JP6115413B2 - Filter element - Google Patents

Filter element Download PDF

Info

Publication number
JP6115413B2
JP6115413B2 JP2013181535A JP2013181535A JP6115413B2 JP 6115413 B2 JP6115413 B2 JP 6115413B2 JP 2013181535 A JP2013181535 A JP 2013181535A JP 2013181535 A JP2013181535 A JP 2013181535A JP 6115413 B2 JP6115413 B2 JP 6115413B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
fibers
filter element
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013181535A
Other languages
Japanese (ja)
Other versions
JP2015047570A (en
Inventor
良史 青山
良史 青山
八重澤 貴志
貴志 八重澤
晋平 黒川
晋平 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2013181535A priority Critical patent/JP6115413B2/en
Publication of JP2015047570A publication Critical patent/JP2015047570A/en
Application granted granted Critical
Publication of JP6115413B2 publication Critical patent/JP6115413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Drying Of Gases (AREA)
  • Laminated Bodies (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、脱臭・除湿・加湿機器、熱交換器などの空調設備機器や溶剤回収装置、オゾン除去装置、調湿材料などに使用される気体用のフィルターエレメントに関する。 The present invention relates to an air filter equipment such as deodorizing / dehumidifying / humidifying devices and heat exchangers, a solvent recovery device, an ozone removing device, and a gas filter element used for a humidity control material.

従来、室内の空気の脱臭や除湿・加湿などを行う空調機器などに使用されるフィルターエレメントとしては、吸着剤や脱臭剤などを配合した紙、吸湿剤を含有させた加工紙、又は多孔質性樹脂フィルムなどのシート状材料が用いられている。 Conventional filter elements used in air conditioning equipment that deodorizes, dehumidifies, and humidifies indoor air include paper containing adsorbents and deodorizers, processed paper containing hygroscopic agents, or porous properties. A sheet-like material such as a resin film is used.

これらのシート状材料は平板状あるいはプリーツ状に成形されて使用され、あるいは、以下に述べるようなハニカム状等の種々の形状に成形されて使用される。 These sheet-like materials are used after being formed into a flat plate shape or a pleat shape, or are formed into various shapes such as a honeycomb shape as described below.

例えば、シート状材料はまずコルゲーターにより、波形(フルート)等の形状に成形され、次に、このシートと同一或いは異種の材料からなる平板状のライナーと、接着剤により固着され、一体化される。その後、単板状や円筒状に積層、裁断され、ハニカム状のフィルターエレメント(以下、ハニカムエレメントとも言う)が形成される。 For example, a sheet-like material is first formed into a corrugated shape (flute) by a corrugator, and then fixed to and integrated with a flat liner made of the same or different material as this sheet with an adhesive. . After that, they are laminated and cut into a single plate shape or a cylindrical shape to form a honeycomb-shaped filter element (hereinafter also referred to as a honeycomb element).

このようなハニカム状のエレメントでは、室内の湿気を帯びた空気は、フルートとライナーとに囲まれたセル内を、波型の畝に沿った方向に流れ、空気中の湿気がエレメント内で吸着されて除去された後、乾燥空気となって室内へと循環される。 In such a honeycomb-shaped element, indoor air with moisture flows in the cell surrounded by the flute and liner in the direction along the corrugated ridge, and moisture in the air is adsorbed inside the element. After being removed, it is circulated into the room as dry air.

ハニカム状のフィルターエレメントは、圧力損失の上昇を伴わずに、上記積層体内のセルをできるだけ小さくし、セル密度を高めることが要求されている。これは、単位体積当たりの処理流体との接触を多くすることで、脱臭、除湿、加湿等の効率や熱交換効率を高くするためである。 そして、そのためには、シート厚さが薄いことが望ましい。 The honeycomb filter element is required to make the cells in the laminated body as small as possible and increase the cell density without increasing the pressure loss. This is to increase efficiency such as deodorization, dehumidification, and humidification and heat exchange efficiency by increasing contact with the processing fluid per unit volume. For that purpose, it is desirable that the sheet thickness is thin.

脱臭、除湿等の空気調節器としての性能を満足させるためには、悪臭原因物質や水分子等を吸着したり、分解したりして除去する能力が必要である。 In order to satisfy the performance as an air conditioner such as deodorizing and dehumidifying, it is necessary to have the ability to adsorb or decompose malodor causing substances and water molecules.

従来の紙製フィルターエレメントは、活性炭粉末やゼオライトなどの機能性無機材料を繊維材料に混合した水系分散スラリーを、高分子凝集剤を用いて凝集させ、得られたフロックを抄網上で脱水し、プレス、乾燥することにより製造される。そのため、繊維が太く長くなったり、フロックが大きくなったりすると、堆積が不均一となり、粗密が顕著になる。 A conventional paper filter element uses a polymer flocculant to agglomerate an aqueous dispersion slurry in which a functional inorganic material such as activated carbon powder or zeolite is mixed with a fiber material, and the resulting floc is dewatered on a paper screen. It is manufactured by pressing and drying. Therefore, when the fibers are thick and long or the flocs are large, the deposition becomes uneven and the density becomes remarkable.

また、紙よりなるフィルターエレメントの場合、薄葉化しようとするほど、高い通気性を有するようになるが、その一方で、室外に排出すべき煙草の煙等の粉塵はフィルターを通過して、空気の浄化ができなくなるという問題がある。逆に、フィルターを厚くすると、セルを小さくすることが困難になり、ライナー密度やセル密度を十分大きくできないので、所望の脱臭・除湿効率が得られないという問題も存する。 In the case of a filter element made of paper, the more thinned it is, the higher the air permeability becomes. On the other hand, dust such as cigarette smoke that should be discharged to the outside passes through the filter and passes through the air. There is a problem that it becomes impossible to purify. On the contrary, if the filter is made thick, it becomes difficult to make the cell small, and the liner density and the cell density cannot be sufficiently increased. Therefore, there is a problem that a desired deodorizing / dehumidifying efficiency cannot be obtained.

一方、ポリテトラフルオロエチレン(PTFE)やポリエチレン(PE)に代表される有孔フィルムは、多くの場合延伸法で製造され、小気孔が得られ易いので、通気性を小さくすることや薄葉化の点では優れている。しかし、機能性無機材料が多く配合されるとフィルム強度が低下するので、機能性無機材料を高率で配合できない。その結果、空気中の汚染物質や水分等の吸着・除去能力が不足し、空気の浄化が十分にできないという欠点を有する。 On the other hand, perforated films represented by polytetrafluoroethylene (PTFE) and polyethylene (PE) are often produced by a stretching method, and small pores are easily obtained. Excellent in terms. However, when a large amount of the functional inorganic material is blended, the film strength is lowered, so that the functional inorganic material cannot be blended at a high rate. As a result, there is a drawback that the ability to adsorb and remove contaminants and moisture in the air is insufficient, and the air cannot be sufficiently purified.

以上のように従来の紙からなるフィルターエレメントは、機能性無機材料の高率での混合が容易であり、汚染物質等の吸着、除去が可能であるが、薄葉化に限界があり、厚くするとセル密度を高くできないため、脱臭、除湿等の効率の向上に限界がある。
一方、有孔フィルムからなるものは、小気孔で実質的に非通気性であり、かつ薄葉化が可能であるので、セル密度を高くすることによる処理気体の接触効率の向上の点では優れている。 しかしながら、有孔フィルムからなるものは、機能性無機材料を高率で配合できないので、汚染物質の吸着や分解、あるいは吸湿等が不十分になり、特に、脱臭、除湿器等の場合、目的が十分に達成されないという欠点を有する。
このように、処理気体の接触効率が高く、かつ単位面積当たりの処理能力も高いフィルターエレメントは得られていないのが現状である。
As described above, the filter element made of conventional paper is easy to mix functional inorganic materials at a high rate and can adsorb and remove contaminants, etc. Since the cell density cannot be increased, there is a limit to improving the efficiency of deodorization and dehumidification.
On the other hand, a film made of a perforated film is small in pores and substantially non-breathable, and can be thinned. Therefore, it is excellent in improving the contact efficiency of the processing gas by increasing the cell density. Yes. However, those made of perforated film cannot contain functional inorganic materials at a high rate, so that the adsorption and decomposition of contaminants, moisture absorption, etc. will be insufficient, especially in the case of deodorization, dehumidifiers, etc. It has the disadvantage of not being fully achieved.
Thus, the present condition is that the filter element with the high contact efficiency of process gas and the processing capacity per unit area is not obtained.

また。上記の課題を解決するために、特許文献1には、機能性無機材料の固形分比を調節し、特定の平均孔径の連続気孔を有する多孔質膜又は多孔質層からなるフィルターエレメントも提案されている。
また、自動車の車室の様に、人の呼気等により定常的に湿気が持ち込まれる閉鎖空間で使用される空気調節機器では、長時間にわたって除湿を行う必要がある。 電動のエアコンで除湿を行う方法は、電力の供給があれば連続的に除湿を行うことが出来るが、電気自動車などに搭載する場合には走行距離を縮めてしまうという問題があった。
Also. In order to solve the above problems, Patent Document 1 proposes a filter element comprising a porous film or a porous layer having a continuous pore having a specific average pore diameter by adjusting the solid content ratio of the functional inorganic material. ing.
Further, in an air conditioner used in a closed space where moisture is constantly brought in due to a person's exhalation or the like like a car cabin, it is necessary to perform dehumidification for a long time. The method of performing dehumidification with an electric air conditioner can perform dehumidification continuously if electric power is supplied, but has a problem that the travel distance is shortened when mounted on an electric vehicle or the like.

特開2003−135577号公報Japanese Patent Laid-Open No. 2003-135577

自動車の車室等で使用される空気調節機器では、空気中から粉塵、悪臭原因物質、その他各種汚染物質を除去するためのフィルターエレメントに、除湿機能も付与することで、室内の除湿を行うことが出来る。このような場合、ある程度水分を吸収し、飽和して除湿能力が低下したてフィルターエレメントは、外気中に放湿させてフィルターエレメントの吸湿性能を速やかに回復させることが必要である。しかしながら、上記のような目的で使用される機能性無機材料を有するフィルターエレメントでは、十分に速やかな放湿をさせることができず、必ずしも満足できるものではなかった。 Air conditioning equipment used in automobile cabins, etc., to dehumidify indoors by providing a dehumidifying function to the filter element for removing dust, odor-causing substances, and other pollutants from the air. I can do it. In such a case, it is necessary to absorb the moisture to some extent and saturate to reduce the dehumidifying ability, so that the filter element is allowed to release moisture into the outside air to quickly restore the moisture absorption performance of the filter element. However, a filter element having a functional inorganic material used for the above-mentioned purpose cannot sufficiently release moisture quickly and is not always satisfactory.

本発明は、脱臭器、除湿、加湿器等の各種空気調節機器、調湿材料等に好適に用いられ、脱臭・除湿効率が優れるのみならず、放湿効率も優れて吸湿性能を速やかに回復させることが出来るフィルターエレメントを提供することを目的とする。 The present invention is suitably used for various air conditioners such as deodorizers, dehumidifiers and humidifiers, humidity control materials, etc., and not only has excellent deodorization and dehumidification efficiency, but also has excellent moisture release efficiency and quickly recovers moisture absorption performance. It is an object to provide a filter element that can be made to operate.

本発明のフィルターエレメントは、気体用のフィルターエレメントであって、高吸水性ポリマーを含有する高吸水性繊維および捲縮合成繊維よりなり、かつ熱融着性繊維によって繊維が結合された乾式不織布よりなることを特徴とする。 The filter element of the present invention is a filter element for gas, which is composed of a superabsorbent fiber containing a superabsorbent polymer, a crimped synthetic fiber, and a dry nonwoven fabric in which the fibers are bonded by a heat-fusible fiber. It is characterized by becoming.

前記乾式不織布を構成する繊維の加重平均繊維長は、0.5〜20mmの範囲であることが好ましい。
また、前記乾式不織布を、その少なくとも一方の面に、異なる不織布が熱溶融性接着剤を介して積層された不織布積層体とすることが好ましい。
The weighted average fiber length of the fibers constituting the dry nonwoven fabric is preferably in the range of 0.5 to 20 mm.
Moreover, it is preferable to make the said dry-type nonwoven fabric into the nonwoven fabric laminated body by which the different nonwoven fabric was laminated | stacked through the hot-melt adhesive on the at least one surface.

上記の本発明のフィルターエレメントは、プリーツ付き構造体を有するフィルターより形成するのに好適である。
上記の本発明のフィルターエレメントは、ハニカム構造体を有するフィルターより形成するのに好適である。
また、上記の本発明のフィルターエレメントは、プリーツつき構造体とハニカム構造体が積層されたフィルターより形成するのに好適である。
The above filter element of the present invention is suitable for forming from a filter having a pleated structure.
The above filter element of the present invention is suitable for forming from a filter having a honeycomb structure.
The filter element of the present invention is suitable for forming from a filter in which a pleated structure and a honeycomb structure are laminated.

本発明によれば、脱臭器、除湿、加湿器等の各種空気調節機器、調湿材料等に好適に用いられ、脱臭・除湿効率が優れるのみならず、放湿効率も優れて吸湿性能を速やかに回復させることが出来るフィルターエレメントを提供することが出来る。 According to the present invention, it is suitably used for various air conditioners such as deodorizers, dehumidifiers and humidifiers, humidity control materials, etc., and not only has excellent deodorization and dehumidification efficiency, but also has excellent moisture release efficiency and quick moisture absorption performance It is possible to provide a filter element that can be recovered.

プリーツ付き構造体を有するフィルターより形成されるフィルターエレメントの形態の模式図である。It is a schematic diagram of the form of the filter element formed from the filter which has a structure with a pleat. ハニカム構造体を有するフィルターより形成されるフィルターエレメントの形態の模式図である。It is a schematic diagram of the form of the filter element formed from the filter which has a honeycomb structure. プリーツつき構造体とハニカム構造体が積層されたフィルターより形成されるフィルターエレメントの形態の模式図である。It is a schematic diagram of the form of a filter element formed from a filter in which a pleated structure and a honeycomb structure are laminated.

本発明のフィルターエレメントは、気体中の粉塵、悪臭原因物質、その他各種汚染物質を除去するフィルターエレメントであって、高吸水性ポリマーよりなる高吸水性繊維および熱融着性繊維を含有する乾式不織布よりなることを特徴とする。 The filter element of the present invention is a filter element that removes dust, odor-causing substances, and other various pollutants in a gas, and includes a highly water-absorbing fiber and a heat-fusible fiber made of a highly water-absorbing polymer. It is characterized by comprising.

(高吸水性繊維)
本発明に使用される高吸水性繊維としては、必ずしも限定するものではないが、でんぷんグラフト系や、ポリアクリル酸系、ポリビニルアルコール系等のポリマーを架橋することによって得られる高吸水性ポリマーや、ポリアルキレンオキシド単位を含む熱可塑性吸水性ポリマーなどの高吸水性ポリマーから紡糸された高吸水性繊維などを例示することが出来る。 高吸水性ポリマーは自重の数百倍から約千倍までの水を吸収、保持できる。特に、アクリル酸の重合体はカルボキシル基を多数持つために非常に親水性が高く、さらに網目構造に架橋させナトリウム塩の形とすると高い吸水性を持つゲルとなり、優れた特性を示すことが知られている。
(Superabsorbent fiber)
The superabsorbent fiber used in the present invention is not necessarily limited, but a starch graft system, a polyacrylic acid system, a superabsorbent polymer obtained by crosslinking a polymer such as a polyvinyl alcohol system, Examples thereof include superabsorbent fibers spun from superabsorbent polymers such as thermoplastic superabsorbent polymers containing polyalkylene oxide units. A superabsorbent polymer can absorb and retain water from several hundred times to about 1,000 times its own weight. In particular, acrylic acid polymers have a large number of carboxyl groups, so they are very hydrophilic, and when cross-linked into a network structure to form a sodium salt, it becomes a gel with high water absorption and exhibits excellent properties. It has been.

本発明に用いられる乾式不織布に含有される高吸水性繊維は高吸水性ポリマーを含有し、繊維としての機能と高吸水性ポリマーの機能を併せ持つ吸水膨潤性を有する繊維である。
高吸水性ポリマーを含有する乾式不織布に湿気を含んだ空気に接触させると、空気中の湿気を吸収して高吸水性ポリマーが膨潤することにより、空気中の湿気は除湿される。空気中の湿気を吸収して膨潤した乾式不織布を低湿度の空気に接触させると、徐々に放湿して定常の水分量に戻り、再び吸湿できるようになる。
従来、除湿用フィルターとしてはシリカゲルなどの無機吸湿材が検討されてきた。シリカゲルを添加した紙や不織布も、湿気を含んだ空気に接触させると、空気中の湿気を吸収し、低湿度の空気に接触させると、徐々に放湿して定常の水分量に戻り再び吸湿できる様になる。
しかしながら、本発明者等は、シリカゲルを含有させた乾式不織布に比べ、高吸水性ポリマーを含有させた乾式不織布の放湿性は極めて優れることを見出した。 この理由は必ずしも定かではないが、吸水性ポリマーの吸放湿の機構が、無機顔料の吸脱着とは異なるためであろうと推定される。
本発明のフィルターエレメントには高吸水性ポリマーより形成された高吸水性繊維を採用しているため、湿気を含んだ空気に接触させると、空気中の湿気を吸収して高吸水性ポリマーが膨潤し、不織布中を空気が通過する際の圧力損失が増加する傾向がある。
しかしながら、高吸水性ポリマーが粒子状で不織布中に分散されている場合に比べ、高吸水性ポリマーが繊維の形状を保った状態で不織布を構成していると、高吸水性ポリマーが膨潤した状態でも繊維間の空隙は保たれ易いと考えられる。
The superabsorbent fiber contained in the dry nonwoven fabric used in the present invention contains a superabsorbent polymer, and is a fiber having water-absorbing swellability that has both a function as a fiber and a superabsorbent polymer.
When a dry nonwoven fabric containing a superabsorbent polymer is brought into contact with air containing moisture, the moisture in the air is absorbed and the superabsorbent polymer swells to dehumidify the moisture in the air. When the dry nonwoven fabric swollen by absorbing moisture in the air is brought into contact with low-humidity air, the moisture is gradually released to return to a steady amount of moisture and can absorb moisture again.
Conventionally, inorganic hygroscopic materials such as silica gel have been studied as dehumidifying filters. Paper and non-woven fabrics with silica gel added absorb moisture in the air when exposed to moisture-containing air, and gradually release moisture when contacted with low-humidity air. I can do it.
However, the present inventors have found that the dry-type nonwoven fabric containing the superabsorbent polymer is extremely superior in moisture release compared to the dry-type nonwoven fabric containing silica gel. The reason for this is not necessarily clear, but it is assumed that the moisture absorption / release mechanism of the water-absorbing polymer is different from the adsorption / desorption of the inorganic pigment.
Since the filter element of the present invention employs a superabsorbent fiber formed from a superabsorbent polymer, when it comes into contact with air containing moisture, the superabsorbent polymer swells by absorbing moisture in the air. However, pressure loss when air passes through the nonwoven fabric tends to increase.
However, compared to the case where the superabsorbent polymer is in the form of particles and dispersed in the non-woven fabric, the superabsorbent polymer swells when the superabsorbent polymer forms the non-woven fabric while maintaining the fiber shape. However, it is considered that the voids between the fibers are easily maintained.

(捲縮合成繊維)
本発明のフィルターエレメントを形成する乾式不織布には、さらに捲縮合成繊維が含有される。不織布を形成する繊維が捲縮されていることにより、嵩高の不織布を形成することが出来る。嵩高の不織布は不織布を構成する繊維の間隔が大きく、高吸水性繊維が吸湿して膨潤しても、空気の通過を妨げ難く、フィルターの圧力損失増大を防止することが出来ることから好ましい。また、熱処理により捲縮が顕在化する潜在捲縮合成繊維を用いることも出来る。このような潜在捲縮合成繊維は、例えば、熱処理による加熱時の収縮率が異なる樹脂を複合化させて得られるサイドバイサイド型構造、偏心芯鞘型構造の潜在捲縮合成繊維(PET/PET複合繊維、PE/PE複合繊維、PP/PP複合繊維、PE/PET複合繊維、PP/PET複合繊維、PE/PP複合繊維)などが挙げられる。 本発明において使用される乾式不織布には、高吸水性繊維および捲縮合成繊維が含有され、熱融着繊維によって繊維が結合された乾式不織布が使用される。 この捲縮合成繊維は、同時に熱融着性繊維であっても、熱融着性繊維以外に添加される合成繊維であってもよい。熱融着性繊維として捲縮していない熱融着性合成繊維を用いた場合には、高吸水性繊維と熱融着性繊維以外の合成繊維成分として捲縮合成繊維を含有することで、嵩高の不織布を形成することが出来る。
また、これらの捲縮繊維として、繊度の大きい繊維や、中空繊維などの太い捲縮繊維を使用すると、反発性のある不織布とする事が出来る。このような反発性のある不織布は、変形に対する抵抗があるため、高吸水性繊維の吸湿・膨潤に伴って不織布が変形して空隙が低下するのを防止することが出来る。
(Crimped synthetic fiber)
The dry nonwoven fabric forming the filter element of the present invention further contains crimped synthetic fibers. A bulky nonwoven fabric can be formed by crimping the fibers forming the nonwoven fabric. Bulky nonwoven fabrics are preferred because the spacing between the fibers constituting the nonwoven fabric is large, and even if the highly water-absorbing fibers absorb moisture and swell, it is difficult to prevent the passage of air and increase in pressure loss of the filter can be prevented. In addition, latent crimped synthetic fibers in which crimps are manifested by heat treatment can also be used. Such a latent crimp synthetic fiber is, for example, a latent crimp synthetic fiber (PET / PET composite fiber) having a side-by-side structure or an eccentric core-sheath structure obtained by compounding resins having different shrinkage ratios when heated by heat treatment. PE / PE composite fiber, PP / PP composite fiber, PE / PET composite fiber, PP / PET composite fiber, PE / PP composite fiber) and the like. As the dry nonwoven fabric used in the present invention, a dry nonwoven fabric containing superabsorbent fibers and crimped synthetic fibers and bonded with heat-bonding fibers is used. The crimped synthetic fiber may be a heat-fusible fiber or a synthetic fiber added in addition to the heat-fusible fiber. When using a heat-fusible synthetic fiber that is not crimped as a heat-fusible fiber, by containing the crimped synthetic fiber as a synthetic fiber component other than the superabsorbent fiber and the heat-fusible fiber, A bulky nonwoven fabric can be formed.
Moreover, when these crimped fibers are thick crimped fibers such as fibers having a high fineness or hollow fibers, a repellent nonwoven fabric can be obtained. Since such a repellent nonwoven fabric has resistance to deformation, it is possible to prevent the nonwoven fabric from being deformed due to moisture absorption / swelling of the superabsorbent fiber and lowering the voids.

(熱融着性繊維)
上記、高吸水性繊維は、併用する熱融着性繊維によって、フィルターを形成する乾式不織布に担持される。
この熱融着性繊維は、不織布への加工工程での熱処理により、少なくとも一部が溶融し、バインダーとして作用するものであり、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、エチレン酢酸ビニルコポリマー(EVA)およびポリプロピレン(PP)からなる群より選ばれる1種以上の樹脂からなるものが好ましく用いられる。
また、熱融着性繊維としては、融点の異なる2種類の樹脂を複合化させて得られ、繊維の表面のみが溶融する芯鞘型構造の熱融着性複合合成繊維が好ましい。
芯鞘型構造の熱融着性複合合成繊維は、融点の高い樹脂からなる芯の外周上に、融点の低い樹脂からなる鞘が形成された構造を有し、具体的には、融点が異なる2種の樹脂を組み合わせた形態(PET/PET複合繊維、PE/PE複合繊維、PP/PP複合繊維、EVA/PP複合繊維、PE/PET複合繊維、PP/PET複合繊維、PE/PP複合繊維)が挙げられる。
これらのなかでは、PE/PET複合繊維や、高重合度のPETからなる芯の外周上に、このPETよりも融点の低い低重合度のPETからなる鞘が形成されたPET/PET複合繊維などが好適である。 本発明に使用する乾式不織布を構成する熱融着性繊維としては、捲縮(クリンプ、カール、スパイラル)している熱融着性繊維を用いることが好ましい。
(Heat-bonding fiber)
The superabsorbent fiber is supported on the dry nonwoven fabric forming the filter by the heat-fusible fiber used together.
This heat-fusible fiber is at least partially melted by the heat treatment in the processing step into a nonwoven fabric and acts as a binder. Polyethylene terephthalate (PET), polyethylene (PE), ethylene vinyl acetate copolymer (EVA) ) And one or more resins selected from the group consisting of polypropylene (PP) are preferably used.
Moreover, as the heat-fusible fiber, a heat-fusible composite synthetic fiber having a core-sheath structure obtained by combining two kinds of resins having different melting points and melting only the surface of the fiber is preferable.
The heat-sealable composite synthetic fiber having a core-sheath structure has a structure in which a sheath made of a resin having a low melting point is formed on the outer periphery of a core made of a resin having a high melting point. Two types of combined resin (PET / PET composite fiber, PE / PE composite fiber, PP / PP composite fiber, EVA / PP composite fiber, PE / PET composite fiber, PP / PET composite fiber, PE / PP composite fiber ).
Among these, PE / PET composite fiber, PET / PET composite fiber in which a sheath made of low-polymerization PET having a lower melting point than PET is formed on the outer periphery of a core made of high-polymerization PET, etc. Is preferred. As the heat-fusible fiber constituting the dry nonwoven fabric used in the present invention, it is preferable to use a heat-fusible fiber that is crimped (crimped, curled, spiraled).

(その他の繊維成分)
本発明のフィルターエレメントを形成する乾式不織布には、高吸水性繊維、捲縮合成繊維およびこれらの繊維を結合させる熱融着性繊維以外にも、本発明の効果を損なわない範囲でその他の繊維成分を含有することも出来る。
このような、その他の繊維成分としては、PET、ポリカーボネート、ナイロン、ポリフェニレンスルフィドなどの熱融着性でない合成繊維、ガラス繊維、ロックウール、炭素繊維などの無機繊維、レーヨン、植物パルプ等のセルロース繊維などを挙げることができる。
高吸水性繊維を含有する不織布層に併用できる他の繊維成分としては、親水性繊維であっても、疎水性繊維であってもよい。一般的な親水性繊維は、高吸水性繊維とは吸・放湿の機構が異なり、高吸水性繊維のような速やかな吸・放湿挙動は示さない。高吸水性繊維を含有する不織布層に他の親水性繊維が併用されている場合、不織布の吸収する水分は、高吸水性繊維と共に親水性繊維にも保持されることになるが、同じ不織布中に共存させる場合には、高吸水性繊維による速やかな吸・放湿挙動を阻害する可能性があるため注意が必要である。また、親水性繊維は吸湿して軟化し、不織布の形態が崩れ易くなる可能性もある。
(Other fiber components)
The dry non-woven fabric forming the filter element of the present invention includes, in addition to superabsorbent fibers, crimped synthetic fibers, and heat-fusible fibers that bind these fibers, other fibers within a range that does not impair the effects of the present invention. Ingredients can also be included.
Such other fiber components include PET, polycarbonate, nylon, polyphenylene sulfide and other non-heat-synthetic synthetic fibers, glass fibers, rock wool, carbon fibers and other inorganic fibers, rayon, plant pulp and other cellulose fibers. And so on.
Other fiber components that can be used in combination with the non-woven fabric layer containing superabsorbent fibers may be hydrophilic fibers or hydrophobic fibers. A general hydrophilic fiber is different from a superabsorbent fiber in the mechanism of moisture absorption and desorption, and does not exhibit a quick moisture absorption and desorption behavior like a superabsorbent fiber. When other hydrophilic fibers are used in combination with the non-woven fabric layer containing superabsorbent fibers, the moisture absorbed by the non-woven fabric will be retained in the hydrophilic fibers together with the superabsorbent fibers. In the case of coexisting with water, it is necessary to be careful because there is a possibility that the rapid water absorption / moisture release behavior by the superabsorbent fiber may be hindered. Further, the hydrophilic fibers may absorb moisture and soften, and the shape of the nonwoven fabric may be easily broken.

(併用できるその他の材料)
本発明のフィルターエレメントには、更に必要に応じて各種機能材料を併用する事が出来る。そのような機能材料としては、活性炭、ゼオライト、結晶性アルミノリン酸塩型モレキュラーシーブ、シリカゲル、珪藻土、パリゴスカイト、セピオライトなどの粒子内に微孔を有する多孔質無機粒子や、モンモリロナイト、ベントナイト、スメクタイト、バーミキュライト、カネマイトなどの粘土化合物等、酸化チタン、マンガン酸化物などの触媒活性を有する粒子、ゾノトライト族などの珪酸カルシウム、粒子表面が疎水化されたシリカ等の無機粉体などの粒子状形態を有するものを挙げることができる。
また、前記、高吸水性繊維と同様の材料からなる高吸水性ポリマー粒子も併用する事が出来る。 無機粉体などの各種機能材料粒子や高吸水性ポリマー粒子も、前記の併用する熱融着性繊維によって、フィルターを形成する乾式不織布に担持される。
(Other materials that can be used in combination)
Various functional materials can be used in combination with the filter element of the present invention as required. Examples of such functional materials include activated carbon, zeolite, crystalline aluminophosphate type molecular sieve, silica gel, diatomaceous earth, palygoskite, sepiolite, and other porous inorganic particles having fine pores, montmorillonite, bentonite, smectite, vermiculite. Such as clay compounds such as kanemite, particles having catalytic activity such as titanium oxide and manganese oxide, calcium silicates such as zonotlite group, and inorganic powders such as silica whose surface is hydrophobized, etc. Can be mentioned.
Further, the superabsorbent polymer particles made of the same material as the superabsorbent fiber can be used in combination. Various functional material particles such as inorganic powder and highly water-absorbing polymer particles are also carried on the dry nonwoven fabric forming the filter by the heat-fusible fibers used in combination.

本発明のフィルターエレメントには、更に必要に応じて他の添加物を使用することもできる。
その例としては、黒鉛、水酸化アルミニウム、水酸化マグネシウム、チタン酸カリウム、炭酸カルシウム、タルク、シリカ、アルミナ、金属酸化物、短繊維状の鉱滓繊維、セラミック繊維、ガラス繊維、炭素繊維、活性炭素繊維などの無機繊維、シリコーン系、フルオロカーボン系、長鎖脂肪酸塩系、長鎖アミン塩系などの撥水及び/又は撥油剤、界面活性剤、金属塩類、銀系などの抗菌剤、防かび剤などが挙げられる。
In the filter element of the present invention, other additives can be used as necessary.
Examples include graphite, aluminum hydroxide, magnesium hydroxide, potassium titanate, calcium carbonate, talc, silica, alumina, metal oxide, short fiber mineral fiber, ceramic fiber, glass fiber, carbon fiber, activated carbon Inorganic fibers such as fibers, silicone-based, fluorocarbon-based, long-chain fatty acid salt-based, long-chain amine salt-based water and / or oil repellents, surfactants, metal salts, silver-based antibacterial agents, fungicides, etc. Etc.

乾式不織布の製造方法としては、特に限定するものではなく、スパンボンド法、メルトブローン法といった紡糸と同時にウェブ形成を行う方法や、カード機を用いて綿状の繊維を梳りながらウェブを形成するカーディング法、気流中でほぐした繊維を金網上に堆積させてウェブを形成するエアレイド法など、各種公知のウェブ形成法を採用することが出来る。
本発明のフィルターを形成する乾式不織布は、含有する熱融着繊維の融点以上の温度で処理され、該熱融着繊維により繊維が互いに接着されて(サーマルボンド法)シート状に固定される。
The dry nonwoven fabric production method is not particularly limited, and is a method of forming a web simultaneously with spinning, such as a spunbond method or a meltblown method, or a car that forms a web while winding cotton-like fibers using a card machine. Various known web forming methods such as a laying method and an airlaid method in which fibers loosened in an air current are deposited on a wire mesh to form a web can be employed.
The dry nonwoven fabric forming the filter of the present invention is treated at a temperature equal to or higher than the melting point of the heat-sealing fiber contained therein, and the fibers are bonded to each other by the heat-sealing fiber (thermal bonding method) and fixed in a sheet form.

上記のウェブ形成法の中で、エアレイド法によって形成されたウェブは、繊維がウェブの厚み方向にも配向し、均一性が高く、嵩高であると共に通気性に優れた性質があり、圧力損失の小さいフィルターを得られるため特に好適に用いられる。
本発明の乾式不織布中に含有される高吸水繊維の割合は、フィルターエレメントの設計などにもよるが、乾式不織布全体の5〜95質量%で調節されることが好ましく、より好ましくは10〜90質量%、より好ましくは20〜80質量%、更に好ましくは30〜70質量%である。
即ち、5質量%未満では充分な除湿性能を得難く、95質量%を越えると、結果的に熱融着性繊維の含有量が減少し、シート化することが困難になる。
エアレイド法は、比較的短い繊維によって均一性の高いウェブを形成することが出来る。
本発明に用いられる高吸水性繊維や熱融着繊維は、エアレイド法による不織布への加工性の点から、加重平均繊維長は0.5〜20mmの範囲のものが好ましく、より好ましくは2〜10mmの範囲が用いられる。
また、これらの繊維の好ましい繊度は0.5~50dtex程度の範囲が好ましく、より好ましくは1~20dtexの範囲が用いられる。
Among the web forming methods described above, the web formed by the airlaid method has the properties that the fibers are oriented in the thickness direction of the web, the uniformity is high, the bulk is high, and the air permeability is excellent. Since a small filter can be obtained, it is particularly preferably used.
The proportion of superabsorbent fibers contained in the dry nonwoven fabric of the present invention is preferably adjusted to 5 to 95% by mass of the entire dry nonwoven fabric, more preferably 10 to 90, although it depends on the design of the filter element. It is 20 mass%, More preferably, it is 20-80 mass%, More preferably, it is 30-70 mass%.
That is, if it is less than 5% by mass, it is difficult to obtain a sufficient dehumidifying performance, and if it exceeds 95% by mass, the content of the heat-fusible fiber is reduced as a result, making it difficult to form a sheet.
The airlaid method can form a highly uniform web with relatively short fibers.
The superabsorbent fibers and heat-sealing fibers used in the present invention preferably have a weighted average fiber length in the range of 0.5 to 20 mm, more preferably 2 to 2, from the viewpoint of processability to a nonwoven fabric by the airlaid method. A range of 10 mm is used.
The fineness of these fibers is preferably in the range of about 0.5 to 50 dtex, more preferably in the range of 1 to 20 dtex.

本発明の高吸水性繊維を含有する不織布シートから形成されるフィルターとしては、不織布シートをプリーツ付の構造体にすることにより、フィルターとしての有効面積を大きくすることが出来る。これは、フィルターの効果を向上することが出来るため好ましいフィルターエレメントの態様である。
また、フィルターをハニカムエレメントとする事により、圧力損失の上昇を伴わずに、単位体積当たりの処理流体との接触を多くすることが出来るため好ましい態様である。
すなわち、湿気を帯びた空気は、フルートとライナーとに囲まれたセル内を、波型の畝に沿った方向に流れ、空気中の湿気がエレメント内で吸着されて除去された後、乾燥空気となって室内へと循環される。
このようなハニカムエレメントは、例えば、次のような方法で製造することが出来る。
先ず、シート状の不織布をまずコルゲーターにより、波形(フルート)等の形状に成形し、次に、このシートと同一或いは異種の材料からなる平板状のライナーと、接着剤により固着し、一体化する。 その後、単板状や円筒状に積層、裁断され、ハニカム状のフィルターエレメントを形成するといった方法により製造することが出来る。
また、プリーツ付き構造体とハニカム構造体のフィルターを積層してフィルターエレメント全体の厚みとする事も出来る。
この場合、プリーツ付き構造体とハニカム構造体は、フィルターエレメントの設計によって、相互に接着されていても良いし、夫々の構造体を単に積層して用いることも出来る。また、プリーツ付き構造体を気体の入口側に、ハニカム構造体気体の出口側に配して積層することも、 ハニカム構造体を気体の入口側に、プリーツ付き構造体を気体の出口側に配して積層することも出来る。 夫々の構造体の積層構成は、フィルターエレメントが組み込まれる脱臭器、除湿、加湿器等の各種空気調節機器、調湿材料の特性に合せた構成を選択することが好ましい。
As a filter formed from the nonwoven fabric sheet containing the superabsorbent fiber of the present invention, the effective area as a filter can be increased by making the nonwoven fabric sheet a pleated structure. This is a preferable embodiment of the filter element because the effect of the filter can be improved.
In addition, the use of the filter as a honeycomb element is a preferable embodiment because the contact with the processing fluid per unit volume can be increased without increasing the pressure loss.
That is, the humid air flows in the cell surrounded by the flute and the liner in the direction along the corrugated ridge, and after the moisture in the air is adsorbed and removed in the element, the dry air It is circulated into the room.
Such a honeycomb element can be manufactured, for example, by the following method.
First, a sheet-like non-woven fabric is first formed into a corrugated (flute) shape by a corrugator, and then fixed and integrated with a flat liner made of the same or different material as this sheet with an adhesive. . Thereafter, it can be manufactured by a method of laminating and cutting into a single plate shape or a cylindrical shape to form a honeycomb-shaped filter element.
Also, the filter element of the structure with pleats and the honeycomb structure can be laminated to obtain the thickness of the entire filter element.
In this case, the pleated structure and the honeycomb structure may be bonded to each other depending on the design of the filter element, or the respective structures may be simply laminated. Alternatively, the pleated structure may be laminated on the gas inlet side and the honeycomb structure gas outlet side, or the honeycomb structure may be disposed on the gas inlet side and the pleated structure may be disposed on the gas outlet side. And can be laminated. The laminated structure of each structure is preferably selected according to the characteristics of various air conditioners such as deodorizers, dehumidifiers and humidifiers in which filter elements are incorporated, and humidity control materials.

高吸水性繊維を含む不織布は、吸湿が進むと高吸水性繊維が膨潤して表面がヌルヌルとした状態になり、取り扱い性に劣る場合がある。そこで、高吸水性繊維を含有する不織布層の少なくとも一方の表面に、異なる不織布よりなる表面層を設けた不織布積層体として取り扱い性を改善する事が出来る。
本発明の表面層となる不織布としては、PEやPPあるいはPETなど、親水性のない合成繊維よりなる不織布であっても、レーヨンあるいは植物パルプ繊維などのセルロース系繊維のような親水性を有する繊維よりなる不織布であってもよく、目的に応じて適宜選択することが出来る。 また、合成繊維よりなるスパンボンド不織布やスパンレース不織布、あるいはニードルパンチ不織布やエアレイド不織布等、適宜選択することが出来る。
本発明において表面層を有する不織布積層体は、高吸水性繊維を含有する乾式不織布層の表面に、表面層の不織布が、熱融着性接着剤を介して接着されていることが好ましい。 これは、表面層の不織布に、必ずしも熱融着性繊維や熱融着性接着剤を含有する必要がなく、ハニカム加工や、プリーツ加工の際に熱ロールへの貼りつきのない加工性に優れた不織布積層体とする事が出来るためである。
上記本発明のフィルターエレメントに使用する乾式不織布の厚さは特に限定されるものではないが、プリーツ、コルゲートなどの種々の形状に加工して、セル密度の増加により、汚染物質や湿気等の吸着率を向上させようとする点から、表面層を設ける場合でも好ましくは4mm以下、より好ましくは2mm以下である。
本発明のフィルターエレメントを用いて、空気中の湿気を除去する場合、フィルターに使用される吸水性繊維の量が多いほど、湿気の除去能力は向上する傾向にある。
一方、フィルターに使用する高吸水性繊維の量を多くするために不織布の坪量を増加することは、加工性の低下や、セル密度の増加を制限し、またフィルターの圧力損失増加を起こす。
フィルターエレメントに使用する乾式不織布の坪量は特に限定するものではないが、20〜1000g/mの範囲で調節され、好ましくは50〜500g/m、更に好ましくは80〜300g/mの範囲である。
The nonwoven fabric containing superabsorbent fibers may be inferior in handleability because the superabsorbent fibers swell as the moisture absorption proceeds and the surface becomes null null. Therefore, the handleability can be improved as a nonwoven fabric laminate in which a surface layer made of a different nonwoven fabric is provided on at least one surface of a nonwoven fabric layer containing superabsorbent fibers.
The non-woven fabric used as the surface layer of the present invention is a non-hydrophilic synthetic fiber such as PE, PP, or PET, or a hydrophilic fiber such as a cellulosic fiber such as rayon or vegetable pulp fiber. The nonwoven fabric which consists of may be selected suitably according to the objective. Further, a spunbond nonwoven fabric or a spunlace nonwoven fabric made of a synthetic fiber, a needle punched nonwoven fabric, an airlaid nonwoven fabric or the like can be appropriately selected.
In the nonwoven fabric laminate having a surface layer in the present invention, it is preferable that the nonwoven fabric of the surface layer is bonded to the surface of the dry nonwoven fabric layer containing superabsorbent fibers via a heat-fusible adhesive. This is because the nonwoven fabric of the surface layer does not necessarily contain a heat-fusible fiber or a heat-fusible adhesive, and has excellent workability without sticking to a hot roll during honeycomb processing or pleating. It is because it can be set as a nonwoven fabric laminated body.
The thickness of the dry nonwoven fabric used in the filter element of the present invention is not particularly limited, but it is processed into various shapes such as pleats and corrugates, and adsorbs contaminants and moisture by increasing the cell density. From the viewpoint of improving the rate, even when a surface layer is provided, it is preferably 4 mm or less, more preferably 2 mm or less.
When the moisture in the air is removed using the filter element of the present invention, the moisture removing ability tends to be improved as the amount of water-absorbing fibers used in the filter is increased.
On the other hand, increasing the basis weight of the nonwoven fabric in order to increase the amount of superabsorbent fibers used in the filter limits the decrease in processability, the increase in cell density, and increases the pressure loss of the filter.
The basis weight of the dry nonwoven fabric used for the filter element is not particularly limited, but is adjusted in the range of 20 to 1000 g / m 2 , preferably 50 to 500 g / m 2 , more preferably 80 to 300 g / m 2 . It is a range.

以下、実施例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 尚、文章中、特にことわりなく用いた「部」、「%」は、夫々「質量部」、「質量%」を意味するものとする。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. It should be noted that “part” and “%” used in the text without any special meaning mean “part by mass” and “% by mass”, respectively.

[不織布Aの製造]
コンベアに装着されて走行するメッシュ状無端ベルト上に、表面層として、エアレイド法により製造されたパルプ不織布(商品名:キノクロスKS40、王子キノクロス株式会社製、坪量40g/m)を繰り出した。次いで、この表面層上に、接着剤となるPE粉体の8g/m2を散布してから、エアレイド法のウェブフォーミング機を用いて、ポリアクリル酸ナトリウム系高吸水性繊維(商品名:ベルオアシス、繊度10dtex、繊維長51mm、帝人株式会社製)67質量部と熱融着性繊維(商品名:ETC325、繊度2.2dtex、繊維長5mm、ESファイバービジョンズ製 PE/PET捲縮複合繊維)17質量部を、解繊機を用いて空気中で混合した。
混合した上記の繊維を、メッシュ状無端ベルト側に吸気流とともに下降させて表面層上に落下堆積させ、エアレイドウェブを表面層上に形成した。その後、エアレイドウェブ上に先に用いたものと同じ接着剤の8g/mを散布してから、表面層として、先に用いたものと同じパルプ不織布を積層し、エアレイドウェブの両面に、パルプ不織布からなる表面層が設けられた積層ウェブを得た。
この積層ウェブを、周面
が通気性を有する回転ドラムを備えたスルーエアドライヤーを通過させて熱処理し、高吸水繊維を400g/mの割合で含有する、坪量590g/m、厚さ2.9mmの乾式不織布を得た。
[Production of non-woven fabric A]
A pulp non-woven fabric (trade name: Kinocross KS40, manufactured by Oji Kinocross Co., Ltd., basis weight 40 g / m 2 ) produced by the airlaid method was fed out as a surface layer on a mesh endless belt that was mounted on a conveyor and traveled. Next, 8 g / m 2 of PE powder serving as an adhesive is sprayed on the surface layer, and then a sodium polyacrylate-based superabsorbent fiber (trade name: Bel Oasis) is used using an airlaid web forming machine. 67 parts by mass of fineness 10 dtex, fiber length 51 mm, manufactured by Teijin Ltd.) and heat-fusible fiber (trade name: ETC325, fineness 2.2 dtex, fiber length 5 mm, PE / PET crimped composite fiber manufactured by ES Fiber Visions) 17 The mass parts were mixed in air using a defibrator.
The mixed fibers were lowered to the mesh endless belt side along with the intake air flow and dropped and deposited on the surface layer to form an airlaid web on the surface layer. Then, after spraying 8 g / m 2 of the same adhesive as that used earlier on the air laid web, the same pulp nonwoven fabric as used previously was laminated as the surface layer, and the pulp laid on both sides of the air laid web A laminated web provided with a surface layer made of nonwoven fabric was obtained.
This laminated web was heat-treated by passing through a through air dryer provided with a rotating drum having a breathable peripheral surface, containing superabsorbent fibers at a rate of 400 g / m 2 , basis weight 590 g / m 2 , thickness A 2.9 mm dry nonwoven fabric was obtained.

[実施例1]
100mm×3000mmに断裁した不織布Aを10mmに交互に折り曲げてプリーツ加工し、100mm×100mmの枠に固定し、厚さ10mm、100mm×100mmのプリーツ付き構造体よりなるフィルターエレメントを得た。
[Example 1]
The nonwoven fabric A cut to 100 mm × 3000 mm was alternately bent to 10 mm, pleated, fixed to a 100 mm × 100 mm frame, and a filter element made of a pleated structure having a thickness of 10 mm and 100 mm × 100 mm was obtained.

[実施例2]
不織布Aをピッチ10mm山高5mmのコルゲータで波付けし、同一組成のライナーにエポキシ系接着剤により接着して一体化し、高さ100mmとなる様にこれを積層した。さらに厚さ10mmに断裁し、高さ100mm、幅100mm、厚さ10mmのハニカム構造体よりなるフィルターエレメントを得た。
[Example 2]
The nonwoven fabric A was corrugated with a corrugator having a pitch of 10 mm and a height of 5 mm, and was bonded and integrated with an epoxy adhesive to a liner having the same composition, and this was laminated so that the height was 100 mm. Furthermore, it cut | judged in thickness 10mm, and obtained the filter element which consists of a honeycomb structure of height 100mm, width 100mm, and thickness 10mm.

[実施例3]
100mm×3000mmに断裁した不織布Aを5mmに交互に折り曲げてプリーツ加工し、100mm×100mmの枠に固定し、厚さ5mm、100mm×100mmのプリーツ付き構造体a1を得た。 次に、不織布Aをピッチ10mm山高5mmのコルゲータで波付けし、同一組成のライナーにエポキシ系接着剤により接着して一体化し、高さ100mmとなる様にこれを積層した。さらに厚さ5mmに断裁し、高さ100mm、幅100mm、厚さ5mmのハニカム構造体a2を得た。
エポキシ系接着剤を用いて、得られたプリーツ付き構造体a1上に、ハニカム構造体a2を積層して接着し、プリーツ付き構造体とハニカム構造体が積層されたフィルターエレメントを得た。
[Example 3]
The nonwoven fabric A cut to 100 mm × 3000 mm was alternately bent to 5 mm and pleated, and fixed to a 100 mm × 100 mm frame to obtain a pleated structure a1 having a thickness of 5 mm and 100 mm × 100 mm. Next, the non-woven fabric A was corrugated with a corrugator having a pitch of 10 mm and a height of 5 mm, and bonded and integrated with a liner having the same composition with an epoxy adhesive, and this was laminated so as to have a height of 100 mm. Furthermore, it cut | judged to thickness 5mm and obtained the honeycomb structure a2 of height 100mm, width 100mm, and thickness 5mm.
A honeycomb structure a2 was laminated and bonded onto the obtained pleated structure a1 using an epoxy adhesive to obtain a filter element in which the pleated structure and the honeycomb structure were laminated.

[不織布Bの製造]
エアレイド法のウェブフォーミング機を用いて、シリカゲル(商品名:アートソーブ、富士シリシア化学製)60質量部、熱融着性繊維(商品名:ETC325、ESファイバービジョンズ製)27質量部を、解繊機を用いて空気中で混合した以外は実施例1と同様にして、エアレイドウェブの両面に、パルプ不織布からなる表面層が設けられた積層ウェブを得た。
この積層ウェブを、周面
が通気性を有する回転ドラムを備えたスルーエアドライヤーを通過させて熱処理し、シリカゲルを400g/mの割合で含有する、坪量665g/m、厚さ1.5mmの乾式不織布を得た。
[Production of non-woven fabric B]
Using an airlaid web forming machine, 60 parts by mass of silica gel (trade name: Artsorb, manufactured by Fuji Silysia Chemical) and 27 parts by mass of heat-fusible fiber (trade name: ETC325, manufactured by ES Fiber Visions) Using the same method as in Example 1 except that the air-laid web was used and mixed in the air, a laminated web having a surface layer made of a pulp nonwoven fabric on both surfaces of the airlaid web was obtained.
This laminated web was heat-treated by passing through a through air dryer provided with a rotating drum having a gas permeable peripheral surface, containing silica gel at a ratio of 400 g / m 2 , basis weight 665 g / m 2 , thickness 1. A 5 mm dry nonwoven fabric was obtained.

[比較例1]
100mm×3000mmに断裁した不織布Bを10mmに交互に折り曲げてプリーツ加工し、100mm×100mmの枠に固定し、厚さ10mm、100mm×100mmのプリーツ付き構造体よりなるフィルターエレメントを得た。
[Comparative Example 1]
The nonwoven fabric B cut to 100 mm × 3000 mm was alternately bent to 10 mm and pleated, fixed to a 100 mm × 100 mm frame, and a filter element made of a pleated structure having a thickness of 10 mm and 100 mm × 100 mm was obtained.

[比較例2]
不織布Bをピッチ10mm山高5mmのコルゲータで波付けし、同一組成のライナーにエポキシ系接着剤により接着して一体化し、高さ100mmとなる様にこれを積層した。さらに厚さ10mmに断裁し、高さ100mm、幅100mm、厚さ10mmのハニカム構造体よりなるフィルターエレメントを得た。
[Comparative Example 2]
The nonwoven fabric B was corrugated with a corrugator with a pitch of 10 mm and a height of 5 mm, and was bonded and integrated with an epoxy adhesive to a liner having the same composition, and this was laminated so as to have a height of 100 mm. Furthermore, it cut | judged in thickness 10mm, and obtained the filter element which consists of a honeycomb structure of height 100mm, width 100mm, and thickness 10mm.

[比較例3]
100mm×3000mmに断裁した不織布Bを5mmに交互に折り曲げてプリーツ加工し、100mm×100mmの枠に固定し、厚さ5mm、100mm×100mmのプリーツ付き構造体b1を得た。 次に、不織布Bをピッチ10mm山高5mmのコルゲータで波付けし、同一組成のライナーにエポキシ系接着剤により接着して一体化し、高さ100mmとなる様にこれを積層した。さらに厚さ5mmに断裁し、高さ100mm、幅100mm、厚さ5mmのハニカム構造体b2を得た。
エポキシ系接着剤を用いて、得られたプリーツ付き構造体b1上に、ハニカム構造体b2を積層して接着し、プリーツ付き構造体とハニカム構造体が積層されたフィルターエレメントを得た。
[Comparative Example 3]
The nonwoven fabric B cut to 100 mm × 3000 mm was alternately bent to 5 mm and pleated, and fixed to a 100 mm × 100 mm frame to obtain a pleated structure b1 having a thickness of 5 mm and 100 mm × 100 mm. Next, the non-woven fabric B was corrugated with a corrugator having a pitch of 10 mm and a height of 5 mm, and bonded and integrated with a liner having the same composition with an epoxy adhesive, and this was laminated so as to have a height of 100 mm. Furthermore, it cut | judged to thickness 5mm and obtained the honeycomb structure b2 of height 100mm, width 100mm, and thickness 5mm.
A honeycomb structure b2 was laminated and bonded onto the obtained pleated structure b1 using an epoxy adhesive to obtain a filter element in which the pleated structure and the honeycomb structure were laminated.

[吸湿性評価]
・試料調製
(1)試料寸法:不織布100mm×100mm相当分。
(2)フィルターエレメントから、所定の面積の不織布試料相当分を断裁する。
(3)断裁した不織布試料を105℃で恒量まで乾燥し、絶乾で25℃まで除冷する。
・吸湿試験
(1)試験環境:25℃、90%RH
(2)試験環境に不織布試料をおき、時間の経過による試料重量の変化を測定する。
・評価
(1)吸湿開始後120分までの吸湿量で評価する。
○ 200g/m以上
△ 100g/m以上
× 50g/m未満
[Hygroscopic evaluation]
Sample preparation (1) Sample dimensions: Nonwoven fabric equivalent to 100 mm x 100 mm.
(2) Cutting a portion corresponding to the nonwoven fabric sample having a predetermined area from the filter element.
(3) The cut nonwoven fabric sample is dried to a constant weight at 105 ° C., and then cooled to 25 ° C. by absolute drying.
Moisture absorption test (1) Test environment: 25 ° C, 90% RH
(2) Place the nonwoven fabric sample in the test environment and measure the change in the sample weight over time.
・ Evaluation (1) Evaluation is based on the amount of moisture absorbed up to 120 minutes after the start of moisture absorption.
○ 200 g / m 2 or more Δ 100 g / m 2 or more × less than 50 g / m 2

[放湿性評価]
・試料調製
(1)試料寸法: 不織布100mm×100mm相当分。
(2)フィルターエレメントから、所定の面積の不織布試料相当分を断裁する。
(3)25℃、90%RHの環境下で平衡まで吸湿させ、質量を測定する。
・放湿試験
(1)試験環境:15℃、35%RH
(2)試験環境に不織布試料をおき、時間の経過による試料重量の変化を測定する。
・評価
(1)放湿開始後120分までの放湿量で評価する。
○ 200g/m以上
△ 100g/m以上
× 50g/m未満
[Moisture release evaluation]
Sample preparation (1) Sample dimensions: Nonwoven fabric equivalent to 100 mm x 100 mm.
(2) Cutting a portion corresponding to the nonwoven fabric sample having a predetermined area from the filter element.
(3) Moisture to equilibrium in an environment of 25 ° C. and 90% RH, and measure the mass.
-Moisture release test (1) Test environment: 15 ° C, 35% RH
(2) Place the nonwoven fabric sample in the test environment and measure the change in the sample weight over time.
-Evaluation (1) Evaluate by the amount of moisture release up to 120 minutes after the start of moisture release.
○ 200 g / m 2 or more Δ 100 g / m 2 or more × less than 50 g / m 2

得られた実施例1および比較例1のフィルターエレメント試料について、吸湿性および放湿性を評価した。結果を表に示す。 The filter element samples of Example 1 and Comparative Example 1 thus obtained were evaluated for hygroscopicity and moisture release. The results are shown in the table.

Figure 0006115413
Figure 0006115413

以上の評価より、本発明のフィルターエレメントは、優れた吸湿性を示すのみならず、優れた放湿性も有するものであり、除湿効率が優れるのみならず、放湿効率も優れて吸湿性能を速やかに回復させることが出来るフィルターエレメントを提供することが出来る。 From the above evaluation, the filter element of the present invention not only exhibits excellent hygroscopicity but also has excellent moisture desorption properties, and not only has excellent dehumidification efficiency, but also has excellent moisture desorption efficiency and quick moisture absorption performance. It is possible to provide a filter element that can be recovered.

Claims (4)

気体用のフィルターエレメントであって、乾式不織布層と、前記乾式不織布層の少なくとも一方の表面に設けられた表面層とを備え、
前記乾式不織布層は、下記(i)、(ii)の何れかであり、
前記表面層は、高吸水性ポリマーを含有する高吸水性繊維を含まない不織布層であり、
前記表面層が、前記乾式不織布層に熱融着性接着剤を介して接着され、
前記表面層が、熱融着性繊維及び熱融着性接着剤を含まないことを特徴とするフィルターエレメント。
(i)高吸水性ポリマーを含有する高吸水性繊維と、熱融着性の捲縮合成繊維とを含み、前記熱融着性の捲縮合成繊維によって繊維が結合された乾式不織布の層。
(ii)高吸水性ポリマーを含有する高吸水性繊維と、熱融着性を有しない捲縮合成繊維と、熱融着性繊維とを含み、前記熱融着性繊維によって繊維が結合された乾式不織布の層。
A filter element for gas, comprising a dry nonwoven fabric layer, and a surface layer provided on at least one surface of the dry nonwoven fabric layer,
The dry nonwoven fabric layer is any of the following (i) and (ii):
The surface layer, Ri nonwoven layer der containing no superabsorbent fibers containing superabsorbent polymer,
The surface layer is bonded to the dry nonwoven fabric layer via a heat-fusible adhesive,
The filter element , wherein the surface layer does not contain a heat-fusible fiber and a heat-fusible adhesive .
(I) A dry nonwoven fabric layer comprising superabsorbent fibers containing a superabsorbent polymer and heat-fusible crimped synthetic fibers, the fibers being bonded by the heat-fusible crimped synthetic fibers.
(Ii) A superabsorbent fiber containing a superabsorbent polymer, a crimped synthetic fiber not having heat-fusibility, and a heat-fusible fiber, wherein the fibers are bonded by the heat-fusible fiber. Dry nonwoven layer.
請求項に記載のフィルターエレメントで構成されたプリーツ付き構造体を有することを特徴とする、フィルター。 A filter comprising a pleated structure formed of the filter element according to claim 1 . 請求項に記載のフィルターエレメントで構成されたハニカム構造体を有することを特徴とする、フィルター。 A filter comprising a honeycomb structure composed of the filter element according to claim 1 . 請求項に記載のフィルターエレメントで構成されたプリーツ付き構造体とハニカム構造体が積層されたことを特徴とする、フィルター。 A filter comprising a pleated structure formed of the filter element according to claim 1 and a honeycomb structure.
JP2013181535A 2013-09-02 2013-09-02 Filter element Active JP6115413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181535A JP6115413B2 (en) 2013-09-02 2013-09-02 Filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181535A JP6115413B2 (en) 2013-09-02 2013-09-02 Filter element

Publications (2)

Publication Number Publication Date
JP2015047570A JP2015047570A (en) 2015-03-16
JP6115413B2 true JP6115413B2 (en) 2017-04-19

Family

ID=52698048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181535A Active JP6115413B2 (en) 2013-09-02 2013-09-02 Filter element

Country Status (1)

Country Link
JP (1) JP6115413B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585378B2 (en) * 2015-05-08 2019-10-02 ユニチカ株式会社 Cleaning cloth
EP3483192B1 (en) 2016-07-08 2021-11-17 Nippon Shokubai Co., Ltd. N-vinyl lactam-based crosslinked polymer, cosmetic, absorbent agent for ink, and absorbent composite
KR102059190B1 (en) * 2018-03-07 2019-12-24 두산중공업 주식회사 Mist eliminator and wet flue gas desulfurization apparatus including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273512B2 (en) * 1999-06-28 2009-06-03 日本エクスラン工業株式会社 Hygroscopic polymer and molded product thereof
JP2001146626A (en) * 1999-11-17 2001-05-29 Lion Corp Carbon particle-containing fiber and fiber product using the fiber
JP2003135577A (en) * 2001-11-05 2003-05-13 Toray Coatex Co Ltd Filter element
JP4953594B2 (en) * 2005-07-04 2012-06-13 日本バイリーン株式会社 Allergen removal filter, composite filter and filter element
JP2006281212A (en) * 2006-06-02 2006-10-19 Bridgestone Corp Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating it, and recycled article
JP5224873B2 (en) * 2008-03-31 2013-07-03 三菱製紙株式会社 Sheet material for dehumidification and filter material for dehumidification
JP5142816B2 (en) * 2008-05-19 2013-02-13 旭化成せんい株式会社 Fiber structure for vaporization filter

Also Published As

Publication number Publication date
JP2015047570A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
EP0269462B1 (en) Adsorptive sheet
JP5428857B2 (en) Deodorizing fiber structure and air filter
WO2008004703A1 (en) Sheetlike products and works
JP5334364B2 (en) Gas removal filter medium, composite filter and filter element
JP6115413B2 (en) Filter element
JP4959985B2 (en) Gas adsorbent
JP7242807B2 (en) Air filter media and air filters
JPH0474505A (en) Air cleaning filter element
CN117980064A (en) Gas adsorbent, and gas adsorption sheet, filter medium and air filter using same
CN113795323B (en) Filter medium for filter and filter
JP2820730B2 (en) Laminated adsorbent and filter using the same
JP2003135577A (en) Filter element
JP5172165B2 (en) Gas removal filter medium, composite filter and filter element
JPH0389913A (en) Laminated adsorptive body and filter using it
JP3767722B2 (en) Adsorbent sheet and air purification filter
WO2020203508A1 (en) Gas adsorbent
WO2009031944A2 (en) Filtering material for gaseous medium
JP2000153131A (en) Dust removing/deodorizing filter using photocatalyst
WO2005011841A1 (en) Water-resistant filters
JP2019166128A (en) Deodorant-enclosed filter-medium and air filter
JP2000167323A (en) Adsorbable sheet and air purifying filter
JP2000317243A (en) Chemical filter
KR102262258B1 (en) Chemical-chemi adsorption filter for removal of odor and hazardous dust
JP7200495B2 (en) Filter media and filters
JP4125861B2 (en) Air purification filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6115413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250