JP6118458B1 - イオンビームエッチング方法およびイオンビームエッチング装置 - Google Patents

イオンビームエッチング方法およびイオンビームエッチング装置 Download PDF

Info

Publication number
JP6118458B1
JP6118458B1 JP2016517569A JP2016517569A JP6118458B1 JP 6118458 B1 JP6118458 B1 JP 6118458B1 JP 2016517569 A JP2016517569 A JP 2016517569A JP 2016517569 A JP2016517569 A JP 2016517569A JP 6118458 B1 JP6118458 B1 JP 6118458B1
Authority
JP
Japan
Prior art keywords
substrate
ion beam
shutter
etching
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016517569A
Other languages
English (en)
Other versions
JPWO2017056138A1 (ja
Inventor
保志 神谷
保志 神谷
洋 赤坂
洋 赤坂
清尚 坂本
清尚 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Application granted granted Critical
Publication of JP6118458B1 publication Critical patent/JP6118458B1/ja
Publication of JPWO2017056138A1 publication Critical patent/JPWO2017056138A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0455Diaphragms with variable aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Drying Of Semiconductors (AREA)
  • Magnetic Heads (AREA)

Abstract

装置の大型化を伴わず、低入射静止条件でも高均一なIBE処理を実現できるイオンビームエッチング方法を提供する。イオンビームエッチング方法は、基板に対する開口部の位置を変更するステップと、開口部を通過したイオンビームによって基板をエッチングするステップと、イオンビームが基板に照射される位置の中心がイオン源から離れるにつれて、傾斜角度を小さくするステップとを有する。

Description

本発明は、イオンビームエッチング方法およびイオンビームエッチング装置に関する。
イオンビームエッチング(以下、IBEともいう)処理は、例えば、磁気記録媒体であるハードディスクドライブに用いられる磁気センサーの製造における複数の工程で用いられている。磁気センサーの磁気ヘッドの素子形状は3次元の立体構造のため、エッチング処理後、基板面内に設けられる素子形状に高い均一性が求められる。この素子形状を均一にするため、素子形状が左右対称な場合には基板を回転させながらエッチング処理が行われ、素子形状が左右非対称の場合には基板を任意の方向に固定してエッチング処理が行われる。左右非対称な素子形状を形成する場合、エッチング後の素子形状は基板表面に対するイオンビームの入射角で決まり、イオンビームの入射角は処理中の基板傾斜角度で決まることを利用して、非対称な素子形状を形成することができる。
磁気ヘッドの製造工程において非対称な素子形状を形成するために、基板を静止させて20度前後の比較的低い入射角で処理する場合がある(以下、低入射静止条件と呼ぶ)。基板を静止させた状態でIBE処理した場合、基板面内において素子形状の偏りが生じてしまう。これは、基板を面内方向に傾斜させた状態において、基板表面の位置によってイオン源からの距離が異なるため、基板表面の位置によってイオン源から照射されるイオンビームの入射角度に生じる差異、及びイオン源内部のプラズマ密度分布によるイオンビームの偏向角に起因する。
低入射静止条件での基板面内の偏りは、イオンビームのエネルギーにも依存する。特に加速電圧が400V以上のイオンビームでは、イオンの移動速度が高いためイオンの直進性も高く、低入射静止条件でも高均一な処理が可能である。しかし、加速電圧400V未満のイオンビームでは、移動速度が低いためイオン軌道が偏向し、低入射静止条件で基板面内のエッチング量と素子形状に偏りが生じてしまう。
基板面内の素子形状を均一にするための装置が提案されている。特許文献1のIBE装置は、小口径のイオン源及び基板を2次元的に動かすことによりスポット状のイオンビームで基板表面を走査する。特許文献2のIBE装置は、矩形型のイオン源の長軸に対して垂直な方向に基板を動かすことにより、スリット状のイオンビームで基板表面を走査する。このIBE装置は、スリット状のイオンビームを形成するための平板シャッターをイオン源と基板の間に配置し、基板の進行方向に対して基板表面に対するイオンビームの入射角度を制御している。
米国特許出願公開第2008/110745号明細書 米国特許出願公開第2013/206583号明細書
特許文献1のIBE装置は、小口径のイオン源を用いるためエッチングされる領域が狭く、エッチングする領域をイオンビームの照射範囲毎に細かく制御できる反面、基板全面をエッチング処理するための時間が長くなる。このため、基板のサイズが大きくなるに伴い基板1枚の処理に要する時間が長くなる。また、基板を2次元平面で走査するため装置が大型になる。特許文献2のIBE装置は、矩形型のイオン源を用いるため特許文献1の装置よりも広い範囲を同時に処理でき、処理時間を短くできる。しかしながら、基板を直線的に動かすため装置が大型になる。
本発明は、上述の課題を解決するものであり、装置の大型化を伴わず、低入射静止条件でも高均一なIBE処理を実現できるイオンビームエッチング方法およびイオンビームエッチング装置を提供することを目的とする。
本発明に係るイオンビームエッチング方法は、基板に向かってイオンビームを放出するイオン源と、前記基板を保持するとともに前記イオン源に対する前記基板の傾斜角度を変更する基板ホルダーと、前記イオンビームが通過する開口部を有し、前記基板に対する前記開口部の位置を変更可能なシャッターとを備えたイオンビームエッチング装置のイオンビームエッチング方法であって、前記基板に対する前記開口部の位置を変更するステップと、前記開口部を通過したイオンビームによって前記基板をエッチングするステップと、前記イオンビームが前記基板に照射される位置の中心が前記イオン源から離れるにつれて、前記傾斜角度を小さくするステップとを有する。
本発明に係るイオンビームエッチング装置は、基板に向かってイオンビームを放出するイオン源と、前記基板を保持するとともに前記イオン源に対する前記基板の傾斜角度を変更する基板ホルダーと、前記イオンビームが通過する開口部を有し、前記基板に対する前記開口部の位置を変更可能なシャッターとを備えたイオンエッチング装置であって、前記基板に対する前記開口部の位置を変更する位置制御部と、前記開口部を通過したイオンビームによって前記基板をエッチングするエッチング制御部と、前記イオンビームが前記基板に照射される位置の中心が前記イオン源から離れるにつれて、前記傾斜角度を小さくする傾斜角度制御部とを備える。
本発明によれば、イオンビームが基板に照射される位置の中心がイオン源から離れるにつれて基板の傾斜角度を小さくすることにより、イオン源に近い側でも遠い側でも基板に対するイオンビームの入射角を揃えることができるので、基板に形成される素子の形状を高均一な形状にすることができる。これにより、装置の大型化を伴わずに低入射静止条件で高均一なエッチング処理を実現できる。また、基板上に形成された素子形状のバラツキが低減されるので、最終製品の歩留まりを改善することができる。
本発明の実施形態に係るイオンビームエッチング装置の概略図である。 本発明の実施形態に係るイオンビームエッチング装置の概略図である。 本発明の実施形態に係るイオンビームエッチング装置の概略図である。 本発明の実施形態に係るイオンビームエッチング装置のイオンビームエッチング処理の概略図である。 本発明の実施形態に係るイオンビームエッチング装置のイオンビームエッチング処理の概略図である。 イオンビーム入射角を補正するための基板傾斜角度制御の説明図である。 イオンビーム入射角を補正するための基板傾斜角度制御の説明図である。 イオンビーム入射角を補正するための基板傾斜角度制御の説明図である。 イオンビーム入射角を補正するための基板傾斜角度制御の説明図である。 イオンビーム分散を補正するためのシャッター制御の説明図である。 イオンビーム分散を補正するためのシャッター制御の説明図である。 本発明の実施形態に係るイオンビームエッチング装置の制御装置の概略図である。 本発明の実施形態に係るイオンビームエッチング装置の制御を示す図である。 本発明の実施形態に係るイオンビームエッチング装置の制御を示す図である。 本発明の実施形態に係るイオンビームエッチング装置の制御を示す図である。 本発明の実施形態に係るイオンビームエッチング装置の制御方法の説明図である。 本発明の実施形態に係るイオンビームエッチング装置の制御方法の説明図である。 エッチング後の素子形状を示す図である。 エッチング後の素子形状を示す図である。 本発明の実施形態に係るイオンビームエッチング装置を用いたイオンビームエッチングの概略図である。 本発明の実施形態に係るイオンビームエッチング装置を用いたイオンビームエッチングの概略図である。 本発明の実施形態に係るイオンビームエッチング装置を用いたエッチング分布を示す図である。 本発明の実施形態に係るイオンビームエッチング装置を用いたエッチング分布を示す図である。
以下に、本発明の一実施形態について図面を参照して説明する。なお、以下に説明する部材、配置等は発明を具体化した一例であって本発明を限定するものではなく、本発明の趣旨に沿って各種改変することができることは勿論である。
図1A〜図1CはIBE装置100の概略図であり、図1AはIBE装置100の概略図、図1Bはシャッター装置50の概略図、図1Cはシャッター装置50の斜視図である。IBE装置100は、真空容器1、排気装置2、イオン源10、中和器30、基板ホルダー40、及びシャッター装置50を備えている。イオン源10、中和器30、基板ホルダー40、シャッター装置50は、図示しない制御装置に電気的に接続しており、制御装置を介して制御される。なお、図1Aにおいて、中和器30側を上と定義する。
イオン源10は、プラズマ源容器20、引出電極21、ループアンテナ23、図示しない電源装置、図示しないガス導入装置、及び図示しない電磁石コイルを備えている。プラズマ源容器20及びループアンテナ23はイオン源10内に設置されており、イオン源10と真空容器1内との境界に引出電極21が設けられている。引出電極21は複数枚の電極(図示せず)を有し、例えばイオン源10から基板ホルダー40に向かって順番に第1電極、第2電極、及び第3電極が設けられている。第1電極には正の電圧が印加され、第2電極には負の電圧が印加されることによって生じる電位差によって、イオン源10から引き出されたイオンが加速される。第3電極は接地され、第2電極及び第3電極の間の電位差が制御されることにより、イオンビームの直進性を制御することができる。ループアンテナ23は、電源装置から高周波電力が供給されることによって、プラズマ源容器20内にエッチングガスのプラズマを生成する。中和器30は、真空容器1内に電子を放出し、イオン源10から放出されるイオンビームを電気的に中和する。ガス導入装置はプラズマ源容器20内に、放電用ガスであるArガスを導入する。電磁石コイルはイオン源10内部のプラズマ密度の分布を調整する。
基板ホルダー40は、保持部、傾斜装置、及び回転装置(いずれも図示せず)を有している。保持部は基板ホルダー40上に基板41を保持する。傾斜装置は、制御装置(図示せず)からの制御信号に基づき、真空容器1内で基板ホルダー40をイオン源10に対して傾斜回転軸を中心に傾斜させる。回転装置は、制御装置(図示せず)からの制御信号に基づき基板ホルダー40上で基板41を回転させる。
シャッター装置50は、基板ホルダー40の傾斜回転軸と同じ中心軸を有し、独立して回転制御が可能な上部シャッター51と下部シャッター52とを有する2重回転シャッターである。シャッター装置50は、イオン源10と基板ホルダー40との間を移動可能に設けられている。上部シャッター51及び下部シャッター52は、円弧状に湾曲した板状部材であり、シャッター板を閉位置51b、52bから開位置51a、52aまで連続的に移動することができる。開位置51a、52aはイオン源10から基板ホルダー40に向けて放出されたイオンビームIBを遮蔽しない位置であり、閉位置51b、52bはイオンビームIBを遮蔽する位置である。図1Cに示すように、開位置51a、52aでは、直接上部シャッター51及び下部シャッター52にイオンビームIBが照射されない位置に上部シャッター51及び下部シャッター52が互いに離間して退避されている。閉位置51b、52bでは、上部シャッター51及び下部シャッター52がイオン源10に対向して配置され、基板41に向かうイオンビームIBを遮蔽する。図1Bのように上部シャッター51及び下部シャッター52は、開位置51a、52a及び閉位置51b、52bの中間で所定の位置51c、52cに移動することにより、引出電極21及び基板41の間に所定のスリット幅Wを有するスリット状の開口部(以下、スリットという)53を形成することができる。上部シャッター51及び下部シャッター52は、スリット幅Wを維持しつつ、協同して動作させることができる。スリット53のスリット幅Wは、基板41の大きさ及び基板41の傾斜角度に依存する。
なお、シャッター装置50は、円弧状に湾曲したシャッター板に替えて平板状のシャッター板を用いてもよい。本実施形態のシャッター装置50のように、上部シャッター51及び下部シャッター52の円弧状に湾曲したシャッター板の形状は、平板状のシャッター板に比べて真空容器1内の構造物に干渉しにくく、上部シャッター51及び下部シャッター52の退避スペースを必要としない。このため、真空容器1を小型化できる。また、本実施形態のIBE装置100ではシャッター装置50の回転軸は基板ホルダー40の傾斜回転軸と同じ回転軸を有しているが、回転軸が並行であればお互いの回転軸が離れていても良い。
図2A及び図2BはIBE装置100のイオンビームエッチング処理の概略図である。図2Aは基板41の上端部41Aに対向する位置にスリット53を配置したエッチング処理の概略図、図2Bは基板41の下端部41Bに対向する位置にスリット53を配置したエッチング処理の概略図である。イオン源10から放出されるイオンビームIBは、プラズマ源容器20内のプラズマ密度の分布に起因する偏向角を有して放出される。スリット53を通過したイオンビームIBsでは、イオンビームIBsの中心となる中心線IBscは所定の偏向角を有した状態で基板41に照射される。スリット53を通過したイオンビームIBsは、イオン源10から基板41までの距離が長いほど、イオンビームIBsの幅が広がる。本実施形態では、スリット53を通過したイオンビームIBsで基板表面41を走査することによって低入射静止条件でも基板傾斜方向のエッチング量の偏りを解消することができる。例えば、スリット53を通過したイオンビームのビーム中心が基板41の上端部41Aに照射されるスリット位置A、及びスリット53を通過したイオンビームIBsのビーム中心が基板41の下端部41Bに照射されるスリット位置Bでそれぞれエッチング処理時間を調整することによって基板41の上端部41A及び下端部41Bのエッチング量を均一にすることができる。また、基板41の複数の位置でエッチング処理時間を調整することにより基板41の全面に対して高均一なエッチング量を実現できる。また、スリット位置を連続的に移動させることも可能であり、その場合にはスリット53の移動速度を調整することによって高均一なエッチング量を実現できる。詳しくは以下に説明する。なお、スリット幅Wを広くしてしまうとイオンビームが基板41に照射される領域が広がってしまうため、スリット幅Wはある程度狭くする必要がある。
図3A〜図3Dに基づいて基板傾斜角度の補正について説明する。図3A〜図3Dはイオンビーム入射角を補正するための基板傾斜角度制御の説明図である。図3Aは基板41の上端部41AにイオンビームIBsが照射されていることを示す図、図3Bは基板41の上端部41Aの拡大図、図3Cは基板41の下端部41BにイオンビームIBsが照射されていることを示す図、図3Dは基板41の下端部41Bの拡大図である。図3A〜図3Dにおいて、2点鎖線は基板ホルダー40の傾斜角度を補正する前の基板ホルダー40及び基板41を示している。図3A、図3Bに示すように、基板41の上端部41Aでは、イオンビームIBsが偏向角301のビーム中心線IBscを有した状態で基板41に照射されるため、破線で表される補正前の基板41に対するビーム中心線IBscの入射角201は、偏向角を有しないイオンビームIBの直進ビームIBcの入射角200よりも大きくなる。この入射角の差異を低減するために、図3Bに示すように、基板ホルダー40の傾斜角度をビーム偏向角301だけ図中下向きに移動させることによって、実線で表される補正後の基板41に対する入射角は直進ビームIBcと同じ入射角200になる。
図3C、図3Dに示すように、基板41の下端部41Bでは、上端部41Aに対してイオンビームの偏向角が上下反対向きになるため、2点鎖線で表される補正前の基板41に対するビーム中心線IBscの入射角202は直進ビームIBcの入射角200よりも小さくなる。図3Dに示すように、基板ホルダー40を偏向角301だけ図中下向きに移動させることによって、実線で表される補正後の基板41に対する入射角は直進ビームIBcと同じ入射角200になる。図3A、図3Cに示すように、基板ホルダー40の傾斜角度を補正することによって、基板41がイオン源10に正対する位置からの基板41の傾斜角度は、基板41の上端部41AにイオンビームIBsを照射する場合の傾斜角度よりも、下端部41BにイオンビームIBsを照射する場合の傾斜角度の方が小さくなる。すなわち、イオンビーム中心線IBscが基板41に照射される位置がイオン源10から遠くなるほど、基板41の傾斜角度が小さくなる。このように、基板41の中心に対して上側と下側で逆向きに基板41の傾斜角度を補正することによって、基板41の上端部41Aでも下端部41Bでも、基板41に対するビーム中心線IBscの入射角を揃えることができる。
イオンビームIBは正イオンの集合であるため進行方向に対して外側に広がるので、イオンビームIBsの中心から外縁に向けて偏向角が大きくなる。さらに、イオン源10からの距離が遠くなるほど偏向角も大きくなる。つまりイオンビームIBは引出電極21と基板41との間の距離によってビーム偏向角が異なる。なお、イオンビームIBは、イオン源10から放出された正イオンが気相中で電子と衝突して中性化するわけではないため、イオンビームIBが進行方向に対して外側に広がる現象は中和器30から電子を供給していても発生する。
図4A及び図4Bに基づいてスリット幅Wの補正について説明する。図4A及び図4Bはイオンビーム分散を補正するためのシャッター制御の説明図であり、図4Aは基板41の下端部41Bにスリット53を配置した場合の概略図、図4Bはスリット53を通過したイオンビームIBsの基板41上での分散度合いを分散曲線で示している。引出電極21から放出されたイオンビームIBは位置51c、52cでの上部シャッター51及び下部シャッター52で形成されたスリット53を通過してイオンビームIBsとして基板41に照射される。位置51d、52dはスリット幅補正後の上部シャッター51及び下部シャッター52の位置であり、スリット幅Wcは補正後のスリット幅である。補正後のスリットを通過するイオンビームIBsdの平均入射角は、補正前のスリットを通過するイオンビームIBsの平均入射角よりも小さくなる。なお、スリット中心線46は、スリット幅W、Wcの幅方向の中心位置を通過する直線を表している。
図4Bは、低入射静止条件における基板41の上端部(Top)、中心部(Center)、及び下端部(Bottom)のそれぞれにスリット中心線46が通過するようにスリット幅Wを形成した場合の各位置における基板41上のイオンビーム入射角の分散度合いを示している。なお、ここでは簡略化のためイオンビームの偏向角を考慮しないことにする。図4Bの縦軸は分散幅、横軸はイオンビームの単位時間当たりの照射量をそれぞれ表しており、各分散曲線の極大値は直進ビームの中心に相当する。スリット幅Wを補正する前の各位置における分散を分散曲線70a、70b、70cで示し、スリット位置を基板上端部a、基板中心部c、及び基板下端部bとする。イオンビームIBsは引出電極21からの距離によってイオンビームの分散が増加するため、基板41の上端部から下端部に向かって入射角の分散曲線70a〜70cの幅が広がり極大値も小さくなる。つまり、基板41の下端部では上端部に比べてイオンビームIBsの幅が広がるため、分散曲線70bの幅は分散曲線70aよりも幅が広がる。また、照射されるイオンビーム量はいずれの位置でも同じなので、下端部では上端部よりもイオンビームが広く分散するため、下端部の分散曲線70bは上端部の分散曲線70aよりも極大値が小さくなる。このため、基板41のエッチング量に偏りが出てしまう。この対策として、基板41の中心部のスリット幅を基準にして、基板41の上端部ではスリット幅を広く、基板41の下端部ではスリット幅を狭くする。これにより、各位置の分散曲線71a、71bに示すように、各位置での分散曲線の幅を均一にできる。
分散曲線70c、71a、71bは、分散曲線の幅が等しくなっているものの極大値はそれぞれ異なっている。極大値が異なっている状態では、エッチング量に偏りが出てしまう。そこで、基板41に照射されるイオンビーム量の差異を補正するために、エッチング処理時間を調整する。詳しくは、イオン源10からの距離が離れている下端部のエッチング処理時間を、上端部のエッチング処理時間よりも長くする。これにより、各位置での均一な分散曲線72a、72b、72cを得ることができ、イオン源10から離れている下端部でも、イオン源10から近い上端部と同じイオンビーム量を得ることができる。このように、基板41の中心部から上側と下側とでスリット幅W及びエッチング時間を増減させることによって、基板41の各位置に対するイオンビームの入射角及び累積されたイオンビームの入射量を均一にすることができる。
図5は、本発明の実施形態に係るIBE装置100に備えられている制御装置500の概略図である。位置制御部、エッチング制御部、及び傾斜角度制御部としての制御装置500は、CPU、及びRAM、ROM等のメモリ(図示せず)を備え、メモリにはCPUによって実行されるプログラム等が格納されている。制御装置500は、メモリに格納された所定のプログラムの実行または上位装置の指令信号に従って、イオンビームエッチングを実行する。制御装置500は、シャッター角度算出部501、スリット幅補正部502、傾斜角度補正部503、処理時間算出部504、及びタイマー505を備えている。シャッター角度算出部501は、上部シャッター51及び下部シャッター52のシャッター角度を算出する。なお、上部シャッター角度及び下部シャッター角度とは、基準となる位置からの角度であり、例えば上部シャッター51及び下部シャッター52の開位置51a、52aからの角度でもよいし、引出電極21の中心位置からの角度でもよい。スリット幅補正部502は、基板41に対するスリット53の位置に応じてスリット幅Wを補正する。傾斜角度補正部503は、基板41に対するスリット53の位置に応じて基板傾斜角度を補正する。処理時間算出部504は、基板41に対するスリット53の位置に応じてエッチング処理時間を算出する。タイマー505は、処理時間算出部504で算出されたエッチング時間をカウントする。制御装置500は、タイマー505のカウントに従って、イオン源10のイオンビームの放出及び停止、並びに中和器30の電子の放出及び停止をそれぞれ制御する。制御装置500は、イオン源10、中和器30、基板ホルダー40、及びシャッター装置50と電気的に接続しており、制御装置500から出力された各パラメータに基づき、イオン源10、中和器30、基板ホルダー40、及びシャッター装置50がそれぞれ動作する。
図6A〜図6Cに基づいて本実施形態に係るシャッタースキャン方式の制御方法について説明する。図6A〜図6CはIBE装置100の制御を示す図であり、図6Aは各パラメータを直接入力して各機器を制御する図、図6Bはシャッター角度算出部501を用いてIBE装置100を制御する図、図6Cは本発明の実施形態に係るIBE装置100を制御する図である。図6A〜図6Cは1箇所のスリット位置に対する制御を説明しているが、基板41全面を処理する場合には複数のスリット位置で同様の制御が繰り返される。この制御方法は、入力パラメータの内容によって3つのモードを設けている。なお、シャッタースキャンとは、シャッター装置50を用いてスリット53を形成する位置を決めることである。
図6Aに示すように、第1のモードは、基板傾斜角、上部シャッター角度、下部シャッター角度、及びエッチング時間を直接入力して、基板ホルダー40、シャッター装置50、及びタイマー505をそれぞれ動作させるモードである。モード1では、エッチングの分布を向上することができる。
図6Bに示すように、第2のモードは、基板傾斜角、スリット幅、スリット位置、及びエッチング時間を入力し、シャッター角度算出部501でスリット幅及びスリット中心位置に基づきシャッター角度を算出して、基板ホルダー40、シャッター装置50、及びタイマー505をそれぞれ動作させるモードである。本発明の実施形態に係るシャッタースキャン方式の制御に用いるモードである。
図6Cに示すように、第3のモードは、シャッタースキャン方式に加えて、シャッター装置50のスリット幅Wを補正するモードである。詳しくは、第3のモードは、基板41面内で素子形状を均一にするための補正パラメータである傾斜角度補正関数及びスリット幅補正関数と、エッチング速度及びエッチング量とを第2のモードに加えたモードである。基板傾斜角度補正関数は、図示しないメモリに格納されており、引出電極21から基板表面41までの距離を変数xとし、基板傾斜角度の補正量を所定の関数f(x)として設定したものである。制御装置500は、傾斜角度補正部503で算出された傾斜角補正量及び基板傾斜角度に基づき基板ホルダー40を動作させる。また、シャッター角度算出部501は、補正された基板傾斜角度、スリット幅W、及びスリット中心位置に基づき上部シャッター角度及び下部シャッター角度を算出する。スリット幅補正関数は、図示しないメモリに格納されており、引出電極21から基板表面41までの距離を変数xとし、スリット幅Wの補正量を任意の関数g(x)として設定したものである。スリット幅補正部502で計算された補正量をスリット幅Wに加えた値がシャッター角度算出部501に用いられる。また、基板傾斜角度の補正量及びスリット幅の補正量はビーム条件(加速電圧、ビーム電流等)によって異なるため、傾斜角度補正関数及びスリット幅補正関数はメモリに複数保存でき、制御装置500は必要に応じて傾斜角度補正関数及びスリット幅補正関数を切り替えることができる。処理時間算出部504は、エッチング速度及びエッチング量に基づきエッチング時間を計算する。これにより、制御装置500は補正後の基板傾斜角度で基板ホルダー40を制御し、補正後のシャッター角度により上部シャッター及び下部シャッターを制御する。
図7は本実施形態に係るIBE装置100の制御方法を説明した図である。図7に基づいて本実施形態に係るシャッタースキャン方式の入力パラメータについて説明する。シャッタースキャン方式の基本的な入力パラメータは、基板41の基板傾斜角度400、スリット幅W、スリット中心位置47、及びエッチング時間の4つである。基板傾斜角度400は、基板41の初期位置、例えば基板41がイオン源10と正対する位置Pからの基板41の傾斜角度である。また、イオンビームIBの基板41に対する入射角を均一にするための補正パラメータは、補正角度401及びスリット幅(図示せず)の2つである。補正角度401は傾斜角度補正部503(図6C)から出力され、補正後の基板41の傾斜角度は基板傾斜角度400+補正角度401で算出される。
スリット中心位置47は基板傾斜方向42の基板面上の位置である。すなわち、スリット中心位置47は、基板41の面上におけるスリット53のスリット中心線46の位置である。図6B、図6Cに示すように、上部シャッター51及び下部シャッター52のシャッター角度は基板傾斜角度400、スリット幅W、及びスリット中心位置47から算出される。上部シャッター51及び下部シャッター52の位置は、基板41の引出電極21の中心線700上を原点とし、上部シャッター51をシャッター角度701で回転し、下部シャッター52をシャッター角度702で回転した位置51c、52cとなる。
スリット幅Wは、広すぎるとシャッタースキャンの効果が小さくなり、狭くしすぎるとエッチングレートが低下する。そのため、引出電極21から基板41を見たときの基板傾斜方向42の高さ、すなわち基板41の直径をRとすると、Rcos(基板傾斜角度400)程度の幅とするのが好適である。
図8に基づいて、各パラメータの設定値について説明する。図8は本実施形態に係るIBE装置100の制御方法を説明した図である。図8は、基板中心、上側(上端)、下側(下端)の3か所にそれぞれスリットを形成し、基板41の高さ方向において、基板中心を基準にして各パラメータの増減を示している。基板傾斜角度FAは、基板表面41のイオンビーム入射角を補正するため、基板41の中心位置の基板傾斜角度(○)に対して、基板41の上側をエッチングするときは増加し(△)、基板41の下側をエッチングするときは減少(▽)する。なお、基板傾斜角度の補正量は、照射されたイオンビームの偏向角及び分散によって異なるが、数度未満である。補正後の基板傾斜角度FAは、基板41が引出電極21に正対する位置からの傾斜角度である。よって、基板41の傾斜角度は、基板41の中心位置の傾斜角度を基準として、イオン源10に近い基板41の上側では大きくなり、イオン源10から遠い基板41の下側では小さくなる。スリット幅Wは、基板表面41のイオンビームの分散を補正するため、基板41の中心位置のスリット幅(○)に対して、基板41の上側をエッチングするときは増大し(△)、基板41の下側をエッチングするときは減少(▽)する。エッチング時間Tは、他のパラメータの設定値によっても異なるが、基板41の上側をエッチングするときは短くし(▽)、基板41の下側をエッチングするときは長くし(△)、実際のエッチング量の偏りから増減量が決定される。なお、スリット位置は、基板面内に限定するものではなく基板面外を指定することもでき、3か所に限定するものではなく必要に応じて増減できる。
図9A及び図9Bはエッチング後の素子形状を示す図である。図9Aは、基板傾斜角度FA、スリット幅W、及びエッチング時間Tを補正せずに基板41をエッチング処理した場合の素子形状を示している。図9Bは、基板傾斜角度FA、スリット幅W、及びエッチング時間Tを補正して基板41をエッチング処理した場合の素子形状を示している。なお、図9A及び図9Bは基板ホルダー40及びシャッター装置50を省略している。基板傾斜角度FA、スリット幅W、及びエッチング時間Tを補正せずにエッチング処理を行った場合、レジスト45が配置された基板41に形成される素子44a〜44cの形状は、基板41の略中央に形成された素子44cの形状を基準として、基板41の上側では素子44aの片側側面の長さが短く、基板41の下側では素子44bの片側側面の長さが長くなり、素子形状が不均一になる。一方、基板傾斜角度FA、スリット幅W、及びエッチング時間Tをそれぞれ補正してエッチング処理を行った場合、基板41の上側及び下側でビームの入射角を均一にできるので、素子44a〜44cの形状を高均一な形状にすることができる。
このように、本実施形態では、スリット53を通過するイオンビームIBsの中心線IBscの照射位置がイオン源10から離れるにつれて、基板41の傾斜角度400を小さくする。これにより、基板41の上端部及び下端部に対するイオンビーム中心線IBscの入射角を均一にすることができるので、高均一な素子形状にすることができる。
シャッター装置50を用いたイオンビームエッチングの実施例について説明する。図10A及び図10BはIBE装置100を用いたイオンビームエッチングの概略図である。図10Aは、上部シャッター51及び下部シャッター52が開位置51a、52aに位置し、シャッタースキャンを行わない状態の上部シャッター51及び下部シャッター52の配置を示している。図10Bは、上部シャッター51及び下部シャッター52が互いに接近する方向に移動し、複数の位置でスリット53を形成する、シャッタースキャンを行っている状態の上部シャッター51及び下部シャッター52の配置を示している。図10Aにおいて基板傾斜方向42は、イオン源10に接近する方向を表している。
図11A及び図11Bはイオンビームを用いたエッチングの分布を示す図である。図11Aは規格化されたイオンビームエッチング量のプロファイルを示す図であり、図11Bは規格化されたエッチング量の分布を示す図である。図11Aでは、シャッタースキャンの有無で基板41面内の規格化されたエッチング速度の等高線図と基板傾斜方向42における規格化されたエッチング速度のプロファイリングを比較した。図11Aの測定条件は、イオンビームIBの加速電圧は200Vで、基板傾斜角度70度(基板表面41に20度の入射角)でイオンビームIBが入射するものである。図11A中の●はシャッタースキャンありのプロファイリングであり、△はシャッタースキャンなしのプロファイリングである。シャッタースキャンを用いた場合の上部シャッター51及び下部シャッター52の配置は、スリット幅W:50mmとし、スリット中心を基板41の上端部、中心部、及び下端部の3ポジションに合わせた。また、各ポジションのエッチング時間を調整した。なお、上部シャッター51及び下部シャッター52の3箇所の停止位置をそれぞれ、c1、c2、c3とした。
図11Bに示すように、シャッタースキャンを適用した結果、基板傾斜方向42のエッチング量の偏りを無くすことができた。本実施例では8インチ基板面内のエッチングで高均一なエッチング処理を実現したが、スリット位置とエッチング処理時間を調整することにより大きな基板に対しても有効である。また、図1A〜図1Cに示した2重回転シャッターを有する装置であれば、加速電圧400V以上の高いエッチング速度を得たいときは上部シャッター51及び下部シャッター52を開位置に配置することもできる。すなわち、シャッタースキャン方式は2枚のシャッターの位置を調整することで、エッチング量の均一性を重視した条件とエッチング速度を重視した条件を選択できる。
1 真空容器
10 イオン源
21 引出電極
40 基板ホルダー
41 基板
47 スリット中心位置
50 シャッター装置
51 上部シャッター
52 下部シャッター
53 スリット(開口部)
100 イオンビームエッチング装置
400 基板傾斜角度
401 補正角度
500 制御装置
IB イオンビーム

Claims (5)

  1. 基板に向かってイオンビームを放出するイオン源と、
    前記基板を保持するとともに前記イオン源に対する前記基板の傾斜角度を変更する基板ホルダーと、
    前記イオンビームが通過する開口部を有し、前記基板に対する前記開口部の位置を変更可能なシャッターとを備えたイオンビームエッチング装置のイオンビームエッチング方法であって、
    前記開口部を通過して前記イオンビームが前記基板に照射される位置の中心が前記イオン源から遠いほど前記傾斜角度が小さくなるように前記基板を保持し、
    前記開口部を通過した前記イオンビームによって前記基板をエッチングする
    ことを特徴とするイオンビームエッチング方法。
  2. 前記基板に対する前記開口部の位置を変更しながら前記基板をエッチングすることを特徴とする請求項1に記載のイオンビームエッチング方法。
  3. 前記位置の中心が前記イオン源から遠いほどエッチング時間を長くする、請求項1〜のいずれか1項に記載のイオンビームエッチング方法。
  4. 基板に向かってイオンビームを放出するイオン源と、
    前記基板を保持するとともに前記イオン源に対する前記基板の傾斜角度を変更する基板ホルダーと、
    前記イオンビームが通過する開口部を有し、前記基板に対する前記開口部の位置を変更可能なシャッターとを備えたイオンビームエッチング装置であって、
    前記開口部を通過して前記イオンビームが前記基板に照射される位置の中心が前記イオン源から遠いほど、前記傾斜角度を小さくするよう制御する傾斜角度制御部を備えることを特徴とするイオンビームエッチング装置。
  5. 前記位置の中心が前記イオン源から遠いほどエッチング時間を長くするように制御するエッチング制御部をさらに備えることを特徴とする請求項に記載のイオンビームエッチング装置。
JP2016517569A 2015-10-02 2015-10-02 イオンビームエッチング方法およびイオンビームエッチング装置 Active JP6118458B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/005045 WO2017056138A1 (ja) 2015-10-02 2015-10-02 イオンビームエッチング方法およびイオンビームエッチング装置

Publications (2)

Publication Number Publication Date
JP6118458B1 true JP6118458B1 (ja) 2017-04-19
JPWO2017056138A1 JPWO2017056138A1 (ja) 2017-10-05

Family

ID=58159597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016517569A Active JP6118458B1 (ja) 2015-10-02 2015-10-02 イオンビームエッチング方法およびイオンビームエッチング装置

Country Status (7)

Country Link
US (1) US9966092B2 (ja)
JP (1) JP6118458B1 (ja)
KR (1) KR101900334B1 (ja)
CN (1) CN107004591B (ja)
GB (1) GB2563560B (ja)
TW (1) TWI630605B (ja)
WO (1) WO2017056138A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020131403A1 (en) * 2018-12-17 2020-06-25 Applied Materials, Inc. Scanned angled etching apparatus and techniques providing separate co-linear radicals and ions
JP2021052170A (ja) * 2019-09-17 2021-04-01 東京エレクトロン株式会社 プラズマ処理装置
US11195703B2 (en) 2018-12-07 2021-12-07 Applied Materials, Inc. Apparatus and techniques for angled etching using multielectrode extraction source

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524285B (zh) * 2017-09-19 2021-06-11 中国电子科技集团公司第四十八研究所 一种离子束刻蚀设备
KR102273970B1 (ko) 2017-12-26 2021-07-07 주식회사 엘지화학 파라데이 상자를 이용한 플라즈마 식각 방법
JP6982531B2 (ja) * 2018-03-26 2021-12-17 住友重機械イオンテクノロジー株式会社 イオン注入装置および測定装置
US11227741B2 (en) * 2018-05-03 2022-01-18 Plasma-Therm Nes Llc Scanning ion beam etch
GB2582242A (en) 2018-11-30 2020-09-23 Oxford Instruments Nanotechnology Tools Ltd Charged particle beam source, surface processing apparatus and surface processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264511A (ja) * 1995-03-17 1996-10-11 Ebara Corp 微細加工方法および微細加工装置
JP2010056586A (ja) * 2008-08-26 2010-03-11 Murata Mfg Co Ltd 周波数調整装置
JP2012129224A (ja) * 2010-12-13 2012-07-05 Canon Anelva Corp イオンビームエッチング方法、イオンビームエッチング装置、コンピュータプログラム、記録媒体
JP2012142398A (ja) * 2010-12-28 2012-07-26 Canon Anelva Corp イオンビームエッチング装置、方法及び制御装置
WO2015060047A1 (ja) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 精密研磨装置及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834194B2 (ja) * 1989-06-30 1996-03-29 松下電器産業株式会社 イオン注入方法及び本方法を用いた半導体装置の製造方法
EP0731490A3 (en) 1995-03-02 1998-03-11 Ebara Corporation Ultra-fine microfabrication method using an energy beam
EP0732624B1 (en) * 1995-03-17 2001-10-10 Ebara Corporation Fabrication method with energy beam
JP2002158211A (ja) * 2000-11-20 2002-05-31 Shimadzu Corp イオンビームエッチング装置
DE10351059B4 (de) 2003-10-31 2007-03-01 Roth & Rau Ag Verfahren und Vorrichtung zur Ionenstrahlbearbeitung von Oberflächen
JP4099181B2 (ja) * 2005-07-11 2008-06-11 Tdk株式会社 イオンビームエッチング方法及びイオンビームエッチング装置
US20130206583A1 (en) 2007-09-18 2013-08-15 Veeco Instruments, Inc. Method and Apparatus for Surface Processing of a Substrate Using an Energetic Particle Beam
WO2009045722A1 (en) * 2007-09-28 2009-04-09 Varian Semiconductor Equipment Associates, Inc. Two-diemensional uniformity correction for ion beam assisted etching
JP5246474B2 (ja) * 2008-02-08 2013-07-24 Tdk株式会社 ミリング装置及びミリング方法
JP5380263B2 (ja) 2009-12-15 2014-01-08 キヤノンアネルバ株式会社 イオンビーム発生器
WO2014136158A1 (ja) 2013-03-08 2014-09-12 キヤノンアネルバ株式会社 イオンビーム処理方法、およびイオンビーム処理装置
US9017526B2 (en) * 2013-07-08 2015-04-28 Lam Research Corporation Ion beam etching system
US9209033B2 (en) * 2013-08-21 2015-12-08 Tel Epion Inc. GCIB etching method for adjusting fin height of finFET devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264511A (ja) * 1995-03-17 1996-10-11 Ebara Corp 微細加工方法および微細加工装置
JP2010056586A (ja) * 2008-08-26 2010-03-11 Murata Mfg Co Ltd 周波数調整装置
JP2012129224A (ja) * 2010-12-13 2012-07-05 Canon Anelva Corp イオンビームエッチング方法、イオンビームエッチング装置、コンピュータプログラム、記録媒体
JP2012142398A (ja) * 2010-12-28 2012-07-26 Canon Anelva Corp イオンビームエッチング装置、方法及び制御装置
WO2015060047A1 (ja) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 精密研磨装置及び方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195703B2 (en) 2018-12-07 2021-12-07 Applied Materials, Inc. Apparatus and techniques for angled etching using multielectrode extraction source
US11967489B2 (en) 2018-12-07 2024-04-23 Applied Materials, Inc. Apparatus and techniques for angled etching using multielectrode extraction source
WO2020131403A1 (en) * 2018-12-17 2020-06-25 Applied Materials, Inc. Scanned angled etching apparatus and techniques providing separate co-linear radicals and ions
US11715621B2 (en) 2018-12-17 2023-08-01 Applied Materials, Inc. Scanned angled etching apparatus and techniques providing separate co-linear radicals and ions
JP2021052170A (ja) * 2019-09-17 2021-04-01 東京エレクトロン株式会社 プラズマ処理装置
JP7394694B2 (ja) 2019-09-17 2023-12-08 東京エレクトロン株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
KR20170052529A (ko) 2017-05-12
GB2563560B (en) 2021-02-10
CN107004591B (zh) 2020-05-01
KR101900334B1 (ko) 2018-09-20
US20170098458A1 (en) 2017-04-06
GB201620504D0 (en) 2017-01-18
JPWO2017056138A1 (ja) 2017-10-05
WO2017056138A1 (ja) 2017-04-06
GB2563560A (en) 2018-12-26
TW201724092A (zh) 2017-07-01
TWI630605B (zh) 2018-07-21
CN107004591A (zh) 2017-08-01
US9966092B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
JP6118458B1 (ja) イオンビームエッチング方法およびイオンビームエッチング装置
US8664098B2 (en) Plasma processing apparatus
KR101835654B1 (ko) 플라즈마 프로세싱 장치 및 시스템 및 이온 빔을 제어하는 방법
KR102429370B1 (ko) 가변 에너지 제어를 갖는 이온 주입 시스템 및 방법
KR102241017B1 (ko) 작업물 프로세싱 장치
JP6668376B2 (ja) プラズマ処理装置
JP6959880B2 (ja) イオン注入装置およびイオン注入方法
US10062545B2 (en) Apparatus and method for processing substrate using ion beam
US9263231B2 (en) Moveable current sensor for increasing ion beam utilization during ion implantation
TWI466178B (zh) 離子植入系統
KR102478522B1 (ko) 스캐닝 이온 빔 식각
TWI714074B (zh) 離子植入系統及具有可變能量控制的方法
KR20170036479A (ko) 이온 빔 에칭 장치
WO2019125597A1 (en) Ion beam quality control using a movable mass resolving device
TW201628042A (zh) 離子植入系統及具有可變能量控制的方法
TW202335013A (zh) 離子提取組合件、離子源及處理系統
TWI533358B (zh) 離子佈植機及其離子佈植方法
TWI509665B (zh) 在光阻釋氣期間用於改善植入均勻性的方法
JP2016096099A (ja) イオンミリング装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6118458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250