JP6102612B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6102612B2
JP6102612B2 JP2013158936A JP2013158936A JP6102612B2 JP 6102612 B2 JP6102612 B2 JP 6102612B2 JP 2013158936 A JP2013158936 A JP 2013158936A JP 2013158936 A JP2013158936 A JP 2013158936A JP 6102612 B2 JP6102612 B2 JP 6102612B2
Authority
JP
Japan
Prior art keywords
plate
heat medium
refrigerant
cooling water
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013158936A
Other languages
Japanese (ja)
Other versions
JP2015031412A (en
Inventor
加藤 吉毅
吉毅 加藤
川久保 昌章
昌章 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013158936A priority Critical patent/JP6102612B2/en
Priority to PCT/JP2014/002943 priority patent/WO2015015683A1/en
Publication of JP2015031412A publication Critical patent/JP2015031412A/en
Application granted granted Critical
Publication of JP6102612B2 publication Critical patent/JP6102612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、冷媒と、冷媒よりも低圧の熱媒体とを熱交換する熱交換器に関する。   The present invention relates to a heat exchanger that exchanges heat between a refrigerant and a heat medium having a pressure lower than that of the refrigerant.

従来、特許文献1には、冷媒と水とを熱交換させる水・冷媒熱交換器が記載されている。この従来技術では、複数の略平板状の伝熱プレートを間隔をおいて重ね合わせることにより伝熱プレート間に冷媒流路と水流路とを交互に形成している。一般的に、この種の水・冷媒熱交換器においては、冷媒は水よりも高圧になっている。   Conventionally, Patent Document 1 describes a water / refrigerant heat exchanger for exchanging heat between refrigerant and water. In this prior art, a refrigerant flow path and a water flow path are alternately formed between heat transfer plates by overlapping a plurality of substantially flat heat transfer plates at intervals. Generally, in this type of water / refrigerant heat exchanger, the refrigerant has a higher pressure than water.

特開2000−258082号公報JP 2000-258082 A

上記従来技術の水・冷媒熱交換器と、水と空気とを熱交換させる水・空気熱交換器とを用いて、冷媒と空気と熱交換させる熱交換システムを構成する場合、水・冷媒熱交換器における冷媒と水との温度差は、冷媒と空気との温度差と比較して小さくなる。   When a heat exchange system for exchanging heat between refrigerant and air is configured using the water / refrigerant heat exchanger of the above prior art and a water / air heat exchanger that exchanges heat between water and air, The temperature difference between the refrigerant and water in the exchanger is smaller than the temperature difference between the refrigerant and air.

そのため、この熱交換システムにおける水・冷媒熱交換器では、冷媒と空気とを熱交換させる空気・冷媒熱交換器を用いる場合と比較して、冷媒を確実に熱交換させるのが困難になる。その結果、水・冷媒熱交換器の出口冷媒の状態が、空気・冷媒熱交換器の出口冷媒の状態と比較して不安定になりやすい。すなわち、水・冷媒熱交換器の出口冷媒は、空気・冷媒熱交換器の出口冷媒と比較して、気液2相状態と単相状態とが入り混じった状態になりやすい。   Therefore, in the water / refrigerant heat exchanger in this heat exchange system, it is difficult to surely exchange heat between the refrigerant and the air / refrigerant heat exchanger that exchanges heat between the refrigerant and air. As a result, the state of the outlet refrigerant of the water / refrigerant heat exchanger tends to become unstable compared to the state of the outlet refrigerant of the air / refrigerant heat exchanger. That is, the outlet refrigerant of the water / refrigerant heat exchanger is likely to be in a mixed state of a gas-liquid two-phase state and a single-phase state as compared with the outlet refrigerant of the air / refrigerant heat exchanger.

また、上記従来技術の水・冷媒熱交換器においては、冷媒の圧力に対する耐圧性を確保できる構造にする必要がある。   Moreover, in the water / refrigerant heat exchanger of the above-described prior art, it is necessary to have a structure that can ensure pressure resistance against the pressure of the refrigerant.

本発明は上記点に鑑みて、冷媒と、冷媒よりも低圧の熱媒体とを熱交換する熱交換器において、冷媒と熱媒体との熱交換性能を向上させるとともに、冷媒の圧力に対する耐圧性を確保することを目的とする。   In view of the above points, the present invention improves the heat exchange performance between the refrigerant and the heat medium in the heat exchanger that exchanges heat between the refrigerant and the heat medium having a pressure lower than that of the refrigerant, and improves the pressure resistance against the pressure of the refrigerant. The purpose is to secure.

上記目的を達成するため、請求項1に記載の発明では、
冷媒と、冷媒よりも低圧の熱媒体とを熱交換させる熱交換部(12)を備え、
熱交換部(12)は、多数枚の板状部材(11)が互いに積層されて接合されることによって形成されており、
多数枚の板状部材(11)同士の間には、冷媒が流れる複数の冷媒流路(121)、および熱媒体が流れる複数の熱媒体流路(122)が形成され、
複数の冷媒流路(121)および複数の熱媒体流路(122)は、多数枚の板状部材(11)の積層方向に並んで配置されており、
複数の熱媒体流路(122)には、隣り合う板状部材(11)同士を接合し、かつ熱媒体流路(122)を積層方向に横断する内部壁(30、112)が設けられており、
複数の熱媒体流路(122)のうち板状部材(11)の積層方向において最も一端側に位置する第1最端熱媒体流路(122A)は、多数枚の板状部材(11)のうち板状部材(11)の積層方向において最も一端側に位置する第1最端板状部材(11A)と、多数
枚の板状部材(11)のうち第1最端板状部材(11A)に隣接する一端側板状部材(11B)との間に形成されており、
第1最端熱媒体流路(122A)に設けられた内部壁(30、112)は、複数の熱媒体流路(122)のうち板状部材(11)の積層方向において最も他端側に位置する第2最端熱媒体流路(122B)を除く他の熱媒体流路(122)に設けられた内部壁(30、112)よりも板厚の大きい部位を有しており、
第2最端熱媒体流路(122B)は、熱交換部(12)を構成する多数枚の板状部材(11)のうち最も他端側に位置する第2最端板状部材(11C)と、第2最端板状部材(11C)に隣接する他端側板状部材(11D)との間に形成されており、
第2最端熱媒体流路(122B)に設けられた内部壁(30、112)は、複数の熱媒体流路(122)のうち第1最端熱媒体流路(122A)を除く他の熱媒体流路(122)に設けられた内部壁(30、112)よりも板厚の大きい部位を有していることを特徴とする。
In order to achieve the above object, in the invention described in claim 1,
A heat exchange section (12) for exchanging heat between the refrigerant and the heat medium having a pressure lower than that of the refrigerant;
The heat exchange part (12) is formed by laminating and joining a large number of plate-like members (11),
A plurality of refrigerant flow paths (121) through which the refrigerant flows and a plurality of heat medium flow paths (122) through which the heat medium flows are formed between the multiple plate-like members (11),
The plurality of refrigerant channels (121) and the plurality of heat medium channels (122) are arranged side by side in the stacking direction of a large number of plate-like members (11),
The plurality of heat medium flow paths (122) are provided with inner walls ( 30 , 112) that join adjacent plate-like members (11) and cross the heat medium flow path (122) in the stacking direction. And
Among the plurality of heat medium flow paths (122), the first outermost heat medium flow path (122A) located on the most end side in the laminating direction of the plate-shaped members (11) is formed of a plurality of plate-shaped members (11). Of these, the first endmost plate member (11A) located on the most end side in the laminating direction of the plate-like members (11) and the first endmost plate-like member (11A) among the multiple plate-like members (11). Is formed between the one end side plate member (11B) adjacent to
The inner walls (30, 112) provided in the first outermost heat medium flow path (122A) are located on the other end side in the stacking direction of the plate-like members (11) among the plurality of heat medium flow paths (122). A portion having a larger plate thickness than the internal walls (30, 112) provided in the other heat medium flow path (122) excluding the second endmost heat medium flow path (122B) located ;
The second endmost heat medium flow path (122B) is the second endmost plate member (11C) located on the other end side among the many plate members (11) constituting the heat exchanging section (12). And the other end side plate member (11D) adjacent to the second outermost plate member (11C),
The inner walls (30, 112) provided in the second endmost heat medium flow path (122B) are other than the first endmost heat medium flow path (122A) among the plurality of heat medium flow paths (122). It has the site | part whose plate | board thickness is larger than the internal wall (30,112) provided in the heat-medium flow path (122) .

これによると、第1最端熱媒体流路(122A)は第1最端板状部材(11A)と一端側板状部材(11B)との間に形成されているので、第1最端熱媒体流路(122A)は、熱交換部(12)のうち板状部材(11)の積層方向において最も一端側の部位に形成されることとなる。   According to this, the first endmost heat medium flow path (122A) is formed between the first endmost plate-like member (11A) and the one end side plate-like member (11B). A flow path (122A) will be formed in the one end side part in the lamination direction of a plate-shaped member (11) among heat exchange parts (12).

したがって、冷媒流路(121)よりも板状部材(11)の積層方向における一端側に熱媒体流路(122A)が配置されることとなるので、冷媒流路(121)よりも板状部材(11)の積層方向における一端側に熱媒体流路(122A)が配置されない場合と比較して、冷媒と熱媒体との熱交換性能を向上できる。   Therefore, since the heat medium flow path (122A) is arranged on one end side in the stacking direction of the plate-like member (11) with respect to the refrigerant flow path (121), the plate-like member is more than with the refrigerant flow path (121). The heat exchange performance between the refrigerant and the heat medium can be improved as compared with the case where the heat medium flow path (122A) is not disposed on one end side in the stacking direction of (11).

さらに、第1最端熱媒体流路(122A)に設けられた内部壁(30、112)は、他の熱媒体流路(122)に設けられた内部壁(30、112)よりも板厚の大きい部位を有しているので、熱交換部(12)のうち第1最端熱媒体流路(122A)を形成する部位の強度を、他の熱媒体路(122)を形成する部位よりも強くできる。このため、冷媒圧力に対する耐圧性を確保できる。 Furthermore, the inner wall (30, 112) provided in the first outermost heat medium flow path (122A) is thicker than the inner wall (30, 112) provided in the other heat medium flow path (122). In the heat exchanging part (12), the strength of the part forming the first endmost heat medium flow path (122A) is set to the part forming the other heat medium flow path (122). Can be stronger. For this reason, the pressure resistance with respect to a refrigerant pressure is securable.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態における熱交換器の正面図である。It is a front view of the heat exchanger in a 1st embodiment. 図1のII矢視図である。It is II arrow directional view of FIG. 第1実施形態の熱交換器におけるオフセットフィンの斜視図である。It is a perspective view of the offset fin in the heat exchanger of a 1st embodiment. 第2実施形態の熱交換器における板状部材の斜視図である。It is a perspective view of the plate-shaped member in the heat exchanger of 2nd Embodiment. 第2実施形態における熱交換器の断面図である。It is sectional drawing of the heat exchanger in 2nd Embodiment. 第3実施形態の熱交換器における板状部材の斜視図である。It is a perspective view of the plate-shaped member in the heat exchanger of 3rd Embodiment. 第3実施形態の熱交換器におけるオフセットフィンの斜視図である。It is a perspective view of the offset fin in the heat exchanger of a 3rd embodiment. 第3実施形態における熱交換器の断面図である。It is sectional drawing of the heat exchanger in 3rd Embodiment.

以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
図1、図2に示す熱交換器10は、車両用空調装置の冷凍サイクルを構成している。熱交換器10は、冷凍サイクルの高圧側冷媒と冷却水(高圧側冷媒よりも低圧の熱媒体)とを熱交換して高圧側冷媒を凝縮させる凝縮器、または冷凍サイクルの低圧側冷媒と冷却水(低圧側冷媒よりも低圧の熱媒体)とを熱交換して低圧側冷媒を蒸発させる蒸発器である。
(First embodiment)
The heat exchanger 10 shown in FIGS. 1 and 2 constitutes a refrigeration cycle of a vehicle air conditioner. The heat exchanger 10 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant of the refrigeration cycle and cooling water (a heat medium having a pressure lower than that of the high-pressure side refrigerant), or cooling with the low-pressure side refrigerant of the refrigeration cycle. This is an evaporator that exchanges heat with water (a heat medium having a pressure lower than that of the low-pressure side refrigerant) to evaporate the low-pressure side refrigerant.

冷却水としては、例えば、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体等を用いることができる。本実施形態では、冷却水として、エチレングリコール系の不凍液(LLC)が用いられている。   As the cooling water, for example, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid can be used. In this embodiment, ethylene glycol antifreeze (LLC) is used as the cooling water.

熱交換器10は、多数の板状部材11が積層されて接合されることによって一体的に形成されている。以下では、板状部材11の積層方向(図1の例では上下方向)を板積層方向と言い、板積層方向の一端側(図1の例では上端側)を板積層方向一端側と言い、板積層方向の他端側(図1の例では下端側)を板積層方向他端側と言う。   The heat exchanger 10 is integrally formed by laminating and joining a large number of plate-like members 11. Hereinafter, the laminating direction of the plate-like member 11 (vertical direction in the example of FIG. 1) is referred to as the plate laminating direction, and one end side in the plate laminating direction (the upper end side in the example of FIG. 1) is referred to as one end side of the plate laminating direction. The other end side in the plate stacking direction (lower end side in the example of FIG. 1) is referred to as the other end side in the plate stacking direction.

板状部材11は細長の略矩形状の板材であり、具体的材質としては、例えば、アルミニウム心材の両面にろう材をクラッドした両面クラッド材が用いられる。   The plate-like member 11 is an elongated, substantially rectangular plate material. As a specific material, for example, a double-sided clad material in which a brazing material is clad on both surfaces of an aluminum core material is used.

略矩形状の板状部材11の外周縁部には、略板積層方向(換言すれば、板状部材11の板面と略直交する方向)に突出する張出部111が形成されている。多数の板状部材11は、互いに積層された状態で張出部111同士がろう付けにより接合されている。   On the outer peripheral edge portion of the substantially rectangular plate-like member 11, an overhanging portion 111 that protrudes in a substantially plate stacking direction (in other words, a direction substantially orthogonal to the plate surface of the plate-like member 11) is formed. Many plate-like members 11 are joined to each other by brazing in a state where the plate-like members 11 are laminated with each other.

多数の板状部材11は、張出部111の突出先端が互いに同じ側(図1の例では略下方側)を向くように配置されている。   The many plate-like members 11 are arranged so that the protruding tips of the overhanging portions 111 face the same side (substantially downward in the example of FIG. 1).

多数の板状部材11は、熱交換部12、冷媒用第1タンク空間13、冷媒用第2タンク空間14、冷却水用第1タンク空間15および冷却水用第2タンク空間16を形成している。熱交換部12は、複数の冷媒流路121および複数の冷却水流路122で構成されている。   A large number of plate-like members 11 form a heat exchanging portion 12, a refrigerant first tank space 13, a refrigerant second tank space 14, a cooling water first tank space 15, and a cooling water second tank space 16. Yes. The heat exchange unit 12 includes a plurality of refrigerant channels 121 and a plurality of cooling water channels 122.

複数の冷媒流路121および複数の熱媒体流路は、多数枚の板状部材11同士の間に形成されている。冷媒流路121および冷却水流路122の長手方向は、板状部材11の長手方向と一致している。   The plurality of refrigerant flow paths 121 and the plurality of heat medium flow paths are formed between a large number of plate-like members 11. The longitudinal directions of the refrigerant flow path 121 and the cooling water flow path 122 coincide with the longitudinal direction of the plate-like member 11.

冷媒流路121および冷却水流路122は板積層方向に1本ずつ交互に積層配置(並列配置)されている。板状部材11は、冷媒流路121と冷却水流路122とを仕切る隔壁の役割を果たしている。冷媒流路121を流れる冷媒と、冷却水流路122を流れる冷却水との熱交換は、板状部材11を介して行われる。   The refrigerant channel 121 and the cooling water channel 122 are alternately stacked one by one in the plate stacking direction (in parallel). The plate-like member 11 serves as a partition wall that partitions the coolant channel 121 and the cooling water channel 122. Heat exchange between the refrigerant flowing through the refrigerant flow path 121 and the cooling water flowing through the cooling water flow path 122 is performed via the plate-like member 11.

熱交換部12に形成される冷媒流路121および冷却水流路122のうち最も板積層方向一端側に位置する流路122Aには、冷却水が流れるようになっている。   Cooling water flows through the flow path 122A located closest to one end side in the plate stacking direction among the refrigerant flow path 121 and the cooling water flow path 122 formed in the heat exchange section 12.

換言すれば、複数の冷却水流路122のうち最も板積層方向一端側に位置する第1最端冷却水流路122A(第1最端熱媒体流路)は、熱交換部12を構成する多数枚の板状部材11のうち最も板積層方向一端側に位置する第1最端板状部材11Aと、第1最端板状部材11に隣接する一端側板状部材11Bとの間に形成されている。   In other words, among the plurality of cooling water passages 122, the first outermost cooling water passage 122A (first outermost heat medium passage) located closest to one end in the plate stacking direction is a large number of sheets constituting the heat exchange unit 12. The plate-like member 11 is formed between the first endmost plate-like member 11 </ b> A located closest to one end side in the plate stacking direction and the one end-side plate-like member 11 </ b> B adjacent to the first endmost plate-like member 11. .

したがって、複数の冷媒流路121のうち最も板積層方向一端側に位置する第1最端冷媒流路121Aよりも板積層方向一端側に、第1最端冷却水流路122Aが配置されることとなる。   Therefore, the first outermost coolant channel 122A is disposed closer to the one end side in the plate stacking direction than the first outermost coolant channel 121A located closest to the one end side in the plate stacking direction among the plurality of refrigerant channels 121. Become.

そのため、第1最端冷媒流路121よりも板積層方向一端側に第1最端冷却水流路122Aが配置されない場合と比較して、冷媒と冷却水との熱交換性能を向上できる。   Therefore, compared with the case where 122 A of 1st endmost cooling water flow paths are not arrange | positioned rather than the 1st endmost refrigerant | coolant flow path 121 at the plate lamination direction one end side, the heat exchange performance of a refrigerant | coolant and cooling water can be improved.

熱交換部12に形成される冷媒流路121および冷却水流路122のうち最も板積層方向他端側に位置する流路122Bには、冷却水が流れるようになっている。   Cooling water flows through the flow path 122B located closest to the other end side in the plate stacking direction among the refrigerant flow path 121 and the cooling water flow path 122 formed in the heat exchange section 12.

換言すれば、複数の冷却水流路122のうち最も板積層方向他端側に位置する第2最端冷却水流路122B(第2最端熱媒体流路)は、熱交換部12を構成する多数枚の板状部材11のうち最も板積層方向他端側に位置する第2最端板状部材11Cと、第2最端板状部材11Cに隣接する他端側板状部材11Dとの間に形成されている。   In other words, among the plurality of cooling water passages 122, the second outermost cooling water passage 122B (second outermost heat medium passage) located closest to the other end side in the plate stacking direction is a large number constituting the heat exchange unit 12. Formed between the second outermost plate member 11C located closest to the other end side in the plate stacking direction of the plate members 11 and the other end plate member 11D adjacent to the second outermost plate member 11C. Has been.

したがって、複数の冷媒流路121のうち最も板積層方向他端側に位置する第2最端冷媒流路121Bよりも板積層方向他端側に、第2最端冷却水流路122Bが配置されることとなる。   Accordingly, the second endmost cooling water flow path 122B is disposed on the other end side in the plate stacking direction with respect to the second endmost refrigerant flow path 121B located closest to the other end side in the plate stacking direction among the plurality of refrigerant flow paths 121. It will be.

そのため、第2最端冷媒流路121Bよりも板積層方向他端側に第2最端冷却水流路122Bが配置されない場合と比較して、冷媒と冷却水との熱交換性能を向上できる。   Therefore, the heat exchange performance between the refrigerant and the cooling water can be improved as compared with the case where the second endmost cooling water flow path 122B is not disposed on the other end side in the plate stacking direction with respect to the second endmost refrigerant flow path 121B.

冷媒用第1タンク空間13および冷却水用第1タンク空間15は、熱交換部12に対して、冷媒流路121および冷却水流路122の一方側(図1の例では左方側)に配置されている。冷媒用第2タンク空間14および冷却水用第2タンク空間16は、熱交換部12に対して、冷媒流路121および冷却水流路122の他方側(図1の例では右方側)に配置されている。   The first tank space for refrigerant 13 and the first tank space for cooling water 15 are arranged on one side (left side in the example of FIG. 1) of the refrigerant flow path 121 and the cooling water flow path 122 with respect to the heat exchange unit 12. Has been. The second tank space for refrigerant 14 and the second tank space for cooling water 16 are arranged on the other side (right side in the example of FIG. 1) of the refrigerant flow path 121 and the cooling water flow path 122 with respect to the heat exchange unit 12. Has been.

冷媒用第1タンク空間13および冷媒用第2タンク空間14は、複数の冷媒流路121に対して冷媒の分配および集合を行う。冷却水用第1タンク空間15および冷却水用第2タンク空間16は、複数の冷却水流路122に対して冷却水の分配および集合を行う。   The refrigerant first tank space 13 and the refrigerant second tank space 14 distribute and collect the refrigerant with respect to the plurality of refrigerant flow paths 121. The first tank space for cooling water 15 and the second tank space for cooling water 16 distribute and collect the cooling water to the plurality of cooling water flow paths 122.

冷媒用第1タンク空間13、冷媒用第2タンク空間14、冷却水用第1タンク空間15および冷却水用第2タンク空間16は、板状部材11の四隅(図2の例では上下左右の四隅)に形成された連通孔によって構成されている。   The first tank space 13 for refrigerant, the second tank space 14 for refrigerant, the first tank space 15 for cooling water, and the second tank space 16 for cooling water are at the four corners of the plate-like member 11 (in the example of FIG. It is comprised by the communicating hole formed in the four corners.

第1最端板状部材11Aには、第1ジョイント21および第1冷却水パイプ22が取り付けられている。第1ジョイント21は、冷媒配管を接合するための部材であり、熱交換器10の冷媒入口101を形成している。第1冷却水パイプ22は、熱交換器10の冷却水出口102を形成している。   A first joint 21 and a first cooling water pipe 22 are attached to the first endmost plate-like member 11A. The first joint 21 is a member for joining refrigerant pipes, and forms the refrigerant inlet 101 of the heat exchanger 10. The first cooling water pipe 22 forms the cooling water outlet 102 of the heat exchanger 10.

第2最端板状部材11Bには、第2ジョイント23および第2冷却水パイプ24が取り付けられている。第2ジョイント23は、冷媒配管を接合するための部材であり、熱交換器10の冷媒出口103を形成している。第2冷却水パイプ24は、熱交換器10の冷却水入口104を形成している。   A second joint 23 and a second cooling water pipe 24 are attached to the second endmost plate member 11B. The second joint 23 is a member for joining refrigerant pipes and forms the refrigerant outlet 103 of the heat exchanger 10. The second cooling water pipe 24 forms the cooling water inlet 104 of the heat exchanger 10.

冷媒入口101および冷媒出口103は冷媒用第1タンク空間13に連通している。冷却水出口102および冷却水入口104は冷却水用第1タンク空間15に連通している。   The refrigerant inlet 101 and the refrigerant outlet 103 communicate with the first refrigerant tank space 13. The cooling water outlet 102 and the cooling water inlet 104 communicate with the first tank space 15 for cooling water.

冷媒用第1タンク空間13は板積層方向に2つの空間に仕切られている。したがって、図1の実線矢印に示すように、冷媒入口101から流入した冷媒は、板積層方向一端側の冷媒流路121、121Aを冷媒用第1タンク空間13側から冷媒用第2タンク空間14側へ向かって流れた後、板積層方向他端側の冷媒流路121、121Bを冷媒用第2タンク空間14側から冷媒用第1タンク空間13側へ向かって流れて冷媒出口103から流出する。すなわち、熱交換器10は、冷媒の流れが1回Uターンするように構成されている。   The first tank space 13 for refrigerant is partitioned into two spaces in the plate stacking direction. Therefore, as shown by the solid line arrow in FIG. 1, the refrigerant flowing from the refrigerant inlet 101 passes through the refrigerant flow paths 121 and 121A on one end side in the plate stacking direction from the refrigerant first tank space 13 side to the refrigerant second tank space 14. After flowing toward the side, the refrigerant flow paths 121 and 121B on the other end side in the plate stacking direction flow from the refrigerant second tank space 14 side toward the refrigerant first tank space 13 side and flow out from the refrigerant outlet 103. . That is, the heat exchanger 10 is configured such that the refrigerant flow makes a U-turn once.

同様に、冷却水用第1タンク空間15は板積層方向に2つの空間に仕切られている。したがって、図1の一点鎖線矢印に示すように、冷却水入口104から流入した冷却水は、板積層方向他端側の冷却水流路122、122Bを冷却水用第1タンク空間15側から冷却水用第2タンク空間16側へ向かって流れた後、板積層方向一端側の冷却水流路122、122Aを冷却水用第2タンク空間16側から冷却水用第1タンク空間15側へ向かって流れて冷却水出口102から流出する。すなわち、熱交換器10は、冷却水の流れが1回Uターンするように構成されている。   Similarly, the cooling water first tank space 15 is partitioned into two spaces in the plate stacking direction. Therefore, as shown by the one-dot chain line arrow in FIG. 1, the cooling water flowing from the cooling water inlet 104 passes through the cooling water flow paths 122 and 122B on the other end side in the plate stacking direction from the cooling water first tank space 15 side. After flowing toward the second tank space 16 side, the cooling water flow paths 122 and 122A on one end side in the plate stacking direction flow from the second tank space 16 side for cooling water toward the first tank space 15 side for cooling water. And flows out from the cooling water outlet 102. That is, the heat exchanger 10 is configured so that the flow of the cooling water makes a U-turn once.

熱交換器10は、冷媒の流れと冷却水の流れとが互いに反対方向(対向流)になるように構成されている。   The heat exchanger 10 is configured such that the refrigerant flow and the cooling water flow are in opposite directions (opposite flow).

板状部材11同士の間には、図3に示すオフセットフィン30が配置されている。オフセットフィン30は、板状部材11同士の間に介在し、冷媒と熱媒体との間での熱交換を促進させるインナーフィンである。   The offset fins 30 shown in FIG. 3 are arranged between the plate-like members 11. The offset fins 30 are inner fins that are interposed between the plate-like members 11 and promote heat exchange between the refrigerant and the heat medium.

オフセットフィン30は、部分的に切り起こされた切り起こし部301が形成された板状の部材である。切り起こし部301は、冷媒および冷却水の流れ方向と平行な方向F1(すなわち、板状部材11の長手方向)に多数個形成されている。   The offset fin 30 is a plate-like member on which a partially raised portion 301 is formed. A large number of cut-and-raised portions 301 are formed in a direction F1 (that is, the longitudinal direction of the plate-like member 11) parallel to the flow direction of the refrigerant and the cooling water.

冷媒および冷却水の流れ方向と平行な方向F1に隣り合う切り起こし部301同士は、互いにオフセットされている。図3の例では、多数個の切り起こし部301は、冷媒および冷却水の流れ方向と平行な方向F1に千鳥配置されている。   The cut-and-raised portions 301 adjacent to each other in the direction F1 parallel to the flow direction of the refrigerant and the cooling water are offset from each other. In the example of FIG. 3, the large number of cut-and-raised parts 301 are staggered in a direction F1 parallel to the flow direction of the refrigerant and the cooling water.

オフセットフィン30の具体的材質としては、例えば、アルミニウム心材の両面にろう材をクラッドした両面クラッド材が用いられる。オフセットフィン30は、隣り合う両方の板状部材11にろう付けにより接合されている。   As a specific material of the offset fin 30, for example, a double-sided clad material in which a brazing material is clad on both sides of an aluminum core is used. The offset fins 30 are joined to both adjacent plate-like members 11 by brazing.

したがって、オフセットフィン30は、隣り合う板状部材11同士を接合し、かつ冷媒流路121および冷却水流路122を板積層方向に横断する内部壁を構成している。   Therefore, the offset fin 30 constitutes an internal wall that joins the adjacent plate-like members 11 and crosses the coolant channel 121 and the cooling water channel 122 in the plate stacking direction.

第1最端冷却水流路122Aに設けられたオフセットフィン30は、複数の冷却水流路122のうち第2最端冷却水流路122Bを除く他の冷却水流路122に設けられたオフセットフィン30よりも板厚の大きい部位を有している。   The offset fins 30 provided in the first outermost cooling water channel 122A are more than the offset fins 30 provided in the other cooling water channels 122 except for the second outermost cooling water channel 122B among the plurality of cooling water channels 122. It has a part with a large plate thickness.

例えば、第1最端冷却水流路122Aに設けられたオフセットフィン30は、複数の冷却水流路122のうち第2最端冷却水流路122Bを除く他の冷却水流路122に設けられたオフセットフィン30と比較して板厚の大きい板材で形成されている。   For example, the offset fins 30 provided in the first outermost cooling water channel 122A are offset fins 30 provided in other cooling water channels 122 excluding the second outermost cooling water channel 122B among the plurality of cooling water channels 122. It is formed with the board | plate material with a board thickness large compared with.

これにより、熱交換部12のうち第1最端冷却水流路122Aを形成する部位の強度を、他の冷却水流路122を形成する部位よりも強くできる。このため、冷媒圧力に対する耐圧性を確保できる。   Thereby, the intensity | strength of the site | part which forms 122 A of 1st most end cooling water flow paths among the heat exchange parts 12 can be made stronger than the site | part which forms the other cooling water flow path 122. FIG. For this reason, the pressure resistance with respect to a refrigerant pressure is securable.

第2最端冷却水流路122Bに設けられたオフセットフィン30は、複数の冷却水流路122のうち第1最端冷却水流路122Aを除く他の冷却水流路122に設けられたオフセットフィン30よりも板厚の大きい部位を有している。   The offset fins 30 provided in the second outermost cooling water channel 122B are more than the offset fins 30 provided in the cooling water channels 122 other than the first outermost cooling water channel 122A among the plurality of cooling water channels 122. It has a part with a large plate thickness.

第2最端冷却水流路122Bに設けられたオフセットフィン30は、複数の冷却水流路122のうち第1最端冷却水流路122Aを除く他の冷却水流路122に設けられたオフセットフィン30と比較して板厚の大きい板材で形成されている。   The offset fins 30 provided in the second outermost cooling water channel 122B are compared with the offset fins 30 provided in other cooling water channels 122 other than the first outermost cooling water channel 122A among the plurality of cooling water channels 122. And it is formed with the board | plate material with large board thickness.

これにより、熱交換部12のうち第2最端冷却水流路122Bを形成する部位の強度を、他の冷却水流路122を形成する部位よりも強くできる。このため、冷媒圧力に対する耐圧性を確保できる。   Thereby, the intensity | strength of the site | part which forms the 2nd most end cooling water flow path 122B among the heat exchange parts 12 can be made stronger than the site | part which forms the other cooling water flow path 122. FIG. For this reason, the pressure resistance with respect to a refrigerant pressure is securable.

本実施形態によると、第1最端冷却水流路122Aは第1最端板状部材11Aと一端側板状部材11Bとの間に形成されているので、第1最端冷却水流路122Aは、熱交換部12のうち最も板積層方向一端側の部位に形成されることとなる。   According to this embodiment, since the first endmost cooling water flow path 122A is formed between the first endmost plate-like member 11A and the one end side plate-like member 11B, the first endmost cooling water flow path 122A In the exchange part 12, it will form in the site | part of the one end side of a board lamination direction most.

したがって、冷媒流路121よりも板積層方向一端側に冷却水流路122Aが配置されることとなるので、冷媒流路121よりも板積層方向一端側に冷却水流路122Aが配置されない場合と比較して、冷媒と冷却水との熱交換性能を向上できる。   Therefore, since the cooling water flow path 122A is arranged at one end side in the plate stacking direction from the refrigerant flow path 121, compared with the case where the cooling water flow path 122A is not arranged at one end side in the plate stacking direction from the refrigerant flow path 121. Thus, the heat exchange performance between the refrigerant and the cooling water can be improved.

さらに、第1最端冷却水流路122Aに設けられたオフセットフィン30は、他の冷却水流路122に設けられたオフセットフィン30よりも板厚の大きい部位を有しているので、熱交換部12のうち第1最端冷却水流路122Aを形成する部位の強度を、他の却水流路122を形成する部位よりも強くできる。このため、冷媒圧力に対する耐圧性を確保できる。 Furthermore, since the offset fin 30 provided in the first endmost cooling water flow path 122A has a portion having a larger plate thickness than the offset fin 30 provided in the other cooling water flow path 122, the heat exchange unit 12 strength of the portion forming a first endmost cooling water flow path 122A of the can stronger than parts to form the other cooling water passage 122. For this reason, the pressure resistance with respect to a refrigerant pressure is securable.

本実施形態によると、第1最端冷却水流路122Aにオフセットフィン30が設けられているので、冷却水の分配性を向上できる。   According to this embodiment, since the offset fins 30 are provided in the first endmost cooling water flow path 122A, the distribution of cooling water can be improved.

本実施形態によると、第2最端冷却水流路122Bは第2最端板状部材11と他端側板状部材11との間に形成されているので、第2最端冷却水流路122Bは、熱交換部12のうち最も板積層方向他端側の部位に形成されることとなる。 According to this embodiment, since the second outermost cooling water channel 122B is formed between the second top end plate member 11 C and the other end-side plate member 11 D, a second endmost cooling water channel 122B Is formed at a portion of the heat exchanging portion 12 that is closest to the other end side in the plate stacking direction.

したがって、冷媒流路121よりも板積層方向他端側に冷却水流路122Bが配置されることとなるので、冷媒流路121よりも板積層方向他端側に冷却水流路122Bが配置されない場合と比較して、冷媒と冷却水との熱交換性能を向上できる。   Therefore, since the cooling water flow path 122B is disposed on the other end side in the plate stacking direction from the refrigerant flow path 121, the cooling water flow path 122B is not disposed on the other end side in the plate stacking direction from the refrigerant flow path 121. In comparison, the heat exchange performance between the refrigerant and the cooling water can be improved.

さらに、第2最端冷却水流路122Bに設けられたオフセットフィン30は、他の冷却水流路122に設けられたオフセットフィン30よりも板厚の大きい部位を有しているので、熱交換部12のうち第2最端冷却水流路122Bを形成する部位の強度を、他の却水流路122を形成する部位よりも強くできる。このため、冷媒圧力に対する耐圧性を一層確保できる。 Further, the offset fin 30 provided in the second endmost cooling water flow path 122B has a portion having a larger plate thickness than the offset fins 30 provided in the other cooling water flow paths 122. strength of the portion forming the second outermost cooling water channel 122B of the can stronger than parts to form the other cooling water passage 122. For this reason, the pressure | voltage resistance with respect to a refrigerant | coolant pressure is further securable.

本実施形態によると、第2最端冷却水流路122Bにオフセットフィン30が設けられているので、冷却水の分配性を向上できる。   According to this embodiment, since the offset fins 30 are provided in the second endmost cooling water flow path 122B, the distribution of cooling water can be improved.

(第2実施形態)
上記第1実施形態では、隣り合う板状部材11同士を接合し、かつ冷媒流路121および冷却水流路122を板積層方向に横断する内部壁をオフセットフィン30によって構成しているが、本実施形態では、図4、図5に示すように、板状部材11に打ち出し成形されたリブ112によって内部壁を構成している。
(Second Embodiment)
In the said 1st Embodiment, although the adjacent plate-shaped members 11 are joined and the internal wall which crosses the refrigerant | coolant flow path 121 and the cooling water flow path 122 in a plate lamination direction is comprised by the offset fin 30, this embodiment In the form, as shown in FIGS. 4 and 5, the inner wall is constituted by ribs 112 formed by stamping on the plate-like member 11.

図4の例では、リブ112は、板状部材11の長手方向に対して傾いた方向に延びる溝状に形成されている。   In the example of FIG. 4, the rib 112 is formed in a groove shape extending in a direction inclined with respect to the longitudinal direction of the plate-like member 11.

リブ112は、板積層方向両端側から中央側に向かって打ち出されている。すなわち、熱交換部12のうち板積層方向一端側の部位では、リブ112は板積層方向一端側から他端側に向かって打ち出されている。熱交換部12のうち板積層方向他端の部位では、リブ112は板積層方向他端側から一端側に向かって打ち出されている。   The ribs 112 are driven out from both ends of the plate stacking direction toward the center. That is, the rib 112 is driven out from the one end side in the plate stacking direction toward the other end side in the portion on the one end side in the plate stacking direction of the heat exchange unit 12. At the other end of the heat exchanging portion 12 in the plate stacking direction, the rib 112 is driven out from the other end in the plate stacking direction toward the one end.

第1最端冷却水流路122Aに設けられたリブ112は、複数の冷却水流路122のうち第2最端冷却水流路122Bを除く他の冷却水流路122に設けられたリブ112よりも板厚の大きい部位を有している。   The rib 112 provided in the first outermost cooling water channel 122A is thicker than the ribs 112 provided in the other cooling water channels 122 other than the second outermost cooling water channel 122B among the plurality of cooling water channels 122. It has a large part.

例えば、第1最端冷却水流路122Aを形成する第1最端板状部材11Aを、複数の冷却水流路122のうち第2最端冷却水流路122Bを除く他の冷却水流路122を形成する板状部材11と比較して板厚の大きい板材で形成することによって、第1最端冷却水流路122Aに設けられたリブ112の板厚を、複数の冷却水流路122のうち第2最端冷却水流路122Bを除く他の冷却水流路122に設けられたリブ112の板厚よりも大きくしている。   For example, the first endmost plate-like member 11A that forms the first endmost cooling water flow path 122A is formed with the other cooling water flow paths 122 other than the second endmost cooling water flow path 122B among the plurality of cooling water flow paths 122. By forming the plate member 11 having a plate thickness larger than that of the plate-like member 11, the plate thickness of the rib 112 provided in the first outermost cooling water channel 122 </ b> A is set to the second outermost cooling water channel 122. It is larger than the plate thickness of the rib 112 provided in the other cooling water flow paths 122 excluding the cooling water flow path 122B.

これにより、熱交換部12のうち第1最端冷却水流路122Aを形成する部位の強度を、他の冷却水流路122を形成する部位よりも強くできる。このため、冷媒圧力に対する耐圧性を確保できる。   Thereby, the intensity | strength of the site | part which forms 122 A of 1st most end cooling water flow paths among the heat exchange parts 12 can be made stronger than the site | part which forms the other cooling water flow path 122. FIG. For this reason, the pressure resistance with respect to a refrigerant pressure is securable.

第2最端冷却水流路122Bに設けられたリブ112は、複数の冷却水流路122のうち第1最端冷却水流路122Aを除く他の冷却水流路122に設けられたリブ112よりも板厚の大きい部位を有している。   The rib 112 provided in the second outermost cooling water flow path 122B is thicker than the rib 112 provided in the other cooling water flow paths 122 other than the first outermost cooling water flow path 122A among the plurality of cooling water flow paths 122. It has a large part.

例えば、第2最端冷却水流路122Bを形成する第2最端板状部材11Bを、複数の冷却水流路122のうち最一端冷却水流路122Aを除く他の冷却水流路122を形成する板状部材11と比較して板厚の大きい板材で形成することによって、第2最端冷却水流路122Bに設けられたリブ112の板厚を、複数の冷却水流路122のうち最一端冷却水流路122Aを除く他の冷却水流路122に設けられたリブ112の板厚よりも大きくしている。   For example, the second endmost plate-like member 11B that forms the second endmost cooling water flow path 122B is formed into a plate shape that forms the other cooling water flow paths 122 excluding the most end cooling water flow path 122A among the plurality of cooling water flow paths 122. By forming the plate 112 having a plate thickness larger than that of the member 11, the plate thickness of the rib 112 provided in the second endmost cooling water channel 122 </ b> B is changed to the endmost cooling water channel 122 </ b> A among the plurality of cooling water channels 122. It is made larger than the plate | board thickness of the rib 112 provided in the other cooling water flow paths 122 except for.

これにより、熱交換部12のうち第2最端冷却水流路122Bを形成する部位の強度を、他の冷却水流路122を形成する部位よりも強くできる。このため、冷媒圧力に対する耐圧性を確保できる。   Thereby, the intensity | strength of the site | part which forms the 2nd most end cooling water flow path 122B among the heat exchange parts 12 can be made stronger than the site | part which forms the other cooling water flow path 122. FIG. For this reason, the pressure resistance with respect to a refrigerant pressure is securable.

本実施形態では、板状部材11に打ち出し成形されたリブ112によって内部壁を構成している。そのため、板状部材11とは別個の部材を用いることなく内部壁を形成することができるので、構成を簡素化できる。   In this embodiment, the inner wall is constituted by the ribs 112 formed by stamping on the plate-like member 11. Therefore, since the inner wall can be formed without using a member separate from the plate-like member 11, the configuration can be simplified.

(第3実施形態)
本実施形態では、図6〜図8に示すように、上記第1実施形態のオフセットフィン30と、上記第2実施形態のリブ112とを組み合わせている。
(Third embodiment)
In the present embodiment, as shown in FIGS. 6 to 8, the offset fin 30 of the first embodiment and the rib 112 of the second embodiment are combined.

本実施形態では、図6に示すように、リブ112は平面形状が円形状に形成されている。オフセットフィン30のうちリブ112に対応する部位は、くり抜かれて貫通孔が形成されている。図7では、図示の都合上、オフセットフィン30の全体に切り起こし部301が形成されているが、実際には、図7中、2点鎖線で囲まれた領域(リブ112に対応する部位)がくり抜かれて貫通孔が形成されている。   In the present embodiment, as shown in FIG. 6, the rib 112 has a circular planar shape. A portion of the offset fin 30 corresponding to the rib 112 is cut out to form a through hole. In FIG. 7, for the convenience of illustration, the cut-and-raised portion 301 is formed on the entire offset fin 30, but in reality, a region surrounded by a two-dot chain line in FIG. 7 (part corresponding to the rib 112). The through hole is formed by cutting out the hole.

これにより、図8に示すように、オフセットフィン30のうち貫通孔が形成されている部位(くり抜かれた部位)に板状部材11のリブ112が配置されることとなり、リブ112とオフセットフィン30との干渉が回避される。   As a result, as shown in FIG. 8, the rib 112 of the plate-like member 11 is arranged in a portion where the through-hole is formed (the portion that is hollowed out) in the offset fin 30, and the rib 112 and the offset fin 30. Interference with is avoided.

本実施形態によると、オフセットフィン30およびリブ112の両方が設けられているので、冷媒圧力に対する耐圧性を一層確保できる。   According to the present embodiment, since both the offset fin 30 and the rib 112 are provided, it is possible to further secure pressure resistance against the refrigerant pressure.

本実施形態では、オフセットフィン30およびリブ112によって内部壁を構成している。これによると、オフセットフィン30およびリブ112のいずれか一方のみが設けられている場合と比較して、冷媒圧力に対する耐圧性を一層確保できる。さらに、オフセットフィン30によって冷却水の分配性を向上できる。   In the present embodiment, the offset fin 30 and the rib 112 constitute an inner wall. According to this, as compared with the case where only one of the offset fin 30 and the rib 112 is provided, the pressure resistance against the refrigerant pressure can be further ensured. Furthermore, the distribution of cooling water can be improved by the offset fins 30.

(他の実施形態)
上記実施形態を例えば以下のように種々変形可能である。
(Other embodiments)
The above embodiment can be variously modified as follows, for example.

(1)上記実施形態では、冷媒流路121および冷却水流路122は板積層方向に1本ずつ交互に積層配置されているが、例えば、冷媒流路121および冷却水流路122は板積層方向に複数本ずつ交互に積層配置されていてもよい。   (1) In the above embodiment, the refrigerant flow paths 121 and the cooling water flow paths 122 are alternately stacked one by one in the plate stacking direction. For example, the refrigerant flow paths 121 and the cooling water flow paths 122 are in the plate stacking direction. A plurality of them may be alternately stacked.

(2)上記実施形態において、熱交換部12の外部に、冷媒が流れる冷媒流路が形成されていてもよい。例えば、熱交換部12よりも板積方向一端側に、熱交換部12に流入する冷媒が流れる冷媒流路が形成されていてもよい。同様に、熱交換部12よりも板積方向他端側に、熱交換部12から流出した冷媒が流れる冷媒流路が形成されていてもよい。   (2) In the above embodiment, a refrigerant flow path through which the refrigerant flows may be formed outside the heat exchange unit 12. For example, a refrigerant flow path through which the refrigerant flowing into the heat exchange unit 12 flows may be formed on one end side in the plate stack direction with respect to the heat exchange unit 12. Similarly, a refrigerant channel through which the refrigerant that has flowed out of the heat exchange unit 12 flows may be formed on the other end side in the plate stack direction than the heat exchange unit 12.

(3)上記実施形態では、熱交換器10は、冷媒の流れおよび冷却水の流れが1回Uターンするように構成されているが、冷媒の流れおよび冷却水の流れがUターンしないように構成されていてもよいし、冷媒の流れおよび冷却水の流れが複数回Uターンするように構成されてもよい。   (3) In the above embodiment, the heat exchanger 10 is configured such that the refrigerant flow and the cooling water flow make one U-turn, but the refrigerant flow and the cooling water flow do not make a U-turn. You may be comprised, and it may be comprised so that the flow of a refrigerant | coolant and the flow of cooling water may make a U-turn a plurality of times.

(4)上記実施形態では、熱交換器10は、冷媒の流れと冷却水の流れとが互いに反対方向(対向流)になるように構成されているが、冷媒の流れと冷却水の流れとが互いに同じ方向(平行流)になるように構成されていてもよい。   (4) In the above embodiment, the heat exchanger 10 is configured such that the refrigerant flow and the cooling water flow are in opposite directions (opposite flow), but the refrigerant flow and the cooling water flow May be configured to be in the same direction (parallel flow).

(5)上記実施形態では、熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。   (5) In the above embodiment, cooling water is used as the heat medium, but various media such as oil may be used as the heat medium.

熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。   A nanofluid may be used as the heat medium. A nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed. In addition to the effect of lowering the freezing point as in the case of cooling water using ethylene glycol (so-called antifreeze liquid), the following effects can be obtained by mixing the nanoparticles with the heat medium.

すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。   That is, the effect of improving the thermal conductivity in a specific temperature range, the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature The effect which improves the fluidity | liquidity of can be acquired.

このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。   Such effects vary depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.

これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。   According to this, since the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.

また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量(顕熱による蓄冷熱)を増加させることができる。   Moreover, since the heat capacity of the heat medium can be increased, the amount of heat stored in the heat medium itself (cold heat stored by sensible heat) can be increased.

蓄冷熱量を増加させることにより、冷凍サイクルの圧縮機を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用空調装置の省動力化が可能になる。   By increasing the amount of cold storage heat, even when the compressor of the refrigeration cycle is not in operation, equipment cooling using the cold storage heat and temperature control of heating can be performed for a certain amount of time. Motorization becomes possible.

ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。   The aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained. The aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.

ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT(カーボンナノチューブ)、グラフェン、グラファイトコアシェル型ナノ粒子(上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体)、およびAuナノ粒子含有CNTなどを用いることができる。   Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.

11 板状部材
11A 第1最端板状部材
11B 一端側板状部材
11C 第2最端板状部材
11D 他端側板状部材
12 熱交換部
121 冷媒流路
122 冷却水流路(熱媒体流路)
122A 第1最端冷却水流路(第1最端熱媒体流路)
122B 第2最端冷却水流路(第2最端熱媒体流路)
30 オフセットフィン(インナーフィン、内部壁)
301 切り起こし部
DESCRIPTION OF SYMBOLS 11 Plate-shaped member 11A 1st outermost plate-shaped member 11B One end side plate-shaped member 11C 2nd most end plate-shaped member 11D Other end side plate-shaped member 12 Heat exchange part 121 Refrigerant flow path 122 Cooling water flow path (heat medium flow path)
122A 1st most end cooling water flow path (1st most end heat medium flow path)
122B 2nd most end cooling water flow path (2nd most end heat medium flow path)
30 Offset fin (inner fin, inner wall)
301 Cut and raised part

Claims (6)

媒と、前記冷媒よりも低圧の熱媒体とを熱交換させる熱交換部(12)を備え、
前記熱交換部(12)は、多数枚の板状部材(11)が互いに積層されて接合されることによって形成されており、
前記多数枚の板状部材(11)同士の間には、前記冷媒が流れる複数の冷媒流路(121)、および前記熱媒体が流れる複数の熱媒体流路(122)が形成され、
前記複数の冷媒流路(121)および前記複数の熱媒体流路(122)は、前記多数枚の板状部材(11)の積層方向に並んで配置されており、
前記複数の熱媒体流路(122)には、隣り合う前記板状部材(11)同士を接合し、かつ前記熱媒体流路(122)を前記積層方向に横断する内部壁(30、112)が設けられており、
前記複数の熱媒体流路(122)のうち前記積層方向において最も一端側に位置する第1最端熱媒体流路(122A)は、前記多数枚の板状部材(11)のうち最も前記一端側に位置する第1最端板状部材(11A)と、前記多数枚の板状部材(11)のうち前記第1最端板状部材(11A)に隣接する一端側板状部材(11B)との間に形成されており、
前記第1最端熱媒体流路(122A)に設けられた前記内部壁(30、112)は、前記複数の熱媒体流路(122)のうち前記積層方向において最も他端側に位置する第2最端熱媒体流路(122B)を除く他の前記熱媒体流路(122)に設けられた前記内部壁(30、112)よりも板厚の大きい部位を有しており、
前記第2最端熱媒体流路(122B)は、前記熱交換部(12)を構成する前記多数枚の板状部材(11)のうち最も前記他端側に位置する第2最端板状部材(11C)と、前記第2最端板状部材(11C)に隣接する他端側板状部材(11D)との間に形成されており、
前記第2最端熱媒体流路(122B)に設けられた前記内部壁(30、112)は、前記複数の熱媒体流路(122)のうち前記第1最端熱媒体流路(122A)を除く他の前記熱媒体流路(122)に設けられた前記内部壁(30、112)よりも板厚の大きい部位を有していることを特徴とする熱交換器。
Refrigerant and said heat exchange unit for heat exchange between the low pressure of the heat medium than the refrigerant comprises a (12),
The heat exchange part (12) is formed by laminating and joining a large number of plate-like members (11) to each other,
A plurality of refrigerant flow paths (121) through which the refrigerant flows and a plurality of heat medium flow paths (122) through which the heat medium flows are formed between the plurality of plate-like members (11).
The plurality of refrigerant channels (121) and the plurality of heat medium channels (122) are arranged side by side in the stacking direction of the plurality of plate-like members (11),
Inner walls ( 30 , 112) that join the adjacent plate-like members (11) to the plurality of heat medium flow paths (122) and cross the heat medium flow path (122) in the stacking direction. Is provided,
Of the plurality of heat medium channels (122), the first outermost heat medium channel (122A) located on the most end side in the stacking direction is the one end of the multiple plate-like members (11). A first end plate member (11A) positioned on the side, and one end plate member (11B) adjacent to the first end plate member (11A) among the plurality of plate members (11). Formed between
The inner walls (30, 112) provided in the first outermost heat medium flow path (122A) are located on the other end side in the stacking direction among the plurality of heat medium flow paths (122). 2 has a portion with a larger plate thickness than the internal walls (30, 112) provided in the other heat medium flow path (122) except for the outermost heat medium flow path (122B) ,
The second endmost heat medium flow path (122B) is a second endmost plate shape that is located closest to the other end side among the multiple plate-like members (11) constituting the heat exchanging portion (12). Formed between the member (11C) and the other end side plate member (11D) adjacent to the second endmost plate member (11C),
The inner walls (30, 112) provided in the second outermost heat medium flow path (122B) are the first outermost heat medium flow path (122A) of the plurality of heat medium flow paths (122). It has a site | part with a plate | board thickness larger than the said internal wall (30,112) provided in the said other heat-medium flow path (122) except for .
前記内部壁は、前記板状部材(11)同士の間に介在し、前記冷媒と前記熱媒体との間での熱交換を促進させるインナーフィン(30)であり、
前記インナーフィン(30)は、部分的に切り起こされた切り起こし部(301)が前記熱媒体の流れ方向に多数形成され、前記熱媒体の流れ方向に隣り合う前記切り起こし部(301)同士が互いにオフセットされているオフセットフィンであることを特徴とする請求項1に記載の熱交換器。
The inner wall is an inner fin (30) that is interposed between the plate-like members (11) and promotes heat exchange between the refrigerant and the heat medium,
The inner fin (30) has a plurality of cut and raised portions (301) partially cut and raised in the flow direction of the heat medium, and the cut and raised portions (301) adjacent to each other in the flow direction of the heat medium. The heat exchanger according to claim 1, wherein the fins are offset fins that are offset from each other.
前記内部壁(30、112)は、前記板状部材(11)に打ち出し成形されたリブ(112)であることを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the inner wall (30, 112) is a rib (112) formed by stamping on the plate-like member (11). 前記内部壁は、前記板状部材(11)同士の間に介在し、前記冷媒と前記熱媒体との間での熱交換を促進させるインナーフィン(30)、および隣り合う前記板状部材(11)のうち前記一端側の板状部材(11)に打ち出し成形されたリブ(112)であり、
前記インナーフィン(30)は、部分的に切り起こされた切り起こし部(301)が前記熱媒体の流れ方向に多数形成され、前記熱媒体の流れ方向に隣り合う前記切り起こし部(301)同士が互いにオフセットされているオフセットフィンであることを特徴とする請求項1に記載の熱交換器。
The inner wall is interposed between the plate-like members (11) and promotes heat exchange between the refrigerant and the heat medium, and the adjacent plate-like members (11). ) Is a rib (112) formed by stamping on the plate-like member (11) on the one end side,
The inner fin (30) has a plurality of cut and raised portions (301) partially cut and raised in the flow direction of the heat medium, and the cut and raised portions (301) adjacent to each other in the flow direction of the heat medium. The heat exchanger according to claim 1, wherein the fins are offset fins that are offset from each other.
前記インナーフィン(30)のうち前記リブ(112)に対応する部位には、前記リブ(112)との干渉を回避するための貫通孔が形成されていることを特徴とする請求項4に記載の熱交換器。The through hole for avoiding interference with the rib (112) is formed in a portion corresponding to the rib (112) in the inner fin (30). Heat exchanger. 前記熱媒体は、エチレングリコール系の不凍液であることを特徴とする請求項1ないし5のいずれか1つに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 5, wherein the heat medium is an ethylene glycol antifreeze.
JP2013158936A 2013-07-31 2013-07-31 Heat exchanger Active JP6102612B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013158936A JP6102612B2 (en) 2013-07-31 2013-07-31 Heat exchanger
PCT/JP2014/002943 WO2015015683A1 (en) 2013-07-31 2014-06-03 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158936A JP6102612B2 (en) 2013-07-31 2013-07-31 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2015031412A JP2015031412A (en) 2015-02-16
JP6102612B2 true JP6102612B2 (en) 2017-03-29

Family

ID=52431249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158936A Active JP6102612B2 (en) 2013-07-31 2013-07-31 Heat exchanger

Country Status (2)

Country Link
JP (1) JP6102612B2 (en)
WO (1) WO2015015683A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984480B2 (en) * 1992-10-09 1999-11-29 三菱重工業株式会社 Stacked heat exchanger
JP3314433B2 (en) * 1993-01-06 2002-08-12 石川島播磨重工業株式会社 Plate fin type heat exchanger
JP4153082B2 (en) * 1998-06-18 2008-09-17 三菱電機株式会社 Plate heat exchanger and refrigeration cycle equipment
US7343965B2 (en) * 2004-01-20 2008-03-18 Modine Manufacturing Company Brazed plate high pressure heat exchanger
JP2007183071A (en) * 2006-01-10 2007-07-19 Tokyo Bureizu Kk High-pressure-resistant compact heat exchanger and manufacturing method of the same
SE535592C2 (en) * 2011-02-04 2012-10-09 Alfa Laval Corp Ab plate heat exchangers

Also Published As

Publication number Publication date
JP2015031412A (en) 2015-02-16
WO2015015683A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP6504367B2 (en) Heat exchanger
JP6222042B2 (en) Laminate heat exchanger
WO2014132602A1 (en) Stacked heat exchanger
EP3040670A1 (en) Heat exchanger, in particular a condenser or a gas cooler
JP2019215154A (en) Capacitor accompanied by refrigerant supply source for air-conditioning circuit
JP2010114174A (en) Core structure for heat sink
JP6528283B2 (en) Heat exchanger
JP6578964B2 (en) Laminate heat exchanger
JP6120978B2 (en) Heat exchanger and air conditioner using the same
JP2013195024A (en) Fin for heat exchanger, and heat exchanger
JP2014055736A (en) Heat exchanger
JP6160385B2 (en) Laminate heat exchanger
JP6578980B2 (en) Laminate heat exchanger
JP2006132805A (en) Plate type heat exchanger
WO2016136266A1 (en) Refrigerant evaporator
JP2010175167A (en) Cold storage heat exchanger
JP6102612B2 (en) Heat exchanger
JP2005180714A (en) Heat exchanger and inner fin used by it
JP6354868B1 (en) Water heat exchanger
JP6281422B2 (en) Laminate heat exchanger
JP2006112732A (en) Small-diameter heat transfer tube unit of small-diameter multitubular heat exchanger
JP5947158B2 (en) Outdoor heat exchanger for heat pump
JP2006349275A (en) Heat exchanger
JP2018132298A (en) Water heat exchanger
JP6720890B2 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R151 Written notification of patent or utility model registration

Ref document number: 6102612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250