JP6114674B2 - 熱式流量計 - Google Patents

熱式流量計 Download PDF

Info

Publication number
JP6114674B2
JP6114674B2 JP2013205588A JP2013205588A JP6114674B2 JP 6114674 B2 JP6114674 B2 JP 6114674B2 JP 2013205588 A JP2013205588 A JP 2013205588A JP 2013205588 A JP2013205588 A JP 2013205588A JP 6114674 B2 JP6114674 B2 JP 6114674B2
Authority
JP
Japan
Prior art keywords
passage
gas
sub
downstream
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013205588A
Other languages
English (en)
Other versions
JP2015068793A (ja
Inventor
毅 森野
毅 森野
征史 深谷
征史 深谷
忍 田代
忍 田代
井上 淳
淳 井上
猪野 昌信
昌信 猪野
直生 斎藤
直生 斎藤
徳安 昇
徳安  昇
暁 上ノ段
暁 上ノ段
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013205588A priority Critical patent/JP6114674B2/ja
Publication of JP2015068793A publication Critical patent/JP2015068793A/ja
Application granted granted Critical
Publication of JP6114674B2 publication Critical patent/JP6114674B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は熱式流量計に関する。
気体の流量を計測する熱式流量計は流量を計測するための流量検出部を備え、前記流量検出部と計測対象である前記気体との間で熱伝達を行うことにより、前記気体の流量を計測するように構成されている。熱式流量計が計測する流量は色々な装置の重要な制御パラメータとして広く使用されている。熱式流量計の特徴は、他の方式の流量計に比べ相対的に高い精度で気体の流量、例えば質量流量を計測できることである。
しかしさらに気体流量の計測精度の向上が望まれている。例えば、内燃機関を搭載した車両では、省燃費の要望や排気ガス浄化の要望が非常に高い。これら要望に応えるには、内燃機関の主要パラメータである吸入空気量を高い精度で計測することが求められている。
内燃機関に導かれる吸入空気量を計測する熱式流量計は、吸入空気量の一部を取り込む副通路と前記副通路に配置された流量検出部とを備え、前記流量検出部が被計測気体との間で熱伝達を行うことにより、前記副通路を流れる被計測気体の状態を計測して、前記内燃機関に導かれる吸入空気量を表す電気信号を出力する。
たとえば、このような技術として、特許文献1には、「ダクトの内部を流れる空気の一部を取り込むバイパス流路と、バイパス流路より分岐して設けられてバイパス流路を流れる空気の一部を取り込むサブバイパス流路とが形成されたハウジングと、サブバイパス流路に配設され、サブバイパス流路を流れる空気の流量を測定する流量センサとを備え、バイパス流路とサブバイパス流路との分岐で、ダクト内部を流れる空気に含まれるダストを分離して、ダストをバイパス流路側に流す」熱式流量計が記載されている。
特開2011−112569号公報
しかしながら、特許文献1に示すように、副通路として、バイパス流路(第1の通路)と、これに分岐するサブパイパス流路(第2の通路)とを設け、サブパイパス流路に、流量センサ(流量検出部)を設けた場合、第1の通路と第2の通路との分岐部に汚損物質が付着しやすい。この汚損物質の付着により、初期状態に比べて、第1の通路と第2の通路に流れる被計測気体の分流比が変化してしまい、流量検出部を通過する流量が変化し、被計測気体の検出特性が変化するおそれがあった。
本発明は、このような点を鑑みてなされたものであり、その目的とするところは、副通路に汚損物質が流入したとしても、この汚損物質により被計測気体を検出する特性が継時的に変化することを抑えることができる熱式流量計を提供することにある。
前記課題を鑑みて、本発明に係る熱式流量計は、主通路を流れる被計測気体の一部を取り込む副通路と、前記副通路を流れる被計測気体の流量を検出する流量検出部とを備えており、前記副通路は、前記主通路を流れる前記被計測気体を取り込む主取込口から、取り込んだ被計測気体の一部を排出する排出口まで形成された第1の通路と、該第1の通路に流れる被計測気体を取り込む副取込口から、前記流量検出部に向かって形成された第2の通路と、を備えている。
ここで、まず、前記副取込口を形成する開口縁部のうち、前記第1の通路の下流側に位置する下流側開口縁部は、前記第1の通路の上流側に位置する上流側開口縁部よりも、前記第1の通路を形成する壁面のうち前記副取込口と対向する壁面に対して離間して形成されている、または、前記下流側開口縁部と前記上流側開口縁部は、前記副取込口と対向する壁面と同じ距離にある。
次に、前記主通路を流れる被計測気体の流れ方向に対して垂直な仮想平面のうち、前記下流側開口縁部の下流端部を通過する仮想平面において、前記第1の通路を通過する被計測気体が最大流速となる被計測気体の流れ方向に沿って、もしくは該流れ方向に沿った面よりも前記副取込口から、第2の通路が延在する側に向かって、前記下流側開口縁部から、該下流側開口縁部の近傍の前記第1の通路の下流側に第1の通路の壁面が延在している。
本発明によれば、副通路に汚損物質が流入したとしても、この汚損物質により被計測気体を検出する特性が継時的に変化することを抑えることができる。
内燃機関制御システムに本発明に係る熱式流量計を使用した一実施例を示すシステム図である。 本発明に係る熱式流量計の外観を示す正面図。 本発明に係る熱式流量計の外観を示す左側面図。 本発明に係る熱式流量計の外観を示す背面図。 本発明に係る熱式流量計の外観を示す右側面図。 本発明に係る熱式流量計から表カバーを取り外したハウジングの状態を示す正面図。 本発明に係る熱式流量計から裏カバーを取り外したハウジングの状態を示す背面図。 図2AのA−A断面図。 本実施例の比較例となる副通路の模式図。 図3Bに示す副通路の要部拡大図。 図6に示す副通路の模式的概念図。 図6の変形例を示した模式図。 図6の別の変形例を示した模式図。 図6のさらなる別の変形例を示した図。
以下、本発明の実施の形態を図に基づいて説明する。
図1は、電子燃料噴射方式の内燃機関制御システムに、本実施形態に係る熱式流量計を使用した一実施形態を示すシステム図である。図1に示すように、エンジンシリンダ112とエンジンピストン114を備える内燃機関110の動作に基づき、吸入空気が被計測気体IAとしてエアクリーナ122から吸入され、主通路124が形成された吸気管71を含む例えば吸気ボディ、スロットルボディ126、吸気マニホールド128を介してエンジンシリンダ112の燃焼室に導かれる。
燃焼室に導かれる吸入空気である被計測気体IAの流量は、本実施形態に係る熱式流量計30で計測され、計測された流量に基づいて燃料噴射弁152より燃料が供給され、吸入空気である被計測気体IAと共に混合気の状態で燃焼室に導かれる。なお、本実施形態では、燃料噴射弁152は内燃機関の吸気ポートに設けられ、吸気ポートに噴射された燃料が吸入空気である被計測気体IAと共に混合気を成形し、吸気弁116を介して燃焼室に導かれ、燃焼して機械エネルギを発生する。
熱式流量計30は、図1に示す内燃機関の吸気ポートに燃料を噴射する方式だけでなく、各燃焼室に燃料を直接噴射する方式にも同様に使用できる。両方式とも熱式流量計30の使用方法を含めた制御パラメータの計測方法および燃料供給量や点火時期を含めた内燃機関の制御方法の基本概念は略同じであり、両方式の代表例として吸気ポートに燃料を噴射する方式を図1に示す。
燃焼室に導かれた燃料および空気は、燃料と空気の混合状態を成しており、点火プラグ154の火花着火により、爆発的に燃焼し、機械エネルギを発生する。燃焼後の気体は排気弁118から排気管に導かれ、排気EAとして排気管から車外に排出される。前記燃焼室に導かれる吸入空気である被計測気体IAの流量は、アクセルペダルの操作に基づいてその開度が変化するスロットルバルブ132により制御される。前記燃焼室に導かれる吸入空気の流量に基づいて燃料供給量が制御され、運転者はスロットルバルブ132の開度を制御して前記燃焼室に導かれる吸入空気の流量を制御することにより、内燃機関が発生する機械エネルギを制御することができる。
エアクリーナ122から取り込まれ主通路124を流れる吸入空気である被計測気体IAの流量、湿度および温度が、熱式流量計30により計測され、熱式流量計30から吸入空気の流量、湿度および温度を表す電気信号が制御装置200に入力される。また、スロットルバルブ132の開度を計測するスロットル角度センサ144の出力が制御装置200に入力され、さらに内燃機関のエンジンピストン114や吸気弁116や排気弁118の位置や状態、さらに内燃機関の回転速度を計測するために、回転角度センサ146の出力が、制御装置200に入力される。排気EAの状態から燃料量と空気量との混合比の状態を計測するために、酸素センサ148の出力が制御装置200に入力される。
制御装置200は、熱式流量計30の出力である吸入空気の流量、湿度、および温度、および回転角度センサ146からの内燃機関の回転速度、に基づいて燃料噴射量や点火時期を演算する。これら演算結果に基づいて、燃料噴射弁152から供給される燃料量、また点火プラグ154により点火される点火時期が制御される。燃料供給量や点火時期は、実際にはさらに熱式流量計30で計測される吸気温度やスロットル角度の変化状態、エンジン回転速度の変化状態、酸素センサ148で計測された空燃比の状態に基づいて制御されている。制御装置200はさらに内燃機関のアイドル運転状態において、スロットルバルブ132をバイパスする空気量をアイドルエアコントロールバルブ156により制御し、アイドル運転状態での内燃機関の回転速度を制御する。
内燃機関の主要な制御量である燃料供給量や点火時期はいずれも熱式流量計30の出力を主パラメータとして演算される。従って熱式流量計30の計測精度の向上や経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには熱式流量計30により計測される吸入空気である被計測気体IAの流量の計測精度の向上が極めて重要である。
図2は、熱式流量計30の外観を示している。図2Aは熱式流量計30の正面図、図2Bは左側面図、図2Cは背面図、図2Dは右側面図である。熱式流量計30はハウジング302と表カバー303と裏カバー304とを備えている。ハウジング302は、熱式流量計30を、主通路を構成する吸気ボディに固定するためのフランジ312と、外部機器との電気的な接続を行うための外部端子を有する外部接続部(コネクタ部)305と、流量等を計測するための計測部310を備えている。計測部310の内部には、副通路を作るための副通路溝が設けられている。
上述した表カバー303と裏カバー304を覆うことにより、副通路が形成されたケーシングとなる。計測部310の内部には、主通路を流れる被計測気体IAの流量を計測するための流量検出部602や主通路を流れる被計測気体IAの温度を計測するための温度検出部452を備える回路パッケージ400が設けられている(図3A、3B参照)。
熱式流量計30は、フランジ312を吸気ボディ(吸気管)71に固定することにより、計測部310が主通路内に片持ち状に支持される。図2Aおよび図3Bでは、熱式流量計30と吸気管71との位置関係を明確にするため、仮想線で吸気管71を示している。
熱式流量計30の計測部310は、フランジ312から主通路124の径方向の中心方向に向かって長く延びる形状を成し、その先端部には吸入空気などの被計測気体IAの一部を副通路に取り込むための主取込口350(図2C参照)と副通路から被計測気体IAを主通路124に戻すための排出口355(図2D参照)が設けられている。
熱式流量計30の主取込口350が、フランジ312から主通路の径方向の中心方向に向かって延びる計測部310の先端側に設けられることにより、主通路の内壁面から離れた部分の気体を副通路に取り込むことができる。これにより、主通路の内壁面の温度の影響を受け難くなり、気体の流量や温度の計測精度の低下を抑制できる。なお、後述するように本実施形態では、主取込口350の中心は、主通路124の被計測気体IAが流れる方向Dに沿った中心線CLに対してオフセットしている。
また、主通路124の内壁面近傍では流体抵抗が大きく、主通路の平均的な流速に比べ、流速が低くなる。本実施例の熱式流量計30では、フランジ312から主通路の中央に向かって延びる薄くて長い計測部310の先端部に主取込口350が設けられているので、主通路中央部の流速の速い気体を副通路(計測用通路)に取り込むことができる。また、副通路の排出口355も計測部310の先端部に設けられているので、副通路内を流れた気体を流速の速い主通路124の中央部近傍に戻すことができる。
計測部310は主通路124の外壁から中央に向かう軸に沿って長く延びる形状を成しているが、幅は、図2B及び図2Dに記載の如く、狭い形状を成している。すなわち、熱式流量計30の計測部310は、側面の幅が薄く正面が略長方形の形状を成している。これにより、熱式流量計30は、被計測気体IAに対しては流体抵抗を小さくして、十分な長さの副通路を備えることができる。
被計測気体IAの温度を計測するための温度検出部452が、計測部310の中央部で、計測部310内の上流側外壁が下流側に向かって窪んだ位置に、上流側外壁から上流側に向かって突出する形状を成して設けられている。
表カバー303および裏カバー304は、薄い板状に形成されて、広い冷却面を備える形状を成している。このため熱式流量計30は、空気抵抗が低減され、さらに主通路124を流れる被計測気体により冷却されやすい効果を有している。
外部接続部305の内部には、図示しない外部端子と補正用端子とが設けられている。外部端子は、計測結果である流量と温度を出力するための端子と、直流電力を供給するための電源端子とで構成される。補正用端子は熱式流量計30に関する補正値を、熱式流量計30内部のメモリに記憶するのに使用する端子である。
次に、図3Aおよび図3Bを用いて、ハウジング302内に構成される副通路及び回路パッケージの構成について説明する。図3A,3Bは熱式流量計30から表カバー303または裏カバー304を取り外したハウジング302の状態を示している。図3Aは、本発明に係る熱式流量計から表カバーを取り外したハウジングの状態を示す正面図であり、図3Bは、本発明に係る熱式流量計から裏カバーを取り外したハウジングの状態を示す背面図である。
ハウジング302には、計測部310の先端側に副通路を成形するための副通路溝が設けられている。副通路330は、主通路124を流れる被計測気体の一部を取り込むために熱式流量計30内に形成さされた通路である。本実施例ではハウジング302の表裏両面に副通路溝332,334が設けられている。表カバー303及び裏カバー304をハウジング302の表面及び裏面にかぶせることにより、ハウジング302の両面に連続した副通路330が形成される。このような構造とすることで、ハウジング302の成形時(樹脂モールド工程)にハウジング302の両面に設けられる金型を使用して、表側副通路溝332と裏側副通路溝334の両方をハウジング302の一部に形成し、これらを繋ぐようにハウジング302を貫通した貫通部382を形成し、この貫通部382に回路パッケージ400の流量検出素子(流量検出部)602を配置することができる。
図3Bに示すように、主通路を流れる被計測気体IAの一部は、主取込口350から入口溝531を介して裏側副通路溝334内に取り込まれ、裏側副通路溝334内を流れる。裏側副通路溝334に裏カバー304を覆うことにより、熱式流量計30には、副通路330のうち、第1の通路31と第2の通路32の上流側の一部が形成される。
第1の通路31は、主通路124を流れる被計測気体IAを取り込む主取込口350から、取り込んだ被計測気体IAの一部を排出する排出口355まで形成された汚損物質の排出用通路である。第2の通路32は、第1の通路31に流れる被計測気体IAを取り込む副取込口34から、流量検出部602に向かって形成された流量計測用通路である。主取込口350は、主通路124の上流側に面して開口しており、排出口355は、主通路124の下流側に面して開口しており、排出口355の開口面積は、主取込口350の開口面積よりも小さい。これにより、主取込口350からの被計測気体IAを第2の通路32にも流れ易くすることができる。
裏面副通路溝334のうち、第2の通路32(流量検出部602までの通路)の通路溝は、流れ方向に進むにつれて深くなる形状をしており、溝に沿って流れるにつれ表側の方向に被計測気体IAは徐々に移動する。裏側副通路溝334には回路パッケージ400の上流で急激に深くなる急傾斜部347が設けられている。質量の小さい空気の一部は急傾斜部347に沿って移動し、回路パッケージ400の貫通部382のうち上流部342で図4に示す計測用流路面430の方を流れる。一方質量の大きい異物は遠心力によって急激な進路変更が困難なため、急傾斜部347に沿って流れることができず、図4に示す計測用流路裏面431の方を流れる。その後、貫通部382のうち下流部341を通り、図3Aに示す表側副通路溝332を流れる。
上述した如く、回路パッケージ400の計測用流路面430を含む部分は、貫通部382の空洞内に配置され、この貫通部382は計測用流路面430を有する回路パッケージ400の左右両側で裏側副通路溝334と表側副通路溝332とが繋がっている。
図3Aに示すように、貫通部382において、上流部342から被計測気体IAである空気は計測用流路面430に沿って流れる。このとき、流量検出部602に設けられた熱伝達面を介して流量を計測するための流量検出部602との間で熱伝達が行われ、流量の計測が行われる。なお、この流量の計測原理は、熱式流量計として一般的な検出原理であってよく、本実施例の如く、回路パッケージ400の流量検出部602が計測した計測値に基づいて主通路を流れる被計測気体の流量を検出することができるものであれば、検出するための構成は特に限定されるものではない。
計測用流路面430を通過した被計測気体IAや回路パッケージ400の下流部341から表側副通路溝332に流れてきた空気は共に表側副通路溝332に沿って流れ、第2の通路32の出口352を形成する出口溝353から主通路124に排出される。
この実施例では、裏側副通路溝334で構成される第2の通路は曲線を描きながらハウジング302の先端部からフランジ方向に向かい、フランジ側に最も近い位置では副通路を流れる被計測気体IAは主通路124の流れに対して逆方向の流れとなる。この逆方向の流れの部分となる貫通部382で、ハウジング302の一方側に設けられた第2の通路32のうち裏面側に設けられたセンサ上流側通路32aが、他方側に設けられた第2の通路32の表面側に設けられたセンサ下流側通路32bに繋がる。
この実施例では、回路パッケージ400の先端側は貫通部382の空洞内に配置される。回路パッケージ400の上流側に位置する上流部342の空間と回路パッケージ400の下流側に位置する下流部341の空間は、この貫通部382に含まれることになり、貫通部382は、上述した如く、ハウジング302の表面側と裏面側とを貫通するように刳り貫かれている。これにより、上述した如く、貫通部382で、ハウジング302の表面側の表側副通路溝332により形成されたセンサ上流側通路32aと、裏面側の裏側副通路溝334により形成されたセンサ下流側副通路32bとが連通する。
なお、図4に示すように、計測用流路面430側の空間と計測用流路裏面431側の空間とは、ハウジング302にインサートされたによって区分されており、ハウジング302によっては区分されていない。上流部342の空間と、下流部341の空間と、計測用流路面430側の空間と、計測用流路裏面431側の空間とによって形成される一つの空間が、ハウジング302の表面と裏面とに連続して形成されており、この一つの空間にハウジング302にインサートされた回路パッケージ400が片持ち状で突出している。このような構成とすることで、1回の樹脂モールド工程でハウジング302の両面に副通路溝を成形でき、また両面の副通路溝を繋ぐ構造を合わせて成形することが可能となる。
尚、回路パッケージ400はハウジング302の固定部372,373,376に樹脂モールドにより埋設して固定されている。このような固定構造は、ハウジング302の樹脂モールド成形と同時に、回路パッケージ400をハウジング302にインサート成形することにより、熱式流量計30に実装することができる。
なお、図3Bに示すように、裏側副通路溝334は、対向して形成された第1通路用壁395と、裏側副通路内周壁(第2通路用壁)392と裏側副通路外周壁(第2通路用壁)391とにより形成されている。これら裏側副通路内周壁392と裏側副通路外周壁391とのそれぞれの高さ方向の先端部と裏カバー304の内側面とが密着することで、ハウジング302の第1の通路31と第2の通路32のセンサ上流側通路32aが成形される。
一方、表側副通路溝332の両側には、表側副通路内周壁(第2通路用壁)393と表側副通路外周壁(第2通路用壁)394が設けられ、これら表側副通路内周壁393と表側副通路外周壁394の高さ方向の先端部と表カバー303の内側面とが密着することで、ハウジング302の下流側副通路が形成される。
主取込口350から取り込まれ、裏側副通路溝334により構成される第1の通路31を流れた被計測気体IAは、図3Bの右側から左側に向かって流れる。ここで第1の通路31から分岐するように形成された第2の通路32の副取込口34に、取込んだ被計測気体IAの一部が、分流して流れる。流れた被計測気体IAは、貫通部382の上流部342を介して、回路パッケージ400の計測用流路面430の表面と表カバー303に設けられた突起部356で作られる流路386の方を流れる(図4参照)。
他の被計測気体IAは計測用流路裏面431と裏カバー304で作られる流路387の方を流れる。その後、流路387を流れた被計測気体IAは、貫通部382の下流部341を介して表側副通路溝332の方に移り、流路386を流れている被計測気体IAと合流する。合流した被計測気体IAは、表側副通路溝332を流れ、出口352から主通路に排出される。
裏側副通路溝334から貫通部382の上流部342を介して流路386に導かれる被計測気体IAの方が、流路387に導かれる流路よりも曲りが大きくなるように、副通路溝が形成されている。これにより、被計測気体IAに含まれるごみなどの質量の大きい物質は、曲りの少ない流路387の方に集まる。
流路386では、突起部356は絞りを形成しており、被計測気体IAを渦の少ない層流にする。また突起部356は被計測気体IAの流速を高める。これにより、計測精度が向上する。突起部356は、計測用流路面430に設けた流量検出部602の熱伝達面露出部436に対向する方のカバーである表カバー303に形成されている。
図3Aおよび図3Bに示すように、ハウジング302には、フランジ312と副通路溝が形成された部分との間に空洞部336が形成されている。この空洞部336の中に、回路パッケージ400の接続端子412と外部接続部305の外部端子の内端361とを接続する端子接続部320が設けられている。接続端子412と内端361とは、スポット溶接あるいはレーザ溶接などにより、電気的に接続される。
ここで、たとえば、図5に示すような第1の通路31を設けた場合には、第1の通路31と第2の通路32との分岐部分のうち、副取込口34を形成する開口縁部のうち、第1の通路31の下流側に位置する下流側開口縁部34bの位置が、第1の通路31の流路を絞るように突出していると、第2の通路32に汚損物質が流れ易くなることが、発明者らの解析結果からわかった。また、この構造では下流側開口縁部34bに、汚損物質が付着しやすくなると想定される。
さらに、下流側開口縁部34bには、主取込口350から流入した汚損物質が衝突しやすいため、下流側開口縁部34bから下流側に形成された下流側壁面35には、汚損物質が堆積しやすい。この汚損物質の堆積により、第1の通路31と第2の通路32に流れる被計測気体IAの分流比が変化してしまい、第2の通路32に流れる被計測気体IAの流量が、前記汚損物質の堆積により変化してしまうことが、発明者らの実験で明らかになった。
このような結果から、上述した副通路330に、主通路124を流れる被計測気体IAを取り込む主取込口350から、取り込んだ被計測気体IAの一部を排出する排出口355まで形成された第1の通路31と、第1の通路31に流れる被計測気体IAを取り込む副取込口34から、流量検出部602に向かって形成された第2の通路32を備えるような通路構造を採用した場合には、以下の2点に着眼することが重要であると考えた。
すなわち、本実施例では、図6、図7に示すように、副取込口34を形成する開口縁部のうち、第1の通路31の下流側に位置する下流側開口縁部34bが、第1の通路31の上流側に位置する上流側開口縁部34aよりも、第1の通路31を形成する壁面のうち副取込口34と対向する壁面31bに対して離間して形成されている(図7上流側開口縁部34aからの壁面31bまでの距離L1>下流側開口縁部34bからの壁面31bまでの距離L2の距離)。なお、下流側開口縁部34bと上流側開口縁部34aが、副取込口34と対向する壁面31bと同じ距離にあってもよい。
このような位置関係とすることにより、副取込口34を形成する第1の通路31の下流側に位置する下流側開口縁部34bにおいて、第1の通路31の流路が絞られることはないので、下流側開口縁部34bに汚損物質が衝突し難くなるとともに、主取込口350からの汚損物質が、第1の通路31の排出口355に向かって流れ易くなる。
ここで、第1の通路31を形成する壁面のうち副取込口34と対向する壁面31bは平面状であり、主通路124を流れる被計測気体IAの流れ方向Dに沿って、排出口355にまで形成されている。このような構造とすることにより、壁面31bに、汚損物質が溜まることを抑制することができるとともに、上流側通路31Aから取り込まれた汚損物質を好適に排出口335に向かって排出することができる。
なお、本実施例では、上流側および下流側の開口縁部34a、34bは、図8の紙面垂直方向に沿って形成されているため、上流側縁部34aとその上流端部は一致し、下流側縁部34bとその下流端部34cは一致している。
次に、図7に示すように、主通路124を流れる被計測気体IAの流れ方向Dに対して垂直な仮想平面のうち、下流側開口縁部34bの下流端部34cを通過する仮想平面Pにおいて、流れ方向Fmaxに沿った仮想平面Sよりも副取込口34から第2の通路が延在する側Q(具体的には本実施形態では流量検出部602側)に向かって、下流側開口縁部34bから、下流側開口縁部34bの近傍の下流側に第1の通路31の下流側壁面35が延在している。
これにより、下流側開口縁部34bから、下流側開口縁部34bの近傍の下流側に形成された下流側壁面35には、汚損物質が衝突し難い。この結果、第1の通路31と第2の通路32に流れる被計測気体IAの分流比が安定し、第2の通路32に流れる被計測気体IAの流量特性を安定させることができ、熱式流量計30の検出特性を継時的に安定させることができる。なお、図7に示すように、最大流速となる被計測気体の流れ方向Fmaxに沿って(具体的には、図7の仮想平面に沿って)、下流側開口縁部34bから第1の通路31の下流側壁面35が延在するように)形成してもよい。この場合には、本実施例よりも、下流側壁面35には汚損物質が付着し易いが、これまでのものに比べて下流側壁面35には汚損物質が付着し難い。
また、図6、図7に示すように、本実施例では、本発明のより好ましい態様として、下流側壁面35は、第2の通路32が延在する側Q(第2の通路32が延在する方向)に凹んだ凹壁面を有する。このような凹壁面を有することにより、図7に示すように、凹壁面において、汚損物質を捕獲するポケットとしての役割を果たし、凹壁面に汚損物質が堆積しても、第1の通路31と第2の通路32に流れる被計測気体IAの分流比が変化し難い。
さらに、本実施例では、凹壁面の下流の排出口355近傍の壁面は、第2の通路が延在する側Qとは反対側に突出した凸壁面36を有している。このように凸壁面36を形成することにより、下流側開口縁部34bから排出口355までの壁面は、凸壁面36の流速が高まるので、排出口355近傍上流側に汚損物質が堆積し難くなる。特に、凸壁面36のうち、排出口355から排出口355近傍の上流側の壁面を、これに対向する壁面31bと平行となるように形成することにより、排出口355近傍上流側の汚損物質の衝突を低減することができる。これにより被計測気体を検出する特性が経時的に変化することを抑えることができる。
なお、ここで、第2の通路32が延在する側Qとは、より詳述すると図7に示す、流れ方向Fmaxに沿った仮想平面Sよりも第2通路32が延在する側のこと(図7の仮想平面Sから描かれた矢印Fを参照)である。一方、後述する、前記第2の通路が延在する側Qとは反対側とは、流れ方向Fmaxに沿った仮想平面Sよりも第2通路32が延在する側とは反対側のことである。
さらに、本実施例では、本発明のより好ましい態様として、図6に示すように、第1の通路31の主取込口350の中心は、主通路124の被計測気体IAが流れる方向Dに沿った中心線CLに対してオフセットしている。本実施例では、主通路124の中心線CL近傍には、汚損物質が他の箇所に比べて含まれ易いので、この位置からオフセットした位置に主取込口350の中心を配置することにより、副通路330に流れ込む汚損物質の量を低減することができる。これにより被計測気体を検出する特性が経時的に変化することを抑えることができる。
特に、本実施例では、さらに、このようなオフセットした状態で、第1の通路31のうち主取込口350から副取込口34(具体的には上流端部)までの上流側通路31Aは、主取込口350から副取込口34に進むにしたがって中心線CLから離れるように、中心線CLに対して傾斜している。これにより、たとえ中心線CL近傍に、主取込口を配置しなくても、このようなオフセットした位置では、熱式流量計30が配置されることにより、中心線CLに対してこのように傾斜した方向に沿って被計測気体IA(図の矢印ia)が流れるため、被計測気体IAの流れを阻害することなく、この流れ(図の矢印ia)に沿って、主取込口350から副通路330に取り込むことができる。
さらに、本実施例では、本発明の好ましい態様として、上流側通路31Aは、主通路124を流れる被計測気体IAの流れ方向Dに対して、流量検出部602から離れるように傾斜している。これにより、下流側開口縁部近傍の下流側壁面35への汚損物質の付着をさらに抑えるとともに、上流側通路31Aに流れる汚損物質が、第2の通路32に流れ難くなり、汚損物質を第1の通路31の排出口355に向かって流し易くすることができる。
また、このような効果をより高めるためには、上流側通路31Aが主取込口350から副取込口34に沿って直線状に形成されていることが好ましい。すなわち、本実施例では、上流側通路31Aを形成する対向する壁面31a,31aが、平面状になっている。これにより、主取込口350から流入した汚損物質が、直線性をもって上流側通路31Aに流れるため、排出口355に向かって汚損物質を排出しやすくなる。特に、本実施例では、上流側通路31Aを流れる被計測気体IAの流れ方向に、排出口355を形成したので、上流側通路31Aを流れる汚損物質を、排出口355に効率的に流すことができる。
されている
上述した実施例では、凹壁面の下流の排出口355近傍の壁面は、第2の通路が延在する側Dとは反対側に突出した凸壁面36が形成されていたが、例えば、図8に示すように、下流側開口縁部34bから排出口355までの下流側壁面35が、前記第2の通路が延在する方向Dに凹んだ凹壁面であってもよい。このような凹壁面を有することにより、凹壁面において、汚損物質を捕獲するポケットとしての役割を果たし、該凹壁面に汚損物質が堆積しても、第1の通路31と第2の通路32に流れる被計測気体IAの分流比が変化し難くなり、被計測気体を検出する特性が経時的に変化することを抑えることができる。
さらに上述した図6に示す実施例では、流れ方向Fmaxよりも副取込口34から第2の通路32が延在する側に向かって、下流側開口縁部34bから第1の通路31の下流側壁面35が延在する構成としたが、たとえば、図9に示すように、下流側開口縁部34bを含む部分を第1の通路に対して突出するように形成し、この突出した部分の先端面(下流側開口縁部34bから下流側開口縁部34b近傍の下流側壁面35B)を、第2の通路が延在する側に向かって、延在する構成としてもよい。
さらに、上述した図6に示す実施例では、下流側壁面35に、第2の通路32が延在する側Q(第2の通路が延在する方向)に凹んだ凹壁面を設けたが、さらに、図10に示すように、凹壁面に、凹壁面を貫通する貫通孔35aが形成されていてもよく、この貫通孔35aは、第1の通路31と主通路124と連通していることがより好ましい。このような結果、貫通孔35aを設けることにより、凹壁面において捕獲された汚損物質を、貫通孔35aを介して第1の通路31から外部に排出する排出口として作用する。これにより、汚損物質の付着により第1の通路31の形状が経時的に変化することを抑えることができる。
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
30…熱式流量計
31…第1の通路
31A…上流側通路
32…第2の通路
34…副取込口
34a…上流側開口縁部
34b…下流側開口縁部
34c…下流端部
35…下流側壁面
35a…貫通孔
36…凸壁面
302…ハウジング
303…表カバー
304…裏カバー
350…主取込口
355…排出口
602…流量検出部

Claims (5)

  1. 主通路を流れる被計測気体の一部を取り込む副通路と、前記副通路を流れる被計測気体の流量を検出する流量検出部とを備え、該流量検出部が計測した計測値に基づいて前記主通路を流れる被計測気体の流量を検出する熱式流量計において、
    前記副通路は、前記主通路を流れる計測気体を取り込む主取込口から、取り込んだ被計測気体の一部を排出する排出口まで形成された第1の通路と、
    該第1の通路に流れる被計測気体を取り込む副取込口から、前記流量検出部に向かって形成された第2の通路と、を備えており、
    前記副取込口を形成する開口縁部のうち、前記第1の通路の下流側に位置する下流側開口縁部は、前記第1の通路の上流側に位置する上流側開口縁部よりも、前記第1の通路を形成する壁面のうち前記副取込口と対向する壁面に対して離間して形成されている、または、前記下流側開口縁部と前記上流側開口縁部は、前記副取込口と対向する壁面と同じ距離にあり、
    前記主通路を流れる被計測気体の流れ方向に対して垂直な仮想平面のうち、前記下流側開口縁部の下流端部を通過する仮想平面において、前記第1の通路を通過する被計測気体が最大流速となる被計測気体の流れ方向に沿って、もしくは該流れ方向に沿った面よりも前記副取込口から前記第2の通路が延在する側に向かって、前記下流側開口縁部から、該下流側開口縁部の近傍の前記第1の通路の下流側に第1の通路の下流側壁面が延在しており、
    前記下流側壁面は、前記第2の通路が延在する側に凹んだ凹壁面を有し、
    前記凹壁面の下流の前記排出口近傍の壁面は、前記第2の通路が延在する側とは反対側に突出した凸壁面を有することを特徴とする熱式流量計。
  2. 前記凹壁面には、該凹壁面を貫通する貫通孔が形成されていることを特徴とする請求項に記載の熱式流量計。
  3. 前記第1の通路の前記主取込口の中心は、前記主通路の被計測気体が流れる方向に沿った中心線に対してオフセットしていることを特徴とする請求項1に記載の熱式流量計。
  4. 前記第1の通路のうち前記主取込口から前記副取込口までの上流側通路は、前記主取込口から前記副取込口に進むにしたがって前記中心線から離れるように、中心線に対して傾斜していることを特徴とする請求項3に記載の熱式流量計。
  5. 前記第1の通路のうち前記主取込口から前記副取込口までの上流側通路は、前記主通路を流れる被計測気体の流れ方向に対して、前記流量検出部から離れるように傾斜していることを特徴とする請求項1に記載の熱式流量計。
JP2013205588A 2013-09-30 2013-09-30 熱式流量計 Active JP6114674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205588A JP6114674B2 (ja) 2013-09-30 2013-09-30 熱式流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205588A JP6114674B2 (ja) 2013-09-30 2013-09-30 熱式流量計

Publications (2)

Publication Number Publication Date
JP2015068793A JP2015068793A (ja) 2015-04-13
JP6114674B2 true JP6114674B2 (ja) 2017-04-12

Family

ID=52835574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205588A Active JP6114674B2 (ja) 2013-09-30 2013-09-30 熱式流量計

Country Status (1)

Country Link
JP (1) JP6114674B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083304A (ja) * 2015-10-28 2017-05-18 日立オートモティブシステムズ株式会社 熱式流量計

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690403B2 (ja) 2016-05-24 2020-04-28 株式会社デンソー 空気流量測定装置
JP2019138707A (ja) * 2018-02-07 2019-08-22 株式会社デンソー 物理量計測装置
JP2020024152A (ja) 2018-08-08 2020-02-13 株式会社Soken 流量計測装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140753A (ja) * 2003-11-10 2005-06-02 Mitsubishi Electric Corp 内燃機関の吸入空気量測定装置
JP5408195B2 (ja) * 2011-07-19 2014-02-05 株式会社デンソー 空気流量測定装置
JP5464294B2 (ja) * 2013-07-04 2014-04-09 株式会社デンソー 空気流量測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083304A (ja) * 2015-10-28 2017-05-18 日立オートモティブシステムズ株式会社 熱式流量計

Also Published As

Publication number Publication date
JP2015068793A (ja) 2015-04-13

Similar Documents

Publication Publication Date Title
WO2015045435A1 (ja) 熱式流量計
JP6325679B2 (ja) 熱式流量計
JP6247774B2 (ja) 熱式流量計
JP6114673B2 (ja) 熱式流量計
JP6114674B2 (ja) 熱式流量計
JP6502573B2 (ja) 熱式流量計
US10670439B2 (en) Thermal flowmeter
JP6118700B2 (ja) 熱式流量計
CN109196311B (zh) 热式流量计
WO2020202722A1 (ja) 物理量検出装置
JP6438707B2 (ja) 熱式流量計
JP6198697B2 (ja) 熱式流量計
CN109196312B (zh) 热式流量计
JP6686126B2 (ja) 熱式流量計
JP2017083319A (ja) 熱式流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170317

R150 Certificate of patent or registration of utility model

Ref document number: 6114674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250