JP6104200B2 - Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device - Google Patents

Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device Download PDF

Info

Publication number
JP6104200B2
JP6104200B2 JP2014049868A JP2014049868A JP6104200B2 JP 6104200 B2 JP6104200 B2 JP 6104200B2 JP 2014049868 A JP2014049868 A JP 2014049868A JP 2014049868 A JP2014049868 A JP 2014049868A JP 6104200 B2 JP6104200 B2 JP 6104200B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
rolled
clad laminate
rolled copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014049868A
Other languages
Japanese (ja)
Other versions
JP2015175005A (en
Inventor
和樹 冠
和樹 冠
一貴 青島
一貴 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014049868A priority Critical patent/JP6104200B2/en
Publication of JP2015175005A publication Critical patent/JP2015175005A/en
Application granted granted Critical
Publication of JP6104200B2 publication Critical patent/JP6104200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、FPC(フレキシブルプリント基板)等に好適に用いられる圧延銅箔、銅張積層板、並びにフレキシブルプリント基板及び電子機器に関する。   The present invention relates to a rolled copper foil, a copper-clad laminate, a flexible printed board, and an electronic device that are suitably used for FPC (flexible printed board) and the like.

電子機器の可動部や空間的制約がある部分への配線を行う方法として、FPC(フレキシブルプリント基板)が用いられている。FPCとしては銅箔と樹脂層とを積層してなる銅張積層板が用いられている。
FPCは機器内で折り曲げて使用されるが、機器の小型化と共にFPCの折り曲げ半径が小さくなってきており、FPCの折り曲げ性の向上が求められている。又、今後はウェアラブル端末が普及すると考えられ、FPCには疲労特性の向上も求められる。さらに、FPCの配線の微細化に伴い、回路を形成する際の銅箔のエッチング性も要求されている。
ところで、FPCは銅箔が再結晶した状態で使用されるのが一般的である。銅箔を圧延加工すると結晶が回転し、圧延集合組織が形成される。そして、圧延銅箔を圧延後に焼鈍したり、最終製品に加工されるまでの工程、つまりFPCになるまでの工程で熱が加えられると再結晶する。この圧延銅箔となった後の再結晶組織を、以下では単に「再結晶組織」と称し、熱がかかる前の圧延組織を単に「圧延組織」と称する。なお、再結晶組織は圧延組織によって大きく左右され、圧延組織を制御することで再結晶組織も制御することができる。
このようなことから、圧延銅箔の再結晶組織としてCube方位である(200)面({100})を発達させ、屈曲性を向上させる技術が提案されている(例えば、特許文献1)。
An FPC (flexible printed circuit board) is used as a method of wiring to a movable part of an electronic device or a part with spatial restrictions. As the FPC, a copper clad laminate formed by laminating a copper foil and a resin layer is used.
FPCs are used by being folded in equipment, but with the miniaturization of equipment, the bending radius of FPC is becoming smaller, and there is a demand for improved FPC folding performance. In addition, wearable terminals are expected to become popular in the future, and FPC is also required to improve fatigue characteristics. Furthermore, with the miniaturization of FPC wiring, the etching property of copper foil when forming a circuit is also required.
By the way, FPC is generally used in a state where a copper foil is recrystallized. When the copper foil is rolled, the crystals rotate and a rolling texture is formed. And it recrystallizes when heat is applied in the process until it anneals after rolling a rolled copper foil, or is processed into a final product, ie, the process until it becomes FPC. The recrystallized structure after forming the rolled copper foil is hereinafter simply referred to as “recrystallized structure”, and the rolled structure before being heated is simply referred to as “rolled structure”. The recrystallized structure greatly depends on the rolled structure, and the recrystallized structure can also be controlled by controlling the rolled structure.
For this reason, a technique has been proposed in which the (200) plane ({100}), which is the Cube orientation, is developed as the recrystallized structure of the rolled copper foil and the flexibility is improved (for example, Patent Document 1).

特開平11−286760号公報Japanese Patent Laid-Open No. 11-286760

しかしながら、銅箔のCube方位が発達し過ぎるとエッチング性が低下するという問題がある。これは、Cube集合組織が発達したとしても単結晶ではなく、Cube方位の大きな結晶粒の中に他の方位の小さな結晶粒が存在する混粒状態となっており、各方位の粒でエッチング速度が変化するためと考えられる。特に、回路のL/S幅が狭くなる(ファインピッチ)ほど、エッチング性が問題となる。又、Cube方位が発達し過ぎると、銅箔が柔らかくなり過ぎ、ハンドリング性に劣ることがある。
そこで、Cube方位を発達させないで屈曲性を向上させる技術が要望されている。なお、Cube方位は純銅系の再結晶集合方位である。
However, when the Cube orientation of the copper foil is developed too much, there is a problem that the etching property is lowered. This is not a single crystal even if the Cube texture develops, but it is a mixed grain state in which grains with large Cube orientation have small grains with other orientations. Is considered to change. Particularly, as the L / S width of the circuit becomes narrower (fine pitch), the etching property becomes a problem. If the Cube orientation is developed too much, the copper foil becomes too soft and the handling property may be inferior.
Therefore, there is a demand for a technique for improving flexibility without developing the Cube orientation. The Cube orientation is a pure copper-based recrystallization assembly orientation.

従って、本発明の目的は、エッチング性と屈曲性に共に優れた圧延銅箔、銅張積層板、並びにフレキシブルプリント基板及び電子機器を提供することにある。   Accordingly, an object of the present invention is to provide a rolled copper foil, a copper-clad laminate, a flexible printed board, and an electronic device that are excellent in both etching property and flexibility.

本発明者らは、Cube方位を発達させないで屈曲性を向上させる方法として、圧延銅箔の{102}に着目した。板面に{102}を発達させると、Cube方位が発達していない従来の電解銅箔と同等のエッチング性を確保しつつ、屈曲性及び折り曲げ性も向上させることができる。{102}が屈曲性及び折り曲げ性を向上させる理由としては、Cube方位ほどでは無いがヤング率の低い方位であるためと考えられる。なお、{100}とは、(100)面又は(100)方位を意味する。
すなわち、本発明の圧延銅箔は、質量率で99.9%以上の銅を含み、350℃×1秒、及び350℃×20分うち、いずれか1つの条件で熱処理を行った後、表面が{102}から10度以内の角度差にある結晶粒の割合が1%以上50%以下である。
The present inventors paid attention to {102} of rolled copper foil as a method for improving flexibility without developing the Cube orientation. When {102} is developed on the plate surface, the bendability and the bendability can be improved while securing the same etching property as that of the conventional electrolytic copper foil in which the Cube orientation is not developed. The reason why {102} improves bendability and bendability is thought to be because it is an orientation with a low Young's modulus, although not as much as the Cube orientation. Note that {100} means the (100) plane or the (100) orientation.
That is, the rolled copper foil of the present invention comprises 99.9% copper by mass ratio, 350 ° C. × 1 sec, and out of 350 ° C. × 20 minutes, subjected to heat setting at any one condition, The ratio of crystal grains whose surface has an angle difference within 10 degrees from {102} is 1% or more and 50% or less.

本発明の圧延銅箔は、Ag、Sn、Zn、Ni、Ti、及びZrの群から選ばれる1種又は2種以上を合計で10〜300質量ppm含有し、残部Cuおよび不可避的不純物からなることが好ましい。   The rolled copper foil of the present invention contains 10 to 300 mass ppm in total of one or more selected from the group consisting of Ag, Sn, Zn, Ni, Ti, and Zr, and consists of the balance Cu and inevitable impurities. It is preferable.

本発明の銅張積層板は、前記圧延銅箔を、樹脂層の両面又は片面に積層してなり、少なくとも一方の前記圧延銅箔において、表面が{102}から10度以内の角度差にある結晶粒の割合が1%以上50%以下である。   The copper-clad laminate of the present invention is formed by laminating the rolled copper foil on both sides or one side of a resin layer, and at least one of the rolled copper foils has an angle difference within 10 degrees from {102}. The proportion of crystal grains is 1% or more and 50% or less.

本発明のフレキシブルプリント基板は、前記銅張積層板を用い、前記圧延銅箔に回路を形成してなる。   The flexible printed board of the present invention is formed by forming a circuit on the rolled copper foil using the copper-clad laminate.

本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。   The electronic device of the present invention uses the flexible printed circuit board.

本発明によれば、エッチング性と屈曲性に共に優れた圧延銅箔を得ることができる。   According to the present invention, it is possible to obtain a rolled copper foil excellent in both etching property and flexibility.

180°密着曲げの試験方法を示す図である。It is a figure which shows the test method of 180 degree contact | adherence bending. 屈曲試験方法を示す図である。It is a figure which shows a bending test method.

以下、本発明の実施形態に係る圧延銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。本発明の実施形態に係る圧延銅箔は、樹脂と積層されて銅張積層板とされた後にエッチングにより回路部分以外を除去してFPCとする用途に有用である。   Hereinafter, the rolled copper foil which concerns on embodiment of this invention is demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified. The rolled copper foil which concerns on embodiment of this invention is useful for the use which removes except a circuit part by an etching after laminating | stacking with resin and making it a copper clad laminated board, and making it FPC.

<組成>
圧延銅箔は質量率で99.9%以上の銅を含む。このような組成としては、JIS-H3510(C1011)またはJIS- H3100 (C1020)に規格される無酸素銅、JIS-H3100(C1100)に規格されるタフピッチ銅、又はJIS- H3100 (C1201及びC1220)に規格されるリン脱酸銅が挙げられる。なお、銅に含まれる酸素含有量の上限は特に限定はされないが、一般的には500質量ppm以下、さらに一般的には320質量ppm以下である。
さらに、Ag、Sn、Zn、Ni、Ti、及びZrの群から選ばれる1種又は2種以上の元素を合計で10〜300質量ppm含有してもよい。{102}を発達させるには、圧延銅箔の中間焼鈍(最終冷間圧延前の焼鈍)で{112}を発達させる必要があるが、これらの元素を添加すると、中間焼鈍で{112}を発達させるための条件範囲が広がり、より確実に{102}を発達させることができると共に、製造が容易になる。上記元素の合計量が10質量ppm未満であると、中間焼鈍で{112}を発達させる効果が少なく、300質量ppmを超えると導電率が低下するとともに再結晶温度が上昇し、最終圧延後の焼鈍において銅箔の表面酸化を抑えつつ再結晶させることが困難になる場合がある。
<Composition>
The rolled copper foil contains 99.9% or more of copper by mass ratio. As such a composition, oxygen-free copper standardized by JIS-H3510 (C1011) or JIS-H3100 (C1020), tough pitch copper standardized by JIS-H3100 (C1100), or JIS-H3100 (C1201 and C1220) Phosphorus-deoxidized copper specified in the above. The upper limit of the oxygen content contained in copper is not particularly limited, but is generally 500 ppm by mass or less, and more generally 320 ppm by mass or less.
Furthermore, you may contain 10-300 mass ppm in total of 1 type, or 2 or more types of elements chosen from the group of Ag, Sn, Zn, Ni, Ti, and Zr. In order to develop {102}, it is necessary to develop {112} by intermediate annealing of the rolled copper foil (annealing before final cold rolling). However, when these elements are added, {112} The range of conditions for development is widened, {102} can be developed more reliably, and manufacturing is facilitated. If the total amount of the above elements is less than 10 ppm by mass, there is little effect of developing {112} by intermediate annealing, and if it exceeds 300 ppm by mass, the conductivity decreases and the recrystallization temperature increases, In annealing, it may be difficult to recrystallize while suppressing surface oxidation of the copper foil.

<厚み>
銅箔の厚みは、4〜100μmであることが好ましく、5〜70μmであることがさらに好ましい。厚みが4μm未満であると銅箔のハンドリング性が劣る場合があり、厚みが100μmを超えると銅箔の屈曲性が劣る場合がある。
<Thickness>
The thickness of the copper foil is preferably 4 to 100 μm, and more preferably 5 to 70 μm. When the thickness is less than 4 μm, the handleability of the copper foil may be inferior, and when the thickness exceeds 100 μm, the flexibility of the copper foil may be inferior.

<銅箔表面の{102}>
350℃×1秒、及び350℃×20分うち、いずれか1つの条件で熱処理を行った後、圧延銅箔の表面が{102}から10度以内の角度差にある結晶粒の割合が1%以上50%以下である。なお、圧延銅箔の「表面」とは、最表面を電解研磨で0.5〜2μm研磨した後の表面をいう。
ここで、エッチング(特にソフトエッチング)は、銅箔表面の結晶粒の面方位に影響される。又、屈曲性及び折り曲げ性も、銅箔表面に最も大きなひずみが加わって生じる。このようなことから、銅箔表面(圧延面)の{102}の発達度合を規定する。但し、銅箔表面に酸化層、防錆層等が存在し、これらを取り除く必要がある場合は除去後の表面を銅箔表面とみなす。一般に銅箔表面を厚さ1μm以下取り除けば、面方位を測定でき、除去前後で方位に差はないと考えられる。
又、{102}から10度以内の角度差にある結晶粒は、{102}近傍の面方位とみなすことができるので、このように規定する。{102}からの角度差が10度を超えると、{102}との差が大きくなる。
<{102} on the surface of the copper foil>
350 ° C. × 1 sec, and out of 350 ° C. × 20 minutes, subjected to heat setting at any one condition, crystal grains ratio of the surface is in an angular difference within 10 degrees from the {102} of the rolled copper foil 1% or more and 50% or less. The “surface” of the rolled copper foil refers to the surface after the outermost surface is polished by 0.5 to 2 μm by electrolytic polishing.
Here, etching (especially soft etching) is influenced by the plane orientation of crystal grains on the surface of the copper foil. Further, the bendability and the bendability are also caused by the largest strain applied to the copper foil surface. Therefore, the degree of {102} development on the copper foil surface (rolled surface) is specified. However, when an oxide layer, a rust prevention layer, etc. exist in the copper foil surface and it is necessary to remove these, the surface after removal is considered as the copper foil surface. Generally, the surface orientation can be measured by removing the copper foil surface with a thickness of 1 μm or less, and it is considered that there is no difference in orientation before and after the removal.
Further, a crystal grain having an angle difference within 10 degrees from {102} can be regarded as a plane orientation in the vicinity of {102}, and is thus defined. When the angle difference from {102} exceeds 10 degrees, the difference from {102} increases.

又、圧延銅箔は通常、「圧延組織」の状態で出荷され、銅張積層板を製造する際、樹脂層との張り合わせ時に再結晶して再結晶集合組織を形成する。従って、銅張積層板の屈曲性、折り曲げ性、エッチング性を評価するためには、圧延銅箔の「再結晶組織」を対象とする必要がある。一方で再結晶組織は、圧延組織だけでは決まらず、再結晶する際の温度条件によって大きく変化する。
そこで、銅張積層板の代表的な製法において圧延銅箔が受ける熱履歴を、350℃×1秒、350℃×20分又は200℃×30分のいずれかで模擬的に再現し、銅張積層板中で再結晶した銅箔の状態を表すものとする。
従って、熱処理自体は3つの条件のうち、いずれか1つのみを行うのであって、350℃×1秒の熱処理を行った後、同じ試料について2回目に350℃×20分の熱処理を行うことはない。但し、例えば、350℃×1秒の熱処理を行ったとき、及び350℃×20分の熱処理を行ったときに共に、上記結晶粒の割合が1%以上50%以下になってもよい。
In addition, the rolled copper foil is usually shipped in a “rolled structure” state, and when a copper-clad laminate is manufactured, it is recrystallized at the time of bonding with the resin layer to form a recrystallized texture. Therefore, in order to evaluate the bendability, bendability, and etchability of the copper clad laminate, it is necessary to target the “recrystallized structure” of the rolled copper foil. On the other hand, the recrystallized structure is not determined only by the rolled structure, but greatly changes depending on the temperature conditions during recrystallization.
Therefore, the thermal history received by the rolled copper foil in a typical method for producing a copper-clad laminate is simulated at 350 ° C. × 1 second, 350 ° C. × 20 minutes, or 200 ° C. × 30 minutes. It shall represent the state of the copper foil recrystallized in the laminate.
Therefore, the heat treatment itself is performed only in any one of the three conditions, and after performing the heat treatment at 350 ° C. × 1 second, the heat treatment is performed on the same sample for the second time at 350 ° C. × 20 minutes. There is no. However, for example, when the heat treatment is performed at 350 ° C. × 1 second and when the heat treatment is performed at 350 ° C. × 20 minutes, the ratio of the crystal grains may be 1% or more and 50% or less.

そして、銅箔表面の面方位が{102}から10度以内の角度差にある結晶粒の割合が1%以上であれば、{102}が発達し、銅張積層板の屈曲性及び折り曲げ性が向上する。一方、上記結晶粒の割合を50%より多くすることは工業的に困難である。   If the ratio of crystal grains whose surface orientation on the surface of the copper foil is within 10 degrees from {102} is 1% or more, {102} develops, and the flexibility and bendability of the copper-clad laminate Will improve. On the other hand, it is industrially difficult to increase the proportion of the crystal grains above 50%.

銅箔表面の面方位は、EBSD(電子後方散乱回折:electron backscatter diffraction)で測定する。EBSDは、試料表面付近の結晶方位をnmオーダーの分解能で測定することができ、測定データから局所的な結晶方位の変化(局所方位差)を算出することができる。そして、これらのデータから、{102}から10度以内の角度差にある結晶粒の割合を算出する。
なお、EBSDは測定面積を広くすると測定間隔が広くなり、粗いデータとなるので好ましくない。一方、圧延面に{100}が発達すると結晶粒径が100μm程度まで大きくなるが、この場合でも十分な数の結晶粒が測定領域内に存在するよう、測定面積は4mmとする。又、測定点の間隔は1μm以下とする。この場合、一回の測定で4mmの面積全部を測定することは困難であることから、ランダムに抽出した場所を複数回測定し、測定面積の合計が4mmになればよい。
The plane orientation of the copper foil surface is measured by EBSD (electron backscatter diffraction). EBSD can measure the crystal orientation in the vicinity of the sample surface with a resolution on the order of nm, and can calculate the local crystal orientation change (local orientation difference) from the measurement data. Then, from these data, the ratio of crystal grains having an angle difference within 10 degrees from {102} is calculated.
In EBSD, if the measurement area is widened, the measurement interval is widened, resulting in coarse data. On the other hand, when {100} develops on the rolled surface, the crystal grain size increases to about 100 μm. Even in this case, the measurement area is set to 4 mm 2 so that a sufficient number of crystal grains exist in the measurement region. The interval between measurement points is 1 μm or less. In this case, since it is difficult to measure the entire area of 4 mm 2 by a single measurement, it is only necessary to measure a randomly extracted place a plurality of times and to make the total measurement area 4 mm 2 .

本発明の圧延銅箔は、通常、熱間圧延及び面削後、冷間圧延と焼鈍を数回(通常、2回程度)繰り返し、次いで最終再結晶焼鈍した後、最終冷間圧延して所望の箔厚に製造することができる。さらに、この銅箔を脱脂した後に、樹脂層との密着性を確保するために片面(樹脂層との積層面)に粗化処理し、さらに防錆処理を行い、銅張積層板に使用することができる。
「最終再結晶焼鈍」とは、最終冷間圧延の前の焼鈍のうち、最後のものをいう。
The rolled copper foil of the present invention is usually obtained by repeating cold rolling and annealing several times (usually about 2 times) after hot rolling and chamfering, then final recrystallization annealing, and then final cold rolling. The foil thickness can be manufactured. Furthermore, after degreasing the copper foil, it is roughened on one side (lamination surface with the resin layer) to ensure adhesion with the resin layer, and further subjected to rust prevention treatment and used for a copper-clad laminate. be able to.
“Final recrystallization annealing” refers to the last of the annealing before the final cold rolling.

ここで、上述のように銅箔表面の{102}を発達させるため、「最終再結晶焼鈍」後で最終冷間圧延前の板面が{100}である結晶の発達度合を示すX線回折の積分回折強度比(I(200)/I(200))が2〜10に範囲になるように焼鈍条件を調整する。強度(I/I)は、圧延面のX線回折で求めた積分回折強度の強度(I(200))と、微粉末銅のX線回折で求めた(200)面の積分回折強度(I(200))との比であり、cube(立方体集合)組織の発達度合を表す。
上記(I(200)/I(200))が2未満であると、最終冷間圧延の後に最終的に得られる銅箔において{200}が集合してしまうため、銅箔表面の{102}が発達しない。これは、最終再結晶焼鈍の段階で(I/I)が小さいと、その後、最終冷間圧延したときに(I(200)/I(200))が大きくなり、{100}の割合が増えて{102}が発達しないからである。
一方、上記した(I(200)/I(200))が10を超えると、銅箔表面がランダムに近い方位となり{102}が発達しない。これは、最終冷間圧延の前の(I(200)/I(200))が10を超えると、その後、最終冷間圧延したときにランダムに近い方位になり{102}が発達しないからである。
最終再結晶焼鈍後で最終冷間圧延の前の(I(200)/I(200))を2〜10に管理する方法としては、最終再結晶焼鈍を600℃以上の温度で行うとともに、その昇温過程で200〜500℃の通過時間を5〜60秒に制御するとよい。通過時間が5秒未満であると、(I(200)/I(200))が2未満になり、60秒を超えると(I(200)/I(200))が10を超える。なお、一旦昇温されて「最終再結晶焼鈍」を行った後の冷却過程は{102}の生成に影響しない。
Here, in order to develop {102} on the surface of the copper foil as described above, X-ray diffraction showing the degree of growth of crystals whose plate surface is {100} after "final recrystallization annealing" and before final cold rolling. The annealing conditions are adjusted so that the integrated diffraction intensity ratio (I (200) / I 0 (200)) is in the range of 2-10. The intensity (I / I 0 ) is the integrated diffraction intensity (I (200)) obtained by X-ray diffraction of the rolled surface and the integrated diffraction intensity (200) plane obtained by X-ray diffraction of fine powder copper ( I 0 (200)) and represents the degree of development of the cube (cube assembly) structure.
When (I (200) / I 0 (200)) is less than 2, {200} gathers in the copper foil finally obtained after the final cold rolling, so {102 on the surface of the copper foil } Does not develop. This is because when (I / I 0 ) is small at the stage of final recrystallization annealing, then (I (200) / I 0 (200)) becomes large when the final cold rolling is performed, and the ratio of {100} This is because {102} does not develop.
On the other hand, when the above (I (200) / I 0 (200)) exceeds 10, the copper foil surface has a random orientation and {102} does not develop. This is because, when (I (200) / I 0 (200)) before the final cold rolling exceeds 10, the orientation is close to random when the final cold rolling is performed thereafter, and {102} does not develop. It is.
As a method of managing (I (200) / I 0 (200)) after final recrystallization annealing and before final cold rolling to 2 to 10, final recrystallization annealing is performed at a temperature of 600 ° C. or more, The passing time at 200 to 500 ° C. may be controlled to 5 to 60 seconds during the temperature raising process. When the passage time is less than 5 seconds, (I (200) / I 0 (200)) is less than 2, and when it exceeds 60 seconds, (I (200) / I 0 (200)) exceeds 10. Note that the cooling process after the temperature is once raised and “final recrystallization annealing” is performed does not affect the formation of {102}.

又、銅箔表面の{102}方位を発達させるために、最終冷間圧延の加工度ηを2.8〜3.7に管理する。ηが2.8未満の場合、銅箔表面がランダムに近い方位となり{102}が発達しない。ηが3.7を超えると、{100}が集合して、銅箔表面の{102}が発達しない。
なお、η=ln(A/B)で表され、A,Bはそれぞれ冷間圧延前、最終冷間圧延後の断面積である。
Further, in order to develop the {102} orientation on the surface of the copper foil, the working degree η of the final cold rolling is controlled to 2.8 to 3.7. When η is less than 2.8, the copper foil surface has a random orientation and {102} does not develop. When η exceeds 3.7, {100} gathers and {102} on the surface of the copper foil does not develop.
In addition, it represents with (eta) = ln (A / B) and A and B are the cross-sectional areas before cold rolling and after final cold rolling, respectively.

本発明の銅張積層板は、樹脂層の両面又は片面に、上記した特性を有する圧延銅箔を積層してなる。樹脂層はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用することができる。又、FPC用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、テフロン(登録商標)フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等を使用する事ができる。
樹脂層自体が多層でもよい。
The copper clad laminate of the present invention is formed by laminating a rolled copper foil having the above-described characteristics on both surfaces or one surface of a resin layer. The resin layer is not particularly limited as long as it has characteristics applicable to printed wiring boards and the like. For example, a paper base phenolic resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin for rigid PWB Glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin, glass cloth base material epoxy resin, and the like can be used. Moreover, a polyester film, a polyimide film, a liquid crystal polymer (LCP) film, a Teflon (registered trademark) film, a polyethylene terephthalate film, a polyethylene naphthalate film, or the like can be used for FPC.
The resin layer itself may be a multilayer.

又、ポリエチレンテレフタレートなど耐熱性の低い樹脂層と銅箔を張り合わせる場合、張り合わせ時の熱圧着条件によっては、「圧延組織」の状態の銅箔が上記した「再結晶組織」にならない可能性がある。この場合には、予め上記した350℃×1秒、350℃×20分又は200℃×30分のいずれかの熱処理を銅箔に行って再結晶させ、{102}から10度以内の角度差にある結晶粒の割合を10%以上に調整した後、樹脂層と張り合わせて銅張積層板とすればよい。
さらに、FPCの構成によっては、銅張積層板の片方の銅箔のみに厳しい折り曲げや屈曲が加わることがある。このような用途に用いる場合、銅張積層板の樹脂層の両面に銅箔を積層し、そのうち厳しい折り曲げ条件が加わる一方の銅箔側に本発明の銅箔を使用し、他の面に別の銅箔(例えば安価な電解銅箔)を積層してもよい。
Also, when laminating copper foil with a resin layer with low heat resistance such as polyethylene terephthalate, depending on the thermocompression bonding conditions at the time of laminating, there is a possibility that the copper foil in the “rolled structure” state does not become the above “recrystallized structure”. is there. In this case, the above-described heat treatment of 350 ° C. × 1 second, 350 ° C. × 20 minutes, or 200 ° C. × 30 minutes is performed on the copper foil for recrystallization, and the angle difference within 10 degrees from {102} After adjusting the ratio of the crystal grains in the above to 10% or more, it may be bonded to the resin layer to form a copper-clad laminate.
Furthermore, depending on the configuration of the FPC, severe bending or bending may be applied only to one copper foil of the copper clad laminate. When used in such applications, the copper foil is laminated on both sides of the resin layer of the copper clad laminate, and the copper foil of the present invention is used on one side of the copper foil to which severe bending conditions are added. A copper foil (for example, an inexpensive electrolytic copper foil) may be laminated.

圧延銅箔と樹脂との積層方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意し、銅箔をプリプレグに重ねて加熱加圧させる方法が挙げられる。FPCの場合、ポリイミドフィルム等の樹脂層に接着剤を介して銅箔を接着し、又は、接着剤を使用せずに高温高圧下で銅箔を積層接着して銅張積層板を製造することができる。FPCの場合、又は、ポリイミド前駆体を圧延銅箔に塗布した後、乾燥及び硬化等を行うことで銅張積層板を製造することができる。
樹脂(層)の厚みは特に制限を受けるものではないが、一般的に9〜50μm程度のものが用いられる。又、樹脂の厚みが50μm以上の厚いものも使用される場合がある。樹脂の厚みの上限は特に制限されないが、例えば150μmである。
In the case of rigid PWB, the method of laminating rolled copper foil and resin is to prepare a prepreg in which a base material such as a glass cloth is impregnated with resin and cured to a semi-cured state, and the copper foil is laminated on the prepreg. The method of heating and pressurizing is mentioned. In the case of FPC, copper foil is bonded to a resin layer such as a polyimide film via an adhesive, or a copper clad laminate is manufactured by laminating and bonding copper foil under high temperature and high pressure without using an adhesive. Can do. In the case of FPC, or after applying a polyimide precursor to a rolled copper foil, a copper clad laminate can be produced by drying and curing.
The thickness of the resin (layer) is not particularly limited, but generally about 9 to 50 μm is used. In addition, a thick resin having a thickness of 50 μm or more may be used. The upper limit of the resin thickness is not particularly limited, but is, for example, 150 μm.

本発明の銅張積層板は各種のフレキシブルプリント基板(プリント配線板(PWB))に使用可能である。プリント配線板としては、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり;絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。   The copper-clad laminate of the present invention can be used for various flexible printed boards (printed wiring boards (PWB)). Although it does not restrict | limit especially as a printed wiring board, For example, it can apply to single-sided PWB, double-sided PWB, and multilayer PWB (three or more layers) from a viewpoint of the number of layers of a conductor pattern; From the above viewpoint, the present invention is applicable to rigid PWB, flexible PWB (FPC), and rigid flex PWB.

<圧延銅箔の製造>
表1に示す組成の元素を添加したタフピッチ銅又は無酸素銅を原料として厚さ100mmのインゴットを鋳造し、800℃以上で厚さ10mmまで熱間圧延を行い、表面の酸化スケールを面削した。その後、冷間圧延と焼鈍とを繰り返し、て0.5mmの厚みの圧延板コイルを得た。その後の冷間圧延の後に、表1の条件で最終再結晶焼鈍を行った。最後に表1の加工度で最終冷間圧延で所定厚み(実施例9,6,13は厚み9μm、実施例7は厚み18μm、その他の実施例及び比較例1〜4は厚み12μm)に仕上げた。
なお、表1の組成の欄の「OFC+ 30ppmAg」は、JIS- H3100 (C1020)の無酸素銅OFCに30質量ppmのAgを添加したことを意味する。又、「TPC+200ppmAg」は、JIS-H3100(C1100)のタフピッチ銅(TPC)に200質量ppmのAgを添加したことを意味する。他の添加量の場合も同様である。
<Manufacture of rolled copper foil>
A 100 mm thick ingot was cast from tough pitch copper or oxygen-free copper added with the elements shown in Table 1 and hot rolled to a thickness of 10 mm at 800 ° C. or higher to chamfer the oxide scale on the surface. . Thereafter, cold rolling and annealing were repeated to obtain a rolled plate coil having a thickness of 0.5 mm. After the subsequent cold rolling, final recrystallization annealing was performed under the conditions shown in Table 1. Finally, it is finished to a predetermined thickness (the thickness is 9 μm in Examples 9, 6 and 13, 18 μm in Example 7, and the thickness is 12 μm in other Examples and Comparative Examples 1 to 4) by the final cold rolling at the working degree shown in Table 1. It was.
“OFC + 30 ppmAg” in the composition column of Table 1 means that 30 mass ppm of Ag was added to the oxygen-free copper OFC of JIS-H3100 (C1020). “TPC + 200 ppmAg” means that 200 mass ppm of Ag was added to tough pitch copper (TPC) of JIS-H3100 (C1100). The same applies to other addition amounts.

<X線の積分回折強度強度比(I(200)/I(200))>
最終再結晶焼鈍後で最終冷間圧延の前の銅箔の表面について、{100}面のX線回折強度を測定した。そして、同一条件でX線回折を行った純銅粉末の値(I0(200):X線反射平均強度)を用いて規格化した。
X線回折の測定条件は、入射X線源:Cu、加速電圧:25kV、管電流:20mA、発散スリット:1度、散乱スリット:1度、受光スリット:0.3mm、発散縦制限スリット:10mm,モノクロ受光スリット0.8mmとした。純銅粉末は、微粉末銅(325mesh)を用いた。
<X-ray integrated diffraction intensity ratio (I (200) / I 0 (200))>
The X-ray diffraction intensity of the {100} plane was measured on the surface of the copper foil after the final recrystallization annealing and before the final cold rolling. Then, the value of pure copper powder was subjected to X-ray diffraction under the same conditions (I 0 (200): X-ray reflection average intensity) normalized with.
The measurement conditions for X-ray diffraction are: incident X-ray source: Cu, acceleration voltage: 25 kV, tube current: 20 mA, divergence slit: 1 degree, scattering slit: 1 degree, receiving slit: 0.3 mm, divergence longitudinal limiting slit: 10 mm, The monochrome light receiving slit was 0.8 mm. As the pure copper powder, fine powder copper (325 mesh) was used.

<結晶方位>
最終冷間圧延後の銅箔に、さらに表1に示す各熱処理を行った後、表面を軽く電解研磨し、表面のEBSD測定を行った。測定面積は上記したように合計で4mmとした。EBSD装置に付属の解析ソフトウェア(TSLソリューション社のOIM Analysis)を用い、表面の面方位が{102}から10度以内の角度差にある結晶粒の割合を算出した。
なお、350℃×1secの熱処理は、350℃の炉内に単純に銅箔を1秒間入れても時間が短くて、350℃×1secの熱処理をしたことにならない。そこで、350℃に熱した2枚のステンレス板(SUS410/厚み5mm Ra 0.1, Rz 0.6)の間に銅箔を1秒間挟んで350℃×1secの熱処理とした。
350℃×20分熱処理は350℃炉内に銅箔を所定時間装入して行った。
<Crystal orientation>
The copper foil after the final cold rolling was further subjected to each heat treatment shown in Table 1, and then the surface was lightly electropolished and the surface was subjected to EBSD measurement. The measurement area was 4 mm 2 in total as described above. Using the analysis software (OIM Analysis from TSL Solution) attached to the EBSD device, the ratio of crystal grains whose surface orientation is within 10 degrees from {102} was calculated.
Note that the heat treatment at 350 ° C. × 1 sec does not result in a heat treatment at 350 ° C. × 1 sec because the time is short even if the copper foil is simply placed in a 350 ° C. furnace for 1 second. Accordingly, a copper foil was sandwiched between two stainless plates (SUS410 / thickness 5 mm Ra 0.1, Rz 0.6) heated to 350 ° C. for a heat treatment of 350 ° C. × 1 sec.
Further, heat treatment at 350 ° C. × 20 min, copper foil and performed by entering a predetermined time instrumentation in an oven at 350 ° C..

<銅張積層板の製造>
表1の各実施例及び比較例の圧延銅箔に対し、表2に示す積層方法で樹脂層と積層して銅張積層板を製造した。なお、表1の圧延銅箔につき、表1の熱処理を行う前のものを用いた。
樹脂層の厚みは、実施例3が50μm、実施例8,12,19が35μm、その他の実施例及び比較例1〜4が25μmとした。各樹脂層のうち、ポリイミド及びエポキシは熱硬化性、液晶ポリマーは熱可塑であった。又、「ポリイミド/エポキシ」は、ポリイミド層とエポキシ層を積層した多層の樹脂層を表し、後述の積層方法「C」に示すように、エポキシ層側が接着層として銅箔と接着している。
表2において、銅箔の積層が「両面」の場合、樹脂層の両面にそれぞれ銅箔を積層したことを表す。
又、表2において、積層方法「A」は、市販の熱可塑性付ポリイミドフィルムまたは液晶ポリマーフィルムと銅箔を重ね合せた積層体を、350℃に熱した2枚のステンレス板(SUS410)の間にセットし、プレスして1秒間保持する熱プレス法とした。なお、熱可塑性「付」ポリイミドフィルムとは、通常のポリイミドフィルムが熱硬化性で熱を加えても接着しないため、ポリイミドフィルムの基材の表面に熱可塑性を持つポリイミドを予め2μm程度付けたポリイミドフィルムをいう。
積層方法「B」は、市販のポリイミド前駆体ワニスを銅箔に塗工、乾燥及びキュアさせた。乾燥温度は200℃×3分、キュアは350℃×30分とした
<Manufacture of copper-clad laminate>
With respect to the rolled copper foil of each Example of Table 1, and the comparative example, it laminated | stacked with the resin layer with the lamination | stacking method shown in Table 2, and manufactured the copper clad laminated board. In addition, about the rolled copper foil of Table 1, the thing before performing the heat processing of Table 1 was used.
The thickness of the resin layer was 50 μm in Example 3, 35 μm in Examples 8, 12, and 19, and 25 μm in other Examples and Comparative Examples 1 to 4. Of each resin layer, polyimide and epoxy were thermosetting and liquid crystal polymer was thermoplastic. “Polyimide / epoxy” represents a multilayer resin layer in which a polyimide layer and an epoxy layer are laminated, and as shown in a laminating method “C” described later, the epoxy layer side is bonded to the copper foil as an adhesive layer.
In Table 2, when the lamination of the copper foil is “both sides”, it represents that the copper foil was laminated on both sides of the resin layer.
In Table 2, the lamination method “A” indicates that a laminate of a commercially available thermoplastic polyimide film or liquid crystal polymer film and copper foil is laminated between two stainless steel plates (SUS410) heated to 350 ° C. The hot pressing method was set to 1 and pressed and held for 1 second. In addition, a thermoplastic “with” polyimide film is a polyimide film in which a normal polyimide film is thermosetting and does not adhere even when heat is applied. Say film.
In the lamination method “B”, a commercially available polyimide precursor varnish was applied to copper foil, dried and cured. The drying temperature was 200 ° C. × 3 minutes, and the curing was 350 ° C. × 30 minutes .

得られた銅張積層板につき、以下の評価を行った。   The following evaluation was performed about the obtained copper clad laminated board.

<結晶方位>
上記圧延銅箔の場合と同様に、銅張積層板の銅箔面につき、表面の面方位が{102}から10度以内の角度差にある結晶粒の割合を測定した。銅張積層板の両面に銅箔が積層されている場合は、任意にどちらかの銅箔面について測定した。
<折り曲げ性>
以下の折り曲げ性と屈曲性は、試験片が割れるまでのサイクル数が少ないものを折り曲げ性で評価し、サイクル数が多いものを屈曲性で評価した。
銅張積層板の180°密着曲げを繰り返して行い、銅箔が割れるまでの回数を測定した。割れの有無は、各回の曲げ後の銅箔表面(曲げ外面)をCCDカメラで観察した。3回曲げても割れないものを○、割れるものを×とした。
180°密着曲げは、図1に示すようにして行う。、まず、銅箔の圧延方向が長手方向となるように試験片を12.7mm×100mmの短冊状に切り出す。この試験片S1を長手方向の両端同士が合うように中央部でU字状に曲げ、長手方向が水平になるように横に向けて逆C字状にした状態で、圧縮試験機(島津製作所製の万能試験機 AGS-5kN)にセットする(図1(a))。具体的には、試験片S1を圧縮試験機の台座12上に載置し、試験片S1の上方のクロスヘッド11を荷重98kN(10kgf)、50mm/minの速度で下降させ、荷重を加えてから5秒保持して試験片S1を完全に潰す。その後、クロスヘッド11を上昇させ、U字部が潰れた試験片S2を取り出し、長手方向が上下になるよう向きを変えて試験片S3とする(図1(b))。試験片S2、S3は、U字部が潰れた突状の曲げ部Cを有する。
そして、曲げ部Cが上向きになるようにして試験片S3を上記圧縮試験機の台座12上に載置し、曲げ部Cの上方のクロスヘッド11を上記と同様の荷重及び速度で下降させ、荷重を加えてから5秒保持して試験片S3を完全に潰す(図1(c)、(d))。その後、クロスヘッド11を上昇させ、曲げ部Cが潰れてほぼ平坦になった試験片S4を取り出し、曲げ部Cを中心とする所定領域の曲げ外面Skを観察し、割れの有無を判定する(図1(e))。
<Crystal orientation>
Similarly to the case of the rolled copper foil, the ratio of crystal grains whose surface orientation was within an angle difference of 10 degrees from {102} was measured for the copper foil surface of the copper clad laminate. When copper foil was laminated | stacked on both surfaces of the copper clad laminated board, it measured about either copper foil surface arbitrarily.
<Bendability>
The following bendability and bendability were evaluated by bendability when the number of cycles until the test piece was broken was evaluated by bendability, and by bendability when the number of cycles was large.
The 180 ° close contact bending of the copper clad laminate was repeated, and the number of times until the copper foil cracked was measured. The presence or absence of cracks was observed with a CCD camera on the copper foil surface (bending outer surface) after each bending. The thing which is not broken even if it bends 3 times was made into (circle), and the thing to crack was made into x.
The 180 ° contact bending is performed as shown in FIG. First, a test piece is cut into a 12.7 mm × 100 mm strip so that the rolling direction of the copper foil is the longitudinal direction. The test piece S1 is bent in a U shape at the center so that both ends in the longitudinal direction are aligned, and in a state where the test piece S1 is turned in an inverted C shape so that the longitudinal direction is horizontal, the compression tester (Shimadzu Corporation) Set to the universal testing machine AGS-5kN (Fig. 1 (a)). Specifically, the test piece S1 is placed on the pedestal 12 of the compression tester, and the crosshead 11 above the test piece S1 is lowered at a load of 98 kN (10 kgf) at a speed of 50 mm / min. The test piece S1 is completely crushed by holding for 5 seconds. Thereafter, the crosshead 11 is raised, the test piece S2 whose U-shaped portion is crushed is taken out, and the orientation is changed so that the longitudinal direction is up and down to obtain a test piece S3 (FIG. 1 (b)). The test pieces S2 and S3 have a protruding bent part C in which the U-shaped part is crushed.
Then, the test piece S3 is placed on the pedestal 12 of the compression tester with the bending portion C facing upward, and the crosshead 11 above the bending portion C is lowered at the same load and speed as described above, After the load is applied, the test piece S3 is completely crushed by holding for 5 seconds (FIGS. 1C and 1D). Thereafter, the cross head 11 is raised, the test piece S4 in which the bent portion C is crushed and is almost flat is taken out, and the bending outer surface Sk in a predetermined region centered on the bent portion C is observed to determine the presence or absence of cracks ( FIG. 1 (e)).

<屈曲性>
銅張積層板の銅箔をエッチングして所定の回路を形成した後、図2に示すIPC(アメリカプリント回路工業会)屈曲試験装置により、屈曲試験を行った。摺動屈曲試験中に回路部の電気抵抗を測定し、抵抗値が初期から15%上昇したときに破断せず、かつ屈曲回数が10000回を超えたものを○、抵抗値が初期から15%上昇する前又は15%上昇した時点で破断したものを×とした。
このIPC屈曲試験装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、試験片1は、矢印で示したねじ2の部分と3の先端部の計4点で装置に固定される。振動部3が上下に駆動すると、試験片1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。
なお、試験条件は次の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:1.5mm、振動ストローク:25mm、振動速度:1500回/分
又、銅箔が銅張積層板の片面に形成されている場合は、図2の曲率半径rの屈曲内面に銅箔を向けた。又、銅張積層板の両面に銅箔が積層されている場合は、上記結晶方位を測定した銅箔面をエッチングして回路を形成し、反対面の銅箔をエッチングで完全に除去した。そして、この回路面を図2の曲率半径rの屈曲内面とした。
<Flexibility>
After the copper foil of the copper-clad laminate was etched to form a predetermined circuit, a bending test was performed using an IPC (American Printed Circuit Industry Association) bending test apparatus shown in FIG. The electrical resistance of the circuit part was measured during the sliding bend test. When the resistance value increased by 15% from the initial value, it did not break and the number of flexing times exceeded 10,000, and the resistance value was 15% from the initial value. Those that broke before rising or when they rose by 15% were marked with x.
This IPC bending test apparatus has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4, and the test piece 1 is attached to the apparatus at a total of four points, that is, a screw 2 part indicated by an arrow and a tip part of 3. Fixed. When the vibration part 3 is driven up and down, the intermediate part of the test piece 1 is bent into a hairpin shape with a predetermined radius of curvature r.
The test conditions are as follows: Specimen width: 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Collected so that the length direction of the specimen is parallel to the rolling direction, curvature radius r : 1.5 mm, vibration stroke: 25 mm, vibration speed: 1500 times / minute Also, when the copper foil is formed on one side of the copper-clad laminate, the copper foil is directed to the bent inner surface with the radius of curvature r in FIG. It was. Moreover, when copper foil was laminated | stacked on both surfaces of the copper clad laminated board, the copper foil surface which measured the said crystal orientation was etched, the circuit was formed, and the copper foil of the opposite surface was removed completely by etching. And this circuit surface was made into the bending inner surface of the curvature radius r of FIG.

エッチング性は、以下の回路直線性、及びハーフエッチング性で判定した。なお、銅張積層板の両面に銅箔が積層されている場合は、上記結晶方位を測定した銅箔面をエッチングした。
回路直線性は、銅張積層板の銅箔表面に、幅方向が50μm幅で長手方向に長い短冊状の回路パターンをマスキング形成した後、60℃の塩化第二鉄を銅箔表面にスプレーするスプレーエッチングで50μm幅の短冊状回路を形成した。この回路の長手方向に5μmピッチで、それぞれ上記幅方向の回路幅を、SEMで測定した。上記ピッチで100点の測定につき、回路幅の正規分布の3σが±2μm以内の場合を○とした。
ハーフエッチングは、過硫酸ナトリウム(40g/L)と硫酸(20g/L)の混合水溶液で銅箔の厚みが初期の半分になるまでエッチングし、CP(クロスセッションポリッシャ)で断面を切断した後、エッチング面方向に沿って5μmピッチで、それぞれ断面における厚みをSEMで測定した。上記ピッチで100点の測定につき、厚みの正規分布の3σが±2μm以内の場合を○とした。
エッチング性の評価は、回路直線性及びハーフエッチング性が共に○の場合を総合評価○とし、回路直線性とハーフエッチングのいずれかが○で無い場合を総合評価×とした。
The etching property was determined by the following circuit linearity and half-etching property. In addition, when the copper foil was laminated | stacked on both surfaces of the copper clad laminated board, the copper foil surface which measured the said crystal orientation was etched.
For circuit linearity, a strip-shaped circuit pattern with a width of 50 μm and a long length is masked on the copper foil surface of the copper clad laminate, and then ferric chloride at 60 ° C. is sprayed onto the copper foil surface. A strip-like circuit having a width of 50 μm was formed by spray etching. The circuit width in the width direction was measured by SEM at a pitch of 5 μm in the longitudinal direction of the circuit. When 100 points were measured at the above pitch, the case where 3σ of the normal distribution of the circuit width was within ± 2 μm was marked as ◯.
Half-etching is performed with a mixed aqueous solution of sodium persulfate (40 g / L) and sulfuric acid (20 g / L) until the copper foil is half the thickness of the initial stage. After cutting the section with CP (cross session polisher), The thickness of each cross section was measured by SEM at a pitch of 5 μm along the etching surface direction. When 100 points were measured at the above pitch, the case where 3σ of the normal distribution of thickness was within ± 2 μm was marked as ◯.
In the evaluation of etching property, when the circuit linearity and the half etching property are both “good”, the overall evaluation is “good”, and when either of the circuit linearity and half etching is not “good”, the overall evaluation is “poor”.

得られた結果を表1、表2に示す。   The obtained results are shown in Tables 1 and 2.

Figure 0006104200
Figure 0006104200

Figure 0006104200
Figure 0006104200

表1〜表2から明らかなように、銅張積層板における銅箔表面の面方位が{102}から10度以内の角度差にある結晶粒の割合が1%以上50%以下である各実施例の場合、折り曲げ性、屈曲性、及びエッチング性が共に優れたものとなった。
なお、各実施例の銅張積層板に積層される前の銅箔を、350℃×1秒、350℃×20分又は200℃×30分の熱処理を行うと、表面の面方位が{102}から10度以内の角度差にある結晶粒の割合が1%以上50%以下であった。
As is apparent from Tables 1 and 2, each embodiment in which the plane orientation of the copper foil surface in the copper clad laminate has an angle difference within 10 degrees from {102} is 1% or more and 50% or less. In the case of the example, the bending property, the bending property, and the etching property were all excellent.
In addition, when the copper foil before being laminated | stacked on the copper clad laminated board of each Example is heat-processed for 350 degreeC x 1 second, 350 degreeC x 20 minutes, or 200 degreeC x 30 minutes, the surface orientation of the surface is {102 }, The proportion of crystal grains having an angle difference within 10 degrees from 1% to 50%.

一方、銅箔の最終再結晶焼鈍時の昇温過程で200〜500℃の通過時間が60秒を超えた比較例1、2の場合、(I(200)/I(200))が10を超えて銅箔表面がランダムに近い方位となり、{102}が発達せず、銅箔表面の面方位が{102}から10度以内の角度差にある結晶粒の割合が1%未満となった。このため、比較例1、2の場合、折り曲げ性、屈曲性が劣った。 On the other hand, in the case of Comparative Examples 1 and 2 in which the passing time of 200 to 500 ° C. exceeded 60 seconds in the temperature raising process during the final recrystallization annealing of the copper foil, (I (200) / I 0 (200)) was 10 The surface of the copper foil has an orientation that is close to random, and {102} does not develop, and the proportion of crystal grains with an angle difference within 10 degrees from {102} is less than 1%. It was. For this reason, in the case of Comparative Examples 1 and 2, the bendability and bendability were inferior.

銅箔の最終冷間圧延の加工度ηが3.7を超えた比較例3,4の場合、最終再結晶焼鈍後のX線回折強度比(I(200)/I(200))が2未満となったため、最終的に得られた銅箔表面に{100}が集合し、銅箔表面の{102}方位が発達せず、銅箔表面の面方位が{102}から10度以内の角度差にある結晶粒の割合が1%未満となった。このため、比較例3,4の場合、折り曲げ性、屈曲性は良好となったが、エッチング性が劣った。 In the case of Comparative Examples 3 and 4 in which the degree of work η of the final cold rolling of the copper foil exceeded 3.7, the X-ray diffraction intensity ratio (I (200) / I 0 (200)) after the final recrystallization annealing was Since it was less than 2, {100} gathers on the finally obtained copper foil surface, {102} orientation of the copper foil surface does not develop, and the plane orientation of the copper foil surface is within 10 degrees from {102} The proportion of crystal grains having an angle difference of less than 1%. For this reason, in Comparative Examples 3 and 4, the bendability and bendability were good, but the etching property was inferior.

Claims (5)

質量率で99.9%以上の銅を含む圧延銅箔であって、
350℃×1秒、及び350℃×20分うち、いずれか1つの条件で熱処理を行った後、表面が{102}から10度以内の角度差にある結晶粒の割合が1%以上50%以下である圧延銅箔。
A rolled copper foil containing 99.9% or more of copper by mass,
After performing heat treatment under any one condition of 350 ° C. × 1 second and 350 ° C. × 20 minutes , the ratio of crystal grains whose surface has an angle difference within 10 degrees from {102} is 1% or more 50 % Of rolled copper foil.
Ag、Sn、Zn、Ni、Ti、及びZrの群から選ばれる1種又は2種以上を合計で10〜300質量ppm含有し、残部Cuおよび不可避的不純物からなる請求項1に記載の圧延銅箔。   The rolled copper according to claim 1, comprising 10 to 300 mass ppm in total of one or more selected from the group consisting of Ag, Sn, Zn, Ni, Ti, and Zr, the balance being Cu and inevitable impurities. Foil. 請求項1又は2記載の圧延銅箔を、樹脂層の両面又は片面に積層してなる銅張積層板であって、
少なくとも一方の前記圧延銅箔において、表面が{102}から10度以内の角度差にある結晶粒の割合が1%以上50%以下である銅張積層板。
A copper-clad laminate obtained by laminating the rolled copper foil according to claim 1 or 2 on both sides or one side of a resin layer,
A copper-clad laminate in which at least one of the rolled copper foils has a crystal grain ratio of 1% or more and 50% or less at an angle difference of 10 degrees or less from {102}.
請求項3に記載の銅張積層板を用い、前記圧延銅箔に回路を形成してなるフレキシブルプリント基板。   The flexible printed board formed by forming a circuit in the said rolled copper foil using the copper clad laminated board of Claim 3. 請求項4に記載のフレキシブルプリント基板を用いた電子機器。   An electronic device using the flexible printed circuit board according to claim 4.
JP2014049868A 2014-03-13 2014-03-13 Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device Active JP6104200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049868A JP6104200B2 (en) 2014-03-13 2014-03-13 Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049868A JP6104200B2 (en) 2014-03-13 2014-03-13 Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device

Publications (2)

Publication Number Publication Date
JP2015175005A JP2015175005A (en) 2015-10-05
JP6104200B2 true JP6104200B2 (en) 2017-03-29

Family

ID=54254480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049868A Active JP6104200B2 (en) 2014-03-13 2014-03-13 Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device

Country Status (1)

Country Link
JP (1) JP6104200B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162908B2 (en) * 2015-04-24 2017-07-12 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP6392268B2 (en) * 2016-02-05 2018-09-19 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6781562B2 (en) * 2016-03-28 2020-11-04 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP6944963B2 (en) * 2019-03-05 2021-10-06 Jx金属株式会社 Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards
JP2019194360A (en) * 2019-06-26 2019-11-07 Jx金属株式会社 Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752536B2 (en) * 2011-08-23 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil

Also Published As

Publication number Publication date
JP2015175005A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6104200B2 (en) Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device
JP5826160B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
JP5124039B2 (en) Copper foil and copper-clad laminate using the same
JP4672515B2 (en) Rolled copper alloy foil for bending
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP5514897B2 (en) Laminate for flexible wiring
KR101935128B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
TWI633195B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2011094200A (en) Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same
JP2022095855A (en) Copper foil for flexible printed substrate
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5694094B2 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP2009280855A (en) Rolled copper foil and method for producing the same
JP5753115B2 (en) Rolled copper foil for printed wiring boards
JP2010280191A (en) Copper foil for heat treatment, manufacturing method thereof and flexible printed wiring board
KR101721314B1 (en) Rolled copper foil, copper clad laminate, and flexible printed board and electronic device
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
CN110475883A (en) Rolled copper foil
TWI539017B (en) Rolled copper foil, copper clad laminate, and flexible printed circuit boards and electronic equipment
CN111526674A (en) Rolled copper foil, copper-clad laminate, flexible printed board, and electronic device
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2016079423A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil
JP2016176094A (en) Rolled copper foil, copper-clad laminate, and flexible printed board and electronic equipment
JP5698634B2 (en) Rolled copper foil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6104200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250