JP6102358B2 - Dielectric thin film forming composition - Google Patents

Dielectric thin film forming composition Download PDF

Info

Publication number
JP6102358B2
JP6102358B2 JP2013046245A JP2013046245A JP6102358B2 JP 6102358 B2 JP6102358 B2 JP 6102358B2 JP 2013046245 A JP2013046245 A JP 2013046245A JP 2013046245 A JP2013046245 A JP 2013046245A JP 6102358 B2 JP6102358 B2 JP 6102358B2
Authority
JP
Japan
Prior art keywords
thin film
dielectric thin
atoms
composition
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013046245A
Other languages
Japanese (ja)
Other versions
JP2014172778A (en
Inventor
桜井 英章
英章 桜井
順 藤井
順 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013046245A priority Critical patent/JP6102358B2/en
Publication of JP2014172778A publication Critical patent/JP2014172778A/en
Application granted granted Critical
Publication of JP6102358B2 publication Critical patent/JP6102358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、薄膜キャパシタの誘電体層等に用いられるPLZT誘電体薄膜の形成に好適な誘電体薄膜形成用組成物に関するものである。 The present invention relates to a suitable dielectric thin film-forming composition to form a PLZT dielectric thin film used in the dielectric layer such as a thin film capacitor.

薄膜キャパシタの誘電体層等に用いられる薄膜として、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウムストロンチウム(以下、「BST」という)、チタン酸鉛(以下、「PT」という)、チタン酸ジルコン酸鉛(以下、「PZT」という)、ランタン添加チタン酸ジルコン酸鉛(以下、「PLZT」という)に代表される第4成分添加チタン酸ジルコン酸鉛(以下、「4成分系PZT」という)等のペロブスカイト型酸化物から形成される誘電体薄膜が注目されている。また、誘電体薄膜を形成する方法としては、真空蒸着法、スパッタリング法、レーザーアブレーション法等の物理的気相成長法、CVD(Chemical Vapor Deposition)法等の化学的気相成長法の他に、ゾルゲル法等の化学溶液法(Chemical Solution Deposition、CSD法)が用いられる(例えば、特許文献1参照。)。特にゾルゲル法は、CVD法やスパッタリング法等に比べ、真空プロセスを必要としないため、製造コストも低く、広い面積の基板上に形成することも容易であるという利点がある。しかも、誘電体薄膜の形成に用いる溶液材料中の組成を変えることによって、膜中の組成を理論的比率にすることが容易で、かつ極めて薄い誘電体薄膜が得られるため、大容量の薄膜キャパシタを形成する方法として期待されている。 Thin films used for dielectric layers of thin film capacitors include strontium titanate (SrTiO 3 ), barium strontium titanate (hereinafter referred to as “BST”), lead titanate (hereinafter referred to as “PT”), zirconate titanate. Lead (hereinafter referred to as “PZT”), fourth component added lead zirconate titanate represented by lanthanum-added lead zirconate titanate (hereinafter referred to as “PLZT”), etc. Dielectric thin films formed from these perovskite oxides have attracted attention. Moreover, as a method for forming a dielectric thin film, in addition to a chemical vapor deposition method such as a physical vapor deposition method such as a vacuum deposition method, a sputtering method, a laser ablation method, or a CVD (Chemical Vapor Deposition) method, A chemical solution method (Chemical Solution Deposition, CSD method) such as a sol-gel method is used (for example, see Patent Document 1). In particular, the sol-gel method does not require a vacuum process as compared with the CVD method, the sputtering method, and the like, and thus has an advantage that the manufacturing cost is low and it can be easily formed on a substrate having a large area. Moreover, by changing the composition in the solution material used to form the dielectric thin film, it is easy to make the composition in the film a theoretical ratio, and an extremely thin dielectric thin film can be obtained. It is expected as a method of forming.

また、ゾルゲル法によるPLZT誘電体薄膜の形成方法としては、加熱処理によるデバイスのトランジスタ及びその周辺回路等への悪影響を解消するため、組成物を基板上に塗布した後の結晶化のための焼成温度を、非常に低温で行うことを実現させたPLZT誘電体薄膜の形成方法が開示されている(例えば、特許文献2参照。)。   Also, as a method of forming a PLZT dielectric thin film by the sol-gel method, in order to eliminate the adverse effect on the transistor of the device and its peripheral circuit due to the heat treatment, firing for crystallization after coating the composition on the substrate A method of forming a PLZT dielectric thin film that has been realized at a very low temperature is disclosed (for example, see Patent Document 2).

この形成方法では、形成後の誘電体薄膜において、Pb、La、Zr、Ti、Oからなる金属酸化物Aを形成するための有機金属化合物以外に、Bi、Si、Pb、Ge等からなる他の金属酸化物Bを形成するための有機金属化合物を添加した液状組成物を用いることにより、焼成温度の飛躍的な低温化を達成している。   In this formation method, in addition to the organometallic compound for forming the metal oxide A composed of Pb, La, Zr, Ti, and O in the dielectric thin film after the formation, other materials composed of Bi, Si, Pb, Ge, etc. By using a liquid composition to which an organometallic compound for forming the metal oxide B is added, the firing temperature is drastically reduced.

特開昭60−236404号公報(6ページの右上欄10行目〜左下欄3行目)JP-A-60-236404 (page 6, upper right column, line 10 to lower left column, line 3) 特許第4329287号公報(請求項1、請求項12、段落[0010]〜段落[0013])Japanese Patent No. 4329287 (Claim 1, Claim 12, Paragraph [0010] to Paragraph [0013])

一方、CSD法による誘電体薄膜の成膜においては、上記特許文献2に示される焼成温度の低温化についての課題以外にも、キャパシタとしての特性、即ち静電容量、絶縁耐圧特性等を十分に引出すための研究や開発が、今でも盛んに行われている。キャパシタにおけるこれらの特性に最も関与しているのは、誘電体薄膜中の金属組成にあると考えられ、これら組成の違いがキャパシタとしての特性を大きく変えることから、これまでにも、最適な組成を開示した文献等が数多く存在している。   On the other hand, in the formation of the dielectric thin film by the CSD method, in addition to the problem of lowering the firing temperature described in Patent Document 2, the characteristics as a capacitor, that is, the capacitance, the dielectric strength characteristics, etc. are sufficiently obtained. Research and development for drawing out is still active. It is thought that the metal composition in the dielectric thin film is most responsible for these characteristics in the capacitor, and the difference in these compositions greatly changes the characteristics of the capacitor. There are a large number of documents that disclose the above.

しかしながら、PLZT誘電体薄膜の場合は、特に、主な構成元素がPb、La、Zr、Tiの4つも存在していることから、最適な組成を選択するのが非常に困難であった。そのため、従来技術に開示されている組成のものを採用しても、そのとき必要であった特性が十分得られなかったり、また、これらの組成の極僅かな違いにより、キャパシタとして必要とされる複数の特性のうちのいずれかが大幅に低下してしまうといった不具合が生じていた。このため、PLZT誘電体薄膜のCSD法による成膜において、キャパシタとしての諸特性を複数同時に向上させることができる組成を有する材料及び成膜方法等の開発が求められていた。   However, in the case of a PLZT dielectric thin film, it is very difficult to select an optimum composition because there are particularly four main constituent elements, Pb, La, Zr, and Ti. Therefore, even if the composition disclosed in the prior art is adopted, the characteristics required at that time cannot be sufficiently obtained, or the capacitor is required due to a slight difference in these compositions. There has been a problem that any one of the plurality of characteristics is greatly deteriorated. For this reason, in the film formation of the PLZT dielectric thin film by the CSD method, development of a material having a composition capable of simultaneously improving a plurality of characteristics as a capacitor, a film formation method, and the like has been required.

本発明者等は鋭意検討の結果、キャパシタとして必要とされる複数の特性のいずれもが満足な値まで向上する組成を有するPLZT誘電体薄膜を形成するための組成物の組成を見出した。
本発明の目的は、薄膜キャパシタの誘電体層等に用いた際に、薄膜キャパシタとしての諸特性のうちの、特に、電圧を変えたときの容量変化率、絶縁耐圧及び静電容量特性を同時に向上させ得るPLZT誘電体薄膜を形成するための組成物を提供することにある。
As a result of intensive studies, the present inventors have found a composition of a composition for forming a PLZT dielectric thin film having a composition in which any of a plurality of characteristics required as a capacitor is improved to a satisfactory value.
It is an object of the present invention to provide, among other characteristics as a thin film capacitor, when used for a dielectric layer of a thin film capacitor, in particular, a capacitance change rate, a withstand voltage, and a capacitance characteristic when a voltage is changed. It is to provide a composition for forming a PLZT dielectric thin film that can be improved.

本発明の第1の観点は、PLZT誘電体薄膜を形成するための有機金属化合物含有組成物において、前記PLZT誘電体薄膜は薄膜キャパシタの誘電体層に用いられる薄膜であって、組成物に含まれるZr原子とTi原子の和を100とするとき、Zr原子とTi原子の原子比Zr/Tiが70/30〜80/20であり、Pb原子とLa原子の和が103〜107であり、かつLa原子が〜12であることを特徴とする。 A first aspect of the present invention is an organometallic compound-containing composition for forming a PLZT dielectric thin film , wherein the PLZT dielectric thin film is a thin film used for a dielectric layer of a thin film capacitor, and is included in the composition When the sum of Zr atoms and Ti atoms is 100, the atomic ratio Zr / Ti of Zr atoms and Ti atoms is 70/30 to 80/20, and the sum of Pb atoms and La atoms is 103 to 107 , and wherein the La atom is 9-12.

本発明の第1の観点の誘電体薄膜形成用組成物は、薄膜キャパシタの誘電体層に用いられるPLZT誘電体薄膜を形成するための有機金属化合物含有組成物であり、組成物に含まれるZr原子とTi原子の和を100とするとき、Zr原子とTi原子の原子比Zr/Tiが70/30〜80/20であり、Pb原子とLa原子の和が103〜107であり、かつLa原子が〜12である。これにより、この誘電体薄膜形成用組成物を、薄膜キャパシタの誘電体層の形成に用いれば、薄膜キャパシタとしての諸特性のうちの、特に、電圧を変えたときの容量変化率、絶縁耐圧及び静電容量特性を同時に向上させることができる。 The composition for forming a dielectric thin film according to the first aspect of the present invention is an organometallic compound-containing composition for forming a PLZT dielectric thin film used for a dielectric layer of a thin film capacitor , and is contained in the composition. When the sum of atoms and Ti atoms is 100, the atomic ratio Zr / Ti of Zr atoms and Ti atoms is 70/30 to 80/20, the sum of Pb atoms and La atoms is 103 to 107 , and La atom is 9-12. Thus, the dielectric thin film-forming composition, the use in the formation of the dielectric layer of the thin-film capacitor, of the characteristics of the thin film capacitor, in particular, the capacity change rate when varying voltage, withstand voltage In addition, the capacitance characteristics can be improved at the same time.

一般的な薄膜キャパシタの積層構造を示す断面構成図である。It is a cross-sectional block diagram which shows the laminated structure of a general thin film capacitor.

次に本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

本発明の誘電体薄膜形成用組成物は、PLZT誘電体薄膜、即ちランタン添加チタン酸ジルコン酸鉛からなる誘電体薄膜を形成するための有機金属化合物含有組成物の改良である。その特徴ある構成は、PLZT誘電体薄膜が薄膜キャパシタの誘電体層に用いられる薄膜であって、組成物に含まれるZr原子とTi原子の和を100とするとき、Zr原子とTi原子の原子比Zr/Tiが70/30〜80/20であり、Pb原子とLa原子の和が103〜107であり、かつLa原子が〜12であることにある。これにより、この組成物を用いれば、電圧を変えたときの容量変化率が小さく、高い絶縁耐圧及び静電容量を有する薄膜キャパシタ等を製造することができる。 The composition for forming a dielectric thin film of the present invention is an improvement of a composition containing an organometallic compound for forming a PLZT dielectric thin film, that is, a dielectric thin film composed of lanthanum-doped lead zirconate titanate. The characteristic configuration is that the PLZT dielectric thin film is a thin film used for a dielectric layer of a thin film capacitor, and when the sum of Zr atoms and Ti atoms contained in the composition is 100, atoms of Zr atoms and Ti atoms The ratio Zr / Ti is 70/30 to 80/20, the sum of Pb atoms and La atoms is 103 to 107 , and La atoms are 9 to 12. Thereby, if this composition is used, the capacity | capacitance change rate when a voltage is changed is small, and the thin film capacitor etc. which have a high withstand voltage and an electrostatic capacitance can be manufactured.

ここで、組成物に含まれるZr原子とTi原子の和を100とするとき、Zr原子とTi原子の原子比Zr/Tiを上記範囲としたのは、原子比が下限値未満では、容量変化率が増大する不具合が生じ、一方、上限値を越えると、絶縁耐圧が低下する不具合が生じるからである。また、組成物に含まれるZr原子とTi原子の和を100とするとき、Pb原子とLa原子の和を上記範囲とし、かつLa原子を上記範囲としたのは、Pb原子とLa原子の和が下限値未満では、例えば印加電圧が0Vのときの静電容量C0Vが大幅に低下する等の不具合が生じ、上限値を越えると、絶縁耐圧が低下する等の不具合が生じるからである。また、La原子が下限値未満では、容量変化率が増大する不具合が生じ、一方、上限値を越えると、静電容量自体が小さく不十分となるからである Here, when the sum of Zr atoms and Ti atoms contained in the composition is taken as 100, the atomic ratio Zr / Ti of Zr atoms and Ti atoms is set in the above range because the capacity change occurs when the atomic ratio is less than the lower limit. This is because there is a problem that the rate increases, and on the other hand, if the upper limit value is exceeded, a problem that the withstand voltage decreases is caused. In addition, when the sum of Zr atoms and Ti atoms contained in the composition is 100, the sum of Pb atoms and La atoms is in the above range, and the La atom is in the above range is the sum of Pb atoms and La atoms. If the value is less than the lower limit, for example, a problem such as a significant decrease in the capacitance C 0V when the applied voltage is 0V occurs, and if the value exceeds the upper limit, a problem such as a decrease in dielectric strength occurs. Further, if the La atom is less than the lower limit value, there is a problem that the capacity change rate increases. On the other hand, if the La atom exceeds the upper limit value, the capacitance itself is small and insufficient .

本発明の誘電体薄膜形成用組成物に含まれる有機金属化合物は、鉛、ランタン、チタン及びジルコニウムの有機金属化合物であり、Pb、La、Zr及びTiの各金属元素に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。具体的には、これらの金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体又は金属アミノ錯体からなる群より選ばれた1種又は2種以上が挙げられる。特に好適な化合物は、金属アルコキシド、その部分加水分解物又は有機酸塩である。このうち、Pb化合物及びLa化合物としては、酢酸鉛、酢酸ランタン等の酢酸塩、鉛ジイソプロポキシド、ランタントリイソプロポキシド等のアルコキシドが特に好ましい。一方、Ti化合物としては、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、チタニウムテトラブトキシド、チタニウムジメトキシジイソプロポキシド等のアルコキシドが特に好ましい。Zr化合物としては、上記Ti化合物と同様なアルコキシド類が好ましい。金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。   The organometallic compound contained in the composition for forming a dielectric thin film of the present invention is an organometallic compound of lead, lanthanum, titanium and zirconium, and each of the metal elements of Pb, La, Zr and Ti has an organic group whose oxygen. Or the compound couple | bonded through a nitrogen atom is suitable. Specifically, selected from the group consisting of these metal alkoxides, metal diol complexes, metal triol complexes, metal carboxylates, metal β-diketonate complexes, metal β-diketoester complexes, metal β-iminoketo complexes or metal amino complexes. 1 type or 2 types or more were mentioned. Particularly preferred compounds are metal alkoxides, partial hydrolysates or organic acid salts thereof. Among these, as the Pb compound and La compound, acetates such as lead acetate and lanthanum acetate, and alkoxides such as lead diisopropoxide and lanthanum triisopropoxide are particularly preferable. On the other hand, the Ti compound is particularly preferably an alkoxide such as titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium dimethoxydiisopropoxide. The Zr compound is preferably an alkoxide similar to the Ti compound. Although the metal alkoxide may be used as it is, a partially hydrolyzed product thereof may be used in order to promote decomposition.

これら鉛化合物、ランタン化合物、チタン化合物及びジルコニア化合物は、組成物中のPb原子、La原子、Zr原子及びTi原子が、上記範囲を満たすように、有機溶媒に溶解してなる。有機溶媒としては、例えばカルボン酸、アルコール(例えば、多価アルコールであるプロピレングリコール)、エステル、ケトン類(例えば、アセトン、メチルエチルケトン)、エーテル類(例えば、ジメチルエーテル、ジエチルエーテル)、シクロアルカン類(例えば、シクロヘキサン、シクロヘキサノール)、芳香族系(例えば、ベンゼン、トルエン、キシレン)、その他テトラヒドロフラン等、或いはこれらの2種以上の混合溶媒を用いることができる。   These lead compounds, lanthanum compounds, titanium compounds and zirconia compounds are dissolved in an organic solvent so that the Pb atom, La atom, Zr atom and Ti atom in the composition satisfy the above range. Examples of the organic solvent include carboxylic acids, alcohols (eg, propylene glycol which is a polyhydric alcohol), esters, ketones (eg, acetone, methyl ethyl ketone), ethers (eg, dimethyl ether, diethyl ether), cycloalkanes (eg, , Cyclohexane, cyclohexanol), aromatic (for example, benzene, toluene, xylene), other tetrahydrofuran, or a mixed solvent of two or more of these.

カルボン酸としては、具体的には、n−酪酸、α−メチル酪酸、i−吉草酸、2−エチル酪酸、2,2−ジメチル酪酸、3,3−ジメチル酪酸、2,3−ジメチル酪酸、3−メチルペンタン酸、4−メチルペンタン酸、2−エチルペンタン酸、3−エチルペンタン酸、2,2−ジメチルペンタン酸、3,3−ジメチルペンタン酸、2,3−ジメチルペンタン酸、2−エチルヘキサン酸、3−エチルヘキサン酸を用いるのが好ましい。   Specific examples of the carboxylic acid include n-butyric acid, α-methylbutyric acid, i-valeric acid, 2-ethylbutyric acid, 2,2-dimethylbutyric acid, 3,3-dimethylbutyric acid, 2,3-dimethylbutyric acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 2,2-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2- It is preferable to use ethylhexanoic acid or 3-ethylhexanoic acid.

また、エステルとしては、酢酸エチル、酢酸プロピル、酢酸n−ブチル、酢酸sec−ブチル、酢酸tert−ブチル、酢酸イソブチル、酢酸n−アミル、酢酸sec−アミル、酢酸tert−アミル、酢酸イソアミルを用いるのが好ましく、アルコールとしては、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソ−ブチルアルコール、1−ペンタノール、2−ペンタノール、2−メチル−2−ペンタノール、2−メトキシエタノールを用いるのが好適である。   As the ester, ethyl acetate, propyl acetate, n-butyl acetate, sec-butyl acetate, tert-butyl acetate, isobutyl acetate, n-amyl acetate, sec-amyl acetate, tert-amyl acetate, isoamyl acetate are used. As the alcohol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butyl alcohol, 1-pentanol, 2-pentanol, 2-methyl-2-pentanol, 2-methoxy It is preferred to use ethanol.

なお、誘電体薄膜形成用組成物中の有機金属化合物の合計濃度は、溶液100質量%中のPLZT酸化物換算濃度が5〜20質量%となる濃度とすることが好ましい。下限値未満では、一回の塗布あたりの膜厚が薄くなるため、所望の膜厚を有する誘電体薄膜に形成するのが困難になり、一方、上限値を越えると、焼成後の誘電体薄膜にクラックが生じる場合があるため好ましくない。   The total concentration of the organometallic compound in the composition for forming a dielectric thin film is preferably a concentration at which the PLZT oxide equivalent concentration in 100% by mass of the solution is 5 to 20% by mass. If it is less than the lower limit, the film thickness per application becomes thin, so that it becomes difficult to form a dielectric thin film having a desired film thickness. On the other hand, if the upper limit is exceeded, the dielectric thin film after firing Since cracks may occur, it is not preferable.

また、必要に応じて安定化剤として、β−ジケトン類(例えば、アセチルアセトン、ヘプタフルオロブタノイルピバロイルメタン、ジピバロイルメタン、トリフルオロアセチルアセトン、ベンゾイルアセトン等)、β−ケトン酸類(例えば、アセト酢酸、プロピオニル酢酸、ベンゾイル酢酸等)、β−ケトエステル類(例えば、上記ケトン酸のメチル、プロピル、ブチル等の低級アルキルエステル類)、オキシ酸類(例えば、乳酸、グリコール酸、α−オキシ酪酸、サリチル酸等)、上記オキシ酸の低級アルキルエステル類、オキシケトン類(例えば、ジアセトンアルコール、アセトイン等)、ジオール、トリオール、高級カルボン酸、アルカノールアミン類(例えば、ジエタノールアミン、トリエタノールアミン、モノエタノールアミン)、多価アミン等を、(安定化剤分子数)/(金属原子数)で0.2〜3程度添加しても良い。   Further, β-diketones (for example, acetylacetone, heptafluorobutanoylpivaloylmethane, dipivaloylmethane, trifluoroacetylacetone, benzoylacetone, etc.), β-ketone acids (for example, , Acetoacetic acid, propionylacetic acid, benzoylacetic acid, etc.), β-ketoesters (for example, lower alkyl esters of the above ketone acids such as methyl, propyl, butyl, etc.), oxyacids (for example, lactic acid, glycolic acid, α-oxybutyric acid) , Salicylic acid, etc.), lower alkyl esters of the above oxyacids, oxyketones (eg, diacetone alcohol, acetoin, etc.), diols, triols, higher carboxylic acids, alkanolamines (eg, diethanolamine, triethanolamine, monoethanolamine) ), Valence amines, may be added from 0.2 to 3 approximately at (stabilizer number of molecules) / (number of metal atoms).

なお、調製後の組成物を濾過処理する等して、パーティクルを除去し、粒径0.5μm以上(特に0.3μm以上とりわけ0.2μm以上)のパーティクルの個数が、組成物1mL当り50個/mL以下とするのが好ましい。組成物中の粒径0.5μm以上のパーティクルの個数が50個/mLを越えると、長期保存安定性が劣るものとなる。この組成物中の粒径0.5μm以上のパーティクルの個数は少ない程好ましく、特に30個/mL以下であることが好ましい。   The prepared composition is filtered to remove particles, and the number of particles having a particle size of 0.5 μm or more (especially 0.3 μm or more, especially 0.2 μm or more) is 50 per 1 mL of the composition. / ML or less is preferable. When the number of particles having a particle diameter of 0.5 μm or more in the composition exceeds 50 / mL, long-term storage stability is deteriorated. The smaller the number of particles having a particle size of 0.5 μm or more in the composition, the more preferable, and particularly preferably 30 particles / mL or less.

上記パーティクル個数となるように、調製後の組成物を処理する方法は特に限定されるものではないが、例えば、次のような方法が挙げられる。第1の方法としては、市販の0.2μm孔径のメンブランフィルターを使用し、シリンジで圧送する濾過法である。第2の方法としては、市販の0.05μm孔径のメンブランフィルターと加圧タンクを組み合せた加圧濾過法である。第3の方法としては、上記第2の方法で使用したフィルターと溶液循環槽を組み合せた循環濾過法である。   Although the method of processing the composition after preparation is not specifically limited so that it may become the said particle number, For example, the following methods are mentioned. The first method is a filtration method in which a commercially available membrane filter having a pore size of 0.2 μm is used and pressure-fed with a syringe. The second method is a pressure filtration method in which a commercially available membrane filter having a pore size of 0.05 μm and a pressure tank are combined. The third method is a circulation filtration method in which the filter used in the second method and the solution circulation tank are combined.

いずれの方法においても、溶液圧送圧力によって、フィルターによるパーティクル捕捉率が異なる。圧力が低いほど捕捉率が高くなることは一般的に知られており、特に、第1の方法、第2の方法について、粒径0.5μm以上のパーティクルの個数を50個以下とする条件を実現するためには、溶液を低圧で非常にゆっくりとフィルターに通すのが好ましい。   In any method, the particle capture rate by the filter varies depending on the solution pressure. It is generally known that the lower the pressure, the higher the capture rate. In particular, in the first method and the second method, the number of particles having a particle size of 0.5 μm or more is set to 50 or less. In order to achieve, it is preferable to pass the solution through the filter very slowly at low pressure.

続いて、上記本発明の誘電体薄膜形成用組成物を用いたPLZT誘電体薄膜の成膜方法について説明する。ここでは、薄膜キャパシタの製造方法を例に挙げ、この製造工程とともに説明する。   Next, a method for forming a PLZT dielectric thin film using the dielectric thin film forming composition of the present invention will be described. Here, a method for manufacturing a thin film capacitor will be described as an example, and the manufacturing process will be described.

先ず、上記調製した誘電体薄膜形成用組成物を、下部電極14へ塗布する。下部電極14は、図1に示すように、一般に、熱酸化膜(SiO2)等の絶縁体膜12と、下部電極14とその下層との接着性を向上させる密着層13が形成されたSi基板等の基板11上に、これらの層又は膜を介して形成される。下部電極14の形成には、熱処理による酸化反応を起こしにくいPt、Ru又はIr等の貴金属材料が好適に用いられ、スパッタリング法、真空蒸着法等の気相成長法や、電極用ペーストを用いたスクリーン印刷法、スプレー法又は液滴吐出法等の種々の方法を用いることができる。 First, the composition for forming a dielectric thin film prepared above is applied to the lower electrode 14. As shown in FIG. 1, the lower electrode 14 is generally an Si film on which an insulating film 12 such as a thermal oxide film (SiO 2 ) and an adhesion layer 13 for improving adhesion between the lower electrode 14 and its lower layer are formed. It is formed on a substrate 11 such as a substrate via these layers or films. For the formation of the lower electrode 14, a noble metal material such as Pt, Ru, or Ir, which hardly causes an oxidation reaction by heat treatment, is preferably used, and a vapor phase growth method such as a sputtering method or a vacuum evaporation method, or an electrode paste is used. Various methods such as a screen printing method, a spray method, and a droplet discharge method can be used.

上記基板11と、基板11上に形成された絶縁体膜12と、絶縁体膜12上に密着層13を介して形成された下部電極14とを有する支持体20は、具体的にはPt/Ti/SiO2/Si、Pt/TiO2/SiO2/Si、Pt/IrO/Ir/SiO2/Si、Pt/TiN/SiO2/Si、Pt/Ta/SiO2/Si、Pt/Ir/SiO2/Siの積層構造(下部電極/密着層/絶縁体膜/基板)の例に示される。上記誘電体薄膜形成用組成物の下部電極14へ塗布は、スピンコーティング法、ディップコーティング法、スプレーコーティング法又はLSMCD(Liquid Source Misted Chemical Deposition)等の従来からの塗布法を好適に用いることができるが、膜厚の調整が容易であること等から、スピンコーティング法が特に好ましい。 Specifically, the support 20 having the substrate 11, the insulator film 12 formed on the substrate 11, and the lower electrode 14 formed on the insulator film 12 via the adhesion layer 13 is made of Pt / Ti / SiO 2 / Si, Pt / TiO 2 / SiO 2 / Si, Pt / IrO / Ir / SiO 2 / Si, Pt / TiN / SiO 2 / Si, Pt / Ta / SiO 2 / Si, Pt / Ir / An example of a laminated structure of SiO 2 / Si (lower electrode / adhesion layer / insulator film / substrate) is shown. For coating the dielectric thin film forming composition onto the lower electrode 14, a conventional coating method such as spin coating, dip coating, spray coating, or LSMCD (Liquid Source Misted Chemical Deposition) can be suitably used. However, the spin coating method is particularly preferable because the film thickness can be easily adjusted.

上記誘電体薄膜形成用組成物を下部電極14上に塗布した後、仮焼成(乾燥を含む)を行い塗膜を形成する。そして、塗膜が形成された基板11を本焼成することにより誘電体薄膜16を形成する。塗布から仮焼成までの工程は、それぞれ1回で行っても良いが、好ましくは4〜12回繰り返すことにより所望の厚さに形成しても良い。   After the composition for forming a dielectric thin film is applied on the lower electrode 14, temporary baking (including drying) is performed to form a coating film. And the dielectric thin film 16 is formed by carrying out the main baking of the board | substrate 11 with which the coating film was formed. The steps from coating to pre-baking may be performed once, but preferably may be formed to a desired thickness by repeating 4 to 12 times.

仮焼成は、溶媒を除去するとともに有機金属化合物を熱分解又は加水分解してアモルファス複合酸化物に転化させるために行うことから、酸化雰囲気中、又は含水蒸気雰囲気中で行うのが好ましいが、大気中での加熱でも、加水分解に必要な水分は空気中の湿気により十分に確保されるため、大気中で行ってもよい。仮焼成は、ホットプレート等を用いて、150〜550℃で1〜10分間行うのが好ましい。   The preliminary calcination is preferably performed in an oxidizing atmosphere or a steam-containing atmosphere because it is performed to remove the solvent and thermally decompose or hydrolyze the organometallic compound to convert it into an amorphous composite oxide. Even in heating in the inside, the water necessary for hydrolysis is sufficiently ensured by the humidity in the air, so it may be carried out in the atmosphere. Pre-baking is preferably performed at 150 to 550 ° C. for 1 to 10 minutes using a hot plate or the like.

本焼成は、仮焼成で得られた薄膜を結晶化温度以上の温度で焼成して結晶化させるための工程であり、これにより誘電体薄膜が得られる。この結晶化工程の焼成雰囲気はO2、N2、Ar、N2O又はH2等或いはこれらの混合ガス等が好適である。また、本焼成は、急速加熱処理(RTA処理)等を用いて、450〜800℃で1〜60分間行うのが好ましい。また、昇温速度は10〜100℃/秒とするが好ましい。 The main baking is a process for baking and crystallizing the thin film obtained by the preliminary baking at a temperature equal to or higher than the crystallization temperature, whereby a dielectric thin film is obtained. The firing atmosphere in this crystallization step is preferably O 2 , N 2 , Ar, N 2 O, H 2, or a mixed gas thereof. Moreover, it is preferable to perform this baking at 450-800 degreeC for 1 to 60 minutes using rapid heat processing (RTA process) etc. Further, the rate of temperature rise is preferably 10 to 100 ° C./second.

以上の工程により、本発明のPLZT誘電体薄膜を成膜することができる。本焼成後に得られる本発明のPLZT誘電体薄膜16の厚さは、200〜500nmである。誘電体薄膜の厚さをこの範囲に限定する理由は、誘電体薄膜の厚さが下限値未満では、本質的に絶縁耐圧が不十分となる不具合が生じ、一方、上限値を越えるとクラックが発生し、絶縁耐圧が低下するからである。   Through the above steps, the PLZT dielectric thin film of the present invention can be formed. The thickness of the PLZT dielectric thin film 16 of the present invention obtained after the main firing is 200 to 500 nm. The reason for limiting the thickness of the dielectric thin film to this range is that if the thickness of the dielectric thin film is less than the lower limit value, the dielectric withstand voltage is essentially insufficient, while if the upper limit value is exceeded, cracks occur. This is because the insulation breakdown voltage is reduced.

上記誘電体薄膜16の形成に続いて、誘電体薄膜16上に上部電極17を形成し、薄膜キャパシタ10を得ることができる。この上部電極17も、上記下部電極14の形成に用いた貴金属材料が好適に用いられ、上記種々の方法によって形成することができるが、成膜後の良好な表面平滑性を得る理由から、スパッタリング法により形成するのが好ましい。以上の工程により、本発明のPLZT誘電体薄膜と、この誘電体薄膜を誘電体層として備える薄膜キャパシタが得られる。   Subsequent to the formation of the dielectric thin film 16, the upper electrode 17 is formed on the dielectric thin film 16 to obtain the thin film capacitor 10. The upper electrode 17 is also preferably made of the noble metal material used to form the lower electrode 14 and can be formed by the various methods described above. It is preferable to form by the method. Through the above steps, the PLZT dielectric thin film of the present invention and a thin film capacitor including this dielectric thin film as a dielectric layer are obtained.

この実施の形態では、薄膜キャパシタの誘電体層の形成方法を例に、本発明の誘電体薄膜の成膜方法について説明したが、本発明のPLZT誘電体薄膜は、上述の薄膜キャパシタの誘電体層としての用途以外に、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、電気スイッチ、光学スイッチ又はLCノイズフィルタ素子の複合電子部品を製造する際の構成材料として使用することができる。   In this embodiment, the method for forming the dielectric thin film of the present invention has been described by taking the method for forming the dielectric layer of the thin film capacitor as an example. However, the PLZT dielectric thin film of the present invention is a dielectric of the above-described thin film capacitor. In addition to applications as layers, IPD, DRAM memory capacitors, multilayer capacitors, transistor gate insulators, nonvolatile memories, pyroelectric infrared detection elements, piezoelectric elements, electro-optic elements, actuators, resonators, ultrasonic motors, It can be used as a constituent material when manufacturing a composite electronic component of an electric switch, an optical switch, or an LC noise filter element.

次に本発明の実施例を比較例とともに詳しく説明する。以下に示す実施例1、実施例3、実施例6、実施例7及び実施例9〜12は実施例ではなく、参考例である。
Next, examples of the present invention will be described in detail together with comparative examples. Examples 1 , 3 , 6, 7 and 9 to 12 shown below are not examples but are reference examples.

<実施例1>
先ず、有機溶媒として十分に脱水処理した2−メトキシエタノールを用意し、これにPb化合物、La化合物としてPb及びLaの酢酸塩を溶解させ、共沸蒸留により結晶水を除去した。そして、得られた溶液にZr化合物としてZrテトラブトキシドを、Ti化合物としてTiイソプロポキシドを添加して溶解させた。更に、この溶液を安定化させるため、溶液中の溶解させた全有機金属化合物に対し、モル比で2倍となる量のアセチルアセトンを加えた。これにより、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が105:9:57:43であって、溶液100質量%中のPLZT酸化物換算濃度が10質量%の誘電体薄膜形成用組成物を調製した。
<Example 1>
First, 2-methoxyethanol which had been sufficiently dehydrated as an organic solvent was prepared, Pb compound and Pb and La acetates as La compound were dissolved therein, and crystal water was removed by azeotropic distillation. Then, Zr tetrabutoxide as a Zr compound and Ti isopropoxide as a Ti compound were added and dissolved in the obtained solution. Furthermore, in order to stabilize this solution, acetylacetone was added in an amount that doubled in molar ratio to the total organometallic compound dissolved in the solution. Thus, the dielectric composition having an atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition of 105: 9: 57: 43 and a PLZT oxide equivalent concentration in 100% by mass of the solution of 10% by mass. A composition for forming a thin body film was prepared.

次に、基板として表面にスパッタリング法にてPt下部電極を形成した6インチシリコン基板を用意した。この基板のPt下部電極上に、スピンコート法により、500rpmで3秒間、その後3000rpmで15秒間の条件で、上記調製した誘電体薄膜形成用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、350℃で5分間加熱して仮焼成を行った。この誘電体薄膜形成用組成物の塗布から仮焼成までの工程を計6回繰り返した後、100%酸素雰囲気中、700℃の温度で1分間加熱する本焼成を行って結晶化させ、膜厚270nmのPLZT誘電体薄膜を成膜した。   Next, a 6-inch silicon substrate having a Pt lower electrode formed on the surface by sputtering was prepared as the substrate. On the Pt lower electrode of this substrate, the above-prepared composition for forming a dielectric thin film was applied by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 15 seconds. Subsequently, pre-baking was performed by heating at 350 ° C. for 5 minutes in an air atmosphere using a hot plate. The process from application of the composition for forming a dielectric thin film to temporary firing was repeated a total of 6 times, followed by main firing in which heating was performed at a temperature of 700 ° C. for 1 minute in a 100% oxygen atmosphere for crystallization. A 270 nm PLZT dielectric thin film was deposited.

<実施例2>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が95:9:70:30となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 2>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 95: 9: 70: 30. Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<実施例3>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が100:9:70:30となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 3>
Similar to Example 1, except that the compounding ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atoms, La atoms, Zr atoms and Ti atoms in the composition was 100: 9: 70: 30. Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<実施例4>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が95:12:70:30となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 4>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atoms, La atoms, Zr atoms and Ti atoms in the composition was 95: 12: 70: 30. Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<実施例5>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が95:9:80:20となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 5>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 95: 9: 80: 20 Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<実施例6>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が105:9:55:45となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 6>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 105: 9: 55: 45 Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<実施例7>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が105:10:57:43となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 7>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 105: 10: 57: 43 Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<実施例8>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が94:9:70:30となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 8>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atoms, La atoms, Zr atoms and Ti atoms in the composition was 94: 9: 70: 30. Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<実施例9>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が105:8:57:43となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 9>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 105: 8: 57: 43 Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<実施例10>
溶液100質量%中のPLZT酸化物換算濃度を11質量%となるように誘電体薄膜形成用組成物を調製したこと、及び組成物の塗布から仮焼成までの工程を計4回繰り返し、膜厚が200nmとなるように成膜を行ったこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 10>
The dielectric thin film forming composition was prepared so that the PLZT oxide equivalent concentration in 100% by mass of the solution was 11% by mass, and the steps from application of the composition to pre-firing were repeated 4 times in total. A composition for forming a dielectric thin film was prepared and a PLZT dielectric thin film was formed in the same manner as in Example 1 except that the film was formed to have a thickness of 200 nm.

<実施例11>
溶液100質量%中のPLZT酸化物換算濃度が11質量%となるように誘電体薄膜形成用組成物を調製したこと、及び組成物の塗布から仮焼成までの工程を計8回繰り返し、膜厚が400nmとなるように成膜を行ったこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 11>
The dielectric thin film forming composition was prepared so that the PLZT oxide equivalent concentration in 100% by mass of the solution was 11% by mass, and the steps from application of the composition to pre-baking were repeated a total of 8 times. A composition for forming a dielectric thin film was prepared and a PLZT dielectric thin film was formed in the same manner as in Example 1, except that the film was formed to have a thickness of 400 nm.

<実施例12>
溶液100質量%中のPLZT酸化物換算濃度が11質量%となるように誘電体薄膜形成用組成物を調製したこと、及び組成物の塗布から仮焼成までの工程を計10回繰り返し、膜厚が500nmとなるように成膜を行ったこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Example 12>
The composition for forming a dielectric thin film was prepared so that the PLZT oxide equivalent concentration in 100% by mass of the solution was 11% by mass, and the steps from application of the composition to pre-firing were repeated 10 times in total. A composition for forming a dielectric thin film was prepared and a PLZT dielectric thin film was formed in the same manner as in Example 1, except that the film was formed to have a thickness of 500 nm.

<比較例1>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が110:0:52:48となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PZT誘電体薄膜を成膜した。
<Comparative Example 1>
The same as in Example 1, except that the compounding ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 110: 0: 52: 48 A composition for forming a dielectric thin film was prepared, and a PZT dielectric thin film was formed.

<比較例2>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が110:7:58:42となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative example 2>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atoms, La atoms, Zr atoms and Ti atoms in the composition was 110: 7: 58: 42 Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<比較例3>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が100:5:52:48となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative Example 3>
The same as in Example 1 except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 100: 5: 52: 48 Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<比較例4>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が106:10:70:30となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative example 4>
The same as in Example 1, except that the compounding ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 106: 10: 70: 30. Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<比較例5>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が105:12:70:30となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative Example 5>
The same as in Example 1 except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atoms, La atoms, Zr atoms, and Ti atoms in the composition was 105: 12: 70: 30. Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<比較例6>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が90:12:70:30となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative Example 6>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 90: 12: 70: 30. Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<比較例7>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が106:10:80:20となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative Example 7>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atom, La atom, Zr atom and Ti atom in the composition was 106: 10: 80: 20 Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<比較例8>
有機金属化合物の配合割合を、組成物中のPb原子、La原子、Zr原子及びTi原子の原子比が106:10:82:18となるように調整したこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative Example 8>
The same as in Example 1, except that the blending ratio of the organometallic compound was adjusted so that the atomic ratio of Pb atoms, La atoms, Zr atoms and Ti atoms in the composition was 106: 10: 82: 18 Then, a dielectric thin film forming composition was prepared, and a PLZT dielectric thin film was formed.

<比較例9>
組成物の塗布から仮焼成までの工程を計4回繰り返し、膜厚が180nmとなるように成膜を行ったこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative Example 9>
A composition for forming a dielectric thin film was prepared in the same manner as in Example 1 except that the steps from application of the composition to pre-baking were repeated a total of 4 times, and the film was formed to a film thickness of 180 nm. A PLZT dielectric thin film was formed.

<比較例10>
溶液100質量%中のPLZT酸化物換算濃度が12質量%となるように誘電体薄膜形成用組成物を調製したこと、及び組成物の塗布から仮焼成までの工程を計10回繰り返し、膜厚が520nmとなるように成膜を行ったこと以外は、実施例1と同様に、誘電体薄膜形成用組成物を調製し、PLZT誘電体薄膜を成膜した。
<Comparative Example 10>
The dielectric thin film forming composition was prepared so that the PLZT oxide equivalent concentration in 100% by mass of the solution was 12% by mass, and the steps from application of the composition to pre-baking were repeated 10 times in total. A composition for forming a dielectric thin film was prepared and a PLZT dielectric thin film was formed in the same manner as in Example 1 except that the film was formed to have a thickness of 520 nm.

<比較試験及び評価>
実施例1〜12及び比較例1〜10で成膜した誘電体薄膜、及び後述の方法により製造した試験用薄膜キャパシタについて、誘電体薄膜の膜厚、容量変化率及び絶縁耐圧を評価した。これらの結果を、以下の表1に示す。
<Comparison test and evaluation>
For the dielectric thin films formed in Examples 1 to 12 and Comparative Examples 1 to 10 and the test thin film capacitors manufactured by the method described later, the film thickness, capacity change rate, and withstand voltage of the dielectric thin film were evaluated. These results are shown in Table 1 below.

(1) 膜厚:形成した薄膜の断面の厚さを走査型電子顕微鏡(SEM)装置(日立ハイテク社製、型式名:S−4300SE)により測定した。   (1) Film thickness: The thickness of the cross section of the formed thin film was measured with a scanning electron microscope (SEM) apparatus (manufactured by Hitachi High-Tech, model name: S-4300SE).

(2) 容量変化率及び静電容量C0V:先ず、成膜した誘電体薄膜の表面に、更にメタルマスクを用いて約250μm×250μm角のPt上部電極をスパッタリング法にて作製し、試験用薄膜キャパシタを得た。この薄膜キャパシタのPt下部電極とPt上部電極間のC−V特性(静電容量の電圧依存性)を、周波数1kHzにて印加電圧−5V〜5Vの範囲で評価した。具体的には、精密LCRメータ(ヒューレット・パッカード社製、 LCR meter 4284A)を用い、温度23℃、湿度50±10%の条件で測定した。 (2) Capacitance change rate and capacitance C 0V : First, a Pt upper electrode of about 250 μm × 250 μm square is formed on the surface of the formed dielectric thin film by using a metal mask by a sputtering method. A thin film capacitor was obtained. The CV characteristic (voltage dependence of capacitance) between the Pt lower electrode and the Pt upper electrode of this thin film capacitor was evaluated in the range of applied voltage -5V to 5V at a frequency of 1 kHz. Specifically, a precision LCR meter (manufactured by Hewlett-Packard, LCR meter 4284A) was used, and measurement was performed under conditions of a temperature of 23 ° C. and a humidity of 50 ± 10%.

また、上記測定されたC0V(印加電圧0Vの時の静電容量)及びC5V(印加電圧5Vの時の静電容量)の値と、下記式(1)から、容量変化率Tを算出した。
T=(C0V−C5V)/C0V×100 (1)
Further, the capacitance change rate T is calculated from the measured values of C 0V (capacitance when the applied voltage is 0V) and C 5V (capacitance when the applied voltage is 5V) and the following equation (1). did.
T = (C 0V −C 5V ) / C 0V × 100 (1)

(3) 絶縁耐圧:薄膜キャパシタの下部電極と上部電極間に、直流電圧を印加し、I−V特性(リーク電流密度の電圧依存性及び絶縁耐圧)を評価した。具体的には、電流電圧測定装置(ケースレー社製、236 SMU)を用いて、温度23℃、湿度50±10%、バイアスステップ0.5V、ディレイタイム0.1秒の条件で、リーク電流密度が1A/cm2を超える1つ手前の印加電圧の値を、薄膜キャパシタの絶縁耐圧とした。 (3) Dielectric withstand voltage: A DC voltage was applied between the lower electrode and the upper electrode of the thin film capacitor, and the IV characteristics (voltage dependence of the leakage current density and withstand voltage) were evaluated. Specifically, using a current / voltage measuring device (236 SMU manufactured by Keithley), leakage current density under the conditions of temperature 23 ° C., humidity 50 ± 10%, bias step 0.5 V, delay time 0.1 second. The value of the applied voltage just before the value exceeding 1 A / cm 2 was taken as the dielectric strength of the thin film capacitor.

Figure 0006102358
Figure 0006102358

表1から明らかなように、実施例1〜9と比較例1〜8を対比すると、La原子を含まない比較例1では、容量変化率が67%と、実施例1〜9に比べて非常に高い値を示し、また、絶縁耐圧も実施例1〜9に比べて若干低い値を示した。また、Zr原子とTi原子の原子比Zr/Tiが55/45未満であり、La原子が8未満の比較例3では、容量変化率が50%と、実施例1〜9に比べて大きい値を示した。一方、Zr原子とTi原子の原子比Zr/Tiが80/20を超え、Pb原子とLa原子の和が115を越える比較例8では、絶縁耐圧が10.0以下と、実施例1〜9に比べて非常に低い値を示した。
また、Pb原子とLa原子の和が115を越える比較例4、比較例5、比較例7では、絶縁耐圧が10.0以下と、実施例1〜9に比べて非常に低い値を示した。一方、Pb原子とLa原子の和が103に満たない比較例6では、印加電圧が0Vのときの静電容量C0Vが0.81Vと非常に低い値を示した。また、Pb原子とLa原子の和が115を越え、かつLa原子が8に満たない比較例2では、容量変化率が55%と、実施例1〜9に比べて大きい値を示し、更に絶縁耐圧が27Vと、実施例1〜9に比べて低い値を示した。
As is clear from Table 1, when Examples 1 to 9 and Comparative Examples 1 to 8 are compared, in Comparative Example 1 that does not contain La atoms, the capacity change rate is 67%, which is much higher than that of Examples 1 to 9. The insulation withstand voltage was also slightly lower than those of Examples 1-9. Further, in Comparative Example 3 in which the atomic ratio Zr / Ti of Zr atoms to Ti atoms is less than 55/45 and La atoms are less than 8, the capacity change rate is 50%, which is a large value compared to Examples 1-9. showed that. On the other hand, in Comparative Example 8 in which the atomic ratio Zr / Ti of Zr atoms to Ti atoms exceeds 80/20 and the sum of Pb atoms and La atoms exceeds 115, the withstand voltage is 10.0 or less, and Examples 1 to 9 The value was very low compared to.
Further, in Comparative Example 4, Comparative Example 5, and Comparative Example 7 in which the sum of Pb atoms and La atoms exceeds 115, the withstand voltage was 10.0 or less, which was a very low value compared to Examples 1-9. . On the other hand, in Comparative Example 6 in which the sum of Pb atoms and La atoms was less than 103, the capacitance C 0V when the applied voltage was 0V was as low as 0.81V. Further, in Comparative Example 2 in which the sum of Pb atoms and La atoms exceeds 115 and La atoms are less than 8, the capacity change rate is 55%, which is a large value compared with Examples 1 to 9, and further insulation. The breakdown voltage was 27 V, which was lower than those of Examples 1-9.

これに対し、原子比Zr/Tiが55/45〜80/20であり、Pb原子とLa原子の和が103〜115であり、かつLa原子が8〜12である実施例1〜9では、容量変化率は45%以下、静電容量は1.2μF/cm2以上、絶縁耐圧は70V以上と、全ての評価において優れた値を示した。 On the other hand, in Examples 1-9 where atomic ratio Zr / Ti is 55 / 45-80 / 20, the sum of Pb atoms and La atoms is 103-115, and La atoms are 8-12, The capacitance change rate was 45% or less, the capacitance was 1.2 μF / cm 2 or more, and the withstand voltage was 70 V or more.

また、実施例10〜12と比較例9,10を対比すると、膜厚が200nm未満の比較例9では、容量変化率が47%と、実施例10〜12に比べて若干大きくなり、また、絶縁耐圧は65Vと、実施例10〜12に比べて若干低くなった。一方、膜厚が500nmを越える比較例10では、クラックが発生してしまい、実施例10〜12に比べて絶縁耐圧が大幅に低くなった。   Further, when Examples 10 to 12 and Comparative Examples 9 and 10 are compared, in Comparative Example 9 having a film thickness of less than 200 nm, the capacity change rate is 47%, which is slightly larger than Examples 10 to 12, and The withstand voltage was 65 V, which was slightly lower than that of Examples 10-12. On the other hand, in Comparative Example 10 in which the film thickness exceeded 500 nm, cracks occurred, and the withstand voltage was significantly lower than in Examples 10-12.

これに対し、膜厚が200〜500nmの範囲にある実施例10〜12では、容量変化率、静電容量及び絶縁耐圧の全ての評価において優れた値を示した。   On the other hand, in Examples 10-12 in which the film thickness is in the range of 200 to 500 nm, excellent values were shown in all evaluations of the capacity change rate, the capacitance, and the withstand voltage.

本発明は、薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、電気スイッチ、光学スイッチ又はLCノイズフィルタ素子の複合電子部品の製造に利用できる。   The present invention relates to a thin film capacitor, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, a transistor gate insulator, a nonvolatile memory, a pyroelectric infrared detection element, a piezoelectric element, an electro-optical element, an actuator, a resonator, and an ultrasonic wave. The present invention can be used for manufacturing a composite electronic component of a motor, an electric switch, an optical switch, or an LC noise filter element.

10 薄膜キャパシタ
11 基板
12 絶縁体膜
13 密着層
14 下部電極
16 誘電体薄膜
17 上部電極
20 支持体
DESCRIPTION OF SYMBOLS 10 Thin film capacitor 11 Substrate 12 Insulator film 13 Adhesion layer 14 Lower electrode 16 Dielectric thin film 17 Upper electrode 20 Support body

Claims (1)

PLZT誘電体薄膜を形成するための有機金属化合物含有組成物において、
前記PLZT誘電体薄膜は薄膜キャパシタの誘電体層に用いられる薄膜であって、
前記組成物に含まれるZr原子とTi原子の和を100とするとき、
Zr原子とTi原子の原子比Zr/Tiが70/30〜80/20であり、
Pb原子とLa原子の和が103〜107であり、かつLa原子が〜12である
ことを特徴とする誘電体薄膜形成用組成物。
In an organometallic compound-containing composition for forming a PLZT dielectric thin film,
The PLZT dielectric thin film is a thin film used for a dielectric layer of a thin film capacitor,
When the sum of Zr atoms and Ti atoms contained in the composition is 100,
The atomic ratio Zr / Ti of Zr atoms to Ti atoms is 70/30 to 80/20,
The sum of Pb atoms and La atoms is 103 to 107 , and La atoms are 9 to 12. A composition for forming a dielectric thin film, wherein:
JP2013046245A 2013-03-08 2013-03-08 Dielectric thin film forming composition Active JP6102358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046245A JP6102358B2 (en) 2013-03-08 2013-03-08 Dielectric thin film forming composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046245A JP6102358B2 (en) 2013-03-08 2013-03-08 Dielectric thin film forming composition

Publications (2)

Publication Number Publication Date
JP2014172778A JP2014172778A (en) 2014-09-22
JP6102358B2 true JP6102358B2 (en) 2017-03-29

Family

ID=51694399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046245A Active JP6102358B2 (en) 2013-03-08 2013-03-08 Dielectric thin film forming composition

Country Status (1)

Country Link
JP (1) JP6102358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907362B1 (en) 2014-10-08 2016-04-26 パナソニックIpマネジメント株式会社 Activity status analysis apparatus, activity status analysis system, and activity status analysis method
WO2016190110A1 (en) * 2015-05-25 2016-12-01 コニカミノルタ株式会社 Piezoelectric thin film, piezoelectric actuator, inkjet head, inkjet printer, and method for manufacturing piezoelectric actuator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200403A (en) * 1984-03-24 1985-10-09 日本曹達株式会社 Thin film dielectric unit and method of producing same
JP3268649B2 (en) * 1991-06-19 2002-03-25 株式会社リコー Method for producing composite crystal having (Pb, La) (ZrxTiy) O3 alignment film
US7399067B2 (en) * 2004-02-27 2008-07-15 Canon Kabushiki Kaisha Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and ink jet recording head
US7261918B2 (en) * 2004-06-18 2007-08-28 Fujitsu Limited Methods of forming lanthanum-modified lead zirconium titanate (PLZT) layers
FR2881133B1 (en) * 2005-01-27 2007-03-02 Commissariat Energie Atomique PROCESS FOR PREPARING STABLE SOL-GEL SOLUTIONS PRECURSORS OF OXIDE CERAMICS BASED ON LEAD, TITANIUM, ZIRCONIUM AND LANTHANIDE (S) AND PROCESS FOR PREPARING SAID CERAMIC

Also Published As

Publication number Publication date
JP2014172778A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
TWI535681B (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, ferroelectric thin film, and composite electronic part
JP5724708B2 (en) Composition for forming dielectric thin film, method for forming dielectric thin film, and dielectric thin film formed by the method
JP5910431B2 (en) COMPOSITION FOR FORMING DIELECTRIC THIN FILM AND METHOD FOR FORMING DIELECTRIC THIN FILM
KR102007543B1 (en) METHOD OF FORMING PNbZT FERROELECTRIC THIN FILM
TWI598319B (en) Composition for forming ferroelectric film and a method of forming the film, and the film formed under the method
JP2014144881A (en) Dielectric thin film-forming composition and method of forming dielectric thin film using the same
JP5655272B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP6102358B2 (en) Dielectric thin film forming composition
JP5655274B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP2013207155A (en) Ferroelectric thin film manufacturing method
JP5560460B2 (en) Method for forming dielectric thin film
JP5526591B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5659457B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5591484B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5533622B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5591485B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5417962B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5293347B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5526593B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150