げることができた。   As described above, a metal film having a low resistivity could be formed by forming a film of a dispersion of silver, aluminum, and copper on a substrate and performing microwave heating. According to the present example, each metal particle could be internally heated without generating a microwave spark, and the resistivity of the metal film could be reduced efficiently.

比較例1
実施例1と同様にして、銀ペーストを、東レ・デュポン社製 カプトン150EN(フィルム厚 37.5μm)の基板表面にスクリーン印刷により2cm×2cmの正方パターンで印刷した。印刷したパターン(銀ペースト層)の厚さは、乾燥後で15μm(3点平均値)であった。
Comparative Example 1
In the same manner as in Example 1, the silver paste was printed in a square pattern of 2 cm × 2 cm by screen printing on the substrate surface of Kapton 150EN (film thickness: 37.5 μm) manufactured by Toray DuPont. The thickness of the printed pattern (silver paste layer) was 15 μm (three-point average value) after drying.

以上のようにして銀ペーストを塗布して銀ペースト層を形成した基板24を、図2、図3(b)、(c)に示した導波管内に、図7、図8(b)、(c)に示されるように配置し、マイクロ波加熱を行った。本比較例1の基板24の配置では、図7、図8(b)、図8(c)に示されるように、基板24の銀ペーストを塗布した面が、マイクロ波の電気力線方向と略直交する方向となる。このため、マイクロ波の電気力線の大部分を上記銀ペーストの塗布面で受けるようになり、スパークが発生して基板24および銀ペースト層が破損した。この結果から、実施例1〜3のように、基板面の方向をマイクロ波の電気力線方向と略平行となる方向に配置する必要があることがわかる。   The substrate 24 on which a silver paste layer is formed by applying a silver paste as described above is placed in the waveguide shown in FIGS. 2, 3B, and 3C, as shown in FIGS. Arranged as shown in (c), microwave heating was performed. In the arrangement of the substrate 24 of Comparative Example 1, as shown in FIGS. 7, 8B, and 8C, the surface of the substrate 24 coated with the silver paste is in the direction of the electric lines of force of the microwave. The direction is substantially orthogonal. For this reason, most of the electric field lines of microwaves are received by the coated surface of the silver paste, a spark is generated, and the substrate 24 and the silver paste layer are damaged. From this result, it can be seen that, as in Examples 1 to 3, it is necessary to arrange the direction of the substrate surface in a direction substantially parallel to the direction of the electric lines of force of the microwave.

比較例2〜4
実施例1〜3において、マイクロ波の代わりに、電気オーブン(恒温槽)により200℃で1時間外部加熱し、加熱処理前後の各金属の分散層及び各金属膜の抵抗率を測定した。測定結果を表2に示す。
Comparative Examples 2-4
In Examples 1 to 3, external heating was performed at 200 ° C. for 1 hour using an electric oven (a constant temperature bath) instead of microwaves, and the resistivity of each metal dispersion layer and each metal film before and after the heat treatment was measured. The measurement results are shown in Table 2.

Figure 0006121333
Figure 0006121333

表2に示されるように、アルミニウム粒子を分散させたインクを使用して形成したアルミニウム分散層、及び銅粒子を分散させたインクを使用して形成した銅分散層については抵抗率が測定できなかった(上記測定装置の測定上限より高い抵抗率であった)。また、Agペーストを使用して形成した膜(銀ペースト層)についても、マイクロ波加熱処理(実施例1)の場合よりも抵抗率が高いことが分かる。   As shown in Table 2, the resistivity cannot be measured for an aluminum dispersion layer formed using an ink in which aluminum particles are dispersed and a copper dispersion layer formed using an ink in which copper particles are dispersed. (The resistivity was higher than the upper limit of measurement of the measuring device). Moreover, it turns out that the resistivity (film | membrane silver paste layer) formed using Ag paste is higher than the case of a microwave heat processing (Example 1).

比較例5
2.6×7.6cmのスライドガラス(厚さ2mm)にカプトンテープを2枚重ねて貼り付け、図6に示すように、1×6cmの枠を作製した。この枠内に、実施例2、3で作製した各インクをガラス棒で均一に塗布した後、恒温槽中で100℃、1時間乾燥し、予備乾燥サンプルとした。
Comparative Example 5
Two pieces of Kapton tape were laminated and pasted on a 2.6 × 7.6 cm slide glass (thickness 2 mm) to produce a 1 × 6 cm frame as shown in FIG. Each ink produced in Examples 2 and 3 was uniformly applied with a glass rod in this frame, and then dried in a thermostatic bath at 100 ° C. for 1 hour to prepare a pre-dried sample.

次に、上記予備乾燥サンプルを500℃で加熱し、加熱処理後に抵抗率を測定した。銅粒子を分散させたインクを使用して形成した膜では、抵抗率が測定できなかった(上記測定装置の測定上限より高い抵抗率であった)。一方、アルミニウム粒子を分散させたインクを使用して形成した膜については、抵抗率が1.76E−4(1.76×10−4)Ωcmまで抵抗率が下がったが、実施例2よりも一桁抵抗率が高かった。Next, the pre-dried sample was heated at 500 ° C., and the resistivity was measured after the heat treatment. In the film formed using the ink in which the copper particles were dispersed, the resistivity could not be measured (the resistivity was higher than the measurement upper limit of the measuring device). On the other hand, regarding the film formed using the ink in which the aluminum particles are dispersed, the resistivity decreased to 1.76E-4 (1.76 × 10 −4 ) Ωcm. Single-digit resistivity was high.

10 マイクロ波発生部、12 モニタ部、14 チューナ部、16 加熱部、16a 導波管、18 被加熱対象物供給部、20 可動短絡部、20a 先端部、22 アイリス部、22a プランジャー、24 基板、26 膜。   DESCRIPTION OF SYMBOLS 10 Microwave generator, 12 Monitor part, 14 Tuner part, 16 Heating part, 16a Waveguide, 18 Heated object supply part, 20 Movable short circuit part, 20a Tip part, 22 Iris part, 22a Plunger, 24 Substrate , 26 Membrane.

Claims (6)

導波管と、
前記導波管に波長範囲1m〜1mmのマイクロ波を供給するマイクロ波供給手段と、
前記導波管内に、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜を形成した基板を、前記膜の形成面が前記マイクロ波の電気力線方向と略平行に配置し、または移動させる基板供給手段と、
を備えることを特徴とするマイクロ波加熱装置。
A waveguide;
Microwave supply means for supplying a microwave having a wavelength range of 1 m to 1 mm to the waveguide;
A substrate in which a conductor or semiconductor film or a dispersion film in which a conductor or semiconductor is dispersed is formed in the waveguide, and a surface on which the film is formed is arranged substantially parallel to the direction of the electric lines of force of the microwave, Or a substrate supply means to be moved;
A microwave heating apparatus comprising:
前記マイクロ波の進行方向に平行に、かつマイクロ波の進行方向と直交する方向に複数の前記導波管を隣接して並べ、複数の前記導波管内のマイクロ波の位相を互いに90度ずれた状態に維持し、前記基板供給手段は、前記基板を前記複数の導波管に連続して通過させることを特徴とする請求項1に記載のマイクロ波加熱装置。   A plurality of the waveguides are arranged adjacent to each other in a direction parallel to the microwave traveling direction and perpendicular to the microwave traveling direction, and the phases of the microwaves in the plurality of waveguides are shifted from each other by 90 degrees. 2. The microwave heating apparatus according to claim 1, wherein the substrate supply means continuously passes the substrate through the plurality of waveguides while maintaining the state. 前記膜の厚さが10nm〜1mmであることを特徴とする請求項1または請求項2に記載のマイクロ波加熱装置。   The microwave heating apparatus according to claim 1 or 2, wherein the film has a thickness of 10 nm to 1 mm. 前記基板がポリイミド、ポリエステル、ポリカーボネート、紙フェノール、ガラスエポキシ、アルミナ、シリカ、ジルコニア、チタニア、シリコンまたは炭化ケイ素を含む基材で構成されていることを特徴とする請求項1から請求項3のいずれか一項に記載のマイクロ波加熱装置。   4. The substrate according to claim 1, wherein the substrate is made of a base material containing polyimide, polyester, polycarbonate, paper phenol, glass epoxy, alumina, silica, zirconia, titania, silicon or silicon carbide. The microwave heating device according to claim 1. 前記導体または半導体が金、銀、銅、アルミニウム、ニッケル、グラファイト、グラフェン、カーボンナノチューブ、酸化亜鉛、酸化スズ、酸化インジウムスズであることを特徴とする請求項1から請求項4のいずれか一項に記載のマイクロ波加熱装置。   The conductor or semiconductor is gold, silver, copper, aluminum, nickel, graphite, graphene, carbon nanotube, zinc oxide, tin oxide, or indium tin oxide, or any one of claims 1 to 4. A microwave heating apparatus according to 1. 導波管中に波長範囲1m〜1mmのマイクロ波を供給し、
前記導波管内に、導体もしくは半導体の膜または導体もしくは半導体を分散させた分散物の膜を形成した基板を、前記膜の形成面が前記マイクロ波の電気力線方向と略平行に配置し、または移動させる、
ことを特徴とするマイクロ波加熱方法。
Supplying microwaves in the wavelength range of 1 m to 1 mm into the waveguide;
A substrate in which a conductor or semiconductor film or a dispersion film in which a conductor or semiconductor is dispersed is formed in the waveguide, and a surface on which the film is formed is arranged substantially parallel to the direction of the electric lines of force of the microwave, Or move,
The microwave heating method characterized by the above-mentioned.
JP2013539708A 2011-10-21 2012-10-19 Microwave heating apparatus and microwave heating method Active JP6121333B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011232186 2011-10-21
JP2011232186 2011-10-21
PCT/JP2012/077149 WO2013058379A1 (en) 2011-10-21 2012-10-19 Microwave heating device and microwave heating method

Publications (2)

Publication Number Publication Date
JPWO2013058379A1 JPWO2013058379A1 (en) 2015-04-02
JP6121333B2 true JP6121333B2 (en) 2017-04-26

Family

ID=48141022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013539708A Active JP6121333B2 (en) 2011-10-21 2012-10-19 Microwave heating apparatus and microwave heating method

Country Status (3)

Country Link
JP (1) JP6121333B2 (en)
TW (1) TWI642328B (en)
WO (1) WO2013058379A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853575B1 (en) * 2015-02-13 2018-04-30 스미토모덴키고교가부시키가이샤 Oxide sintered body and method for producing same, sputter target, and semiconductor device
JP6596285B2 (en) * 2015-09-24 2019-10-23 東芝メモリ株式会社 Microwave irradiation apparatus and substrate processing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122123A (en) * 1987-11-06 1989-05-15 Hitachi Ltd Plasma processor
JP2530793B2 (en) * 1991-05-14 1996-09-04 新日本製鐵株式会社 Microwave plasma processing equipment
US5172083A (en) * 1991-05-14 1992-12-15 Nippon Steel Corporation Microwave plasma processing apparatus
JPH05299387A (en) * 1992-04-22 1993-11-12 Nippon Steel Corp Plasma processor
JPH06287761A (en) * 1993-03-30 1994-10-11 Nippon Steel Corp Microwave plasma treating device
JPH0821787A (en) * 1994-07-06 1996-01-23 Nikkiso Co Ltd Apparatus for dissolving deposited component
TW447685U (en) * 2000-07-04 2001-07-21 Ind Tech Res Inst Microwave frying stove
JP3957135B2 (en) * 2000-10-13 2007-08-15 東京エレクトロン株式会社 Plasma processing equipment
JP4183934B2 (en) * 2001-10-19 2008-11-19 尚久 後藤 Microwave plasma processing apparatus, microwave plasma processing method, and microwave power supply apparatus
JP3870909B2 (en) * 2003-01-31 2007-01-24 株式会社島津製作所 Plasma processing equipment
JP2008146966A (en) * 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd Microwave generation device and microwave heating apparatus
JP4572213B2 (en) * 2007-04-25 2010-11-04 株式会社日立製作所 Microwave irradiation device
JP2009177149A (en) * 2007-12-26 2009-08-06 Konica Minolta Holdings Inc Metal oxide semiconductor, method for manufacturing it, and thin-film transistor
JP2009283547A (en) * 2008-05-20 2009-12-03 Dainippon Printing Co Ltd Forming method and forming apparatus for conductive pattern, and conductive substrate

Also Published As

Publication number Publication date
TW201338633A (en) 2013-09-16
TWI642328B (en) 2018-11-21
WO2013058379A1 (en) 2013-04-25
JPWO2013058379A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP2013101808A (en) Microwave heating device and microwave heating method
KR101677506B1 (en) Microwave heating device
KR101935117B1 (en) Conductive substrate
Huray et al. Fundamentals of a 3-D “snowball” model for surface roughness power losses
JP5067426B2 (en) Copper wiring pattern forming method and copper oxide particle dispersion used therefor
Fujii et al. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate
US11883789B2 (en) Microwave heating method, microwave heating apparatus, and chemical reaction method
Qin et al. Conductive network structure formed by laser sintering of silver nanoparticles
JP2006269984A (en) Method for baking metallic particle for mutually fusing metallic particle by high-frequency electromagnetic-wave irradiation and electronic part and material for baking metallic particle manufactured by using its method
JPWO2012115165A1 (en) Film forming method and film forming apparatus
Saito et al. Generation of solution plasma over a large electrode surface area
JP6121333B2 (en) Microwave heating apparatus and microwave heating method
TW201012316A (en) Microwave plasma processing apparatus and method for producing cooling jacket
JP5184584B2 (en) Method for forming metal wiring pattern, metal wiring pattern, metal wiring board, and metal particles and substrate for forming metal wiring pattern
Takano et al. Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses
JP2009181946A (en) Electrically conductive board, and manufacturing method thereof
TWI621134B (en) Conductive resin composition for microwave heating
Wang et al. A stable and diffusive atmospheric pressure glow discharge in ambient air obtained by applying an axial magnetic field between pin-to-plate electrodes
JP2006060064A (en) Method for heating thin film with microwave
WO2012115108A1 (en) Wiring formation method and device
JP2019140213A (en) Thin film pattern-firing method and microwave-firing device
JP2010073659A (en) Heating element
JP2015183207A (en) Heating method of composite material using millimeter wave, and formation method of composite material using the same
WO2019107401A1 (en) Microwave treatment device, microwave treatment method, heating treatment method and chemical reaction method
CN109068474A (en) A kind of circuit board of anti-electromagnetic-radiation interference

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170329

R150 Certificate of patent or registration of utility model

Ref document number: 6121333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250