JP6109248B2 - Solar heat storage snow melting system and control method thereof. - Google Patents

Solar heat storage snow melting system and control method thereof. Download PDF

Info

Publication number
JP6109248B2
JP6109248B2 JP2015135443A JP2015135443A JP6109248B2 JP 6109248 B2 JP6109248 B2 JP 6109248B2 JP 2015135443 A JP2015135443 A JP 2015135443A JP 2015135443 A JP2015135443 A JP 2015135443A JP 6109248 B2 JP6109248 B2 JP 6109248B2
Authority
JP
Japan
Prior art keywords
heat
underground
storage
temperature sensor
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015135443A
Other languages
Japanese (ja)
Other versions
JP2017015364A (en
Inventor
股 千 丈 猪
股 千 丈 猪
保 秀 樹 阿
保 秀 樹 阿
Original Assignee
株式会社 トラストプラン
株式会社 トラストプラン
株式会社 弘前水道
株式会社 弘前水道
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 トラストプラン, 株式会社 トラストプラン, 株式会社 弘前水道, 株式会社 弘前水道 filed Critical 株式会社 トラストプラン
Priority to JP2015135443A priority Critical patent/JP6109248B2/en
Publication of JP2017015364A publication Critical patent/JP2017015364A/en
Application granted granted Critical
Publication of JP6109248B2 publication Critical patent/JP6109248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/64Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of floor constructions, grounds or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Road Paving Structures (AREA)

Description

この発明は、屋外舗装区画などの融雪技術に関連するものであり、特に、年間を通じて得られる太陽熱や地熱、地中熱などを蓄熱し、降雪に際して放熱し消雪可能とする融雪システムを製造、提供、設置する分野は勿論のこと、その部品類の輸送、保管、組み立ておよび設置に必要となる設備、器具類を提供、販売する分野から、それら資材や機械装置、部品類に必要となる素材、例えば、木材、石材、各種繊維類、プラスチック、各種金属材料等を提供する分野、それらに組み込まれる電子部品やそれらを集積した制御関連機器の分野、各種計測器の分野、当該設備、器具を動かす動力機械の分野、そのエネルギーとなる電力やエネルギー源である電気、オイルの分野といった一般的に産業機械と総称されている分野、更には、それら設備、器具類を試験、研究したり、それらの展示、販売、輸出入に係わる分野、将又、それらの使用の結果やそれを造るための設備、器具類の運転に伴って発生するゴミ屑の回収、運搬等に係わる分野、それらゴミ屑を効率的に再利用するリサイクル分野などの外、現時点で想定できない新たな分野までと、関連しない技術分野はない程である。     This invention relates to snow melting technology such as outdoor pavement sections, and in particular, manufactures a snow melting system that stores solar heat, geothermal heat, underground heat, etc. obtained throughout the year, and dissipates and dissipates snow during snowfall. Materials required for materials, machinery, and parts from the field of providing and selling facilities and equipment necessary for transportation, storage, assembly and installation of parts as well as the field of provision and installation For example, the field of providing wood, stone, various fibers, plastics, various metal materials, etc., the field of electronic components incorporated in them, the field of control-related equipment integrating them, the field of various measuring instruments, the equipment and instruments Fields generally referred to as industrial machinery, such as the field of power machinery to be moved, the electric power that is the energy, the electricity that is the energy source, the field of oil, and the equipment Recover waste generated from the operation, operation, and testing of equipment, fields related to display, sales, import and export, generals, and the results of their use, equipment for making them, and equipment In addition to fields related to transportation, recycling fields that efficiently recycle these wastes, and other new fields that cannot be envisaged at present, there are no unrelated technical fields.

(着目点)
住宅のエントランスや駐車場などの除雪は、一般にスノーショベルを用いた人手による排雪作業となり、多大な労力と時間とを要するばかりでなく、流雪溝などの消雪施設が無い場合には、排雪スペースを確保し、該排雪スペースまで雪を運搬して積み上げることとなり、積み重ねた雪が、庭や駐車スペースを圧迫し、不便を強いられるという問題が有り、また、公共施設や商業施設の駐車場などのように、人海戦術に頼ることができないほど広い場所では、ショベルカーや除雪車などを導入する必要があり、大きな経費を要し、経済的負担を増大することになってしまっており、こうした問題を解決するため、例えば舗装路面下に敷設した配管にボイラーや給湯器などによって加熱した温水を循環して加温消雪する技術や、地下水を消雪対象区画に散水して消雪する技術などが実用化されているものの、ボイラーや給湯器などを用いているため、冬期間の燃料費が増大して経済的負担は大きくなり、他方、地下水を散水すると地盤沈下を招く虞があるなど、これら何れの技術にも課題を残すものとなっていて、環境面、経済面での配慮が必ずしも十分とは言い難たかった。
(Points of interest)
Snow removal at home entrances and parking lots is generally a manual snow removal work using a snow shovel, which not only requires a lot of labor and time, but also if there are no snow removal facilities such as snow drift grooves, There is a problem that snow space is secured and snow is transported to the snow space and stacked, and there is a problem that the accumulated snow presses on the garden and parking space and is inconvenienced. In places such as parking lots where it is not possible to rely on human tactics, it is necessary to introduce excavators and snow plows, which requires large expenses and increases the economic burden. In order to solve these problems, for example, technology to circulate hot water heated by a boiler or hot water heater through pipes laid under a paved road surface to heat and remove snow, Although technology to spray snow by spraying the compartments has been put to practical use, the use of boilers and water heaters increases the fuel cost in the winter period and increases the economic burden, while watering the groundwater As a result, there is a possibility that ground subsidence may be caused, and problems remain in any of these technologies, and it has been difficult to say that environmental and economic considerations are sufficient.

(従来の技術)
こうした状況を反映し、その打開策となるような提案もこれまでに散見されない訳ではない。
例えば、下記の特許文献1(1)に提案されているものに代表されるように、内部に不凍液を循環させて地中の岩盤との間で熱交換を行う熱交換器を、前記岩盤に達する深さまで埋設すると共に、少なくとも夏期に太陽光線が照射する場所に融雪盤を設け、前記熱交換器と融雪盤とを、ポンプ、切換弁およびアキュムレーターを設けた循環パイプで連結し、夏期には、前記融雪盤で太陽熱を採取して、その熱を、前記熱交換器を介して岩盤に蓄え、冬期においては、前記切換弁を切り換えて、前記熱交換器によって前記岩盤に蓄えた熱を含む地中熱を採取して融雪盤に供給し、該融雪盤で屋根や路面の雪を融かすものとした蓄熱式融雪装置や、同特許文献1(2)に見られるような、コンクリート構造物の所定部位に埋設し、または固定され且つ地盤からの熱エネルギーを採取・蓄熱する蓄熱部材であって、該蓄熱部材が閉ループを構成した第1、第2配管からの熱エネルギーを吸収および蓄えると共に該第1配管に隣接・配置した第2配管を有し、該第1、第2配管内に充填・封入した熱伝導媒体を負荷に圧送・流送するものとし、地中熱および太陽熱を蓄熱し、そのエネルギーを融雪の外、緊急時の電力供給や空調など、多用途に利用可能としたコンクリート構造物の蓄熱システム、また、同特許文献1(3)に代表されるように、地中内に受熱部を配置し、前記受熱部に連接して熱移送部を配置し、前記熱移送部に連接して熱備蓄部および熱備蓄部と同じ位相であって該熱備蓄部の外側および底部に放熱部を設けて、アスファルトに滞留した熱エネルギーを前記受熱部で受熱し、前記熱移送部により地下に段階的に移送して、前記熱備蓄部に熱備蓄させ、前記放熱部の外周より地中に徐々に放熱し、地中から地表への熱移動によりアスファルト上に降り注ぐ積雪を融雪する太陽熱の地中内熱備蓄方法などといった従来技術が散見される。
(Conventional technology)
Reflecting this situation, proposals that can be used to overcome this situation are not unheard of.
For example, as typified by what is proposed in Patent Document 1 (1) below, a heat exchanger that circulates an antifreeze inside to exchange heat with the underground rock is provided in the rock. In addition to burying to the depth to reach, at least in the summer, a snow melting disk is installed at the place where the sun rays irradiate, and the heat exchanger and the snow melting disk are connected by a circulation pipe provided with a pump, a switching valve and an accumulator, The solar heat is collected by the snowmelt disk, and the heat is stored in the rock through the heat exchanger. In the winter, the switching valve is switched, and the heat stored in the rock by the heat exchanger is stored. A heat storage type snow melting device that collects underground heat, supplies it to the snow melting plate, and melts the snow on the roof and road surface with the snow melting plate, or a concrete structure as seen in Patent Document 1 (2) Buried or fixed in a predetermined part of the object A heat storage member that collects and stores heat energy from the ground, wherein the heat storage member absorbs and stores heat energy from the first and second pipes constituting the closed loop, and is adjacent to and disposed in the first pipe. It has two pipes, and the heat conduction medium filled and sealed in the first and second pipes is pumped / flowed to the load to store the underground heat and solar heat, and the energy is urgently removed from the snow melt. A heat storage system for a concrete structure that can be used for various purposes such as power supply and air conditioning at the time, and a heat receiving portion disposed in the ground as represented by Patent Document 1 (3), the heat receiving system A heat transfer part connected to the heat transfer part, connected to the heat transfer part and in the same phase as the heat reserve part and the heat reserve part, and provided with a heat dissipation part on the outside and bottom of the heat reserve part, The accumulated heat energy is received by the heat receiving part. The heat transfer part is transferred stepwise to the basement, the heat storage part is made to store heat, gradually dissipates heat from the outer periphery of the heat radiating part to the ground, and is transferred onto the asphalt by heat transfer from the ground to the ground surface. Conventional technologies such as solar thermal underground heat storage methods that melt snow that falls are often seen.

しかし、前者特許文献1(1)に示されているような蓄熱式融雪装置などは、熱交換器を、岩盤に達する深さまで埋設しなければならず、設置場所の岩盤の深さによって設置深さに変化が生じることとなり、深い位置に岩盤が有る場合には、掘削経費が嵩んでしまう虞があるという欠点があり、特許文献1(2)のようなコンクリート構造物の蓄熱システムなどは、蓄熱体等の設置対象として、コンクリート構造物の杭、地中梁、均しコンクリート、または柱などのコンクリート構造物、貯水槽、浄化槽等を想定しているが、地上に近い深さ数メートルの範囲からの放熱を効果的に防止できるものとはなっておらず、外気温が氷点下に達すると蓄熱エネルギーに損失を生じる虞があり、それを補うには、より深い地中に設置したり、大掛かりな断熱隔壁を設けたりした蓄熱設備を設置しなければならず、所望の消雪効果を得るために経済的負担が増大する虞があり、また、特許文献1(3)に代表する太陽熱の地中内備蓄技術などは、断熱外筒、保熱内筒、および放熱外筒、放熱内筒からなり筒状をなす本体内に、上層から下層に向けて階層状となる複数の熱移送室を設け、各熱移送室を順次熱移送通路によって連結し、さらに、放熱内筒と各熱移送室および熱移送通路との間に生じる隙間に断熱材を充填してなるものとしてあるから、上端からの放熱性と上層範囲の断熱性とを確保するための構造が複雑化して、1基毎の価格が高騰してしまい、設置対象区画の路盤下に、複数基を設置する場合には、多大な経費を要するものとなってしまうという欠点を有するものであった。
(1)特開2003−307046号公報 (2)特許第4530174号公報 (3)特許第4702556号公報
However, in the heat storage type snow melting device as shown in the former Patent Document 1 (1), the heat exchanger must be buried to a depth reaching the bedrock, and the installation depth depends on the depth of the bedrock at the place of installation. When there is a rock in a deep position, there is a drawback that there is a risk that the excavation cost will increase, and the heat storage system of a concrete structure like Patent Document 1 (2), It is assumed that concrete storage piles, underground beams, leveled concrete, or concrete structures such as pillars, water storage tanks, septic tanks, etc. It has not been able to effectively prevent heat dissipation from the range, and when the outside temperature reaches below freezing point, there is a risk of loss of heat storage energy, to compensate for it, it can be installed deeper in the ground, Large scale There is a need to install a heat storage facility such as a heat insulating partition wall, which may increase the economic burden to obtain the desired snow-melting effect, and the solar heat underground represented by Patent Document 1 (3) For internal storage technology, etc., a heat transfer outer cylinder, a heat retaining inner cylinder, a heat radiating outer cylinder, and a heat radiating inner cylinder are provided with a plurality of heat transfer chambers that form a hierarchy from the upper layer to the lower layer. The heat transfer chambers are sequentially connected by the heat transfer passages, and further, the gap formed between the heat radiating inner cylinder and the heat transfer chambers and the heat transfer passages is filled with a heat insulating material. The structure for ensuring heat dissipation and heat insulation in the upper layer range is complicated, and the price of each unit increases, and when installing multiple units under the roadbed of the installation target section, It has the disadvantage of being expensive.
(1) Japanese Patent Laid-Open No. 2003-307046 (2) Japanese Patent No. 4530174 (3) Japanese Patent No. 4702556

(問題意識)
上述したとおり、従前までに提案のある各種蓄熱式融雪装置などは、掘削経費が嵩む虞があったり、地上付近の断熱性に課題を残し、外気温が氷点下に達すると蓄熱エネルギーに損失を生じさせてしまい、消雪効率が低下してしまったり、筒型の熱備蓄部毎に個別の断熱構造を有するため、複数基設置すると設置費用が嵩んでしまって、何れも熱効率や経済性などに課題を残すものとなっていたが、永年、様々な利用者に対して柔軟に対応し、より経済性および消雪効率に優れた融雪装置類を提供し続けてきている中、それらから得られた様々な知見およびユーザーからの情報などに基づき、構造の簡素化や断熱効率の向上は勿論のこと、設置工事の工程上などからも、その消雪機能をより正確且つ効率的に実現可能とするための構成につき、更なる改善の可能性を痛感するに至ったものである。
(Awareness of problems)
As mentioned above, the various types of heat storage snow melting devices that have been proposed to date have the potential to increase excavation costs, leave problems in the heat insulation near the ground, and cause loss of heat storage energy when the outside temperature reaches below freezing point. If you install multiple units, the installation cost will increase, both of which contribute to thermal efficiency and economic efficiency. Although it has been left as a challenge, it has been gained from many years of continuing to provide snowmelting devices that respond flexibly to various users and that are more economical and more efficient in snow removal. Based on various knowledge and information from users, the snow removal function can be realized more accurately and efficiently not only in the construction process, but also in the structure construction and heat insulation efficiency. Per configuration to do It has been led to keenly the possibility of further improvement.

(発明の目的)
そこで、この発明は、融雪対象区画の面積に比較し、地中蓄熱帯の設置区画面積を縮小化して省スペース化可能とする上、蓄熱効率および断熱効率を高め、格段の消雪性能および経費節減を達成できる新たな蓄熱型の融雪システム技術の開発はできないものかとの判断から、逸速くその開発、研究に着手し、長期に渡る試行錯誤と幾多の試作、実験とを繰り返してきた結果、今回、遂に新規な構造の太陽熱地中蓄熱融雪システム、およびその新規な制御方法を実現化することに成功したものであり、以下では、図面に示すこの発明を代表する実施例と共に、その構成を詳述することとする。
(Object of invention)
Therefore, the present invention makes it possible to save space by reducing the installation area of the underground storage tropics compared to the area of the snow melting target area, and also to improve the heat storage efficiency and the heat insulation efficiency, and to significantly improve the snow extinguishing performance and cost. As a result of judging whether it would be possible to develop a new heat storage type snow melting system technology that can achieve savings, we started its development and research very quickly, and repeated many years of trial and error, many trial productions, and experiments, This time, we finally succeeded in realizing a solar heat storage snow melting system with a novel structure and a novel control method thereof. It will be described in detail.

(発明の構成)
図面に示すこの発明を代表する実施例からも明確に理解されるように、この発明の太陽熱地中蓄熱融雪システムは、基本的に次のような構成から成り立っている。
即ち、潜熱蓄熱材を充填した蓄熱縦管の周囲に、熱交換流体を流通および熱交換可能な集・放熱用スパイラル管を熱伝達可能に外装してなる複数本の蓄熱パイプを、地中1ないし20m望ましくは4mの深さに達する如く、互いに適宜間隔を隔てて埋設した地中蓄熱帯を設け、同地中蓄熱帯には、天面範囲を覆う上部断熱層、および地中1ないし2mの深さとなる天面下周囲側部を包囲する地中断熱壁を垂設し、該地中蓄熱帯の上部断熱層直上舗装版、および、近隣舗装版の少なくとも何れか一方の所望融雪対象区画内にわたる舗装版肉厚上下間適所に、熱交換流体を流通および熱交換可能な地中熱交換器を敷設し、それら地中蓄熱帯および地中熱交換器の近接適所に、熱交換流体を流通および熱交換可能な太陽熱集熱板を設置すると共に、当該地中蓄熱帯と太陽熱集熱板との間に、熱交換流体用断熱パイプ製であって中途適所に太陽熱集熱板用ポンプを有する太陽熱用循環路を設け、当該地中蓄熱帯と地中熱交換器との間に、熱交換流体用断熱パイプ製であって中途適所に地中熱交換器用ポンプを有する消雪用循環路を設け、それら熱交換流体用ポンプを統合的に制御可能な制御装置を設けてなるものとした構成からなる太陽熱地中蓄熱融雪システムとなる。
(Structure of the invention)
As will be clearly understood from the embodiments representing the present invention shown in the drawings, the solar thermal underground heat storage and snow melting system of the present invention basically comprises the following configuration.
That is, a plurality of heat storage pipes, each of which has a heat collecting fluid pipe and a heat collecting / dissipating spiral pipe that can circulate and exchange heat exchange fluid around the heat storage vertical pipe filled with the latent heat storage material, A ground storage tropics buried at an appropriate interval from each other so as to reach a depth of 20 to 20 m, preferably 4 m, is provided, and the ground storage tropics include an upper heat insulating layer that covers the top surface area, and 1 to 2 m in the ground. A ground insulating wall surrounding the lower perimeter of the top surface, which is the depth of the ground, and a desired snow melting target section of at least one of the upper thermal insulating layer directly above the underground thermal insulating layer and the adjacent pavement plate A ground heat exchanger capable of circulating and exchanging heat exchange fluid is installed at appropriate locations between the upper and lower pavement wall thicknesses, and the heat exchange fluid is placed at appropriate locations close to these underground storage tropics and underground heat exchangers. Install solar heat collectors that can be distributed and exchanged heat, A solar heat circulation path made of a heat-insulating pipe for heat exchange fluid and having a solar heat collecting plate pump is provided midway between the underground heat accumulating tropical plate and the solar heat collecting plate. A snow-melting circuit with an underground heat exchanger pump is installed in the middle of the heat exchanger fluid heat insulation pipe between the intermediate heat exchanger, and these heat exchange fluid pumps can be integratedly controlled. It becomes a solar thermal underground heat storage and snow melting system having a configuration in which a simple control device is provided.

(関連する発明1)
上記した太陽熱地中蓄熱融雪システムに関連し、この発明には、その制御方法も包含している。
即ち、4月ないし7月の夏期に、制御装置の起動後、路面温度センサーの検知信号、および、地中温度センサーの検知信号を一定時間毎に受信し、路面温度センサーの検知温度が地中温度センサーの検知温度よりも高い場合に、地中熱交換器用ポンプを起動し、路面温度センサーの検知温度が地中温度センサーの検知温度と同じ場合、および、路面温度センサーの検知温度が地中温度センサーの検知温度より低い場合に、地中熱交換器用ポンプを停止するよう制御するものとした、この発明の基本をなす前記太陽熱地中蓄熱融雪システムの制御方法である。
(Related invention 1)
In relation to the above-mentioned solar thermal underground heat storage and snow melting system, the present invention also includes a control method thereof.
That is, in the summer of April or July, after the control device is started, the detection signal of the road surface temperature sensor and the detection signal of the underground temperature sensor are received at regular intervals, and the detection temperature of the road surface temperature sensor is underground. The ground heat exchanger pump is started when the temperature is higher than the detected temperature of the temperature sensor, and the detected temperature of the road surface temperature sensor is the same as the detected temperature of the underground temperature sensor. The control method for the solar thermal underground heat storage and snow melting system, which is the basis of the present invention, is to control the pump for the underground heat exchanger to stop when the temperature is lower than the detected temperature of the temperature sensor.

この発明の制御方法を、その表現を変えて示すと、12月ないし3月の冬期に、制御装置の起動後、降雪センサーの検知信号、および路面温度センサーの検知信号を一定時間毎に受信し、降雪センサーが降雪および積雪の少なくとも一方を検知し、且つ、路面温度センサーの検知温度が氷点下の場合に、地中熱交換器用ポンプを起動し、降雪センサーが降雪および積雪を検知せず、且つ、路面温度センサーの検知温度が氷点以上の場合、地中熱交換器用ポンプを停止するよう制御するものとした、この発明の基本をなす前記太陽熱地中蓄熱融雪システムの制御方法ということができる。     The control method of the present invention can be expressed by changing its expression. In the winter period from December to March, after the control device is started, the detection signal of the snowfall sensor and the detection signal of the road surface temperature sensor are received at regular intervals. When the snowfall sensor detects at least one of snowfall and snow accumulation, and the detection temperature of the road surface temperature sensor is below freezing, the ground heat exchanger pump is activated, the snowfall sensor does not detect snowfall and snowfall, and When the detected temperature of the road surface temperature sensor is equal to or higher than the freezing point, it can be said that the control method for the solar thermal underground heat storage and snow melting system, which is the basis of the present invention, is controlled so as to stop the underground heat exchanger pump.

さらに、この発明の制御方法を、別の表現によって示すと、12月ないし3月の冬期に、制御装置の起動後、太陽熱集熱板、放熱用循環路の流体温度センサーの検知信号、および、地中蓄熱帯、地中温度センサーの検知信号を一定時間毎に受信し、太陽熱集熱板、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度よりも高い場合に、太陽熱集熱板用ポンプを起動し、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度と同じ場合、および、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度よりも低い場合に、太陽熱集熱板用ポンプを停止するよう制御するものとした、この発明の基本をなす前記太陽熱地中蓄熱融雪システムの制御方法ということができる。     Furthermore, when the control method of the present invention is expressed by another expression, in the winter period from December to March, after the start of the control device, the solar heat collecting plate, the detection signal of the fluid temperature sensor of the heat radiation circuit, and The detection signal of the underground storage tropics and underground temperature sensor is received at regular intervals, and the detection temperature of the fluid temperature sensor of the solar heat collecting plate and heat radiation circuit is the detection temperature of the underground storage tropics and underground temperature sensor. If the temperature is higher than that, start the solar heat collecting plate pump, and if the temperature detected by the fluid temperature sensor in the heat dissipation circuit is the same as the temperature detected by the underground temperature sensor, the temperature sensor, and heat dissipation circulation When the detection temperature of the fluid temperature sensor of the road is lower than the detection temperature of the underground storage tropics and the underground temperature sensor, the solar heat collecting plate pump is controlled to stop. The solar thermal storage heat melting snow system It can be said that the control method systems out.

以上のとおり、この発明の太陽熱地中蓄熱融雪システムによれば、従前までのものとは違い、上記したとおりの固有の特徴ある構成から、地中蓄熱帯の天面および天面下周囲側部に設けた上部断熱層および地中断熱壁が、地中蓄熱帯の天面寄りとなる地上付近から自然放熱するのを確実に防止するよう効率的に断熱し、同地中蓄熱帯の地中深い底部がわ、およびその周囲に断熱壁類を設けずとも、地中熱による加温力、保温力を有効活用し、蓄熱性能を格段に高め、年間を通じた熱損失を大幅に削減することができ、太陽熱集熱板が、吸収した太陽熱エネルギーを、地中蓄熱帯に供給可能としたから、集熱性能を大幅に強化し、制御装置からの制御によって該太陽熱集熱板が夏期に日々取り込んだ太陽熱エネルギーを、地中蓄熱帯が冬期まで蓄熱して置くことができるものとなり、その蓄熱エネルギーを冬期の降雪時に地中熱交換器に向けて一気に供給し、その大きな放熱量によって迅速に融雪することができる上、このように高効率化可能な構造により、地中熱交換器を設置した融雪対象区画の面積に比較し、地中蓄熱帯の設置区画面積を縮小化して省スペース化することができ、しかも地中蓄熱帯に上部断熱層および地中断熱壁を有し、同地中蓄熱帯の地中深い底部がわ、およびその周囲に断熱壁類を設けずとも、地中熱により、保温性および加温性を確保するものとしたから、各蓄熱パイプの地上近傍付近の断熱性を格段に高め、蓄熱中の地上への自然放熱による熱損失を確実に防止し、設置費用およびランニングコストを大幅削減すると共に、消雪性能を格段に高め、広大な駐車場などの大型舗装区画から一般住宅のエントランスまで、設置規模を問わず、格段の消雪性能および経費節減を達成できるものとなる。     As described above, according to the solar thermal underground heat storage and snow melting system of the present invention, unlike the conventional one, from the characteristic features as described above, the top and bottom peripheries of the underground storage tropics The upper thermal insulation layer and the underground thermal insulation wall provided in the ground are efficiently insulated to prevent natural heat dissipation from near the ground, which is close to the top of the underground storage tropics. Even without a deep bottom wall and insulation walls around it, make effective use of the heat and heat retention by underground heat, greatly improve heat storage performance, and drastically reduce heat loss throughout the year The solar heat collecting plate can supply the absorbed solar heat energy to the underground storage tropics, so the heat collecting performance is greatly enhanced, and the solar heat collecting plate is controlled every day in the summer by control from the controller. The solar thermal energy that has been taken in will be stored in the ground until the winter It can be heated and supplied with heat storage energy to the underground heat exchanger at the time of snowfall in winter, and the snow can be melted quickly due to the large amount of heat dissipation, and in this way it can be highly efficient Compared to the area of the snow melting target area where the underground heat exchanger is installed, the area of the underground storage area can be reduced to save space, and the upper thermal insulation layer can be used in the underground storage area. And underground heat insulation walls, deep bottoms in the ground of the subterranean tropics, and heat insulation and warming properties are ensured by underground heat without providing heat insulation walls around them. Therefore, the heat insulation of each heat storage pipe in the vicinity of the ground is greatly improved, heat loss due to natural heat radiation to the ground during heat storage is surely prevented, installation costs and running costs are greatly reduced, and snow-dissipating performance is improved. Remarkably higher and vast From large paving compartment, such as the parking lot to the residential entrance, regardless of the installation scale, and those that can achieve much of an anti-snow performance and cost savings.

加えて、地中蓄熱帯の各蓄熱パイプを、潜熱蓄熱材を充填した蓄熱縦管の周囲に、熱交換流体を流通および熱交換可能な集・放熱用スパイラル管が、熱伝達可能に外装してなるものとしたから、潜熱蓄熱材と熱交換流体との間の熱交換によって保温・蓄熱性能を格段に高め、しかも各蓄熱パイプを、地中1ないし20m望ましくは4mの深さに達するよう垂設するものとしたから、同等の蓄熱性能を得る場合、地中蓄熱帯をより小規模化することができるものとなり、障害物のない広大な区画だけでなく、住宅街の一般住宅などにも容易に設置することができるものとなる。     In addition, each heat storage pipe in the underground storage tropics is surrounded by a heat storage vertical pipe filled with latent heat storage material, and a heat collection fluid circulation and heat exchange spiral pipe that can circulate and exchange heat is externally installed to allow heat transfer. Therefore, the heat insulation and heat storage performance is greatly enhanced by heat exchange between the latent heat storage material and the heat exchange fluid, and each heat storage pipe reaches a depth of 1 to 20 m, preferably 4 m in the ground. Since it is supposed to be installed vertically, it is possible to make the underground storage tropics smaller if it obtains the same heat storage performance, not only for vast sections without obstacles, but also for ordinary houses in residential areas, etc. Can also be easily installed.

集熱用スパイラル管が、蓄熱縦管の上下間周囲に螺旋状に捲回し、一端を太陽熱集熱板の太陽熱用循環路吐出がわに、他端を地中熱交換器の消雪用循環路流入がわに接続し、放熱用スパイラル管が、集熱用スパイラル管の上下間外がわ周囲に螺旋状に捲回し、一端を地中熱交換器の消雪用循環路吐出がわに、他端を太陽熱集熱板の太陽熱用循環路流入がわに接続してなるものは、集熱用スパイラル管が、蓄熱縦管によって安定した熱量を維持可能となり、放熱用スパイラル管が、集熱用スパイラル管の外がわ周囲を保温するものとなり、より多くの熱量を蓄積可能とし、格段に秀れた蓄熱性能および消雪性能を発揮可能なものとすることができる。     A spiral tube for heat collection is spirally wound around the top and bottom of the heat storage vertical tube, one end is connected to the solar heat circuit discharge path of the solar heat collector plate, and the other end is used for snow-removal circulation of the underground heat exchanger The inflow to the road is connected to the alligator, and the spiral pipe for heat dissipation is spirally wound around the top and bottom of the spiral pipe for collecting heat, and one end is connected to the snow discharge circuit of the underground heat exchanger. In the case where the other end is connected to the solar heat circulation plate inflow to the solar heat circulation plate, the heat collection spiral tube can maintain a stable amount of heat by the heat storage vertical tube, and the heat radiation spiral tube The outside of the spiral tube for heat is kept warm around the outer side of the spiral tube, so that a larger amount of heat can be accumulated, and the heat storage performance and snow-dissipation performance can be exhibited excellent.

集熱用スパイラル管が、蓄熱縦管の上下間周囲に螺旋状に捲回し、一端を地中熱交換器の消雪用循環路吐出がわに、他端を太陽熱集熱板の太陽熱用循環路流入がわに接続し、放熱用スパイラル管が、集熱用スパイラル管の上下間外がわ周囲に螺旋状に捲回し、一端を太陽熱集熱板の太陽熱用循環路吐出がわに、他端を地中熱交換器の消雪用循環路流入がわに接続してなるものは、放熱用スパイラル管が、集熱用スパイラル管を外がわから保温、加温し、蓄熱縦管が、集熱用スパイラル管内の熱量を安定化し、より効率的な融雪を実現化することができる。     A spiral tube for heat collection is spirally wound around the upper and lower sides of the heat storage vertical tube, one end is used for the snow-melting circuit discharge of the underground heat exchanger, and the other end is used for solar heat circulation of the solar heat collecting plate The inflow path is connected to the crocodile, the heat dissipation spiral tube is spirally wound around the crease around the upper and lower sides of the heat collection spiral tube, and one end of the solar heat collection plate is exposed to the solar heat circulation path When the end of the ground heat exchanger is connected to the snow-flowing circuit inflow, the heat dissipation spiral tube heats and heats the heat collection spiral tube from the outside, and the heat storage vertical tube The amount of heat in the heat collecting spiral tube can be stabilized and more efficient snow melting can be realized.

集熱用スパイラル管が、蓄熱縦管の上下間周囲に螺旋状に捲回し、一端を太陽熱集熱板の太陽熱用循環路吐出がわに、他端を太陽熱用循環路流入がわに接続し、放熱用スパイラル管が、集熱用スパイラル管の上下間外がわ周囲に螺旋状に捲回し、一端を地中熱交換器の消雪用循環路吐出がわに、他端を消雪用循環路流入がわに接続してなるものは、集熱用スパイラル管が、太陽熱集熱板の太陽熱用循環路専用の独立のものとなり、放熱用スパイラル管が、地中熱交換器の消雪用循環路専用の独立のものとなるから、太陽熱集熱板用ポンプおよび地中熱交換器用ポンプによる熱交換流体の圧送をより安定化し、円滑な流動を実現化し、より熱交換効率を高めたものとすることができる。     A spiral tube for heat collection is spirally wound around the upper and lower sides of the heat storage vertical tube, and one end is connected to the solar heat circuit discharge pipe and the other end is connected to the solar heat circuit flow line. The heat dissipation spiral tube is spirally wound around the upper and lower outer sides of the heat collecting spiral tube, and one end is used for snow-discharging circulation discharge of the underground heat exchanger, and the other end is used for snow removal. In the case where the circulation path inflow is connected to the alligator, the spiral tube for heat collection is independent for the solar circulation circuit of the solar heat collecting plate, and the heat radiation spiral tube is used for snow removal of the underground heat exchanger. Since it is independent for the circulation circuit, the heat transfer fluid pumping by the solar heat collecting plate pump and the underground heat exchanger pump is more stabilized, smooth flow is realized, and the heat exchange efficiency is further improved. Can be.

集熱用スパイラル管が、蓄熱縦管の上下間周囲に螺旋状に捲回し、一端を地中熱交換器の消雪用循環路吐出がわに、他端を消雪用循環路流入がわに接続し、放熱用スパイラル管が、集熱用スパイラル管の上下間外がわ周囲に螺旋状に捲回し、一端を太陽熱集熱板の太陽熱用循環路吐出がわに、他端を太陽熱用循環路流入がわに接続してなるものは、蓄熱縦管が集熱用スパイラル管の保温性を高め、放熱用スパイラル管が、集熱用スパイラル管を外がわから加温、断熱するものとなり、中心がわの蓄熱縦管から外径がわの集熱用スパイラル管まで、より均衡のとれた温度分布とし、より安定化した蓄熱性を確保するものとなる。     A heat collection spiral pipe is spirally wound around the upper and lower sides of the heat storage vertical pipe, and one end is connected to the snow-discharging circuit discharge of the underground heat exchanger and the other end is connected to the snow-discharging circuit inflow. The heat dissipation spiral tube is spirally wound around the outer periphery of the heat collecting spiral tube, one end is used for solar heat circuit discharge of the solar heat collecting plate, and the other end is used for solar heat. In the case where the circulation line inflow is connected to the hook, the heat storage vertical pipe increases the heat retention of the heat collecting spiral pipe, and the heat releasing spiral pipe heats and heat-insulates the heat collecting spiral pipe from the outside. Therefore, the temperature distribution is more balanced from the heat storage vertical tube having the center diameter to the heat collecting spiral tube having the outer diameter, thereby ensuring a more stable heat storage property.

地中蓄熱帯が、複数本の蓄熱パイプの間となる複数適所に、潜熱蓄熱材を充填した蓄熱専用パイプの適宜本数を、各蓄熱専用パイプ同士も適宜間隔を隔てて配置、埋設してなるものとすることにより、蓄熱専用パイプの潜熱蓄熱材が、地中からの熱、およびその近傍に配した蓄熱パイプからの熱を吸収して蓄熱し、近傍周囲の蓄熱パイプの保温性を高めると共に、断熱性を高めて自然放熱による熱損失を防ぎ、より一段と蓄熱効率および蓄熱性能を高めたものとすることができる。     Underground storage tropics are constructed by laying and burying the appropriate number of dedicated heat storage pipes filled with latent heat storage materials at appropriate locations between the multiple heat storage pipes, with each heat storage dedicated pipe being properly spaced. As a result, the latent heat storage material of the dedicated heat storage pipe absorbs heat from the ground and heat from the heat storage pipes arranged in the vicinity, and stores heat, improving the heat retention of the heat storage pipes in the vicinity. In addition, heat insulation can be improved to prevent heat loss due to natural heat dissipation, and the heat storage efficiency and heat storage performance can be further improved.

地中蓄熱帯に、50cmないし25m望ましくは1mの深さの地中温度を検知可能、且つ、検知信号を制御装置に出力可能な地中温度センサーを設けてなるものは、季節や時間毎に変化する地中温度を検知しながら、外気温度が低下して蓄熱エネルギーが地上がわに放出され易い気象条件となったときに、太陽熱集熱板より太陽熱エネルギーを供給し、また、地中熱交換器より路面に受けた太陽熱エネルギーを供給したりするよう制御し、地中蓄熱帯の蓄熱エネルギー量を減少させず、日々増加させるよう効率的に制御可能とし、冬期間には常に高い消雪性能を発揮可能なものとすることができる。     A ground temperature sensor that can detect a ground temperature of 50cm to 25m, preferably 1m deep, and can output a detection signal to the control device in the ground storage tropics While detecting the changing underground temperature, when the outside air temperature falls and the weather conditions are such that the stored heat energy is likely to be released to the ground, solar heat energy is supplied from the solar heat collecting plate. The solar heat energy received from the exchanger is supplied to the road surface, and the amount of heat storage energy in the underground storage tropics can be efficiently controlled so as to increase day by day. The performance can be demonstrated.

太陽熱集熱板が、地中蓄熱帯との間の放熱用循環路および集熱用循環路の各適所に、熱交換流体の温度を検知可能、且つ、それら検知信号を制御装置に出力可能な流体温度センサーを設けてなるものは、放熱用循環路および集熱用循環路各所の各熱交換流体の温度を検知し、太陽熱集熱板によって得られる太陽熱エネルギーを効率的に地中蓄熱帯に蓄熱する制御を可能とすることができるから、より多くの太陽熱をより短時間の中に蓄熱することができるものとなる。     The solar heat collecting plate can detect the temperature of the heat exchange fluid at each appropriate place in the heat radiation circuit and the heat collection circuit between the underground storage tropics and output these detection signals to the controller. The one provided with a fluid temperature sensor detects the temperature of each heat exchange fluid in each part of the heat radiation circuit and the heat collection circuit, and efficiently converts the solar heat energy obtained by the solar heat collecting plate into the underground storage tropics. Since control which stores heat can be made possible, more solar heat can be stored in a shorter time.

地中熱交換器設置箇所の近傍に、降雪センサー、および地中熱交換器設置箇所に路面温度センサーを夫々設けたものは、降雪および路面の温度低下を素早く検知し、熱エネルギーを充分に蓄えた熱交換流体を逸早く地中熱交換器に供給・循環可能とし、短時間の中により多くの熱量を放出し、融雪対象区画を迅速に消雪および解氷可能なものとすることができる。     If a snowfall sensor and a road surface temperature sensor are installed near the ground heat exchanger, the snow temperature and the temperature drop on the road surface are detected quickly, and sufficient heat energy is stored. The heat exchange fluid can be quickly supplied to and circulated to the underground heat exchanger, more heat can be released in a short time, and the snow melting target section can be quickly snow-melted and de-iced.

そして、この発明の制御方法によれば、4月ないし7月の夏期に、路面温度センサーの検知温度が地中温度センサーの検知温度よりも高い場合に、地中熱交換器用ポンプを起動し、路面温度センサーの検知温度が地中温度センサーの検知温度と同じ場合、および、路面温度センサーの検知温度が地中温度センサーの検知温度より低い場合に、地中熱交換器用ポンプを停止するよう制御することにより、地中熱交換器を通過することによって太陽熱を吸収した熱交換流体を地中蓄熱帯に供給して夏期の強い太陽熱エネルギーを効率的に蓄熱し、熱損失を最小限に抑えて冬期の消雪能力を大幅に向上させることができるものとなる。     According to the control method of the present invention, in the summer from April to July, when the detected temperature of the road surface temperature sensor is higher than the detected temperature of the underground temperature sensor, the underground heat exchanger pump is started, Control to stop the pump for underground heat exchanger when the detection temperature of the road surface temperature sensor is the same as the detection temperature of the underground temperature sensor and when the detection temperature of the road surface temperature sensor is lower than the detection temperature of the underground temperature sensor By supplying the heat exchange fluid that has absorbed solar heat by passing through the underground heat exchanger to the underground storage tropics, it effectively stores the strong solar heat energy in the summer and minimizes heat loss. It will be able to greatly improve the snow-melting ability in winter.

そして、12月ないし3月の冬期に、降雪センサーが降雪および積雪の少なくとも一方を検知し、且つ、路面温度センサーの検知温度が氷点下の場合に、地中熱交換器用ポンプを起動し、降雪センサーが降雪および積雪を検知せず、且つ、路面温度センサーの検知温度が氷点以上の場合、地中熱交換器用ポンプを停止するよう制御することにより、降雪や積雪の発生に伴い、速やかに強力な消雪能力を発揮することができ、消雪が不要となった場合には、速やかに地中熱交換器からの放熱を停止し、熱損失を最小限に留め、より確実な蓄熱および保温を実現化することができる。     Then, in the winter period from December to March, when the snowfall sensor detects at least one of snowfall and snowfall and the detected temperature of the road surface temperature sensor is below freezing point, the ground heat exchanger pump is started and the snowfall sensor However, if the temperature of the road surface temperature sensor is higher than the freezing point, the ground heat exchanger pump is controlled to stop when the snowfall or snowfall is detected. The ability to extinguish snow can be demonstrated, and when snow is no longer needed, heat dissipation from the underground heat exchanger is immediately stopped, heat loss is minimized, and more reliable heat storage and insulation are achieved. Can be

また、12月ないし3月の冬期に、太陽熱集熱板、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度よりも高い場合に、太陽熱集熱板用ポンプを起動し、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度と同じ場合、および、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度よりも低い場合に、太陽熱集熱板用ポンプを停止するよう制御することにより、日照時間が短く太陽熱エネルギー量も少ない冬期間という厳しい条件下であっても、より効率的な蓄熱性能を実現化し、降雪時に一段と大量の熱エネルギーを放熱可能とする強力な消雪能力を発揮可能なものとすることができる。     Also, in the winter period from December to March, when the detection temperature of the solar heat collecting plate and the fluid temperature sensor of the heat radiation circuit is higher than the detection temperature of the underground thermal storage and underground temperature sensor, When the plate pump is activated and the detection temperature of the fluid temperature sensor in the heat dissipation circuit is the same as the detection temperature of the underground storage tropics and the underground temperature sensor, and the detection temperature of the fluid temperature sensor in the heat dissipation circuit is By controlling the solar heat collecting plate pump to stop when the temperature is lower than the temperature detected by the underground temperature sensor or the underground temperature sensor, under severe conditions such as the short sunshine hours and low solar heat energy Even in such a case, it is possible to realize a more efficient heat storage performance and to exhibit a powerful snow-dissipating ability that can dissipate a larger amount of heat energy during snowfall.

上記したとおりの構成からなるこの発明の実施に際し、その最良もしくは望ましい形態について説明を加えることにする。
地中蓄熱帯は、地中所定深さに外部からの熱を効率的に蓄熱および放熱可能とする機能を担うものであり、より具体的には、太陽熱集熱板および地中熱交換器との間で熱交換可能とし、それら太陽熱集熱板および地中熱交換器から供給された熱を所定深さの地中に長期間蓄熱可能とする機能を担い、天面に上部断熱層、天面下周囲側部に地中断熱壁を配したものとしなければならず、互いに適宜間隔を隔てた縦姿勢、複数本の蓄熱パイプを地中所定深さに埋設したものとすべきであり、後述する実施例に示すように、潜熱蓄熱材を充填した蓄熱縦管の周囲に、熱交換流体を流通および熱交換可能な集・放熱用スパイラル管を熱伝達可能に外装してなる複数本の蓄熱パイプを、地中1ないし20m望ましくは4mの深さに達する如く、互いに適宜間隔を隔てて埋設したものとするのが良く、潜熱蓄熱材は、蓄熱縦管の少なくとも地下1〜2mの深さまで充填したものとすることができ、蓄熱縦管の全長にわたり充填したものとするのが望ましく、複数本の蓄熱パイプの間となる複数適所に、潜熱蓄熱材を充填した蓄熱専用パイプの適宜本数を、各蓄熱専用パイプ同士も適宜間隔を隔てて配置、埋設してなるものとするのが良く、蓄熱パイプの適所に杭内温度を検知可能、且つ、検知信号を制御装置に出力可能な温度センサーを設けたものとするのができる外、50cmないし25m望ましくは1mの深さの地中温度を検知可能、且つ、検知信号を制御装置に出力可能な地中温度センサーを設けたものとするのが望ましいといえる。
In implementing the present invention having the above-described configuration, the best or desirable mode will be described.
The underground storage tropics is responsible for the ability to efficiently store and dissipate heat from the outside to a predetermined depth in the ground, more specifically, with a solar heat collector and an underground heat exchanger Heat exchanging between the solar heat collecting plate and the underground heat exchanger, the heat can be stored in the ground at a predetermined depth for a long period of time. It should be a ground insulating wall on the lower side of the surface, vertical posture with appropriate spacing from each other, and a plurality of heat storage pipes should be buried at a predetermined depth in the ground, As shown in the examples to be described later, a plurality of spiral tubes for collecting and radiating heat that can circulate and exchange heat exchange fluid around a heat storage vertical tube filled with a latent heat storage material are provided so as to transfer heat. Heat storage pipes are suitable for each other so that they reach a depth of 1 to 20m, preferably 4m underground. The latent heat storage material may be filled to a depth of at least 1 to 2 m below the heat storage vertical pipe, and shall be filled over the entire length of the heat storage vertical pipe. Desirably, the appropriate number of dedicated heat storage pipes filled with latent heat storage materials are arranged and embedded at appropriate locations between the plurality of heat storage pipes, with each heat storage pipe also being appropriately spaced apart. In addition, it is possible to provide a temperature sensor that can detect the temperature in the pile at the appropriate place of the heat storage pipe and output the detection signal to the control device. In addition, a depth of 50 cm to 25 m, preferably 1 m It can be said that it is desirable to provide an underground temperature sensor that can detect the underground temperature and can output a detection signal to the control device.

蓄熱パイプは、地中蓄熱帯の一部となり、外気温度や地中温度などの各条件に応じて蓄熱および放熱機能を担うものであり、その複数本が互いに適宜間隔を隔てて地中所定深さに達するよう縦姿勢に埋設し、全体として地中蓄熱帯をなすものとしなければならず、後述する実施例においても示してあるように、潜熱蓄熱材を充填した蓄熱縦管の周囲に、熱交換流体を流通および熱交換可能な集・放熱用スパイラル管を熱伝達可能に外装してなるものとすべきであり、潜熱蓄熱材は、集・放熱用スパイラル管との熱交換を行うと共に、地中熱をも熱交換可能となる機能を担い、地中平均温度に見合った融点のものとしなければならず、例えば、融点が10℃ないし20℃、望ましくは、後述する実施例にも示しているように、15℃に設定したものとするのが良い。     The heat storage pipe is a part of the underground storage tropics, and is responsible for the heat storage and heat dissipation function according to each condition such as the outside air temperature and underground temperature. It must be buried in a vertical posture to reach the height, and it must be a ground storage tropical as a whole, as shown in the examples described later, around the heat storage vertical tube filled with the latent heat storage material, The heat collection fluid heat exchange fluid circulation / heat exchange spiral tube should be externally packaged so that heat can be transferred, and the latent heat storage material exchanges heat with the heat collection / heat radiation spiral tube. In addition, it must have a melting point corresponding to the average underground temperature, for example, the melting point is 10 ° C. to 20 ° C., preferably in the examples described later. Set to 15 ° C as shown Better to as.

集熱用スパイラル管は、蓄熱縦管内の潜熱蓄熱材、および、放熱用スパイラル管内を流動する熱交換流体と熱交換し、地中蓄熱帯の保温に、蓄熱性を高める機能を担い、蓄熱縦管や放熱用スパイラル管と効率的に熱交換可能な素材性とし、対象物の周囲に螺旋状に捲着してなるものとしなければならず、後述する実施例に示すように、集熱用スパイラル管が、太陽熱集熱板の太陽熱用循環路吐出がわと、地中熱交換器の消雪用循環路流入がわとの間に接続し、蓄熱縦管の上下間周囲に螺旋状に捲回するよう配してなるものとすることができ、この場合には、その内部を流動する熱交換流体を介して、太陽熱集熱板が吸収した太陽熱を、蓄熱縦管内に充填した潜熱蓄熱材に効率的に伝達可能とする機能を担い、太陽熱集熱板の太陽熱用循環路吐出がわと、地中熱交換器の消雪用循環路流入がわとの間に接続し、蓄熱縦管の上下間周囲に螺旋状に捲回するよう配したものとすべきであり、蓄熱縦管との接触部、および、放熱用スパイラル管との接触部を効率的に熱伝導可能な素材、構造からなるものとするのが望ましく、太陽熱集熱板の太陽熱用循環路吐出がわと、同太陽熱用循環路流入がわとの間に接続し、蓄熱縦管の上下間周囲に螺旋状に捲回するよう配したものとしたり、地中熱交換器の消雪用循環路吐出がわと、同消雪用循環路流入がわとの間に接続し、放熱用スパイラル管の上下間周囲に螺旋状に捲回するよう配してなるものとすることなどが可能である。     The heat collection spiral tube exchanges heat with the latent heat storage material in the heat storage vertical tube and the heat exchange fluid that flows in the heat dissipation spiral tube, and has the function of increasing the heat storage property for heat retention in the underground tropics. The material must be capable of efficiently exchanging heat with the tubes and heat-dissipating spiral tubes, and must be helically attached around the object, as shown in the examples below. A spiral tube is connected between the solar heat discharge plate of the solar heat collecting plate and the snow flow circuit inflow of the underground heat exchanger, and spirals around the top and bottom of the heat storage vertical tube. In this case, the latent heat storage in which the solar heat absorbed by the solar heat collecting plate is filled in the heat storage vertical pipe through the heat exchange fluid that flows inside. Responsible for efficient transmission to the material, solar heat circulation plate discharge of solar heat collecting plate It should be arranged so that the inflow of the snow-melting circuit of the underground heat exchanger is connected between the river and spirally wound around the upper and lower sides of the heat storage vertical pipe. It is desirable that the contact portion with the vertical tube and the contact portion with the heat radiation spiral tube be made of a material and a structure capable of efficiently conducting heat. The solar heat circulation line inflow is connected between the two, and it is arranged so as to spiral around the top and bottom of the heat storage vertical pipe, or the snow heat discharge circuit discharge of the underground heat exchanger It is possible to arrange the inflow of the snow-removal circulation path between the wad and the wrinkle so as to be spirally wound around the upper and lower sides of the heat radiation spiral tube.

放熱用スパイラル管は、蓄熱縦管内の潜熱蓄熱材、および、集熱用スパイラル管内を流動する熱交換流体と熱交換し、地中蓄熱帯の保温に、蓄熱性を高める機能を担い、蓄熱縦管や集熱用スパイラル管と効率的に熱交換可能な素材性とし、対象物の周囲に螺旋状に捲着してなるものとしなければならず、後述する実施例に示すように、地中熱交換器の消雪用循環路吐出がわと、太陽熱集熱板の太陽熱用循環路流入がわとの間に接続し、放熱用スパイラル管の上下間周囲に螺旋状に捲回するよう配してなるものとすることができ、この場合には、その内部を流動する熱交換流体を介して、集熱用スパイラル管内を流動する熱交換流体と熱交換可能とすると共に、集熱用スパイラル管を断熱状に保温可能とする機能を担い、地中熱交換器の消雪用循環路吐出がわと、太陽熱集熱板の太陽熱用循環路流入がわとの間に接続し、地中熱交換器を通過し放熱した熱交換流体、または、地中熱交換器を通過し路面熱を蓄えた熱交換流体を、集熱用スパイラル管内を流動する熱交換流体と熱交換可能とするよう、集熱用スパイラル管の上下間周囲に螺旋状に捲回するよう配したものとすべきであり、集熱用スパイラル管との接触部を効率的に熱伝導可能な素材、構造からなるものとするのが望ましく、地中熱交換器の消雪用循環路吐出がわと、同消雪用循環路流入がわとの間に接続し、放熱用スパイラル管の上下間周囲に螺旋状に捲回するよう配したものとしたり、太陽熱集熱板の太陽熱用循環路吐出がわと、同太陽熱用循環路流入がわとの間に接続し、蓄熱縦管の上下間周囲に螺旋状に捲回するよう配してなるものとすることなどが可能である。     The heat dissipation spiral tube exchanges heat with the latent heat storage material in the heat storage vertical tube and the heat exchange fluid that flows in the heat collection spiral tube, and has the function of increasing the heat storage property for heat retention in the underground tropics. The material must be capable of efficiently exchanging heat with the pipe and the heat collecting spiral pipe, and must be spirally attached around the object, as shown in the examples below. Connect the snow discharge circuit discharge fan of the heat exchanger and the solar heat circuit inlet of the solar heat collecting plate to the cable, and spirally wound around the top and bottom of the heat dissipation spiral tube. In this case, heat exchange is possible with the heat exchange fluid flowing in the heat collection spiral tube via the heat exchange fluid flowing in the inside, and the heat collection spiral Responsible for heat insulation of pipes and for snow removal of underground heat exchangers Annular discharge and a solar heat circulation plate inflow of solar heat collecting plate are connected between them and passed through the underground heat exchanger and radiated heat exchange fluid or underground heat exchanger. The heat exchange fluid that stores the road surface heat is spirally wound around the top and bottom of the heat collection spiral tube so that heat exchange with the heat exchange fluid flowing in the heat collection spiral tube is possible. It is desirable that the contact part with the heat collecting spiral tube should be made of a material and a structure capable of efficiently conducting heat, and the discharge of the snow circuit of the underground heat exchanger The inflow of the snow-melting circuit is connected between the two, and it is arranged so as to spiral around the upper and lower sides of the heat-dissipating spiral tube, or the solar heat circulation plate discharge of the solar heat collecting plate And the solar heat circuit inflow is connected between the two and spirally wound around the upper and lower sides of the heat storage vertical pipe And the like are possible to be assumed that cormorants formed by distribution.

前記集・放熱用スパイラル管の太陽熱用循環路、消雪用循環路への接続は、さらに、様々な組合せが可能であり、例えば、集熱用スパイラル管が、蓄熱縦管の上下間周囲に螺旋状に捲回し、一端を太陽熱集熱板の太陽熱用循環路吐出がわに、他端を地中熱交換器の消雪用循環路流入がわに接続し、放熱用スパイラル管が、集熱用スパイラル管の上下間外がわ周囲に螺旋状に捲回し、一端を地中熱交換器の消雪用循環路吐出がわに、他端を太陽熱集熱板の太陽熱用循環路流入がわに接続してなるものとすることができ、また、集熱用スパイラル管が、蓄熱縦管の上下間周囲に螺旋状に捲回し、一端を地中熱交換器の消雪用循環路吐出がわに、他端を太陽熱集熱板の太陽熱用循環路流入がわに接続し、放熱用スパイラル管が、集熱用スパイラル管の上下間外がわ周囲に螺旋状に捲回し、一端を太陽熱集熱板の太陽熱用循環路吐出がわに、他端を地中熱交換器の消雪用循環路流入がわに接続してなるものとすることができる。     Various combinations of the connection of the spiral tube for collecting and radiating heat to the circuit for solar heat and the circuit for snow removal are possible. For example, the spiral tube for collecting heat is provided around the upper and lower sides of the heat storage vertical tube. Winding spirally, one end is connected to the solar heat circuit discharge of the solar heat collecting plate, the other end is connected to the snow heat removal circuit inflow to the ground heat exchanger, and the heat dissipation spiral tube is Twist spirally around the upper and lower sides of the heat spiral tube, one end of the ground heat exchanger discharges the snow circulation circuit, and the other end of the solar heat collection plate flows into the solar heat circuit. The spiral tube for collecting heat is spirally wound around the upper and lower sides of the heat storage vertical tube, and one end is discharged from the snow-melting circuit of the underground heat exchanger. The other end is connected to the solar circulation circuit inflow of the solar heat collecting plate, and the heat radiation spiral tube is the heat collecting spiral tube. Twist spirally around the upper and lower gaps, connect one end to the solar heat circuit discharge of the solar heat collecting plate, and connect the other end to the snow flow circuit inflow of the ground heat exchanger Can be.

そしてまた、集熱用スパイラル管が、蓄熱縦管の上下間周囲に螺旋状に捲回し、一端を太陽熱集熱板の太陽熱用循環路吐出がわに、他端を太陽熱用循環路流入がわに接続し、放熱用スパイラル管が、集熱用スパイラル管の上下間外がわ周囲に螺旋状に捲回し、一端を地中熱交換器の消雪用循環路吐出がわに、他端を消雪用循環路流入がわに接続してなるものや、または、集熱用スパイラル管が、蓄熱縦管の上下間周囲に螺旋状に捲回し、一端を地中熱交換器の消雪用循環路吐出がわに、他端を消雪用循環路流入がわに接続し、放熱用スパイラル管が、集熱用スパイラル管の上下間外がわ周囲に螺旋状に捲回し、一端を太陽熱集熱板の太陽熱用循環路吐出がわに、他端を太陽熱用循環路流入がわに接続してなるものなどとすることが可能である。     In addition, a heat collecting spiral tube is spirally wound around the upper and lower sides of the heat storage vertical tube, and one end is connected to the solar heat circuit discharge of the solar heat collecting plate, and the other end is connected to the solar heat circuit flow in. The heat dissipation spiral tube is spirally wound around the outer periphery of the heat collecting spiral tube, and one end is connected to the snow discharge circuit discharge of the underground heat exchanger and the other end is connected to A snow-flowing circuit inflow is connected to the alligator, or a heat collection spiral pipe is spirally wound around the top and bottom of the heat storage vertical pipe, and one end is used for snow removal of the underground heat exchanger The circuit discharge is connected to the alligator, the other end is connected to the snow removal circuit inflow, the heat dissipation spiral tube is spirally wound around the upper and lower sides of the heat collecting spiral tube, and one end is solar heated. The solar heat circuit discharge of the heat collecting plate can be connected to the alligator, and the other end can be connected to the solar heat circuit inflow.

熱交換流体は、ポンプなどによる圧送作用を受けて管路中を効率的に流動可能且つ、外部との効率的な熱交換を可能とする機能を担っていて、例えば、気体、液体、半個体などとすることができ、より具体的には例えば、空気、二酸化炭素、水、各種水溶液、各種油、不凍液など、様々な流体とすることが可能である。     The heat exchange fluid is capable of efficiently flowing in the pipe line under the pressure-feeding action of a pump or the like, and has a function that enables efficient heat exchange with the outside, for example, gas, liquid, semi-solid More specifically, for example, various fluids such as air, carbon dioxide, water, various aqueous solutions, various oils, and antifreeze can be used.

蓄熱専用パイプは、自ら蓄熱し、周囲近傍に配した蓄熱パイプの断熱性、および保温性を高め、蓄熱パイプから地上へ放熱するのをより効果的に阻止可能とする機能を担い、内部に潜熱蓄熱材を充填し、複数本の蓄熱パイプの間となる複数適所に、各蓄熱専用パイプ同士も適宜間隔を隔てて配置、埋設してなるものとしなければならず、少なくとも地上寄りとなる範囲に埋設すべきであり、各蓄熱パイプと略同じ深さまで到達する深さに埋設したものとするのが望ましい。     The dedicated heat storage pipe has the function of storing heat by itself, improving the heat insulation and heat insulation of the heat storage pipe arranged in the vicinity, and more effectively preventing heat dissipation from the heat storage pipe to the ground. The heat storage material is filled, and the heat storage pipes must be arranged and buried at appropriate intervals between multiple heat storage pipes at appropriate intervals. It should be buried, and it is desirable that it is buried at a depth that reaches substantially the same depth as each heat storage pipe.

上部断熱層は、地中蓄熱帯の天面からの放熱を防止可能とする機能を担い、地中蓄熱帯の天面を、断熱性を有する所定上下厚みの断熱層で覆ったものとしなければならず、例えば、硅石コンクリートからなる舗装路盤とすることができ、後述する実施例にも示すとおり、上下均しコンクリートの間に遮水シートおよび断熱ボードを敷設してなるものとするのが望ましく、さらに、その上層に、上下肉厚中にポリエチレン管からなる地中熱交換器を埋設した断熱性に優れた硅石コンクリート層からなる舗装版を設けたものにすることができる。     The upper heat insulating layer has a function to prevent heat radiation from the top of the underground storage tropics, and the top surface of the underground storage tropics must be covered with a heat insulating layer having a predetermined vertical thickness with heat insulation. Rather, for example, it can be a paved roadbed made of meteorite concrete, and it is desirable that a water-impervious sheet and a heat-insulating board are laid between the leveled concrete as shown in the examples described later. Furthermore, it is possible to provide a pavement plate made of a meteorite concrete layer excellent in heat insulation, in which an underground heat exchanger made of polyethylene pipe is embedded in the upper and lower wall thickness.

地中断熱壁は、地中蓄熱帯の放熱し易い地上近傍の地中範囲を集中的に断熱し、これによって地中蓄熱帯の全体を効果的に断熱可能とする機能を担い、地中蓄熱帯の天面下周囲側部に沿って包囲する壁状に垂設したものとしなければならず、例えば、地中1ないし2mの深さとなる地中蓄熱帯の天面下周囲側部を、断熱性能を発揮して包囲し得るようにしたものなどとしなければならず、断熱性に優れたポリウレタン製パネルや発泡スチロール製パネル、硅石コンクリート層、その他の断熱素材壁、または、それらの組合せなどからなるものとすることができる。     The underground thermal insulation wall intensively insulates the underground area near the ground where heat is easily dissipated in the underground storage tropics, thereby carrying out the function of effectively insulating the entire underground storage tropics. It must be suspended in the shape of a wall that surrounds the lower side of the belt's top surface. For example, the bottom side of the top surface of the underground tropics with a depth of 1 to 2 m It must be something that can be surrounded by exhibiting thermal insulation performance, such as polyurethane panel and polystyrene panel with excellent thermal insulation, meteorite concrete layer, other insulation material walls, or combinations thereof Can be.

地中熱交換器は、所望融雪対象区画内舗装版肉厚中より、同舗装版表面との間で熱交換すると共に、太陽熱集熱板および地中蓄熱帯の間と熱交換可能とし、降雪に伴う積雪を融解可能とすると共に、降雪および積雪の無いときには蓄熱可能とする機能を担い、地中蓄熱帯近接適所の所望融雪対象区画内舗装版肉厚中に、熱交換流体を流通および熱交換可能なものとして設けたものとしなければならず、所望融雪対象区画内舗装版肉厚中に巡らすよう敷設した、熱伝導性に優れた金属、樹脂製またはそれらの複合素材製などの管路、または、管路状構造体などとすることができ、後述する実施例に示すように、鉄筋を有する硅石コンクリート層からなる舗装版の上下間肉厚中に、柔軟性を有し、配管作業性に優れた金属強化ポリエチレン管を敷設・埋設してなるものとするのが良い。     The underground heat exchanger exchanges heat with the surface of the pavement plate from the thickness of the pavement plate in the desired snow melting target section, and also enables heat exchange between the solar heat collector and the underground storage tropics. It is possible to melt the snow that accompanies the snow, and to store heat when there is no snowfall or snowfall. Pipes made of metal, resin, or composite materials with excellent thermal conductivity that must be provided as interchangeable and laid around the thickness of the paving slab in the desired snow melting target section Or, it can be a pipe-like structure or the like, and as shown in the examples to be described later, it has flexibility in the thickness between the upper and lower sides of the paving slab composed of a meteorite concrete layer having reinforcing bars, and piping work Laminated metal reinforced polyethylene pipe with excellent properties - buried and is good to those formed by.

太陽熱集熱板は、熱交換流体を流通すると共に、通過する熱交換流体に集熱した太陽熱を伝熱可能とする機能を担っており、集熱した太陽熱を、熱交換流体に効率的に伝熱するものとしなければならず、太陽光発電用パネルなどのように太陽光を受けて発電し、その電力を利用して熱交換流体を加熱するものとすることができる外、熱交換流体を流動、通過可能な形状であって、太陽光およびその輻射熱、外気熱などを効率的に集熱し、熱交換流体に伝熱可能としたものとすることができ、より具体的には、平板式集熱板とすることが可能である外、例えば、ウイック式、サーモサイホン式、または、自励振動式のヒートパイプとすることができ、後述する実施例に示すように、真空管ヒートパイプ式のものとすることができる。     The solar heat collecting plate circulates the heat exchange fluid and has a function to transfer the solar heat collected to the passing heat exchange fluid, and efficiently transmits the collected solar heat to the heat exchange fluid. In addition to being able to heat and generate heat by receiving sunlight, such as a panel for photovoltaic power generation, and using that power to heat the heat exchange fluid, It is a shape that can flow and pass, and can efficiently collect sunlight and its radiant heat, outside air heat, etc., and can transfer heat to the heat exchange fluid, more specifically, flat plate type Outside the heat collector plate, for example, a wick type, thermosiphon type, or self-excited vibration type heat pipe, as shown in the examples described later, a vacuum tube heat pipe type Can be.

太陽熱用循環路は、地中蓄熱帯と太陽熱集熱板との間に熱交換流体を循環可能に接続する機能を担い、断熱性を有するものとしなければならず、熱交換流体用断熱パイプで循環可能に接続したものとすべきであり、後述する実施例に示すように、中途適所に、熱交換流体の温度を検知可能、且つ、その検知信号を制御装置に出力可能な流体温度センサーを設けたものとすることができる。     The solar heat circulation path must have a function of connecting the heat exchange fluid between the underground storage tropics and the solar heat collecting plate so that it can circulate, and must have heat insulation properties. As shown in the examples described later, a fluid temperature sensor capable of detecting the temperature of the heat exchange fluid and outputting the detection signal to the control device is provided at a midpoint. It can be provided.

消雪用循環路は、地中蓄熱帯と地中熱交換器との間に熱交換流体を循環可能に接続する機能を担い、断熱性を有するものとしなければならず、熱交換流体用断熱パイプで循環可能に接続したものとすべきであり、後述する実施例に示すように、中途適所に、熱交換流体の温度を検知可能、且つ、その検知信号を制御装置に出力可能な流体温度センサーを設けたものとすることができる。     The snow-melting circuit has a function to connect the heat exchange fluid between the underground storage tropics and the underground heat exchanger so that it can circulate, and must have heat insulation properties. It should be connected so as to be able to circulate with a pipe, and as shown in an embodiment described later, the temperature of the heat exchange fluid can be detected at an appropriate position midway, and the detection signal can be output to the control device. A sensor may be provided.

太陽熱集熱板用ポンプは、太陽熱集熱板に熱交換流体を強制的に供給・循環可能とする機能を担い、地中蓄熱帯と太陽熱集熱板との間の太陽熱用循環路中途適所に設けたものとし、該太陽熱用循環路中途の太陽熱集熱板の前後少なくとも何れか一方に設けたものとしなければならず、手動スイッチ、または、後述する実施例に示すように、制御装置からの制御を受けて起動、停止するものとすべきである。     The solar heat collector plate pump has a function to forcibly supply and circulate the heat exchange fluid to the solar heat collector plate, and is placed in the middle of the solar heat circulation path between the underground thermal storage and the solar heat collector plate. It shall be provided, and shall be provided at least before or after the solar heat collecting plate in the middle of the solar heat circulation path, as shown in the embodiment described later, from the control device. It should be started and stopped under control.

地中熱交換器用ポンプは、地中熱交換器に熱交換流体を強制的に供給・循環可能とする機能を担い、地中蓄熱帯と地中熱交換器との間の消雪用循環路中途適所に設けたものとし、該消雪用循環路中途の地中熱交換器の前後少なくとも何れか一方に設けたものとしなければならず、手動スイッチ、または、後述する実施例に示すように、制御装置からの制御を受けて起動、停止するものとすべきである。     The pump for underground heat exchanger is responsible for the ability to forcibly supply and circulate heat exchange fluid to the underground heat exchanger, and a snow-melting circuit between the underground storage and the underground heat exchanger. It must be provided at an appropriate place in the middle, and must be provided at least before or after the underground heat exchanger in the middle of the snow-melting circuit, as shown in a manual switch or an example described later. It should be started and stopped under the control of the control device.

制御装置は、年間を通じた日照や気温、路面温度の変化、降雪などの気象の変化などの各種外部条件に応じて、効率的に蓄熱および融雪動作するよう太陽熱集熱板用ポンプおよび地中熱交換器用ポンプを制御可能とする機能を担い、マイクロコンピューター、IC、リレー回路など中、少なくとも何れか1つの制御部を内蔵し、自動的に入出力可能としたものとするか、または、手動入力可能なスイッチパネルからなるものの何れか一方、または双方を切り換え可能に備えたものとすることが可能であり、適所に設けた地中温度センサー、流体温度センサー、降雪センサーおよび路面温度センサーからの各種検知信号を受信し、その受信値に基づき、太陽熱集熱板用ポンプおよび地中熱交換器用ポンプの起動・停止を自動的に判断、実行可能なものとするのが望ましく、必要に応じて外部からの通信、データ収集、遠隔操作などを可能とするような通信装置を設けたものとすることができ、後述する実施例に示すように、該制御装置自体を起動・停止可能なメインスイッチを有するものとするのが良い。     The control unit is equipped with a solar heat collecting plate pump and ground heat so that it can efficiently store heat and melt snow according to various external conditions such as sunshine, air temperature, changes in road surface temperature, and changes in weather such as snowfall throughout the year. It has a function to control the pump for the exchanger, and it has built-in at least one control part among microcomputers, ICs, relay circuits, etc. and can automatically input / output, or manual input Either one of the possible switch panels or both of them can be provided so as to be switchable, and various types of underground temperature sensors, fluid temperature sensors, snowfall sensors, and road surface temperature sensors provided at appropriate positions can be provided. Receives detection signals, and based on the received values, can automatically determine and execute the start / stop of the solar heat collector pump and the underground heat exchanger pump It is desirable to provide a communication device that enables external communication, data collection, remote operation, and the like, as required. It is preferable to have a main switch capable of starting and stopping the control device itself.

地中温度センサーは、地中蓄熱帯を埋設した地中の温度変化を検知し、その検出値を制御装置に送信可能とする機能を担い、少なくとも地上近傍の地下50cmないし2mの地中温度を検知可能なものとしなければならず、さらに、地中蓄熱帯の設置範囲および設置範囲よりも深い位置など複数種の深さに設置したものとするのが良く、例えば、後述す実施例に示すように、地下1m、3mおよび5mの各深さ位置の地中温度を夫々検知・送信可能なものとすることができる。     The underground temperature sensor detects the temperature change in the underground where the underground storage tropics are buried, and has the function of transmitting the detected value to the control device. At least the underground temperature of 50cm to 2m underground near the ground. It should be detectable, and it should be installed at multiple depths, such as the installation range of underground storage tropics and positions deeper than the installation range, for example, as shown in the examples described later Thus, it is possible to detect and transmit the underground temperature at each depth position of 1 m, 3 m, and 5 m underground.

流体温度センサーは、太陽熱用循環路および消雪用循環路の少なくとも何れか一方の適所を通過する熱交換流体の温度を検知可能、且つ、検知信号を制御装置に出力可能とする機能を担い、流動する熱交換流体の温度を速やかに検知可能なものとしなければならず、例えば、測温抵抗体、熱電対またはサーミスタなどとすることができる。     The fluid temperature sensor is capable of detecting the temperature of the heat exchange fluid passing through at least one of the solar heat circuit and the snow-melting circuit, and is capable of outputting a detection signal to the control device. The temperature of the flowing heat exchange fluid must be able to be detected quickly, and can be, for example, a resistance temperature detector, a thermocouple, or a thermistor.

降雪センサーは、降雪、および、消雪を要する積雪量の少なくとも何れか一方を検出し、その検知信号を制御装置に出力可能とする機能を担い、地中熱交換器を敷設した融雪対象区画、またはその近傍の降雪や積雪を検知可能なものとしなければならず、例えば、水分検知型、赤外線検知型、雪片カウント型、光検出型、雪片カウンターに雪温度センサーを組み合わせたもの、また、所定積雪量(例えば積雪5cm以上)に達したときに検知信号を出力するものなどとすることができる。     The snowfall sensor has a function of detecting at least one of snowfall and the amount of snow that requires snow removal, and is capable of outputting the detection signal to the control device, and a snowmelt target section in which a ground heat exchanger is laid, Or it must be able to detect snowfall and snow in the vicinity, for example, moisture detection type, infrared detection type, snowflake count type, light detection type, a combination of snowflake counter and snowflake temperature sensor For example, a detection signal may be output when the amount of snow (for example, 5 cm or more) is reached.

路面温度センサーは、路面温度を検知し、その検知信号を制御装置に出力可能とする機能を担い、少なくとも路面温度が氷点下、または、積雪する程度に低温であることを検知可能とするものとしなければならず、測温抵抗体、熱電対またはサーミスタなどとすることができる外、非接触型の赤外線温度センサーなどとすることができる。     The road surface temperature sensor shall be capable of detecting the road surface temperature and outputting the detection signal to the control device, and shall be able to detect at least that the road surface temperature is below freezing or snowing. In addition to a resistance temperature detector, a thermocouple, or a thermistor, a non-contact infrared temperature sensor can be used.

太陽熱地中蓄熱融雪システムの制御方法は、この発明の太陽熱地中蓄熱融雪システムを季節毎に効率的に制御可能とし、冬期の降雪および積雪を、より経済的に消雪可能とする機能を担い、制御装置を手動または自動的に制御することが可能であり、制御方法の切り換えを4月ないし7月の夏期と、12月ないし3月の冬期とに行うよう設定するのが望ましく、後述する実施例に示すように、4月ないし7月の夏期に、制御装置の起動後、路面温度センサーの検知信号、および、地中温度センサーの検知信号を一定時間毎に受信し、路面温度センサーの検知温度が地中温度センサーの検知温度よりも高い場合に、地中熱交換器用ポンプを起動し、路面温度センサーの検知温度が地中温度センサーの検知温度と同じ場合、および、路面温度センサーの検知温度が地中温度センサーの検知温度より低い場合に、地中熱交換器用ポンプを停止するよう制御するものとするのが良い。     The control method of the solar thermal underground heat storage and snow melting system is capable of efficiently controlling the solar thermal underground thermal storage and snow melting system according to the present invention for each season, and bears the function of making snowfall and snow accumulation in winter more economical. It is possible to control the control device manually or automatically, and it is desirable to set the control method to be switched between the summer months from April to July and the winter season from December to March, which will be described later. As shown in the embodiment, in the summer from April to July, after the control device is started, the road surface temperature sensor detection signal and the ground temperature sensor detection signal are received at regular intervals. When the detection temperature is higher than the detection temperature of the underground temperature sensor, the underground heat exchanger pump is started and the detection temperature of the road surface temperature sensor is the same as the detection temperature of the underground temperature sensor. When the detected temperature of over is lower than the detected temperature of the underground temperature sensor, amount may be adapted to control so as to stop the underground heat exchanger pump.

また、後述する実施例に示すように、12月ないし3月の冬期に、制御装置の起動後、降雪センサーの検知信号、および、路面温度センサーの検知信号を一定時間毎に受信し、降雪センサーが降雪および積雪の少なくとも一方を検知し、且つ、路面温度センサーの検知温度が氷点下の場合に、地中熱交換器用ポンプを起動し、降雪センサーが降雪および積雪を検知せず、且つ、路面温度センサーの検知温度が氷点以上の場合、地中熱交換器用ポンプを停止するよう制御するものとするのが良い。     In addition, as shown in the embodiments described later, in the winter period from December to March, after the control device is started, the detection signal of the snowfall sensor and the detection signal of the road surface temperature sensor are received at regular intervals, and the snowfall sensor Detects at least one of snowfall and snowfall and the temperature of the road surface temperature sensor is below freezing, activates the pump for underground heat exchanger, the snowfall sensor does not detect snowfall and snowfall, and the road surface temperature If the temperature detected by the sensor is above the freezing point, it should be controlled to stop the underground heat exchanger pump.

さらにまた、後述する実施例に示すように、12月ないし3月の冬期に、制御装置の起動後、太陽熱集熱板、太陽熱用循環路の流体温度センサーの検知信号、および、地中蓄熱帯、地中温度センサーの検知信号を一定時間毎に受信し、太陽熱集熱板、太陽熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度よりも高い場合に、太陽熱集熱板用ポンプを起動し、太陽熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度と同じ場合、および、太陽熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度よりも低い場合に、太陽熱集熱板用ポンプを停止するよう制御するものとするのが良い。
以下では、図面に示すこの発明を代表する実施例と共に、その構造について詳述することとする。
Furthermore, as shown in the embodiments described later, in the winter period from December to March, after the start of the control device, the solar heat collecting plate, the detection signal of the fluid temperature sensor in the solar heat circulation path, and the underground storage tropics When the detection signal of the underground temperature sensor is received at regular intervals, and the detection temperature of the fluid temperature sensor of the solar heat collecting plate and solar heat circulation circuit is higher than the detection temperature of the underground thermal storage and underground temperature sensor If the temperature of the fluid temperature sensor in the solar heat circuit is the same as the temperature detected by the underground temperature sensor and the ground temperature sensor, and the fluid temperature of the solar heat circuit When the detection temperature of the sensor is lower than the detection temperature of the underground storage tropics and the underground temperature sensor, the solar heat collecting plate pump should be controlled to stop.
In the following, the structure of the present invention will be described in detail together with an embodiment representative of the present invention shown in the drawings.

図面は、この発明の太陽熱地中蓄熱融雪システム、およびその制御方法の技術的思想を具現化した代表的な一実施例を示すものである。
太陽熱地中蓄熱融雪システムを示す斜視図である。 太陽熱地中蓄熱融雪システムを示す模式図である。 地中蓄熱帯の集・放熱用スパイラル管を示す斜視図である。 地中蓄熱帯の蓄熱パイプを断面化して示す平面図である。 地中蓄熱帯および地中熱交換器を断面化して示す正面図である。を示す平面図である。 夏期の制御装置による制御を示すフローチャートである。 冬期の制御装置による制御を示すフローチャートである。 冬期の制御装置による制御を示すフローチャートである。
The drawings show a typical embodiment that embodies the technical idea of the solar thermal underground heat storage and snow melting system of the present invention and the control method thereof.
It is a perspective view which shows a solar thermal underground heat storage snowmelt system. It is a schematic diagram which shows a solar thermal underground heat storage snowmelt system. It is a perspective view which shows the spiral tube for collection and heat dissipation of underground storage tropics. It is a top view which cuts and shows the heat storage pipe of underground storage tropics. It is a front view showing a section of the underground storage tropics and the underground heat exchanger. FIG. It is a flowchart which shows the control by the control apparatus of summer. It is a flowchart which shows the control by the control apparatus of winter. It is a flowchart which shows the control by the control apparatus of winter.

図1ないし図5に示す事例は、地中所定深さに埋設した地中蓄熱帯1の天面に上部断熱層2、天面下周囲側部に地中断熱壁3を配し、融雪対象区画に地中熱交換器6を敷設し、太陽熱集熱板7を設置すると共に、当該地中蓄熱帯1と太陽熱集熱板7との間に、中途適所に太陽熱集熱板用ポンプ95を有する太陽熱用循環路80を設け、当該地中蓄熱帯1と地中熱交換器6との間に、中途適所に地中熱交換器用ポンプ96を有する消雪用循環路81を設けた上、それら太陽熱集熱板用ポンプ95および地中熱交換器用ポンプ96を統合的に制御可能な制御装置90を設けてなるものとした、この発明の太陽熱地中蓄熱融雪システムにおける代表的な一実施例を示すものである。     In the example shown in FIGS. 1 to 5, the upper heat insulating layer 2 is disposed on the top surface of the underground storage tropics 1 buried at a predetermined depth in the ground, and the underground heat insulating wall 3 is disposed on the peripheral side portion below the top surface, so that the snow melting target. A ground heat exchanger 6 is laid in the section, a solar heat collecting plate 7 is installed, and a solar heat collecting plate pump 95 is placed between the ground storage tropics 1 and the solar heat collecting plate 7 at a suitable place in the middle. A solar heat circulation path 80 is provided, and a snow-melting circulation path 81 having a geothermal heat exchanger pump 96 is provided at an appropriate midway between the underground storage tropics 1 and the underground heat exchanger 6, A typical embodiment of the solar thermal underground heat storage and snow melting system according to the present invention is provided with a control device 90 capable of controlling the solar heat collecting plate pump 95 and the underground heat exchanger pump 96 in an integrated manner. Is shown.

それら各図からも明確に把握できるとおり、この発明の太陽熱地中蓄熱融雪システムは、その地中蓄熱帯1が、深さ4mに達する長さの蓄熱縦管11中に融点15℃の潜熱蓄熱材12を充填し、該蓄熱縦管11外周壁に、熱交換流体を流通および熱交換可能な集熱用スパイラル管13が螺旋状に捲着した集熱固定パイプ13aを外装し、集熱用スパイラル管13の外がわに、熱交換流体4を流通および熱交換可能な放熱用スパイラル管14が螺旋状に捲着した放熱用固定パイプ14aを外装してなる複数本の蓄熱パイプ10,10,…を、矩形状の所定区画面積範囲内に、平面視千鳥配置状となるよう互いに適宜間隔を隔てて垂直姿勢に埋設した各ボイド管15,15,…中に差し込むよう縦設し、さらに、それら隣接する4本毎の蓄熱パイプ10,10,…から互いに略等距離(中央)となる適所に、夫々各蓄熱パイプ10,10,…と同じ深さに達するよう埋設したボイド管15中に、潜熱蓄熱材11を充填した蓄熱専用パイプ1a,1aを差し込むよう配し、それら蓄熱パイプ10,10,…および蓄熱専用パイプ1a,1aを設置した矩形状区画上に相当する同地中蓄熱帯1の天面範囲には、50mm厚の下均しコンクリート層20a、その上に遮水シート21、その上に100mm厚のポリウレタン製断熱ボード22、さらに、その上に50mm厚の上均しコンクリート層20bを積層してなる上部断熱層2を設け、同上部断熱層2の周囲側部には、深さ(D2)2mに達する硅石コンクリート製の地中断熱壁3を垂設して地上寄りとの囲を、断熱性をもって包囲したものとしてある。     As can be clearly seen from these figures, the solar thermal underground heat storage and snow melting system of the present invention is a latent heat storage system having a melting point of 15 ° C. in the thermal storage vertical tube 11 whose underground storage tropics 1 reaches a depth of 4 m. A heat collecting fixed pipe 13a in which a heat collecting spiral pipe 13 capable of circulating and exchanging heat exchange fluid is helically attached to the outer peripheral wall of the heat storage vertical pipe 11 is filled in the outer wall of the heat storage vertical pipe 11 for collecting heat. A plurality of heat storage pipes 10, 10 formed by externally mounting a heat radiating fixed pipe 14 a in which a heat radiating spiral pipe 14 capable of circulating and exchanging heat exchange fluid 4 is spirally attached to the outside of the spiral tube 13. Are vertically inserted so as to be inserted into each of the void tubes 15, 15,... Embedded in a vertical posture at an appropriate interval so as to have a staggered arrangement in a plan view within a predetermined rectangular area. , And every four adjacent heat storage pipes 10 , 10,... For heat storage in which a latent heat storage material 11 is filled in a void tube 15 that is buried at an appropriate distance (center) from each other to reach the same depth as each of the heat storage pipes 10, 10,. The pipes 1a, 1a are arranged so as to be inserted, and the top surface area of the subterranean storage tropics 1 corresponding to the rectangular section where the heat storage pipes 10, 10,. An upper heat insulating layer formed by laminating a leveled concrete layer 20a, a water shielding sheet 21 thereon, a 100 mm thick polyurethane insulating board 22 thereon, and a 50 mm thick leveled concrete layer 20b thereon. 2 and a ground insulating wall 3 made of a meteorite concrete that reaches a depth (D2) of 2 m is suspended in the peripheral side portion of the upper heat insulating layer 2 to surround the surrounding area with heat insulation. As a thing.

図3に示すように、集熱用スパイラル管13を模式的に示すと、太陽熱集熱板7から太陽熱用循環路80を通じて、同図3中の実線矢印の方向に流れ込んだ熱交換流体4は、同図3中の寸法範囲L1の範囲で、蓄熱縦管11の周囲を螺旋状に流れる間に同蓄熱縦管11(潜熱蓄熱材12)と熱交換した後、寸法範囲L2の範囲の熱交換流体用断熱パイプ8を通過し、同図3中の二点鎖線矢印の方向に循環し、消雪用循環路81および地中熱交換器6に向けて流動するよう接続したものとし、また、図4に示すよう、集熱用スパイラル管13の外がわ周囲に螺旋・捲着状に配した放熱用スパイラル管14は、地中熱交換器6消雪用循環路81を通じて流れ込んだ熱交換流体4が、集熱用スパイラル管13の周囲を螺旋状に流れる間に同集熱用スパイラル管13と熱交換した後、太陽熱用循環路80を通じて太陽熱集熱板7に向けて流動するよう配管したものとしてある。     As schematically shown in FIG. 3, when the heat collecting spiral tube 13 is schematically shown, the heat exchange fluid 4 flowing from the solar heat collecting plate 7 through the solar heat circulation path 80 in the direction of the solid line arrow in FIG. 3, after heat exchange with the heat storage vertical tube 11 (latent heat storage material 12) while spirally flowing around the heat storage vertical tube 11 in the range of the size range L1 in FIG. 3, heat in the range of the size range L2 It passes through the heat insulation pipe 8 for exchange fluid, circulates in the direction of a two-dot chain line in FIG. 3, and is connected so as to flow toward the snow-melting circuit 81 and the underground heat exchanger 6, and As shown in FIG. 4, the heat-dissipating spiral tube 14 arranged in a spiral / attached manner around the outer wrap of the heat collecting spiral tube 13 is heated by the underground heat exchanger 6 through the snow-discharging circulation path 81. While the exchange fluid 4 spirally flows around the heat collecting spiral tube 13, the same heat collecting spa is used. After heat exchange with the Ilar pipe 13, the pipe is piped so as to flow toward the solar heat collecting plate 7 through the solar heat circulation path 80.

図5に示すように、該地中蓄熱帯1の上部断熱層2上均しコンクリート層20b直上、および、その近隣の所望融雪対象区画内にわたり設けた上下間厚150mmの舗装版5硅石コンクリート層51の上均しコンクリート層20bから上方100mm(舗装版5天面より下方50mm)の肉厚寸法中に、直径13mmの鉄筋50を敷設し、同鉄筋50面上範囲に、熱交換流体4を流通および熱交換可能な直径16mmの金属強化ポリエチレン管60を蛇行状に敷設して地中熱交換器6を埋設したものとしてある。     As shown in FIG. 5, a pavement plate 5 meteorite concrete layer having a thickness of 150 mm between the upper and lower layers of the ground insulation tropics 1 directly above the upper heat insulating layer 2 and the desired snow melting target section in the vicinity thereof. Reinforcing bars 50 having a diameter of 13 mm are laid in the wall thickness of 100 mm above the leveled concrete layer 20 b (50 mm below the top of the pavement plate 5), and the heat exchange fluid 4 is placed on the surface of the reinforcing bars 50. The underground heat exchanger 6 is embedded by laying a metal reinforced polyethylene pipe 60 having a diameter of 16 mm that can be circulated and heat-exchanged in a meandering manner.

図1および図2に示すように、当該地中蓄熱帯1および地中熱交換器6に近接し、周辺施設利用の障害とならず、しかも日光が良く当たる適所に、熱交換流体4を流通および熱交換可能な真空管ヒートパイプ式の太陽熱集熱板7を設置したものとし、当該地中蓄熱帯1と太陽熱集熱板7との間を太陽熱用循環路80によって繋ぎ、地中蓄熱帯1と地中熱交換器6との間を消雪用循環路81によって繋ぎ、それら太陽熱用循環路80および消雪用循環路81は、何れも断熱材付き金属強化ポリエチレン管製の熱交換流体用断熱パイプ8からなるものとし、当該地中蓄熱帯1と太陽熱集熱板7との間の太陽熱用循環路80上流がわ中途適所に太陽熱集熱板用ポンプ95を設け、当該地中蓄熱帯1と地中熱交換器6との間の消雪用循環路81中途適所に地中熱交換器用ポンプ96を設けた上、それら熱交換流体用ポンプ95,96を統合的に制御可能な制御装置90を設置したものとしている。     As shown in FIG. 1 and FIG. 2, the heat exchange fluid 4 is circulated in an appropriate place where it is close to the underground storage tropics 1 and the underground heat exchanger 6 and does not become an obstacle to the use of the surrounding facilities and is well exposed to sunlight. And a heat-exchangeable vacuum tube heat pipe type solar heat collecting plate 7 is installed, and the underground heat storage plate 1 and the solar heat collecting plate 7 are connected by a solar heat circulation path 80, and the underground heat storage plate 1 And the underground heat exchanger 6 are connected by a snow-melting circulation path 81, and the solar heating circulation path 80 and the snow-melting circulation path 81 are both for a heat exchange fluid made of a metal-reinforced polyethylene pipe with a heat insulating material. The solar heat collecting plate pump 95 is provided in the middle of the upstream side of the solar heat circulation path 80 between the underground heat accumulating tropic 1 and the solar heat collecting plate 7. 1 for snow-melting between the heat exchanger 1 and the underground heat exchanger 6 It is on providing the ground heat exchanger pump 96, and that their heat exchange fluid pump 95 and 96 is placed an integrated controllable control device 90.

さらに、当該制御装置90には、地中蓄熱帯1の上部断熱層2下均しコンクリート層20a下1mの深さ(D3)、3mの深さ(D4)および5mの深さ(D5)の夫々に地中温度センサー91,91,91を設置し、地中蓄熱帯1と太陽熱集熱板7との間の太陽熱用循環路80中途適所の太陽熱集熱板用ポンプ95直後位置に熱交換流体4還元温度を検知可能とする流体温度センサー92、太陽熱集熱板7と地中蓄熱帯1との間の消雪用循環路81中途適所に熱交換流体4送液温度を検知可能とする流体温度センサー92、および、地中蓄熱帯1の何れかの蓄熱パイプ10の集・放熱用スパイラル管13,14中に熱交換流体送液温度を検知可能とする流体温度センサー92を夫々設け、地中熱交換器6を設置した舗装版5上、または、その近傍適所に降雪センサー93および路面温度センサー94を設置し、それら各センサー91,92,93,94からの検知信号を受信し、制御プログラムに従い、太陽熱集熱板用ポンプ95および地中熱交換器用ポンプ96を自動的に制御するものとしてある。     Further, the control device 90 has a depth (D3), a depth (D4) of 3 m, a depth (D4) of 3 m, and a depth (D5) of 5 m below the upper thermal insulation layer 2 of the underground storage tropics 1. Underground temperature sensors 91, 91, 91 are respectively installed, and heat exchange is performed immediately after the solar heat collecting plate pump 95 in the middle of the solar heat circulation path 80 between the underground thermal storage 1 and the solar heat collecting plate 7. Fluid temperature sensor 92 that can detect the fluid 4 reduction temperature, and the heat exchange fluid 4 liquid feed temperature can be detected at an appropriate position in the middle of the snow-melting circulation path 81 between the solar heat collecting plate 7 and the ground storage tropics 1. A fluid temperature sensor 92 and a fluid temperature sensor 92 capable of detecting the heat exchange fluid feed temperature are provided in each of the heat collection / radiation spiral tubes 13 and 14 of the heat storage pipe 10 of the underground storage tropics 1, On or near the pavement plate 5 where the underground heat exchanger 6 is installed A snowfall sensor 93 and a road surface temperature sensor 94 are installed at appropriate locations, receive detection signals from these sensors 91, 92, 93, 94, and according to a control program, a solar heat collecting plate pump 95 and a ground heat exchanger pump 96 is automatically controlled.

図2中に示すように、各太陽熱集熱板用ポンプ95および地中熱交換器用ポンプ96、および、それらを制御する制御装置90は、共に同一の機械室9内に設置したものとすることができ、広大な駐車場用などの大型の太陽熱地中蓄熱融雪システムとする場合には、同図2中に示すように、地中蓄熱帯1および地中熱交換器6を一部同様に配管してなるものを、順次配置増設してなるものとすることができ、設置予算や工期などを考慮しながら、ある程度の期間を経た後であっても、さらに、同図2中に破線で示すように、太陽熱集熱板7および太陽熱集熱板用ポンプ95などを追加し、前述したのと略同様(図2には左右対称的な配置にして表現している)のものを設置し、拡張・増設してなるものとすることができる。     As shown in FIG. 2, each solar heat collecting plate pump 95, underground heat exchanger pump 96, and control device 90 that controls them are all installed in the same machine room 9. In the case of a large-scale solar thermal underground heat storage and snow melting system, such as for a large parking lot, as shown in FIG. 2, the underground storage tropics 1 and the underground heat exchanger 6 are partially similar. Pipes can be arranged and expanded sequentially, and even after a certain period of time, taking into account the installation budget and construction period, etc. As shown in the figure, a solar heat collecting plate 7 and a solar heat collecting plate pump 95 are added, and the ones substantially the same as described above (shown in a symmetrical arrangement in FIG. 2) are installed. It can be expanded or expanded.

(実施例1の作用・効果)
以上のとおりの構成からなるこの発明の太陽熱地中蓄熱融雪システムは、図1ないし図4に示すように、複数本の蓄熱パイプ10,10,…が、潜熱蓄熱材12を充填した各蓄熱縦管11,11,……の周囲に集熱用スパイラル管13および放熱用スパイラル管14を螺旋状に捲着してなるものとしたから、構造を簡素化して低廉化することができ、しかも高い蓄熱性能を確保することができる。
(Operation / Effect of Example 1)
As shown in FIGS. 1 to 4, the solar thermal underground heat storage and snow melting system of the present invention having the above-described configuration includes a plurality of heat storage pipes 10,. Since the heat collecting spiral tube 13 and the heat radiating spiral tube 14 are spirally attached around the tubes 11, 11,..., The structure can be simplified and the cost can be reduced. Heat storage performance can be ensured.

また、図1および図5に示すように、地中蓄熱帯1は、複数本の蓄熱パイプ10,10,…間に、適宜間隔を隔てた複数本の蓄熱専用パイプ1a,1aを略等間隔となるよう埋設し、さらに、それら蓄熱パイプ10,10,…および蓄熱専用パイプ1a,1aの地上寄りとなる深さに、上部断熱層2および地中断熱壁3を設けたから、地表面近傍からの放熱を効率的に防止して、断熱性能および蓄熱性能を格段に向上したものとすることができる。     As shown in FIGS. 1 and 5, the underground storage tropics 1 includes a plurality of heat storage pipes 1 a, 1 a that are appropriately spaced between a plurality of heat storage pipes 10, 10,. Furthermore, since the upper heat insulating layer 2 and the underground heat insulating wall 3 are provided at a depth closer to the ground of the heat storage pipes 10, 10,... And the heat storage dedicated pipes 1a, 1a, the vicinity of the ground surface is provided. The heat insulation performance and the heat storage performance can be remarkably improved.

この発明の太陽熱地中蓄熱融雪システムは、図6ないし図8に示すような、この発明の制御方法によって一段と効率的に制御可能なものとしてある。
図1、図2、図5および図6に示すように、4ないし7月の夏期には、制御装置90を手動にて起動(A)すると、路面温度センサー94および地中温度センサー91,91,91の各検出値を演算処理(B)し、路面温度が地中温度よりも低い場合に、地中熱交換器用ポンプ96を停止(B1)し、路面温度が地中温度よりも高い場合に、地中熱交換器用ポンプ96を起動(B2)し、制御装置90が手動による停止(C)操作を受けるまで連続的に自動制御し、手動停止(C)を受けるとシステムを停止(D)するよう制御するものとしてあり、この制御により、夏の強い太陽熱を効率的に熱交換流体4に伝達し、地中蓄熱帯1に蓄熱し、蓄えた熱エネルギーをできるだけ放熱しないよう冬期まで保存することができるものとなる。
The solar thermal underground heat storage and snow melting system of the present invention can be controlled more efficiently by the control method of the present invention as shown in FIGS.
As shown in FIGS. 1, 2, 5 and 6, in the summer of April to July, when the control device 90 is manually activated (A), the road surface temperature sensor 94 and the underground temperature sensors 91 and 91 are activated. , 91 is calculated (B), and when the road surface temperature is lower than the underground temperature, the underground heat exchanger pump 96 is stopped (B1), and the road surface temperature is higher than the underground temperature. Then, the underground heat exchanger pump 96 is started (B2) and continuously and automatically controlled until the control device 90 receives a manual stop (C) operation. When the manual stop (C) is received, the system is stopped (D ), Which effectively transfers the strong solar heat in summer to the heat exchange fluid 4, stores it in the underground storage 1, and stores it until winter so as not to dissipate the stored thermal energy as much as possible. Will be able to do.

そして、図1、図2、図5および図7に示すように、12ないし3月の冬期には、制御装置90を手動にて起動(A)すると、降雪センサー93の各検出値を演算処理(B)し、降雪有りと判断した場合には、地中熱交換器用ポンプ96を起動(C2)し、システムを手動停止(D)するまで、一定時間(例えば、1分、5分または10分など)毎に降雪センサー93の各検出値を演算処理(B)する動作を繰り返し継続し、降雪センサー93が降雪を検知しなかった場合には、続いて、一定時間毎に受信する路面温度センサー94の検出値を演算処理(C)し、路面温度が−1℃を超えて上昇したときには、地中熱交換器用ポンプ96を停止(C1)し、再び降雪センサー93の各検出値を演算処理(B)し、路面温度が−1℃未満のときには、地中熱交換器用ポンプ96を起動(C2)し、システムを手動停止(D)するまで、一定時間毎に降雪センサー93の各検出値を演算処理(B)する動作を繰り返し継続し、システムの手動停止(D)操作を受けた場合には、システムを停止(E)するよう制御するものとしてあり、この制御により、降雪を迅速に検知し、速やかに消雪することができると共に、路面凍結も確実に防止できる上、不要な放熱を抑止することができる。     As shown in FIGS. 1, 2, 5, and 7, when the control device 90 is manually activated (A) during the winter months from December to March, each detected value of the snowfall sensor 93 is calculated. (B) If it is determined that there is snow, the underground heat exchanger pump 96 is started (C2) and the system is manually stopped (D) for a certain time (for example, 1 minute, 5 minutes or 10 minutes). The operation of calculating (B) each detection value of the snowfall sensor 93 is repeated every time, and if the snowfall sensor 93 does not detect snowfall, the road surface temperature received at regular intervals is subsequently received. The detection value of the sensor 94 is calculated (C), and when the road surface temperature rises above −1 ° C., the underground heat exchanger pump 96 is stopped (C1), and each detection value of the snowfall sensor 93 is calculated again. When processing (B) and the road surface temperature is less than -1 ° C Until the ground heat exchanger pump 96 is started (C2) and the system is manually stopped (D), and the operation of calculating (B) each detected value of the snowfall sensor 93 at regular intervals is repeated. When a manual stop (D) operation of the system is received, the system is controlled to stop (E). With this control, it is possible to quickly detect snowfall and quickly remove snow, Road surface freezing can be surely prevented and unnecessary heat radiation can be suppressed.

また、図1、図2、図5および図8に示すように、12ないし3月の冬期には、前記図7に示した制御に同時平行して次の制御も実行するものとしてあり、制御装置90を手動にて起動(A)すると、太陽熱集熱板7出口がわ消雪用循環路81の流体温度センサー92の検出値、および、地中温度センサー91,91,91または地中蓄熱帯1蓄熱パイプ10、集・放熱用スパイラル管13,14の適所に設置した流体温度センサー92の少なくとも何れか一方の検出値を演算処理(B)し、太陽熱集熱板7出口がわの熱交換流体4温度が、地中温度センサー91,91,91の温度、または、地中蓄熱帯1蓄熱パイプ10の集・放熱用スパイラル管13,14の熱交換流体4(杭内)温度よりも低い場合には、太陽熱集熱板用ポンプ95を停止(B1)し、一定時間毎に同様の演算処理(B)を繰り返し、太陽熱集熱板7出口がわの熱交換流体4温度が、地中温度センサー91,91,91の温度、または、地中蓄熱帯1蓄熱パイプ10の集・放熱用スパイラル管13,14の熱交換流体4(杭内)温度よりも高い場合には、太陽熱集熱板用ポンプ95を起動(B2)し、システムを手動停止(C)するまで、一定時間毎に同様の演算処理(B)を繰り返し、システムの手動停止(C)操作を受けた場合には、システムを停止(D)するよう制御するものとしてあり、この制御により、冬期における太陽熱を効率的に蓄熱し、一旦、蓄熱した熱エネルギーを無駄に放熱しないよう効率化することが可能となる。     In addition, as shown in FIGS. 1, 2, 5, and 8, the following control is also executed in parallel with the control shown in FIG. When the apparatus 90 is manually activated (A), the detected value of the fluid temperature sensor 92 of the solar heat collecting plate 7 outlet and the ground temperature sensor 91, 91, 91 or the underground heat storage The detection value of at least one of the fluid temperature sensor 92 installed at an appropriate position of the belt 1 heat storage pipe 10 and the collection / radiation spiral pipes 13 and 14 is processed (B), and the outlet of the solar heat collecting plate 7 is heated by The temperature of the exchange fluid 4 is lower than the temperature of the underground temperature sensors 91, 91, 91, or the temperature of the heat exchange fluid 4 (in the pile) of the spiral tubes 13, 14 for collecting / dissipating heat of the underground thermal storage 1 heat storage pipe 10. When the temperature is low, the solar heat collecting plate pump 95 is stopped (B ) And repeats the same calculation process (B) at regular intervals, so that the temperature of the heat exchange fluid 4 at the outlet of the solar heat collecting plate 7 is the temperature of the underground temperature sensors 91, 91, 91, or the underground heat storage. When the temperature is higher than the heat exchange fluid 4 (in the pile) temperature of the spiral heat collecting and radiating pipes 13 and 14 of the belt 1 heat storage pipe 10, the solar heat collecting plate pump 95 is started (B2) and the system is manually stopped. Until (C), the same calculation process (B) is repeated at regular intervals, and when a system manual stop (C) operation is received, the system is controlled to stop (D). Control makes it possible to efficiently store solar heat in winter and to improve efficiency so as not to dissipate the heat energy once stored.

(結 び)
叙述の如く、この発明の太陽熱地中蓄熱融雪システム、およびその制御方法は、その新規な構成によって所期の目的を遍く達成可能とするものであり、しかも製造も容易で、従前からの各種融雪システム技術に比較して大幅に、熱エネルギーの収集および蓄熱機能を高め、各設置設備を小型化し、設置に要する空間を省スペース化し、低廉化して遥かに経済的なものとすることができ、年間を通じ太陽熱を効率的に収集・利用可能として燃料や電力などのエネルギー消費量を格段に削減することができる上、消雪機能を一段に高めたものとすることができるから、設備の設置・維持・管理費用を大幅削減し、燃料消費量を格段に削減できるものとなり、効率的な新しい融雪システムの開発を目標とする融雪機器業界、建築業界およびエクステリア業界はもとより、広大な駐車場や運動場などの管理、維持を効率的に行いたいと希望する施設管理団体や企業を含む施設管理業界、および、連日の大雪にも体力的負担を軽減し、格段に経済的に除雪可能とする新技術の提供を希望する一般家庭においても高く評価され、広範に渡って利用、普及していくものになると予想される。
(Conclusion)
As described above, the solar thermal underground heat storage and snow melting system and the control method thereof according to the present invention can achieve the intended purpose uniformly by the novel configuration, and can be easily manufactured, and various types of snow melting from the past. Compared with system technology, it can greatly improve the collection and heat storage function of thermal energy, reduce the size of each installation facility, save the space required for installation, reduce costs, and make it much more economical. Since solar heat can be collected and used efficiently throughout the year, energy consumption such as fuel and electric power can be significantly reduced, and the snow-melting function can be further enhanced, so installation and installation of equipment Maintenance and management costs will be significantly reduced, fuel consumption will be greatly reduced, and the snow melting equipment industry, building industry and extension will aim to develop efficient new snow melting systems. In addition to the industry, the facility management industry, including facility management organizations and companies that want to efficiently manage and maintain large parking lots and playgrounds, and heavy snowfall every day, reduce the physical burden, It is also highly regarded by ordinary households who wish to provide new technology that makes snow removal much more economical, and is expected to become widely used and popularized.

1 地中蓄熱帯
10 同 蓄熱パイプ
11 同 蓄熱縦管
12 同 潜熱蓄熱材
13 同 集熱用スパイラル管
13a 同 集熱固定パイプ
14 同 放熱用スパイラル管
14a 同放熱用固定パイプ
15 同ボイド管
1a 同 蓄熱専用パイプ
2 上部断熱層
20a 同 下均しコンクリート層
20b 同 上均しコンクリート層
21 同 遮水シート
22 同 断熱ボード
3 地中断熱壁
4 熱交換流体
5 舗装版
50 同 鉄筋
51 同 硅石コンクリート層
6 地中熱交換器
60 同 金属強化ポリエチレン管
7 太陽熱集熱板
8 熱交換流体用断熱パイプ(断熱材付き金属強化ポリエチレン管)
80 同 太陽熱用循環路
81 同 消雪用循環路
9 機械室
90 同 制御装置
91 同 地中温度センサー
92 同 流体温度センサー
93 同 降雪センサー
94 同 路面温度センサー
95 同 太陽熱集熱板用ポンプ
96 同 地中熱交換器用ポンプ
1 underground storage tropical
10 Heat storage pipe
11 Heat storage vertical pipe
12 Same latent heat storage material
13 Spiral tube for heat collection
13a Heat collecting fixed pipe
14 Heat dissipation spiral tube
14a Fixed pipe for heat dissipation
15 Void tube
1a Same heat storage pipe 2 Upper heat insulation layer
20a Same leveled concrete layer
20b Same leveled concrete layer
21 Water shielding sheet
22 Insulation board 3 Underground insulation wall 4 Heat exchange fluid 5 Pavement plate
50 Rebar
51 Same meteorite concrete layer 6 Underground heat exchanger
60 Same metal reinforced polyethylene pipe 7 Solar heat collecting plate 8 Heat insulation fluid heat insulation pipe (metal reinforced polyethylene pipe with insulation)
80 The same solar thermal circuit
81 Same as snow circulation circuit 9 Machine room
90 Same control device
91 Ground temperature sensor
92 Fluid temperature sensor
93 Snowfall sensor
94 Road surface temperature sensor
95 Same Solar collector plate pump
96 Same ground heat exchanger pump

Claims (7)

潜熱蓄熱材を充填した蓄熱縦管の周囲に、熱交換流体を流通および熱交換可能な集・放熱用スパイラル管を熱伝達可能に外装してなる複数本の蓄熱パイプを、地中1ないし20m望ましくは4mの深さに達する如く、互いに適宜間隔を隔てて埋設した地中蓄熱帯を設け、同地中蓄熱帯には、天面範囲を覆う上部断熱層、および地中1ないし2mの深さとなる天面下周囲側部を包囲する地中断熱壁を垂設し、該地中蓄熱帯の上部断熱層直上舗装版、および、近隣舗装版の少なくとも何れか一方の所望融雪対象区画内にわたる舗装版肉厚上下間適所に、熱交換流体を流通および熱交換可能な地中熱交換器を敷設し、それら地中蓄熱帯および地中熱交換器の近接適所に、熱交換流体を流通および熱交換可能な太陽熱集熱板を設置すると共に、当該地中蓄熱帯と太陽熱集熱板との間、および、地中蓄熱帯と地中熱交換器との間の各放熱用循環路および集熱用循環路を、夫々熱交換流体用断熱パイプで循環可能に接続し、当該地中蓄熱帯と太陽熱集熱板との間の放熱用循環路中途適所に太陽熱集熱板用ポンプを設け、当該地中蓄熱帯と地中熱交換器との間の放熱用循環路中途適所に地中熱交換器用ポンプを設けた上、それら熱交換流体用ポンプを統合的に制御可能な制御装置を設けてなるものとしたことを特徴とする太陽熱地中蓄熱融雪システム。     Around the heat storage vertical tube filled with the latent heat storage material, a plurality of heat storage pipes, each of which has a heat-collecting and heat-dissipating spiral tube capable of circulating and exchanging heat exchange fluid so that heat can be transferred, are 1 to 20 m underground An underground storage tropics buried at an appropriate interval from each other is preferably provided so as to reach a depth of 4 m. In the underground storage tropics, an upper heat insulating layer covering the top surface range, and a depth of 1 to 2 m underground is provided. The underground heat insulating wall surrounding the lower perimeter of the top surface is suspended and extends over the desired snow melting target section of at least one of the upper thermal insulation layer of the underground storage tropics and the adjacent pavement plate. A ground heat exchanger capable of circulating and exchanging heat exchange fluid is installed at appropriate locations between the thickness of the pavement plate thickness, and the heat exchange fluid is distributed and disposed at appropriate locations in the vicinity of these underground storage and underground heat exchangers. Install a solar heat collecting plate that can exchange heat, and Each heat radiation circuit and heat collection circuit between the heat storage and the solar heat collector, and between the ground storage and the underground heat exchanger can be circulated by heat insulation fluid heat insulation pipes, respectively. And a solar heat collecting plate pump is installed in the middle of the heat radiation circuit between the ground storage tropics and the solar heat collecting plate, and heat is radiated between the ground storage tropics and the underground heat exchanger. A solar heat storage snow melting system characterized in that a ground heat exchanger pump is provided at an appropriate location in the circuit circulation path, and a control device capable of controlling the heat exchange fluid pump in an integrated manner is provided. . 地中蓄熱帯が、50cmないし25m望ましくは1mの深さの地中温度を検知可能、且つ、検知信号を制御装置に出力可能な地中温度センサーを設けてなる、請求項1記載の太陽熱地中蓄熱融雪システム。 The solar thermal earth according to claim 1 , wherein the underground storage tropics are provided with an underground temperature sensor capable of detecting an underground temperature at a depth of 50 cm to 25 m, preferably 1 m, and outputting a detection signal to the control device. Medium heat storage snow melting system. 太陽熱集熱板が、地中蓄熱帯との間の放熱用循環路および集熱用循環路の各適所に、熱交換流体の温度を検知可能、且つ、検知信号を制御装置に出力可能な流体温度センサーを設けてなる、請求項1または2何れか一項記載の太陽熱地中蓄熱融雪システム。 A fluid that can detect the temperature of the heat exchange fluid and output the detection signal to the control device at each appropriate place on the heat dissipation circuit and the heat collection circuit with the solar heat collecting plate. The solar thermal underground heat storage and snow melting system according to claim 1 , wherein a temperature sensor is provided. 地中熱交換器設置箇所の近傍に、降雪を検知可能、且つ、検知信号を制御装置に出力可能な降雪センサー、および、地中熱交換器設置箇所の路面温度を検知可能、且つ検知信号を制御装置に出力可能な路面温度センサーを設けてなる、請求項1ないし3何れか一項記載の太陽熱地中蓄熱融雪システム。 A snowfall sensor capable of detecting snowfall and outputting a detection signal to the control device in the vicinity of the underground heat exchanger installation location, and a road surface temperature of the underground heat exchanger installation location can be detected and a detection signal The solar thermal underground heat storage and snow melting system according to any one of claims 1 to 3 , further comprising a road surface temperature sensor that can output to the control device. 4月ないし7月の夏期に、制御装置の起動後、路面温度センサーの検知信号、および、地中温度センサーの検知信号を一定時間毎に受信し、路面温度センサーの検知温度が地中温度センサーの検知温度よりも高い場合に、地中熱交換器用ポンプを起動し、路面温度センサーの検知温度が地中温度センサーの検知温度と同じ場合、および、路面温度センサーの検知温度が地中温度センサーの検知温度より低い場合に、地中熱交換器用ポンプを停止するよう制御するものとしたことを特徴とする、請求項1ないし4何れか一項記載の太陽熱地中蓄熱融雪システムの制御方法。 In the summer of April or July, after the control device is started, the road surface temperature sensor detection signal and the ground temperature sensor detection signal are received at regular intervals, and the road surface temperature sensor detection temperature is the ground temperature sensor. If the detected temperature of the road surface temperature sensor is the same as the detected temperature of the underground temperature sensor, and the detected temperature of the road surface temperature sensor is the same as the detected temperature of the underground temperature sensor The control method for the solar thermal underground heat storage and snow melting system according to any one of claims 1 to 4 , wherein the control for stopping the underground heat exchanger pump is performed when the temperature is lower than the detected temperature. 12月ないし3月の冬期に、制御装置の起動後、降雪センサーの検知信号、および、路面温度センサーの検知信号を一定時間毎に受信し、降雪センサーが降雪および積雪の少なくとも一方を検知し、且つ、路面温度センサーの検知温度が氷点下の場合に、地中熱交換器用ポンプを起動し、降雪センサーが降雪および積雪を検知せず、且つ、路面温度センサーの検知温度が氷点以上の場合、地中熱交換器用ポンプを停止するよう制御するものとしたことを特徴とする、請求項1ないし4何れか一項記載の太陽熱地中蓄熱融雪システムの制御方法。 During the winter period from December to March, after starting the control device, the detection signal of the snowfall sensor and the detection signal of the road surface temperature sensor are received at regular intervals, and the snowfall sensor detects at least one of snowfall and snowfall, In addition, when the detection temperature of the road surface temperature sensor is below freezing, the underground heat exchanger pump is started, the snowfall sensor does not detect snowfall and snow accumulation, and the detection temperature of the road surface temperature sensor is above freezing point, The control method for a solar thermal underground heat storage and snow melting system according to any one of claims 1 to 4 , wherein the control for stopping the intermediate heat exchanger pump is performed. 12月ないし3月の冬期に、制御装置の起動後、太陽熱集熱板、放熱用循環路の流体温度センサーの検知信号、および、地中蓄熱帯、地中温度センサーの検知信号を一定時間毎に受信し、太陽熱集熱板、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度よりも高い場合に、太陽熱集熱板用ポンプを起動し、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度と同じ場合、および、放熱用循環路の流体温度センサーの検知温度が、地中蓄熱帯、地中温度センサーの検知温度よりも低い場合に、太陽熱集熱板用ポンプを停止するよう制御するものとしたことを特徴とする、請求項1ないし4何れか一項記載の太陽熱地中蓄熱融雪システムの制御方法。 During the winter months from December to March, after the start of the control device, the detection signal of the solar heat collecting plate, the fluid temperature sensor of the circulation circuit for heat dissipation, and the detection signal of the underground tropics and the underground temperature sensor are sent at regular intervals. When the detected temperature of the solar heat collecting plate and the fluid temperature sensor of the heat radiation circuit is higher than the detected temperature of the underground thermal storage and underground temperature sensor, the solar heat collecting plate pump is started, When the detection temperature of the fluid temperature sensor in the heat dissipation circuit is the same as the detection temperature of the underground storage sensor and the underground temperature sensor, and the detection temperature of the fluid temperature sensor in the heat dissipation circuit is The solar thermal underground heat storage and snow melting system according to any one of claims 1 to 4 , wherein the solar heat collecting plate pump is controlled to stop when the temperature is lower than a detection temperature of the intermediate temperature sensor. Control method.
JP2015135443A 2015-07-06 2015-07-06 Solar heat storage snow melting system and control method thereof. Active JP6109248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135443A JP6109248B2 (en) 2015-07-06 2015-07-06 Solar heat storage snow melting system and control method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135443A JP6109248B2 (en) 2015-07-06 2015-07-06 Solar heat storage snow melting system and control method thereof.

Publications (2)

Publication Number Publication Date
JP2017015364A JP2017015364A (en) 2017-01-19
JP6109248B2 true JP6109248B2 (en) 2017-04-05

Family

ID=57830211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135443A Active JP6109248B2 (en) 2015-07-06 2015-07-06 Solar heat storage snow melting system and control method thereof.

Country Status (1)

Country Link
JP (1) JP6109248B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6948711B2 (en) * 2018-06-19 2021-10-13 株式会社 トラストプラン Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
CN108914743B (en) * 2018-07-24 2020-07-03 哈尔滨工业大学 Operation control method of heat pipe heating and fluid heating combined road surface snow melting system
CN108800615A (en) * 2018-08-22 2018-11-13 天津城建大学 Shallow layer geothermal energy and solar energy composite exterior wall preserving temperature and reducing temperature system
CN109371779A (en) * 2018-12-17 2019-02-22 山东省交通规划设计院 Utilize the bridge floor intelligence deicing system and method for solar energy
CN109992846B (en) * 2019-03-14 2022-12-09 北京石油化工学院 Simulation method for solar cross-season buried pipe heat storage
CN110567307B (en) * 2019-09-17 2024-03-22 安徽建筑大学 Passive energy collecting, energy accumulating and energy supplying system
CN112923582A (en) * 2021-03-25 2021-06-08 中国科学院西北生态环境资源研究院 Stable anti-frost-expansion heat-collecting device and roadbed thereof
CN112923580A (en) * 2021-03-25 2021-06-08 中国科学院西北生态环境资源研究院 Self-circulation anti-freezing expansion heat-collecting device and roadbed thereof
CN112923584B (en) * 2021-03-25 2022-03-04 中国科学院西北生态环境资源研究院 Light-focusing type anti-freezing expansion heat-collecting device and roadbed thereof
CN114606825B (en) * 2022-03-09 2023-11-03 重庆市地质矿产勘查开发局南江水文地质工程地质队 Road ice and snow melting system and method for ground source heat pump of buried pipe
CN114411471B (en) * 2022-03-09 2023-03-21 西安科技大学 System and method for preventing and controlling cold region roadbed freeze injury based on microcapsule phase change energy storage
CN114877545B (en) * 2022-05-16 2022-11-29 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) Hot dry rock and solar energy coupling power generation system and use method thereof
CN115491948A (en) * 2022-10-31 2022-12-20 辽宁工程技术大学 Solar energy-soil heat storage snow melt and electricity generation control system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645443Y2 (en) * 1989-05-17 1994-11-24 鴨下 公一 Snow melting equipment
JPH05247908A (en) * 1992-03-03 1993-09-24 Kowa:Kk Snow removing equipment using underground water-bearing stratum with accumulated solar heat
JP2689400B2 (en) * 1992-03-25 1997-12-10 株式会社フジクラ Solar heat storage type road surface snow melting device
JP2004137727A (en) * 2002-10-17 2004-05-13 Hitachi Engineering & Services Co Ltd Small-scale snow melting system
JP3878932B2 (en) * 2003-09-22 2007-02-07 福井県 Underground heat storage device using group pile effect
JP2005248673A (en) * 2004-03-02 2005-09-15 Earth Resources:Kk Road heating system
JP2006071134A (en) * 2004-08-31 2006-03-16 Sekkei Kobo Flex:Kk Pile type heat exchanging device and heat storage system using the same
JP4929028B2 (en) * 2006-04-28 2012-05-09 ミサワ環境技術株式会社 Solar geothermal heat storage supply equipment
JP4530174B2 (en) * 2006-05-31 2010-08-25 鉄建建設株式会社 Thermal storage system for concrete structures
JP2008292044A (en) * 2007-05-23 2008-12-04 Sekisui Chem Co Ltd Natural heat hybrid soil thermal storage system
JP2008304141A (en) * 2007-06-08 2008-12-18 Sekisui Chem Co Ltd Heat storage snow melting system using solar heat
CN101493241A (en) * 2008-01-21 2009-07-29 于�玲 Combined thermal storage controllable multipath cycle solar heating system
WO2010080550A1 (en) * 2008-12-17 2010-07-15 Hulen Michael S Systems and methods for operating environmental equipment utilizing energy obtained from manufactured surface coverings

Also Published As

Publication number Publication date
JP2017015364A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6109248B2 (en) Solar heat storage snow melting system and control method thereof.
US10598412B2 (en) Supplemental heat transfer apparatus for geothermal systems
WO2010014910A1 (en) Geothermal heating, ventilating and cooling system
JP2008292044A (en) Natural heat hybrid soil thermal storage system
JP2007333295A (en) Heat storage system
Dawson et al. Energy harvesting from pavements
JP6327648B2 (en) Water heat snow melting device, water heat snow melting system, and control method thereof
JP2007333296A (en) Heat storage system
JP2008304141A (en) Heat storage snow melting system using solar heat
JP2008121960A (en) Direct heat utilization heating apparatus
KR20190129193A (en) System for preventing road from being frozen by using solar heat
Chen et al. High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
JP5968499B1 (en) Solar heat utilization system
US20160370016A1 (en) Wall part, heat buffer and energy exchange system
KR101457388B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
JP2001107307A (en) Snow melting antifreezer
JP3928085B2 (en) Non-watering snow melting system and method of operating the system
JP2011007434A (en) Solar heat water heater use system
GB2490125A (en) Hydronic radiant heating and cooling system comprising a phase change material
KR100584654B1 (en) Apparatus for preventing winter damage of water pipe
KR101097910B1 (en) The heat of the earth exchanger of enemy number of layers pyeong style structure
Nagai et al. Numerical simulation of snow melting using geothermal energy assisted by heat storage during seasons
JP2826279B2 (en) House with snow melting equipment using solar heat
KR101410702B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6109248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250