JP6107770B2 - Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method - Google Patents

Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method Download PDF

Info

Publication number
JP6107770B2
JP6107770B2 JP2014168116A JP2014168116A JP6107770B2 JP 6107770 B2 JP6107770 B2 JP 6107770B2 JP 2014168116 A JP2014168116 A JP 2014168116A JP 2014168116 A JP2014168116 A JP 2014168116A JP 6107770 B2 JP6107770 B2 JP 6107770B2
Authority
JP
Japan
Prior art keywords
cast slab
mold
continuous cast
friction force
frictional force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014168116A
Other languages
Japanese (ja)
Other versions
JP2016043372A (en
Inventor
智也 小田垣
智也 小田垣
則親 荒牧
則親 荒牧
三木 祐司
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014168116A priority Critical patent/JP6107770B2/en
Publication of JP2016043372A publication Critical patent/JP2016043372A/en
Application granted granted Critical
Publication of JP6107770B2 publication Critical patent/JP6107770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、連続鋳造鋳片の横割れ検知方法及び装置、該検知方法を用いた連続鋳造鋳片の製造方法及び装置に関するものである。   The present invention relates to a method and apparatus for detecting transverse cracks in a continuous cast slab, and a method and apparatus for manufacturing a continuous cast slab using the detection method.

連続鋳造で得られる鋳造鋳片には多種多様な欠陥があり、発生状況は鋳型の機種、鋼種、鋳造サイズ、及び操業条件等で異なる。
これら欠陥のうち表面縦割れ及び横割れに関しては、特に炭素を0.1〜0.18%の範囲で含有する鋼の場合に発生しやすいことが良く知られている。これは、初期凝固中にパウダーの流入不足や流入過多により局所的な抜熱の不均一が生じ、シェル厚が薄くなった部分で歪みが発生し、これが割れの芽となり、二次冷却でこの芽の部分が拡大して縦割れ及び横割れになるとされている。
Cast slabs obtained by continuous casting have a wide variety of defects, and the state of occurrence differs depending on the mold type, steel type, casting size, operating conditions, and the like.
Of these defects, it is well known that surface vertical cracks and horizontal cracks are likely to occur particularly in the case of steel containing 0.1 to 0.18% of carbon. This is due to insufficient inflow or excessive inflow of powder during the initial solidification, resulting in uneven local heat removal, and distortion occurs in the part where the shell thickness is reduced, which becomes cracked buds, and this is caused by secondary cooling. It is said that the bud part expands into vertical cracks and horizontal cracks.

鋳造鋳片の縦割れを検知する技術としては、例えば特許文献1に開示された「連続鋳造鋳片の縦割れ検知方法」がある。この特許文献1に開示されたものは、鋳造方向に複数個設置した温度測定素子による鋳型温度の測定結果から、信号のパターン処理(温度低下部が時間と共に下方に移動する現象のパターン化)により、割れの芽の発生を検知する方法である。
また、特許文献2には、鋳造鋳片の表面疵の発生を検知(予知)する技術として「連続鋳造用鋳型に、その鋳造方向及び/又は鋳型幅方向に複数の温度測定素子を設置して鋳型温度を計測し、同時に計測した溶鋼の湯面レベル、及び鋳造速度からオンラインにて伝熱、凝固計算を行い、鋳片シェル厚み及びシェル内温度分布を計算し、この値に基づき、鋳造方向及び鋳型幅方向の鋳片の変形及び応力状態を計算し、引張り応力値又は歪みが、所定値以上になったときに鋳片の表面疵の発生を検知あるいは予知することを特徴とする連続鋳造鋳片の表面疵予知方法。」が開示されている。
さらに、特許文献3には、鋳造鋳片の表面欠陥を検知する技術ではないが、鋳型と鋳造鋳片の間に生じる摩擦力を測定し、摩擦力が定常時の1.5〜2.0倍以上のときにブレークアウトの発生の危険があるとして、オッシレーションのストロークを大きくする等によりブレークアウトを防止する技術が開示されている。
As a technique for detecting a vertical crack in a cast slab, for example, there is a “longitudinal crack detection method for a continuous cast slab” disclosed in Patent Document 1. What is disclosed in this Patent Document 1 is based on the measurement result of the mold temperature by a plurality of temperature measuring elements installed in the casting direction, and by signal pattern processing (patterning of a phenomenon in which the temperature lowering portion moves downward with time). This is a method for detecting the occurrence of cracked buds.
Patent Document 2 discloses a technique for detecting (predicting) the occurrence of surface flaws in a cast slab by “installing a continuous casting mold with a plurality of temperature measuring elements in its casting direction and / or mold width direction”. The mold temperature is measured, heat transfer and solidification calculations are performed online from the molten steel surface level and casting speed measured at the same time, and the slab shell thickness and shell temperature distribution are calculated. Based on these values, the casting direction And the deformation and stress state of the slab in the mold width direction are calculated, and the occurrence of surface flaws on the slab is detected or predicted when the tensile stress value or strain exceeds a predetermined value. "A method for predicting surface defects of slabs."
Furthermore, Patent Document 3 is not a technique for detecting a surface defect of a cast slab, but when the friction force generated between the mold and the cast slab is measured and the friction force is 1.5 to 2.0 times or more of the steady state. For example, there is disclosed a technique for preventing breakout by increasing the stroke of oscillation, for example.

特開平8−117944号公報JP-A-8-117944 特開平2000−317595JP 2000-317595 A 特許2976854号Japanese Patent No. 2976854

特許文献1に開示された発明は、鋳造鋳片内の状態を知る手段として、温度測定素子の情報を利用しているため、温度測定素子が設置されていない場所での割れの発生を検知することはできない。特に、横割れは鋳造方向に対して直交する方向で発生するものであるから、鋳型内で鋳造鋳片に発生した横割れの核を温度変化として捉えることは非常に難しい。   Since the invention disclosed in Patent Document 1 uses the information of the temperature measuring element as a means for knowing the state in the cast slab, the occurrence of a crack at a place where the temperature measuring element is not installed is detected. It is not possible. In particular, since lateral cracks occur in a direction perpendicular to the casting direction, it is very difficult to capture the nucleus of the lateral cracks generated in the cast slab as a temperature change in the mold.

また、特許文献2に開示された発明も、温度測定素子による温度データを取得していることから、上記の特許文献1と同様に横割れの核を捉えるのは難しい。また、特許文献2の発明は、温度データと伝熱計算を組み合わせることで初期凝固シェル全面において割れの芽を推定しているが、鋳型内ではパウダー状態(ガラス、結晶、液体)やエアギャップ、シェルの変形などといった事象が複雑に影響しあっているため、容易に、かつ、正確に鋳造鋳片内の状態を推定することは極めて困難であり、これに基づいて横割れ発生を正確に予測するのは難しい。   Moreover, since the invention disclosed in Patent Document 2 also acquires temperature data from the temperature measuring element, it is difficult to capture the nucleus of the transverse crack as in Patent Document 1 described above. In addition, the invention of Patent Document 2 estimates crack buds on the entire surface of the initial solidified shell by combining temperature data and heat transfer calculation, but in the mold, powder state (glass, crystal, liquid), air gap, Due to complex influences such as shell deformation, it is extremely difficult to estimate the state in the cast slab easily and accurately. Based on this, it is possible to accurately predict the occurrence of transverse cracks. Difficult to do.

特許文献3の技術は、鋳型と鋳造鋳片間に生じた摩擦力が定常時よりも増加したことをブレークアウトの発生と関連付けている。このように鋳型と鋳片間の摩擦力の測定は行われていたが、摩擦力の増加と横割れ発生との関係は不明であった。   The technique of Patent Document 3 relates to the occurrence of breakout that the frictional force generated between the mold and the cast slab is increased from that in the steady state. Thus, the frictional force between the mold and the slab was measured, but the relationship between the increase in the frictional force and the occurrence of lateral cracking was unknown.

以上のように、鋳造中に横割れの発生を検知して、横割れ発生の危険がある時に何らかの対策をとり、横割れによる鋳造鋳片の品質低下を最小限に抑える方法として有効なものがないのが現状である。
本発明は係る課題を解決するためになされたものであり、横割れ発生を正確に検知すること、及びこの検知に基づいて横割れのない高品質な鋳造鋳片を製造する技術を提供することを目的としている。
As mentioned above, it is effective to detect the occurrence of transverse cracks during casting, take some measures when there is a risk of transverse cracks, and minimize the deterioration of cast slab quality due to transverse cracks. There is no current situation.
The present invention has been made in order to solve such problems, and provides a technique for accurately detecting the occurrence of transverse cracks and producing a high-quality cast slab free of transverse cracks based on this detection. It is an object.

鋳型内における凝固シェルの状態を推定する方法としては、鋳型内に設置した温度測定素子を用いるのが一般的である。
確かに、縦割れは鋳造方向に生ずる割れであり、例えば鋳型上部(メニスカスに近い部位)で鋳造鋳片に割れの核が生じた場合、これが鋳型下部の鋳造鋳片にも影響するため、温度測定素子による検知が可能である。
しかし、横割れの核の場合、鋳造方向と直交する鋳型幅方向に生ずる割れであるから、鋳造鋳片が引き抜かれるときにタイミングよく検知できない限り検知するのは難しい。
As a method for estimating the state of the solidified shell in the mold, a temperature measuring element installed in the mold is generally used.
Certainly, vertical cracks are cracks that occur in the casting direction. For example, if crack nuclei occur in the cast slab at the upper part of the mold (site close to the meniscus), this also affects the cast slab at the lower part of the mold. Detection by a measuring element is possible.
However, since the core of a transverse crack is a crack that occurs in the mold width direction orthogonal to the casting direction, it is difficult to detect unless the casting slab can be detected with good timing.

確かに、温度測定素子によって検知可能な凝固シェルの厚みの変化は横割れの発生原因として、間接的には関連している。
しかし、直接的には、鋳造鋳片に引張り応力や圧縮応力が不均一に作用し、これによってオシレーションマークの深さのばらつきや局所的な応力集中が発生して、鋳造鋳片表面の横割れの要因が生成すると考えられる。
そこで、発明者は、横割れの発生は凝固シェルの鋳造方向に発生する応力と相関があるのではないかと考え、このような応力の発生を鋳型と鋳造鋳片間の摩擦力の変化で捉えることを考えた。
本発明は以上の考えに基づくものであり、具体的には以下の構成を備えている。
Certainly, the change in thickness of the solidified shell that can be detected by the temperature measuring element is indirectly related to the cause of the occurrence of transverse cracks.
However, directly, the tensile stress and compressive stress act on the cast slab non-uniformly, which causes variations in the depth of the oscillation mark and local stress concentration, resulting in lateral movement of the cast slab surface. It is thought that a cracking factor is generated.
Therefore, the inventor thinks that the occurrence of transverse cracks has a correlation with the stress generated in the casting direction of the solidified shell, and captures the occurrence of such stress by the change in the frictional force between the mold and the cast slab. I thought.
The present invention is based on the above idea, and specifically includes the following configuration.

(1)本発明に係る連続鋳造鋳片の横割れ検知方法は、オンライン時及びオフライン時における鋳型加振時の負荷の時間離散データに基づいて鋳型と鋳造鋳片間に生じる摩擦力を算出し、算出した摩擦力の摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])が予め設定した閾値を超えた時に横割れ発生の危険があると検知することを特徴とするものである。 (1) The method for detecting transverse cracks in a continuous cast slab according to the present invention calculates the frictional force generated between the mold and the cast slab based on the time discrete data of the load when the mold is oscillated on-line and off-line. When the calculated frictional coefficient of frictional force (= standard deviation of frictional force / average value × 100 [%]) exceeds a preset threshold, it is detected that there is a risk of occurrence of lateral cracking. Is.

(2)本発明に係る連続鋳造鋳片の横割れ検知方法は、オンライン時及びオフライン時における鋳型加振時の振動変位及び負荷の時間離散データに基づいて鋳型と鋳造鋳片間に生じる摩擦力を算出し、算出した摩擦力の摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])が予め設定した閾値を超えた時に横割れ発生の危険があると検知することを特徴とするものである。 (2) The method for detecting transverse cracks in a continuous cast slab according to the present invention includes a frictional force generated between a mold and a cast slab based on vibration displacement and load time discrete data during mold excitation on-line and off-line. And detecting that there is a risk of lateral cracking when the calculated frictional force variation coefficient of frictional force (= standard deviation of frictional force / average value × 100 [%]) exceeds a preset threshold value. It is a feature.

(3)上記(1)又は(2)に記載のものにおいて、前記閾値は10%であることを特徴とするものである。 (3) In the above (1) or (2), the threshold value is 10%.

(4)本発明に係る連続鋳造鋳片の製造方法は、上記(1)、(2)又は(3)に記載の連続鋳造鋳片の横割れ検知方法を用いた連続鋳造鋳片の製造方法であって、前記横割れ検知方法によって横割れ発生の危険があると検知された場合には、前記摩擦力変動係数が上記(3)に記載の閾値以下となるように操業条件を変更して連続鋳造することを特徴とするものである。 (4) A method for producing a continuous cast slab according to the present invention is a method for producing a continuous cast slab using the method for detecting transverse cracks in a continuous cast slab described in (1), (2) or (3) above. In the case where it is detected that there is a risk of occurrence of lateral cracking by the lateral crack detection method, the operating conditions are changed so that the frictional force variation coefficient is not more than the threshold value described in (3) above. It is characterized by continuous casting.

(5)上記(4)に記載のものにおいて、前記操業条件の変更は、鋳造速度を減速すること及び/又は鋳型の振動振幅を小さくすることを特徴とするものである。 (5) In the above (4), the change of the operating condition is characterized in that the casting speed is reduced and / or the vibration amplitude of the mold is reduced.

(6)本発明に係る連続鋳造鋳片の製造方法は、上記(1)、(2)又は(3)に記載の連続鋳造鋳片の横割れ検知方法を用いた連続鋳造鋳片の製造方法であって、前記横割れ検知方法によって横割れ発生の危険があると検知された場合には、製造された連続鋳造鋳片を検品し、横割れ部を手入れすることを特徴とするものである。 (6) A method for producing a continuous cast slab according to the present invention is a method for producing a continuous cast slab using the method for detecting transverse cracks in a continuous cast slab described in (1), (2) or (3) above. And when it is detected that there is a risk of the occurrence of lateral cracking by the lateral crack detection method, the manufactured continuous cast slab is inspected and the lateral cracking part is maintained. .

(7)本発明に係る連続鋳造鋳片の横割れ検知装置は、オシレーション装置の油圧シリンダーの油圧計の情報を入力して摩擦力を演算する摩擦力演算手段と、該摩擦力演算手段の演算結果に基づいて摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])を演算する摩擦力変動係数演算手段と、該摩擦力演算手段の演算結果と予め設定した閾値とに基づいて横割れ発生の危険の有無、手入れの要否を判定する判定手段とを備えたことを特徴とするものである。 (7) A lateral crack detection device for continuous cast slabs according to the present invention includes a friction force calculation means for inputting a hydraulic gauge information of a hydraulic cylinder of an oscillation device to calculate a friction force, and a friction force calculation means Friction force fluctuation coefficient calculating means for calculating a friction force fluctuation coefficient (= standard deviation of friction force / average value × 100 [%]) based on the calculation result, a calculation result of the friction force calculating means, and a preset threshold value And determining means for determining whether or not there is a risk of occurrence of lateral cracking and whether or not care is required.

(8)本発明に係る連続鋳造鋳片の横割れ検知装置は、オシレーション装置の油圧シリンダーの油圧計の情報と鋳型の変位計の情報を入力して摩擦力を演算する摩擦力演算手段と、該摩擦力演算手段の演算結果に基づいて摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])を演算する摩擦力変動係数演算手段と、該摩擦力演算手段の演算結果と予め設定した閾値とに基づいて横割れ発生の危険の有無、手入れの要否を判定する判定手段とを備えたことを特徴とするものである。 (8) A transverse crack detection device for a continuous cast slab according to the present invention includes a friction force calculation means for calculating a friction force by inputting information on a hydraulic gauge of a hydraulic cylinder of an oscillation device and information on a displacement meter of a mold. Friction force fluctuation coefficient calculation means for calculating a friction force fluctuation coefficient (= standard deviation of friction force / average value × 100 [%]) based on the calculation result of the friction force calculation means, and calculation of the friction force calculation means It is characterized by comprising determination means for determining whether or not there is a risk of occurrence of transverse cracking based on a result and a preset threshold value, and whether or not care is required.

(9)上記(7)又は(8)に記載のものにおいて、前記閾値は10%であることを特徴とするものである。 (9) In the above (7) or (8), the threshold value is 10%.

(10)本発明に係る連続鋳造鋳片製造装置は、上記(7)、(8)又は(9)に記載の連続鋳造鋳片の横割れ検知装置を備えた連続鋳造鋳片の製造装置であって、前記判定手段によって横割れ発生の危険があると判定されたときに、摩擦力変動係数を小さくするために操業条件を変更する操業条件変更手段を有し、該操業条件変更手段は、鋳造速度を減速するようにピンチローラ制御装置を制御する及び/又は鋳型の振動振幅を小さくするように加振装置を制御することを特徴とするものである。 (10) A continuous cast slab manufacturing apparatus according to the present invention is a continuous cast slab manufacturing apparatus provided with the transverse crack detection device for a continuous cast slab according to (7), (8) or (9). Then, when it is determined by the determination means that there is a risk of occurrence of lateral cracking, it has an operation condition change means for changing the operation condition in order to reduce the frictional force variation coefficient, the operation condition change means, The pinch roller control device is controlled to reduce the casting speed and / or the vibration device is controlled to reduce the vibration amplitude of the mold.

本発明においては、オンライン時及びオフライン時における鋳型加振時の負荷の時間離散データに基づいて鋳型と鋳造鋳片間に生じる摩擦力を算出し、算出した摩擦力の摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])が予め設定した閾値を超えた時に横割れ発生の危険があると検知するようにしたので、横割れの発生を的確に検知することができ、この検知情報を基にして鋳造速度又は鋳型振動振幅等の操業条件を変更あるいは鋳造鋳片を手入れすることにより、横割れのない高品質な鋳造鋳片を製造することができる。   In the present invention, the frictional force generated between the mold and the cast slab is calculated based on the time discrete data of the load when the mold is oscillated on-line and off-line, and the frictional coefficient of friction (= friction) When the standard deviation of force / average value x 100 [%]) exceeds a preset threshold, it is detected that there is a risk of transverse cracking, so the occurrence of transverse cracking can be accurately detected, Based on this detection information, it is possible to manufacture a high-quality cast slab free from transverse cracks by changing the operating conditions such as casting speed or mold vibration amplitude or by maintaining the cast slab.

本発明の一実施の形態に関わる横割れ検知装置を設置した連続鋳造設備の説明図である。It is explanatory drawing of the continuous casting installation which installed the transverse crack detection apparatus concerning one embodiment of this invention. 課題を解決するための手段を説明する説明図であり、摩擦力変動係数と横割れ手入れ面積の関係を示すグラフである。It is explanatory drawing explaining the means for solving a subject, and is a graph which shows the relationship between a frictional force fluctuation coefficient and a lateral crack maintenance area. 本発明の一実施の形態に関わる横割れ検知装置及び操業条件変更手段を設置した連続鋳設備の説明図である。It is explanatory drawing of the continuous casting installation which installed the transverse crack detection apparatus and operation condition change means in connection with one embodiment of this invention. 本発明の実施例1を説明する説明図であり、鋳造時間と摩擦力変動係数の関係を示すグラフである。It is explanatory drawing explaining Example 1 of this invention, and is a graph which shows the relationship between casting time and a frictional force fluctuation coefficient. 本発明の実施例2を説明する説明図であり、鋳造時間と摩擦力変動係数の関係を示すグラフである。It is explanatory drawing explaining Example 2 of this invention, and is a graph which shows the relationship between casting time and a frictional force fluctuation coefficient.

[実施の形態1]
図1は本発明の一実施の形態に係る横割れ検知装置を設置した連続鋳造設備の説明図である。連続鋳造設備は、鋳型1、鋳型1から出た鋳造鋳片3をガイドするガイドローラ5、鋳造鋳片3を引き抜くピンチローラ7、ピボット9を介したレバー11の両端に鋳型1と油圧シリンダー13を配置したオシレーション装置17を備えている。
このような構成の連続鋳造設備に、以下の構成からなる横割れ検知装置19が設けられている。
連続鋳造鋳片の横割れ検知装置19は、オシレーション装置17の油圧シリンダー13の油圧計15の情報及び変位計31の情報を入力して摩擦力を演算する摩擦力演算手段21と、該摩擦力演算手段21の演算結果に基づいて摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])を演算する摩擦力変動係数演算手段23と、摩擦力変動係数演算手段23の演算結果と予め設定した閾値とに基づいて横割れ発生の有無を判定する判定手段25とを備えている。
以下、各構成をさらに詳細に説明する。
[Embodiment 1]
FIG. 1 is an explanatory diagram of a continuous casting facility in which a transverse crack detection device according to an embodiment of the present invention is installed. The continuous casting equipment includes a mold 1, a guide roller 5 for guiding the cast slab 3 coming out of the mold 1, a pinch roller 7 for extracting the cast slab 3, and a mold 1 and a hydraulic cylinder 13 at both ends of the lever 11 via the pivot 9. Is provided with an oscillation device 17.
The continuous casting equipment having such a configuration is provided with a lateral crack detection device 19 having the following configuration.
The continuous cast slab transverse crack detection device 19 includes a friction force calculation means 21 for calculating the friction force by inputting the information of the hydraulic gauge 15 of the hydraulic cylinder 13 and the information of the displacement meter 31 of the oscillation device 17, and the friction. The frictional force fluctuation coefficient calculating means 23 for calculating the frictional force fluctuation coefficient (= standard deviation of frictional force / average value × 100 [%]) based on the calculation result of the force calculating means 21, and the frictional force fluctuation coefficient calculating means 23 The determination means 25 which determines the presence or absence of a lateral crack generation based on a calculation result and the preset threshold value is provided.
Hereinafter, each configuration will be described in more detail.

<摩擦力演算手段>
摩擦力演算手段21は、油圧シリンダー13の油圧計15の情報と鋳型1の変位計31の情報を入力して摩擦力を演算する。摩擦力の演算には、以下に説明する1)又は2)の2通りの方法のいずれかを用いる。
<Friction force calculation means>
The frictional force calculating means 21 inputs the information of the hydraulic gauge 15 of the hydraulic cylinder 13 and the information of the displacement gauge 31 of the mold 1 to calculate the frictional force. For the calculation of the frictional force, either one of the two methods 1) or 2) described below is used.

1)油圧計15の情報を用いる方法
オンライン時及びオフライン時における油圧計15の情報を用いて、摩擦力を演算する方法である。ここで油圧シリンダー13の油圧計15の情報とは、油圧シリンダー13の入側の油圧を計測する入側油圧計15aの情報と、油圧シリンダー13の出側の油圧を計測する出側油圧計15bの情報である。
摩擦力演算手段21は、上記の情報を入力して、(1)式に基づいて鋳型1と鋳造鋳片3の間に生じる単位面積当たりの摩擦力Fを演算する。
F=[(P1×S1-P2×S2)-(P1’×S1-P2’×S2)]×r/[2×(d+w)×Le] ・・・ (1)
ただし、F:単位面積当たりの鋳型と鋳造鋳片間の摩擦力(N/m
S1:油圧シリンダー入側断面積(m
S2:油圧シリンダー出側断面積(m
P1:オンライン時(鋳造時)の油圧シリンダー入側油圧(Pa)
P2:オンライン時(鋳造時)の油圧シリンダー出側油圧(Pa)
P1’:オフライン時(非鋳造時)の油圧シリンダー入側油圧(Pa)
P2’:オフライン時(非鋳造時)の油圧シリンダー出側油圧(Pa)
r:レバー比(L1/L2)
但し、L1:油圧シリンダロッド軸心線からピボットまでの距離(m)
L2:鋳型厚み中心線からピボットまでの距離(m)
d:鋳造鋳片厚み(m)
w:鋳造鋳片幅(m)
Le:鋳造鋳片有効長(m)
1) Method of using information of hydraulic gauge 15 This is a method of calculating frictional force using information of the hydraulic gauge 15 when online and offline. Here, the information of the hydraulic gauge 15 of the hydraulic cylinder 13 is information of the inlet hydraulic gauge 15a that measures the hydraulic pressure on the inlet side of the hydraulic cylinder 13, and the outlet hydraulic gauge 15b that measures the hydraulic pressure on the outlet side of the hydraulic cylinder 13. Information.
The frictional force calculating means 21 inputs the above information and calculates the frictional force F per unit area generated between the mold 1 and the cast slab 3 based on the equation (1).
F = [(P1 × S1-P2 × S2)-(P1 ′ × S1-P2 ′ × S2)] × r / [2 × (d + w) × Le] (1)
F: Friction force between mold and cast slab per unit area (N / m 2 )
S1: Hydraulic cylinder entry side cross-sectional area (m 2 )
S2: Hydraulic cylinder outlet side cross-sectional area (m 2 )
P1: On-line (casting) hydraulic cylinder inlet side hydraulic pressure (Pa)
P2: Hydraulic cylinder outlet hydraulic pressure (Pa) when online (casting)
P1 ': Hydraulic cylinder inlet side hydraulic pressure (Pa) when offline (non-casting)
P2 ': Hydraulic cylinder outlet hydraulic pressure (Pa) when offline (non-casting)
r: Lever ratio (L1 / L2)
L1: Distance from hydraulic cylinder rod axis to pivot (m)
L2: Distance from mold thickness center line to pivot (m)
d: Cast slab thickness (m)
w: Cast slab width (m)
Le: Cast slab effective length (m)

上記(1)式の導出過程について説明する。
オンライン時(鋳造時)に鋳型1にかかる力は、オシレーション装置19の加振力(Wfon)、鋳型1と鋳造鋳片3の間に生じる摩擦力(Ftotal)である。
また、見かけの鋳型質量をM、鋳型1の加速度をaとすると、オンライン時の鋳型1の運動方程式は以下のようになる。
Ma=Wfon−Ftotal ・・・・ (2)
The process of deriving the above equation (1) will be described.
The force applied to the mold 1 when online (during casting) is the vibration force (Wf on ) of the oscillation device 19 and the frictional force (F total ) generated between the mold 1 and the cast slab 3.
Further, assuming that the apparent mold mass is M and the acceleration of the mold 1 is a, the equation of motion of the mold 1 when online is as follows.
Ma = Wf on −F total (2)

また、オフライン時(非鋳造時)には、Ftotal=0となり、またオフライン時のオシレーション装置19の加振力をWfoffとすると、オフライン時の鋳型1の運動方程式は下式(3)となる。
Ma=Wfoff ・・・・・ (3)
(3)式を(2)式に代入して整理すると下式(4)を得ることができる。
total=Wfon−Wfoff ・・・・・ (4)
Further, when offline (non-casting), F total = 0, and when the excitation force of the oscillation device 19 when offline is Wf off , the equation of motion of the mold 1 when offline is expressed by the following equation (3). It becomes.
Ma = Wf off (3)
Substituting the expression (3) into the expression (2) and rearranging, the following expression (4) can be obtained.
F total = Wf on -Wf off (4)

WfonおよびWfoffは、油圧シリンダー13の入側圧力P1(P1´)と出側圧力P2(P2´)を油圧計15により測定することで、それぞれ求めることができる。
fon=(P1×S1-P2×S2)×r ・・・・・ (5)
foff=(P1’×S1-P2’×S2)×r ・・・・・ (6)
(4)〜(6)式よりFtotalは下式(7)によって求まる。
total=[(P1×S1-P2×S2)-(P1’×S1-P2’×S2)]×r・・・・・ (7)
鋳型1と鋳造鋳片3の間に生じる単位面積当たりの摩擦力Fは、(7)式により求めたFtotalを鋳型1と鋳造鋳片3の接触面積で除することで算出でき、これにより(1)式が導きだされる。
F=[(P1×S1-P2×S2)-(P1’×S1-P2’×S2)]×r/[2×(d+w)×Le] ・・・ (1)
Wf on and Wf off can be obtained by measuring the inlet side pressure P1 (P1 ′) and the outlet side pressure P2 (P2 ′) of the hydraulic cylinder 13 with the hydraulic meter 15, respectively.
W fon = (P1 × S1-P2 × S2) × r (5)
W foff = (P1 ′ × S1-P2 ′ × S2) × r (6)
From the equations (4) to (6), F total is obtained by the following equation (7).
F total = [((P1 × S1-P2 × S2) − (P1 ′ × S1-P2 ′ × S2)] × r (7)
The frictional force F per unit area generated between the mold 1 and the cast slab 3 can be calculated by dividing the F total obtained by the equation (7) by the contact area between the mold 1 and the cast slab 3. Equation (1) is derived.
F = [(P1 × S1-P2 × S2) − (P1 ′ × S1-P2 ′ × S2)] × r / [2 × (d + w) × Le] (1)

2)油圧計15及び変位計31の情報を用いる方法
オンライン時及びオフライン時における油圧計15及び変位計31の情報を用いて、摩擦力を演算する方法である。ここで変位計31の情報とは、鋳型1の加振時において計測した鋳型1の振動変位の時系列データのことであり、該時系列データを時間に対して2階微分することにより得られる鋳型1の加速度aが求まる。オンライン時における変位計31の情報により求まる該加速度a及び油圧計15の情報により求まる鋳型加振力Wfonを上式(2)に代入することにより鋳型1と鋳型鋳片3の間に生じる摩擦力Ftotalを求め、これを接触面積で除する事で、単位面積あたりの摩擦力Fが得られる。
F=[(P1×S1-P2×S2)-Ma]×r/[2×(d+w)×Le] ・・・ (9)
2) Method of using information of hydraulic gauge 15 and displacement gauge 31 This is a method of calculating frictional force using information of hydraulic gauge 15 and displacement gauge 31 when online and offline. Here, the information of the displacement meter 31 is time series data of vibration displacement of the mold 1 measured when the mold 1 is vibrated, and is obtained by second-order differentiation of the time series data with respect to time. The acceleration a of the mold 1 is obtained. Friction by substituting the above equation (2) the mold excitation force Wf on which found by the acceleration a and the hydraulic total of 15 information which is obtained by the displacement gauge 31 information during online produced between the mold 1 and the mold slab 3 By obtaining the force F total and dividing this by the contact area, the friction force F per unit area is obtained.
F = [(P1 × S1-P2 × S2) −Ma] × r / [2 × (d + w) × Le] (9)

上記1)及び2)のいずれの方法において、鋳型1の見かけの質量Mは油圧シリンダー13により鋳型1を振動させる際に生じる減衰の効果を含んだものである。上記2)の方法では、上式(3)に示したオフライン時(非鋳造時)における鋳型1の運動方程式にオフライン時における変位計31の情報により求まる該加速度a及び油圧計15の情報により求まる鋳型加振力Wfoffを代入することにより求めた見かけの質量Mを用いる。 In any of the above methods 1) and 2), the apparent mass M of the mold 1 includes the effect of damping that occurs when the hydraulic cylinder 13 vibrates the mold 1. In the above method 2), the equation of motion of the mold 1 in the off-line time (non-casting) shown in the above equation (3) is obtained from the acceleration a obtained from the information in the displacement meter 31 in the off-line and the information in the hydraulic pressure meter 15. The apparent mass M obtained by substituting the mold excitation force Wf off is used.

さらに、鋳型振動1周期の間に摩擦力は周期的に変動するため、どのような方法で代表値を求めるかという問題があるが、これについては、摩擦力は鋳型振動1周期毎における振幅すなわち最大値と最小値の差を代表値とし、その代表値の集まりの中で標準偏差を求める方法をとった。   Further, since the frictional force periodically changes during one cycle of the mold vibration, there is a problem of how to obtain a representative value. The difference between the maximum value and the minimum value was used as a representative value, and a standard deviation was obtained from the collection of representative values.

<摩擦力変動係数演算手段>
摩擦力変動係数演算手段23は、摩擦力演算手段21の演算結果に基づいて摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])を演算する。
なお、摩擦力変動係数は、摩擦力の標準偏差及び平均値に基づいて算出しているため、摩擦力は時間離散データセットとして提供する必要がある。その際の離散間隔、すなわちサンプリング周期は、鋳型振動の1周期の10分の1より短い間隔でサンプリングするのが好ましい。具体的には、鋳型振動1周期は最も短いものが260ms程度であるから、サンプリング周期は20msで行うようにすればよい。
<Friction force fluctuation coefficient calculation means>
The frictional force variation coefficient calculating unit 23 calculates a frictional force variation coefficient (= standard deviation of frictional force / average value × 100 [%]) based on the calculation result of the frictional force calculating unit 21.
In addition, since the frictional force variation coefficient is calculated based on the standard deviation and average value of the frictional force, it is necessary to provide the frictional force as a time discrete data set. In this case, it is preferable to sample at a discrete interval, that is, a sampling cycle, which is shorter than 1/10 of one cycle of the mold vibration. Specifically, the shortest mold vibration period is about 260 ms, so the sampling period may be 20 ms.

ここで、鋳造鋳片3の横割れを検知するに際して、摩擦力変動係数を求める方法を用いた理由について説明する。
前述したように、横割れの発生は、凝固シェル内の鋳造方向に大きな応力が発生することと相関があると考えられ、このような応力の発生は鋳型1と鋳造鋳片3の間に生じる摩擦力の変化で捉えることができる。
発明者は、摩擦力の変化を摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])により評価し、摩擦力変動係数(%)と横割れ手入れ面積(m2)の関係を調査した。その結果を図2に示す。図2は、横軸が摩擦力変動係数(%)を示し、縦軸が横割れ手入れ面積(m2)を示している。
図2に示されるように、摩擦力変動係数と横割れ手入れ面積の間には明らかな相関がみられる。摩擦力変動係数が10%以下では横割れ手入れ面積はほぼ0(零)m2であり、摩擦力変動係数が10%を超えると横割れ手入れ面積が徐々に増加し、摩擦力変動係数が14%では横割れ手入れ面積が約1m2である。また、摩擦力変動係数が14%を超えたあたりから横割れ手入れ面積は急激に増加している。
以上のことから、摩擦力変動係数によって横割れ発生の検知が可能であり、かつ摩擦力変動係数の所定の値を閾値として横割れ発生の有無及び手入れの要否を判定することができる。
Here, the reason for using the method for obtaining the frictional force variation coefficient when detecting the lateral cracking of the cast slab 3 will be described.
As described above, the occurrence of transverse cracks is considered to have a correlation with the occurrence of a large stress in the casting direction in the solidified shell, and the occurrence of such a stress occurs between the mold 1 and the cast slab 3. It can be captured by the change in frictional force.
The inventor evaluates the change of the frictional force by the frictional force variation coefficient (= standard deviation of frictional force / average value × 100 [%]), and determines the frictional force variation coefficient (%) and the lateral crack maintenance area (m 2 ). The relationship was investigated. The result is shown in FIG. In FIG. 2, the horizontal axis represents the coefficient of frictional force variation (%), and the vertical axis represents the lateral crack maintenance area (m 2 ).
As shown in FIG. 2, there is a clear correlation between the coefficient of frictional force variation and the lateral crack maintenance area. When the frictional force variation coefficient is 10% or less, the lateral crack maintenance area is almost 0 (zero) m 2. When the frictional force variation coefficient exceeds 10%, the lateral crack maintenance area gradually increases and the frictional force variation coefficient is 14 %, The lateral cracking area is about 1 m 2 . Further, since the coefficient of frictional force variation exceeds 14%, the lateral crack maintenance area has increased rapidly.
From the above, it is possible to detect the occurrence of lateral cracking by the frictional force variation coefficient, and to determine whether or not lateral cracking has occurred and whether or not it needs to be maintained using a predetermined value of the frictional force variation coefficient as a threshold value.

<判定手段>
判定手段25は、摩擦力変動係数演算手段23の演算結果と、予め設定した閾値とに基づいて横割れ発生の有無ならびに手入れの要否を判定する。前記図2より、摩擦力変動係数が10%以下では横割れ手入れ面積はほぼ0m2、であることから、摩擦力変動係数の値10%を閾値として、10%以下では横割れ発生無し、10%超では横割れ発生有りと判定する。また、摩擦力変動係数の値が10%から14%においては横割れ手入れ面積は1m2以下であり、手入れは不要とみなされる許容範囲であると判定する。さらに、摩擦力変動係数の値が14%を超えた場合、当該部位には手入れが必要であると判定する。
<Determination means>
The determination means 25 determines the presence or absence of occurrence of lateral cracks and the necessity of maintenance based on the calculation result of the frictional force variation coefficient calculation means 23 and a preset threshold value. From FIG. 2, the lateral crack maintenance area is almost 0 m 2 when the frictional force variation coefficient is 10% or less. Therefore, no lateral cracking occurs when the frictional force variation coefficient value is 10% or less and the threshold is 10% or less. If it exceeds%, it is determined that a transverse crack has occurred. Further, when the value of the coefficient of frictional variation is 10% to 14%, the lateral crack maintenance area is 1 m 2 or less, and it is determined that the maintenance is an allowable range that is considered unnecessary. Furthermore, when the value of the frictional force variation coefficient exceeds 14%, it is determined that the part needs to be maintained.

次に、本発明の連続鋳造鋳片の横割れ検知方法を、上述した連続鋳造鋳片の横割れ検知装置19の動作と共に説明する。
摩擦力演算手段21には、オフライン時において計測した油圧シリンダー入側油圧P1’、 油圧シリンダー出側油圧P2’の値を入力しておく。
オンライン時において、入側油圧計15a及び出側油圧計15bから油圧シリンダー13の入側油圧P1及び出側油圧P2を、変位計31から鋳型1の振動変位を入力し、摩擦力演算手段21において(1)式又は(9)式に基づいて鋳型と鋳造鋳片間の摩擦力を演算する。
摩擦力変動係数演算手段23においては、摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])を演算する。
判定手段25では、摩擦力変動係数演算手段23の演算結果に基づいて、横割れの発生の有無又は手入れの要否を判定する。
例えば、摩擦力変動係数が10%以下であれば、横割れ発生の危険無しと判定し、摩擦力変動係数が10%を超えたときには、横割れ発生の危険有りと判定する。そして、横割れ発生の危険有りと判定され、摩擦力変動係数が14%以上の許容範囲を超えた場合には、鋳造鋳片における横割れ発生部位を特定して、当該部位について手入れをするようにすればよい。
Next, a method for detecting transverse cracks in a continuous cast slab according to the present invention will be described together with the operation of the above-described transverse crack detection device 19 for continuous cast slabs.
The frictional force calculating means 21 is inputted with values of the hydraulic cylinder inlet side hydraulic pressure P1 ′ and the hydraulic cylinder outlet side hydraulic pressure P2 ′ measured in the offline state.
At the time of online, the inlet side hydraulic pressure gauge 15a and the outlet side hydraulic gauge 15b input the inlet side hydraulic pressure P1 and the outlet side hydraulic pressure P2, and the vibration displacement of the mold 1 is input from the displacement gauge 31. The frictional force between the mold and the cast slab is calculated based on the formula (1) or the formula (9).
The frictional force variation coefficient calculating means 23 calculates a frictional force variation coefficient (= standard deviation of frictional force / average value × 100 [%]).
Based on the calculation result of the frictional force variation coefficient calculation unit 23, the determination unit 25 determines whether or not a lateral crack has occurred or whether or not care is required.
For example, when the frictional force variation coefficient is 10% or less, it is determined that there is no risk of lateral cracking, and when the frictional force variation coefficient exceeds 10%, it is determined that there is a risk of lateral cracking. And when it is determined that there is a risk of occurrence of lateral cracking and the coefficient of frictional force fluctuation exceeds the allowable range of 14% or more, the lateral crack occurrence part in the cast slab is identified and the part concerned is cleaned. You can do it.

以上のように、本実施の形態においては、オンライン時及びオフライン時における鋳型加振時の負荷の時間離散データに基づいて鋳型1と鋳造鋳片3の間に生じる摩擦力を算出し、算出した摩擦力から演算する摩擦力変動係数が予め設定した閾値を超えたときに横割れ発生の危険があると検知するため、この検知結果に基づいて横割れのない高品質な鋳造鋳片を製造することが可能となる。   As described above, in the present embodiment, the frictional force generated between the mold 1 and the cast slab 3 is calculated on the basis of the time discrete data of the load at the time of mold vibration in online and offline, and calculated. In order to detect that there is a risk of lateral cracking when the frictional force variation coefficient calculated from the frictional force exceeds a preset threshold, a high-quality cast slab without lateral cracking is manufactured based on this detection result. It becomes possible.

なお、上記の説明において、鋳型1と鋳造鋳片3の間に生じる摩擦力を算出する(1)式は、ピボット9を介したレバー11の両端に鋳型1と油圧シリンダー13を配置したオシレーション装置17に関するものであるが、オシレーション装置の形式はこれに特定されず、例えば、鋳型に油圧シリンダーを直結した直動タイプの油圧式振動装置であってもよい。その場合はr=1となる。   In the above description, the equation (1) for calculating the frictional force generated between the mold 1 and the cast slab 3 is an oscillation in which the mold 1 and the hydraulic cylinder 13 are arranged at both ends of the lever 11 via the pivot 9. Although it relates to the device 17, the type of the oscillation device is not limited to this, and may be, for example, a direct acting type hydraulic vibration device in which a hydraulic cylinder is directly connected to a mold. In that case, r = 1.

[実施の形態2]
本実施の形態は、実施の形態1の連続鋳造鋳片の横割れ検知装置19を用いた連続鋳造鋳片の製造装置に関するものであり、図3に示すように、実施の形態1で説明した横割れ検知装置19に加えて、操業条件変更手段27及びピンチローラ制御装置29を備えている。
以下、各構成をさらに詳細に説明する。
[Embodiment 2]
The present embodiment relates to a continuous cast slab manufacturing apparatus using the continuous cast slab transverse crack detection device 19 of the first embodiment, and has been described in the first embodiment as shown in FIG. In addition to the lateral crack detection device 19, an operation condition changing means 27 and a pinch roller control device 29 are provided.
Hereinafter, each configuration will be described in more detail.

<操業条件変更手段>
操業条件変更手段27は、判定手段によって横割れ発生の危険が有りと判定されたときに、ピンチローラ制御装置29に対して鋳造速度を低下させる旨の指示を出す。速度低下の度合いについては、予め設定しておくのが好ましい。
<Operation condition change means>
The operating condition changing means 27 gives an instruction to the pinch roller control device 29 to reduce the casting speed when it is determined by the determining means that there is a risk of occurrence of lateral cracking. The degree of speed reduction is preferably set in advance.

<ピンチローラ制御装置>
ピンチローラ制御装置29は、操業条件変更手段27からの指示に基づいてピンチローラの回転数を制御することで、引抜き速度を制御する。具体的には、操業条件変更手段27から鋳造速度低下の指示があったときに、ピンチローラ制御装置29はピンチローラの回転数を下げて鋳造鋳片の引抜き速度を低下させることにより、鋳造速度を低下させる。
<Pinch roller control device>
The pinch roller control device 29 controls the drawing speed by controlling the number of rotations of the pinch roller based on an instruction from the operation condition changing means 27. Specifically, when there is an instruction to lower the casting speed from the operating condition changing means 27, the pinch roller control device 29 lowers the number of rotations of the pinch roller to lower the drawing speed of the cast slab, thereby reducing the casting speed. Reduce.

次に、本発明の横割れ検知装置19に加えて操業条件変更手段27及びピンチローラ操業装置29を用いた連続鋳造鋳片製造方法を説明する。
連続鋳造装置のオンライン時における鋳型加振時の負荷の時間離散データに基づいて、鋳型と鋳造鋳片間の摩擦力を算出する。算出した摩擦力から演算した摩擦力変動係数が予め設定した閾値を超えた場合、操業条件変更手段27からピンチローラ制御装置29に鋳造速度を低下させる旨の指示を出す。
Next, a continuous cast slab manufacturing method using the operation condition changing means 27 and the pinch roller operation device 29 in addition to the lateral crack detection device 19 of the present invention will be described.
The frictional force between the mold and the cast slab is calculated based on the time discrete data of the load when the mold is vibrated when the continuous casting apparatus is online. When the frictional force variation coefficient calculated from the calculated frictional force exceeds a preset threshold value, the operation condition changing unit 27 instructs the pinch roller control device 29 to reduce the casting speed.

以上のように、本実施の形態においては、横割れ検知装置19を用いて得られた摩擦力変動係数に基づいて操業条件変更手段27からピンチローラ制御装置29へ指示を出してピンチローラ回転数を制御することにより、鋳造鋳片の横割れ発生を防ぎ、高品質な鋳造鋳片を製造することが可能となる。
なお、上記の説明において、操業条件の変更は、ピンチローラ制御装置19による鋳造速度の低下によって摩擦力変動係数を所定値以下になるようにしたが、摩擦力変動係数を低下させる他の方法として、鋳型振動振幅を小さくする方法がある。
As described above, in the present embodiment, the operation condition changing means 27 gives an instruction to the pinch roller control device 29 based on the frictional force variation coefficient obtained by using the transverse crack detection device 19, and the pinch roller rotation speed. By controlling the above, it is possible to prevent the occurrence of transverse cracks in the cast slab and to manufacture a high-quality cast slab.
In the above description, the operating condition is changed by setting the frictional force variation coefficient to a predetermined value or less by reducing the casting speed by the pinch roller control device 19, but as another method for reducing the frictional force variation coefficient. There is a method of reducing the mold vibration amplitude.

表1にいくつかの鋳造速度、鋳型振動振幅と摩擦力変動係数及び鋳造鋳片表面における横割れの有無の関係を示す。   Table 1 shows the relationship between several casting speeds, mold vibration amplitude and coefficient of friction variation, and the presence or absence of transverse cracks on the cast slab surface.

鋳造速度Vcを一定にし、鋳型振動振幅を変化させたケースに着目する。ケース1および2はVc=1.3m/min、ケース4および5はVc=1.6m/min、ケース7および8はVc=2.0m/min、ケース9および10はVc=2.1m/minで鋳造速度を一定にし、それぞれ鋳型振動振幅を4mmまたは7mmで鋳造したケースである。いずれも、鋳造速度が一定の場合、鋳型振動振幅を4mmで鋳造したケースに比べ7mmで鋳造したケースの方が、摩擦力変動係数が増加している。これにより、鋳型振動振幅を減ずることで、摩擦力変動係数を低減できることが実証された。
また、鋳造速度Vcを変化させ、鋳型振動振幅が一定にしたケースに着目する。ケース1、3、4、7、9、10はVcを1.3m/min〜2.1m/minの間で変化させ、鋳型振動振幅を4mmで鋳造したケースである。鋳造速度Vcが増加するにつれ、摩擦力変動係数が増加している。これにより、鋳造速度を低下させることで、摩擦力変動係数を低減できることが実証された。
次に、摩擦力変動係数の変化と鋳造鋳片の横割れの有無に着目する。ケース1〜ケース7は摩擦力変動係数が10%以下になるケースであり、鋳造鋳片表面において横割れは発生していない。しかし、ケース8〜ケース11は摩擦力変動係数が10%以上となるケースであり、鋳造鋳片表面の横割れが発生している。これにより、摩擦力変動係数を10%以下にすることで、鋳造鋳片表面の横割れ発生を抑制できることが実証された。
Pay attention to the case where the casting speed Vc is constant and the mold vibration amplitude is changed. Cases 1 and 2 have Vc = 1.3 m / min, cases 4 and 5 have Vc = 1.6 m / min, cases 7 and 8 have Vc = 2.0 m / min, cases 9 and 10 have Vc = 2.1 m / min, and casting speed The cases were cast with a mold vibration amplitude of 4 mm or 7 mm, respectively. In both cases, when the casting speed is constant, the coefficient of frictional force variation is increased in the case cast at 7 mm compared to the case cast at a mold vibration amplitude of 4 mm. As a result, it was demonstrated that the coefficient of frictional force variation can be reduced by reducing the mold vibration amplitude.
Also, focus on the case where the casting speed Vc is changed and the mold vibration amplitude is constant. Cases 1, 3, 4, 7, 9, and 10 are cases where Vc was changed between 1.3 m / min and 2.1 m / min, and the mold vibration amplitude was cast at 4 mm. As the casting speed Vc increases, the frictional force variation coefficient increases. This proved that the coefficient of frictional force variation can be reduced by reducing the casting speed.
Next, attention is paid to the change in coefficient of frictional force variation and the presence or absence of transverse cracks in the cast slab. Cases 1 to 7 are cases in which the coefficient of variation in friction force is 10% or less, and no transverse cracks are generated on the cast slab surface. However, Case 8 to Case 11 are cases in which the coefficient of frictional force variation is 10% or more, and lateral cracks occur on the cast slab surface. Thereby, it was proved that the occurrence of transverse cracks on the surface of the cast slab can be suppressed by setting the frictional force variation coefficient to 10% or less.

以上より、鋳造速度を低下及び/又は鋳型振動振幅を小さくすることで摩擦力変動係数を低減することができ、摩擦力変動係数が10%以下であった鋳造鋳片表面には横割れ発生が見られなかったことが実証された。   As described above, the frictional force variation coefficient can be reduced by reducing the casting speed and / or reducing the mold vibration amplitude, and the occurrence of transverse cracks on the cast slab surface where the frictional force variation coefficient was 10% or less. It was proved that it was not seen.

本発明の効果を確認すべく実施した確認実験の効果について説明する。実験では垂直曲げ型連続鋳造機を用いて中炭素鋼を鋳造した。鋳造鋳片の幅は2100mm、厚みは250mm、鋳造速度は2.0m/minを選択した。
実験により得られた鋳造鋳片をいくつか抜き出し、表面検品を実施することで、本発明の効果を確認した。
図4は本実験の摩擦力変動係数の時間変化を示すグラフであり、縦軸が摩擦力変動係数(1分間)[%]で、横軸が鋳造時間[min]を示している。摩擦力変動係数の算出は過去1分間の離散時間データに対して行った。鋳造時間を所定の時間で区切り、その区間毎の鋳片1〜8(図4参照)について検品することにより横割れの有無を確認した。
The effect of the confirmation experiment conducted to confirm the effect of the present invention will be described. In the experiment, medium carbon steel was cast using a vertical bending type continuous casting machine. The width of the cast slab was 2100 mm, the thickness was 250 mm, and the casting speed was 2.0 m / min.
Several cast cast pieces obtained by experiment were extracted, and surface inspection was performed to confirm the effect of the present invention.
FIG. 4 is a graph showing the change over time of the frictional force variation coefficient in this experiment. The vertical axis represents the frictional force variation coefficient (1 minute) [%], and the horizontal axis represents the casting time [min]. The calculation of the coefficient of friction variation was performed on discrete time data for the past 1 minute. The casting time was divided by a predetermined time, and the presence or absence of transverse cracks was confirmed by inspecting the cast pieces 1 to 8 (see FIG. 4) for each section.

鋳片の検品の結果を表2に示す。
Table 2 shows the result of inspection of the slab.

摩擦力変動係数が10%を超えている鋳造時間帯に製造された鋳片4、5、8においては横割れが発生していた。他方、摩擦力変動係数が10%以下の鋳片1〜3、6、7には横割れは発生していなかった。このことより、摩擦力変動係数が10%超えた鋳造鋳片のみを検品・手入れの対象とすればよいことがわかる。また、実際に手入れをするか否かは、摩擦力変動係数の閾値を予め決めておいて、該閾値を超えた鋳造鋳片のみを検品・手入れするようにすればよい。   In the slabs 4, 5, and 8 manufactured in the casting time zone in which the frictional force variation coefficient exceeds 10%, transverse cracks occurred. On the other hand, transverse cracks did not occur in slabs 1 to 3, 6, and 7 having a coefficient of friction variation of 10% or less. From this, it can be seen that only the cast slab whose frictional force variation coefficient exceeds 10% should be subject to inspection and maintenance. Whether or not to actually perform the maintenance may be determined by preliminarily determining a threshold value of the frictional force variation coefficient, and inspecting and maintaining only cast slabs exceeding the threshold value.

次に、図4に示すように、鋳造工程において摩擦力変動係数が10%を超えることを予想された(摩擦力変動係数が9%を超えた)ので、図5に示すように鋳造速度を2.0m/minから1.6m/minに減速したところ、摩擦力変動係数は減少した。鋳片の検品の結果を表3に示す。減速前後の鋳片の検品を行ったところ、横割れは発生していなかった。
Next, as shown in FIG. 4, it was predicted that the frictional force variation coefficient exceeded 10% in the casting process (the frictional force variation coefficient exceeded 9%). When decelerating from 2.0 m / min to 1.6 m / min, the coefficient of friction force variation decreased. Table 3 shows the result of inspection of the slab. When the slabs were inspected before and after deceleration, no transverse cracks occurred.

以上のように、鋳造中に鋳型と鋳造鋳片間に生じる摩擦力を算出し、摩擦力変動係数が10%を超え、横割れが発生すると検知された時に操業条件変更手段及びピンチローラ制御手段を用いて鋳造速度を低下させる等、鋳造の操業条件を変更することで、横割れの無い高品質な鋳造鋳片を製造できることが確認された。   As described above, the frictional force generated between the mold and the cast slab during casting is calculated, and when it is detected that the coefficient of variation of frictional force exceeds 10% and a lateral crack occurs, the operating condition changing means and the pinch roller control means It was confirmed that high-quality cast slabs without transverse cracks can be produced by changing the operating conditions of casting, such as reducing the casting speed with the use of.

1 鋳型
3 鋳造鋳片
5 ガイドローラ
7 ピンチローラ
9 ピボット
11 レバー
13 油圧シリンダー
15 油圧計
15a 入側油圧計
15b 出側油圧計
17 オシレーション装置
19 横割れ検知装置
21 摩擦力演算手段
23 摩擦力変動係数演算手段
25 判定手段
27 操業条件変更手段
29 ピンチコントローラ制御装置
31 変位計
DESCRIPTION OF SYMBOLS 1 Mold 3 Cast slab 5 Guide roller 7 Pinch roller 9 Pivot 11 Lever 13 Hydraulic cylinder 15 Hydraulic meter 15a Inlet side hydraulic meter 15b Outlet side hydraulic meter 17 Oscillation device 19 Lateral crack detection device 21 Friction force calculation means 23 Friction force fluctuation 23 Coefficient computing means 25 Judging means 27 Operating condition changing means 29 Pinch controller control device 31 Displacement meter

Claims (10)

オンライン時及びオフライン時における鋳型加振時の負荷の時間離散データに基づいて鋳型と鋳造鋳片間に生じる摩擦力を算出し、算出した摩擦力の摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])が予め設定した閾値を超えた時に横割れ発生の危険があると検知することを特徴とする連続鋳造鋳片の横割れ検知方法。   Calculate the friction force generated between the mold and the cast slab based on the time discrete data of the load when the mold is oscillated on-line and off-line, and calculate the coefficient of friction of the calculated friction force (= standard deviation of friction force / A method for detecting a transverse crack in a continuous cast slab, wherein it is detected that there is a risk of occurrence of a transverse crack when the average value × 100 [%]) exceeds a preset threshold value. オンライン時及びオフライン時における鋳型加振時の振動変位及び負荷の時間離散データに基づいて鋳型と鋳造鋳片間に生じる摩擦力を算出し、算出した摩擦力の摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])が予め設定した閾値を超えた時に横割れ発生の危険があると検知することを特徴とする連続鋳造鋳片の横割れ検知方法。   The frictional force generated between the mold and the cast slab is calculated based on the time-dependent discrete data of vibration displacement and load when the mold is oscillated on-line and off-line. A method for detecting transverse cracks in a continuous cast slab, wherein it is detected that there is a risk of occurrence of transverse cracks when standard deviation / average value × 100 [%]) exceeds a preset threshold value. 前記閾値は10%であることを特徴とする請求項1又は2記載の連続鋳造鋳片の横割れ検知方法。   The said threshold value is 10%, The transverse crack detection method of the continuous cast slab of Claim 1 or 2 characterized by the above-mentioned. 請求項1、2又は3に記載の連続鋳造鋳片の横割れ検知方法を用いた連続鋳造鋳片の製造方法であって、
前記横割れ検知方法によって横割れ発生の危険があると検知された場合には、前記摩擦力変動係数が前記閾値以下となるように操業条件を変更して連続鋳造することを特徴とする連続鋳造鋳片の製造方法。
A method for producing a continuous cast slab using the method for detecting transverse cracks in a continuous cast slab according to claim 1, 2 or 3,
Continuous casting, characterized in that when it is detected that there is a risk of lateral cracking by the lateral crack detection method, continuous casting is performed by changing operating conditions so that the coefficient of friction variation is equal to or less than the threshold value. A method for producing a slab.
前記操業条件の変更は、鋳造速度を減速すること及び/又は鋳型の振動振幅を小さくすることを特徴とする請求項4記載の連続鋳造鋳片の製造方法。   5. The method for producing a continuous cast slab according to claim 4, wherein the change of the operating condition is to reduce a casting speed and / or to reduce a vibration amplitude of a mold. 請求項1、2又は3に記載の連続鋳造鋳片の横割れ検知方法を用いた連続鋳造鋳片の製造方法であって、
前記横割れ検知方法によって横割れ発生の危険があると検知された場合には、製造された連続鋳造鋳片を検品し、横割れ部を手入れすることを特徴とする連続鋳造鋳片の製造方法。
A method for producing a continuous cast slab using the method for detecting transverse cracks in a continuous cast slab according to claim 1, 2 or 3,
When it is detected by the transverse crack detection method that there is a risk of occurrence of transverse cracks, the produced continuous cast slab is inspected and the transverse crack part is maintained, .
オシレーション装置の油圧シリンダーの油圧計の情報を入力して摩擦力を演算する摩擦力演算手段と、該摩擦力演算手段の演算結果に基づいて摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])を演算する摩擦力変動係数演算手段と、該摩擦力演算手段の演算結果と予め設定した閾値とに基づいて横割れ発生の危険の有無、手入れの要否を判定する判定手段とを備えたことを特徴とする連続鋳造鋳片の横割れ検知装置。   Friction force calculation means for calculating the friction force by inputting information from the hydraulic cylinder of the hydraulic cylinder of the oscillation device, and friction coefficient variation coefficient (= standard deviation of friction force / average) based on the calculation result of the friction force calculation means Value × 100 [%]), and the presence / absence of the risk of occurrence of lateral cracks and the necessity of maintenance are determined based on the calculation result of the friction force calculation means and a preset threshold value. A lateral crack detection device for a continuous cast slab, comprising: a determination unit. オシレーション装置の油圧シリンダーの油圧計の情報と鋳型の変位計の情報を入力して摩擦力を演算する摩擦力演算手段と、該摩擦力演算手段の演算結果に基づいて摩擦力変動係数(=摩擦力の標準偏差/平均値×100[%])を演算する摩擦力変動係数演算手段と、該摩擦力演算手段の演算結果と予め設定した閾値とに基づいて横割れ発生の危険の有無、手入れの要否を判定する判定手段とを備えたことを特徴とする連続鋳造鋳片の横割れ検知装置。   Friction force calculation means for calculating the friction force by inputting information on the hydraulic gauge of the hydraulic cylinder of the oscillation device and information on the displacement meter of the mold, and a friction force variation coefficient (=) based on the calculation result of the friction force calculation means Friction force fluctuation coefficient calculation means for calculating friction force standard deviation / average value × 100 [%]), and presence / absence of risk of lateral cracking based on the calculation result of the friction force calculation means and a preset threshold value, A lateral crack detection device for a continuous cast slab, comprising: a determination unit that determines whether maintenance is necessary. 前記閾値は10%であることを特徴とする請求項7又は8記載の連続鋳造鋳片の横割れ検知装置。   The said threshold value is 10%, The transverse crack detection apparatus of the continuous cast slab of Claim 7 or 8 characterized by the above-mentioned. 請求項7、8又は9に記載の連続鋳造鋳片の横割れ検知装置を備えた連続鋳造鋳片の製造装置であって、
前記判定手段によって横割れ発生の危険があると判定されたときに、摩擦力変動係数を小さくするために操業条件を変更する操業条件変更手段を有し、
該操業条件変更手段は、鋳造速度を減速するようにピンチローラ制御装置を制御する及び/又は鋳型の振動振幅を小さくするように加振装置を制御することを特徴とする連続鋳造鋳片の製造装置。
An apparatus for producing a continuous cast slab comprising the transverse crack detection device for a continuous cast slab according to claim 7, 8 or 9,
When it is determined by the determination means that there is a risk of occurrence of lateral cracks, the operation condition change means for changing the operation condition to reduce the coefficient of frictional force variation,
The operation condition changing means controls the pinch roller control device so as to reduce the casting speed and / or controls the vibration device so as to reduce the vibration amplitude of the mold. apparatus.
JP2014168116A 2014-08-21 2014-08-21 Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method Active JP6107770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168116A JP6107770B2 (en) 2014-08-21 2014-08-21 Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014168116A JP6107770B2 (en) 2014-08-21 2014-08-21 Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method

Publications (2)

Publication Number Publication Date
JP2016043372A JP2016043372A (en) 2016-04-04
JP6107770B2 true JP6107770B2 (en) 2017-04-05

Family

ID=55634478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168116A Active JP6107770B2 (en) 2014-08-21 2014-08-21 Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method

Country Status (1)

Country Link
JP (1) JP6107770B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021811B2 (en) * 1980-03-19 1985-05-29 新日本製鐵株式会社 Method for controlling lubrication between mold and slab in continuous casting
JPH0663716A (en) * 1992-08-20 1994-03-08 Aichi Steel Works Ltd Device for monitoring friction force between mold for continuous casting and cast slab
JP2976854B2 (en) * 1995-07-06 1999-11-10 住友金属工業株式会社 Continuous casting method
JPH09308951A (en) * 1996-05-20 1997-12-02 Shinagawa Refract Co Ltd Mold powder for continuously casting steel
JP2000033466A (en) * 1998-07-15 2000-02-02 Sumitomo Metal Ind Ltd Method for predicting breakout in continuous casting
JP2003080357A (en) * 2001-09-11 2003-03-18 Kawasaki Steel Corp Method for detecting surface flaw in continuous casting

Also Published As

Publication number Publication date
JP2016043372A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
Thomas On-line detection of quality problems in continuous casting of steel
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP4802718B2 (en) Method for predicting surface defect occurrence risk region in continuous cast slab and method for producing continuous cast slab
JP6107770B2 (en) Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method
JP4112783B2 (en) Breakout detection method in continuous casting equipment
JP6859919B2 (en) Breakout prediction method
Ozgu Continuous caster instrumentation: State-of-the-art review
JP2007245168A (en) Method and apparatus for detecting completion of solidification in continuous casting, and method and apparatus for continuous casting
JP5867703B2 (en) Prediction method of constraining breakout of cast slab in continuous casting and continuous casting method of slab using the prediction method
JP2012152764A (en) Method for evaluating secondary cooling strength and controlling method in continuous cast
Xu et al. Molten steel breakout prediction based on thermal friction measurement
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
JP5707844B2 (en) Breakout detection method and apparatus in continuous casting
JP6119807B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
JP6277980B2 (en) Continuous casting method of steel using frictional force estimation method
JP5652362B2 (en) Steel continuous casting method
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
JP6787235B2 (en) Continuous steel casting method
KR101505158B1 (en) Continuous casting method
JP5071025B2 (en) Method for evaluating high temperature embrittlement of continuous cast slab and continuous casting method of steel
JP5413054B2 (en) Method and apparatus for determining surface maintenance of slab during continuous casting
JP2005205462A (en) Method for preventing longitudinal crack on continuously cast piece
JP5742692B2 (en) Breakout detection method in continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6107770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250