JP6099202B2 - Method for producing metal catalyst - Google Patents

Method for producing metal catalyst Download PDF

Info

Publication number
JP6099202B2
JP6099202B2 JP2013163196A JP2013163196A JP6099202B2 JP 6099202 B2 JP6099202 B2 JP 6099202B2 JP 2013163196 A JP2013163196 A JP 2013163196A JP 2013163196 A JP2013163196 A JP 2013163196A JP 6099202 B2 JP6099202 B2 JP 6099202B2
Authority
JP
Japan
Prior art keywords
metal
atomic
metal catalyst
catalyst
based intermetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013163196A
Other languages
Japanese (ja)
Other versions
JP2015029974A (en
Inventor
聡 亀岡
聡 亀岡
安邦 蔡
安邦 蔡
慧 若林
慧 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2013163196A priority Critical patent/JP6099202B2/en
Publication of JP2015029974A publication Critical patent/JP2015029974A/en
Application granted granted Critical
Publication of JP6099202B2 publication Critical patent/JP6099202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属触媒の製造方法に関する。 The present invention relates to a method for producing a metal catalyst .

貴金属は、その反応性の高さから、酸化、水素化、脱水素化、NOx分解・還元等のさまざまな反応系の触媒として用いられている。しかし、貴金属は高価であり、また資源量も少ないため、その使用量の低減が重要課題の一つとなっている。従来の貴金属を担持した触媒は、使用貴金属量あたりの表面積を最大限にするために、酸化物などの担体に貴金属粒子をナノ粒子状態で分散担持させたものが一般的である。   Noble metals are used as catalysts for various reaction systems such as oxidation, hydrogenation, dehydrogenation, NOx decomposition and reduction because of their high reactivity. However, since noble metals are expensive and have a small amount of resources, reduction of the amount used is one of the important issues. Conventional catalysts supporting noble metals are generally those in which noble metal particles are dispersed and supported on a carrier such as an oxide in order to maximize the surface area per amount of noble metal used.

このような従来の担持貴金属触媒は、含浸法、ゾルゲル法、析出沈殿法などの様々な方法により調製されている(例えば、非特許文献1参照)。その際、貴金属原料として、塩化物、硝酸塩、アミン等の無機または有機金属塩や、アセチルアセトナート等の金属錯体を用いており、金属化の過程で加熱による貴金属の前駆物質の分解や還元処理を行っている(例えば、特許文献1または2参照)。また、貴金属の塩または錯体をアルコール類などで液相還元させてカーボンに担持させる、温和な条件下での製造方法も用いられている(例えば、特許文献3参照)。また、本発明者等により、Al100−a−bCuCo(ただし、5原子%≦a≦30原子%、5原子%≦b≦25原子%)で示される組成の準結晶Al合金のインゴットを粉砕した後、リーチング処理する銅触媒の製造方法も提案されている(例えば、特許文献4参照)。 Such a conventional supported noble metal catalyst is prepared by various methods such as an impregnation method, a sol-gel method, and a precipitation method (see Non-Patent Document 1, for example). At that time, inorganic or organic metal salts such as chlorides, nitrates, amines, and metal complexes such as acetylacetonate are used as precious metal raw materials, and decomposition or reduction treatment of noble metal precursors by heating in the process of metallization. (For example, refer to Patent Document 1 or 2). Further, a production method under mild conditions in which a noble metal salt or complex is liquid-phase reduced with an alcohol or the like and supported on carbon is also used (for example, see Patent Document 3). In addition, the present inventors have made a quasicrystalline Al alloy having a composition represented by Al 100-ab Cu a Co b (where 5 atomic% ≦ a ≦ 30 atomic%, 5 atomic% ≦ b ≦ 25 atomic%). A method for producing a copper catalyst in which a leaching process is performed after pulverizing the ingot has also been proposed (see, for example, Patent Document 4).

なお、貴金属として金を担持した触媒試料は、ワールド・ゴールド・カウンシル(World Gold Council;WGC)が標準触媒試料として提供しており、比較的容易に入手することができる(例えば、非特許文献2参照)。   In addition, the catalyst sample which carry | supported gold | metal | money as a noble metal is provided as a standard catalyst sample by the World Gold Council (World Gold Council; WGC), and can be obtained comparatively easily (for example, nonpatent literature 2). reference).

触媒学会編、「触媒便覧」、講談社、2008年、p.263-267Catalytic Society, “Catalyst Handbook”, Kodansha, 2008, p.263-267 Gold reference catalysts, Gold Bulletin, 2003年, No.36, p.24Gold reference catalysts, Gold Bulletin, 2003, No.36, p.24

特開2001−79402号公報JP 2001-79402 A 特開2005−314739号公報JP 2005-314739 A 特開2003−320249号公報JP 2003-320249 A 特開2004−267878号公報JP 2004-267878 A

しかしながら、特許文献1および2に記載の基金属触媒の製造方法では、金属化を行う際の加熱過程で、貴金属粒子の凝集が起こるため、貴金属粒子の分散性が悪く、粒子径も不均一になるという課題があった。また、特許文献3に記載の貴金属触媒の製造方法では、担体がカーボンに制限されるという課題があった。また、特許文献4に記載の銅触媒の製造方法では、高分散化したCu粒子が得られるが、担体がCoを含むものに限定されるという課題があった。   However, in the method for producing a base metal catalyst described in Patent Documents 1 and 2, noble metal particles aggregate in the heating process during metallization, so that the dispersibility of the noble metal particles is poor and the particle diameter is not uniform. There was a problem of becoming. Further, the method for producing a noble metal catalyst described in Patent Document 3 has a problem that the support is limited to carbon. Further, in the method for producing a copper catalyst described in Patent Document 4, highly dispersed Cu particles can be obtained, but there is a problem that the support is limited to those containing Co.

本発明は、このような課題に着目してなされたもので、様々な担体に、金属粒子を均一に高分散化させることができる金属触媒の製造方法を提供することを目的とする。 The present invention has been made paying attention to such problems, and an object of the present invention is to provide a method for producing a metal catalyst capable of uniformly and highly dispersing metal particles on various supports.

上記目的を達成するために、本発明に係る金属触媒の製造方法は、Al100−(x+y) (ただし、MはTi,V,Cr,Mn,Fe,Co,Zr,Nb,Mo,Hf,Ta,WおよびReのうちの少なくとも1つの金属、MはAu,Pt,Ir,Ag,Pd,Rh,RuおよびCuのうちの少なくとも1つの金属、10原子%≦x≦30原子%、0原子%<y≦10原子%)で示される組成のAl基金属間化合物(ただし、Al−Co−Cu系化合物を除く)のインゴットを粉砕した後、アルカリ水溶液でリーチング処理することを特徴とする。 In order to achieve the above object, the method for producing a metal catalyst according to the present invention is Al 100- (x + y) M 1 x M 2 y (where M 1 is Ti, V, Cr, Mn, Fe, Co, Zr). , Nb, Mo, Hf, Ta, W and Re, M 2 is at least one metal of Au, Pt, Ir, Ag, Pd, Rh, Ru and Cu, 10 atomic% ≦ After pulverizing an ingot of an Al-based intermetallic compound having a composition represented by x ≦ 30 atomic%, 0 atomic% <y ≦ 10 atomic% (excluding an Al—Co—Cu-based compound), leaching is performed with an alkaline aqueous solution. It is characterized by processing.

また、本発明に係る金属触媒の製造方法は、Al100−(x+y) (ただし、MはTi,V,Cr,Mn,Fe,Co,Zr,Nb,Mo,Hf,Ta,WおよびReのうちの少なくとも1つの金属、MはAu,Pt,Ir,Ag,Pd,Rh,Ru,NiおよびCuのうちの少なくとも1つの金属、21.5原子%≦x≦26原子%、0原子%<y≦10原子%)で示される組成のAl基金属間化合物(ただし、Al−Co−Cu系化合物を除く)のインゴットを、液体急冷法によりフレーク状またはリボン状にした後、アルカリ水溶液でリーチング処理してもよい。 The manufacturing method of the metal catalyst according to the present invention, Al 100- (x + y) M 1 x M 2 y ( provided that, M 1 is Ti, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, Hf , Ta, W and Re, M 2 is at least one metal of Au, Pt, Ir, Ag, Pd, Rh, Ru, Ni and Cu, 21.5 atomic% ≦ x ≦ An ingot of an Al-based intermetallic compound having a composition represented by 26 atomic% and 0 atomic% <y ≦ 10 atomic%) (excluding an Al—Co—Cu based compound) is flaked or ribbon-shaped by a liquid quenching method. After that, a leaching treatment with an alkaline aqueous solution may be performed.

本発明に係る金属触媒の製造方法は、Al−Mの一部を金属で置換したAl基金属間化合物の合金を前駆物質とし、これをアルカリ水溶液でリーチング処理することにより、Alを選択的に溶出させる。この工程において、金属Mが酸化物または水酸化物に変化し、金属はそのまま残留するため、加熱処理を必要とせずに、高分散担持金属触媒を得ることができる。加熱処理を行わないため、金属の粒子が凝集せず、金属Mの酸化物または水酸化物から成る担体に、均一な粒子径の金属粒子を均一に高分散化させることができる。 The method for producing a metal catalyst according to the present invention uses an Al-based intermetallic compound alloy in which a part of Al-M 1 is substituted with a metal M 2 as a precursor, and leaches it with an alkaline aqueous solution to thereby obtain Al. Elute selectively. In this step, the metal M 1 is changed to an oxide or hydroxide, the metal M 2 is left as it is, it can be without requiring heat treatment to obtain a highly dispersed supported metal catalyst. Since the heat treatment is not performed, the metal M 2 particles do not aggregate, and the metal particles having a uniform particle diameter can be uniformly and highly dispersed in the carrier made of the metal M 1 oxide or hydroxide.

このように、本発明に係る金属触媒の製造方法は、前記リーチング処理により、金属Mの酸化物粒子または水酸化物粒子に、金属Mの粒子が均一に分散した複合粒子を形成することができる。本発明に係る金属触媒の製造方法は、加熱処理を行わないため、従来の調製法と比べて簡便であり、金属粒子を様々な担体に安定して高分散化させることができる。また、金属粒子を均一に高分散化させることができるため、金属の担持効率を高めることができ、金属使用量の低減化を図ることができる。 Thus, the method for producing a metal catalyst according to the present invention forms composite particles in which metal M 2 particles are uniformly dispersed in oxide particles or hydroxide particles of metal M 1 by the leaching process. Can do. The method for producing a metal catalyst according to the present invention is simpler than conventional preparation methods because no heat treatment is performed, and metal particles can be stably dispersed in various supports. Further, since the metal particles can be uniformly and highly dispersed, the metal loading efficiency can be increased, and the amount of metal used can be reduced.

本発明に係る金属触媒の製造方法で、Al基金属間化合物は、単一相結晶合金であることが好ましく、単一相結晶合金になるよう、金属Mと金属Mの含有率x,yがそれぞれ、10原子%≦x≦30原子%、0原子%<y≦10原子%となっている。Al基金属間化合物の組成は、特に、21.5原子%≦x≦26原子%、0.5原子%<y≦4原子%であることが好ましい。この場合、組成割合x,yがそれぞれの下限未満では、十分な触媒活性が得られなくなる傾向にある。また、x,yがそれぞれの上限を超えると、単一な金属間化合物相を得にくくなるばかりでなく、高分散状態も得られにくくなる傾向にある。 In the method for producing a metal catalyst according to the present invention, the Al-based intermetallic compound is preferably a single-phase crystal alloy, and the contents x, M of the metal M 1 and the metal M 2 so as to become a single-phase crystal alloy. y is 10 atomic% ≦ x ≦ 30 atomic% and 0 atomic% <y ≦ 10 atomic%, respectively. The composition of the Al-based intermetallic compound is particularly preferably 21.5 atomic% ≦ x ≦ 26 atomic% and 0.5 atomic% <y ≦ 4 atomic%. In this case, when the composition ratios x and y are less than their respective lower limits, there is a tendency that sufficient catalytic activity cannot be obtained. Moreover, when x and y exceed the respective upper limits, it is difficult not only to obtain a single intermetallic compound phase but also to obtain a highly dispersed state.

本発明に係る金属触媒の製造方法は、リーチング処理の前に、Al基金属間化合物のインゴットを粉砕することにより、リーチング効率を高めることができる。また、さらに金属Mの置換組成範囲を広げ、ハンドリング性を良くするために、Al基金属間化合物のインゴットを粉砕する代わりに、液体急冷法によりフレーク状またはリボン状に形成してもよい。本発明に係る金属触媒の製造方法で、金属Mは、リーチング処理によりイオンにならず、酸化物または水酸化物になる金属であればいかなるものであってもよく、Ti,V,Cr,Mn,Fe,Co,Zr,Nb,Mo,Hf,Ta,WおよびReのうちの少なくとも1つの金属から成っている。リーチング処理は、pHが12以上のアルカリ水溶液で行うことが好ましい。 The method for producing a metal catalyst according to the present invention can increase the leaching efficiency by pulverizing an ingot of an Al-based intermetallic compound before the leaching treatment. Further, further expand the replacement composition range of metal M 2, in order to improve the handling properties, instead of crushing the ingot Al-based intermetallic compound may be formed into flakes or ribbons by liquid quenching method. In the method for producing a metal catalyst according to the present invention, the metal M 1 may be any metal as long as it is a metal that does not become an ion by leaching treatment but becomes an oxide or a hydroxide, and Ti, V, Cr, It consists of at least one metal of Mn, Fe, Co, Zr, Nb, Mo, Hf, Ta, W and Re. The leaching treatment is preferably performed with an alkaline aqueous solution having a pH of 12 or more.

また、本発明に係る金属触媒の製造方法は、前記Al基金属間化合物を、5〜20質量%濃度のNaOH水溶液でリーチング処理することにより、前記Al基金属間化合物からAlを溶出させることが好ましい。この場合、効率良くAlを溶出させることができ、金属粒子を安定して高分散化させることができる。 In the method for producing a metal catalyst according to the present invention, Al may be eluted from the Al-based intermetallic compound by leaching the Al-based intermetallic compound with an aqueous NaOH solution having a concentration of 5 to 20% by mass. preferable. In this case, Al can be efficiently eluted, and the metal particles can be stably highly dispersed.

本発明に関する金属触媒は、本発明に係る金属触媒の製造方法で製造されることを特徴とする。
本発明に関する金属触媒は、本発明に係る金属触媒の製造方法で製造されるため、金属Mの酸化物または水酸化物から成る担体に、均一な粒子径の金属粒子が均一に高分散化されている。本発明に関する金属触媒は、従来の調製法で得られる触媒と比べ、金属粒子の分散性が高く、高活性で性能が高い。なお、金属は、金属ナノ粒子状態で分散している。
Metal catalyst with respect to the present invention is characterized in that it is manufactured by the manufacturing method of the metal catalyst according to the present invention.
Metal catalyst with respect to the present invention, because it is manufactured by the manufacturing method of the metal catalyst according to the present invention, an oxide or a carrier consisting of a hydroxide, metal particles having a uniform particle size uniformly high dispersion of the metal M 1 Has been. The metal catalyst according to the present invention has high dispersibility of metal particles , high activity and high performance as compared with a catalyst obtained by a conventional preparation method. The metal is dispersed in the form of metal nanoparticles.

本発明によれば、様々な担体に、金属粒子を均一に高分散化させることができる金属触媒の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the metal catalyst which can disperse | distribute metal particles uniformly and highly to various support | carriers can be provided.

本発明の実施の形態の金属触媒の製造方法により得られた金属触媒の、(a)リーチング処理前、(b)リーチング処理後のX線回折パターンである。It is the X-ray-diffraction pattern of the metal catalyst obtained by the manufacturing method of the metal catalyst of embodiment of this invention before (a) leaching process and (b) leaching process. 本発明の実施の形態の金属触媒の製造方法により得られた、Auを含む金属触媒の、CO酸化反応試験の結果を示すグラフである。It is a graph which shows the result of the CO oxidation reaction test of the metal catalyst containing Au obtained by the manufacturing method of the metal catalyst of embodiment of this invention. 本発明の実施の形態の金属触媒の製造方法により得られた、異なる金属を含む金属触媒の、CO酸化反応試験の結果を示すグラフである。It is a graph which shows the result of the CO oxidation reaction test of the metal catalyst containing the different metal obtained by the manufacturing method of the metal catalyst of embodiment of this invention. 本発明の実施の形態の金属触媒の製造方法により得られた、実施例3の金属触媒の透過型電子顕微鏡(TEM)写真(明視野像)である。It is a transmission electron microscope (TEM) photograph (bright-field image) of the metal catalyst of Example 3 obtained by the manufacturing method of the metal catalyst of the embodiment of the present invention. 本発明の実施の形態の金属触媒の製造方法により得られた実施例3の金属触媒、および比較例2の触媒の細孔分布曲線を示すグラフである。It is a graph which shows the pore distribution curve of the metal catalyst of Example 3 obtained by the manufacturing method of the metal catalyst of embodiment of this invention, and the catalyst of the comparative example 2. FIG.

以下、図面に基づき、本発明の実施の形態について説明する。
本発明の実施の形態の金属触媒の製造方法では、まず、Al基金属間化合物のAl100−(x+y) (ただし、MはTi,V,Cr,Mn,Fe,Co,Zr,Nb,Mo,Hf,Ta,WおよびReのうちの少なくとも1つの金属、MはAu,Pt,Ir,Ag,Pd,Rh,Ru,NiおよびCuのうちの少なくとも1つの金属、10原子%≦x≦30原子%、0原子%<y≦10原子%)を形成する。そのために、Alと金属M金属とを、所望のAl基金属間化合物の組成になるよう秤量し、その各原料を水冷した銅ハース内に入れて、アルゴン雰囲気下でアーク溶解する。そのまま銅ハース内で冷却することにより、Al基金属間化合物のインゴットを得る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the method for producing a metal catalyst according to an embodiment of the present invention, first, Al 100- (x + y) M 1 x M 2 y (where M 1 is Ti, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, Hf, Ta, at least one metal of W and Re, M 2 is Au, Pt, Ir, Ag, Pd, Rh, Ru, at least one metal of Ni and Cu 10 atomic% ≦ x ≦ 30 atomic%, 0 atomic% <y ≦ 10 atomic%). Therefore, Al and the metal M 1 and a metal M 2, were weighed so that the composition of the desired Al-based intermetallic compounds, the respective raw material placed in a copper hearth was cooled to arc melting in an argon atmosphere . The Al-based intermetallic compound ingot is obtained by cooling in the copper hearth as it is.

次に、得られたインゴットに対して、単ロール式液体急冷装置(例えば、株式会社真壁技研製「RQM−T−20」)で液体急冷法を行うことにより、フレーク状またはリボン状のAl基金属間化合物を得る。このフレーク状またはリボン状のAl基金属間化合物を、10wt%のNaOH(水酸化ナノリウム)水溶液に投入して、室温で4時間攪拌してリーチング処理を行い、Al基金属間化合物からAlを溶出させる。このとき、NaOH水溶液の量は、例えば、5gのAl基金属間化合物に対して、500gである。その後、吸引濾過により水溶液中から残留物を取り出し、それを洗浄して、40℃で12時間乾燥する。これにより、金属Mの酸化物粒子または水酸化物粒子に、金属Mのナノ粒子が均一に分散した複合粒子、すなわち本発明の実施の形態の金属触媒が得られる。 Next, the obtained ingot is subjected to a liquid quenching method using a single-roll liquid quenching apparatus (for example, “RQM-T-20” manufactured by Makabe Giken Co., Ltd.), whereby a flake-shaped or ribbon-shaped Al group is obtained. An intermetallic compound is obtained. This flaky or ribbon-like Al-based intermetallic compound is put into a 10 wt% NaOH (nanolium hydroxide) aqueous solution and stirred at room temperature for 4 hours to carry out a leaching treatment to elute Al from the Al-based intermetallic compound. Let At this time, the amount of the NaOH aqueous solution is, for example, 500 g with respect to 5 g of the Al-based intermetallic compound. Thereafter, the residue is taken out from the aqueous solution by suction filtration, washed, and dried at 40 ° C. for 12 hours. As a result, composite particles in which the metal M 2 nanoparticles are uniformly dispersed in the metal M 1 oxide particles or hydroxide particles, that is, the metal catalyst of the embodiment of the present invention are obtained.

なお、インゴットのAl基金属間化合物を、液体急冷法によりフレーク状またはリボン状にする代わりに、平均一次粒子径が100〜200μm程度になるよう微粉末状に粉砕し、その粉砕物に対して、リーチング処理を行ってもよい。この場合にも、本発明の実施の形態の金属触媒が得られる。 In addition, the Al-based intermetallic compound of the ingot is pulverized into a fine powder form so that the average primary particle diameter is about 100 to 200 μm instead of flaky or ribbon-like by a liquid quenching method, Reaching processing may be performed. Also in this case, the metal catalyst of the embodiment of the present invention can be obtained.

このように、本発明の実施の形態の金属触媒の製造方法は、Al−Mの一部を金属で置換したAl基金属間化合物の合金を前駆物質とし、これをアルカリ水溶液でリーチング処理することにより、Alを選択的に溶出させる。この工程において、金属Mが酸化物または水酸化物に変化し、金属はそのまま残留するため、加熱処理を必要とせずに、高分散担持金属触媒を得ることができる。加熱処理を行わないため、金属の粒子が凝集せず、金属Mの酸化物または水酸化物から成る担体に、均一な粒子径の金属ナノ粒子を均一に高分散化させることができる。 As described above, the method for producing a metal catalyst according to the embodiment of the present invention uses an Al-based intermetallic compound alloy in which a part of Al-M 1 is substituted with metal M 2 as a precursor, and leaches this with an alkaline aqueous solution. By processing, Al is selectively eluted. In this step, the metal M 1 is changed to an oxide or hydroxide, the metal M 2 is left as it is, it can be without requiring heat treatment to obtain a highly dispersed supported metal catalyst. Since the heat treatment is not performed, the metal M 2 particles do not aggregate, and the metal nanoparticles having a uniform particle diameter can be uniformly and highly dispersed in the support made of the oxide or hydroxide of the metal M 1. .

本発明の実施の形態の金属触媒の製造方法は、加熱処理を行わないため、従来の調製法と比べて簡便であり、金属粒子を様々な担体に安定して高分散化させることができる。また、金属粒子を均一に高分散化させることができるため、金属の担持効率を高めることができ、金属使用量の低減化を図ることができる。本発明の実施の形態の金属触媒の製造方法により得られた本発明の実施の形態の金属触媒は、従来の調製法で得られる触媒と比べ、金属粒子の分散性が高く、高活性で性能が高い。 The method for producing a metal catalyst according to an embodiment of the present invention is simpler than conventional preparation methods because no heat treatment is performed, and metal particles can be stably dispersed in a variety of carriers. Further, since the metal particles can be uniformly and highly dispersed, the metal loading efficiency can be increased, and the amount of metal used can be reduced. Embodiment of the metal catalyst of the present invention obtained by the production method of the embodiment of the metal catalyst of the present invention as compared to catalysts obtained by the conventional preparation methods, high dispersibility of the metal particles, the performance at high activity Is expensive.

[状態評価および特性評価の試験試料]
本発明の実施の形態の金属触媒について、状態評価のための粉末X線回折試験、および特性評価のためのCO酸化反応試験を行った。一般に、金属がナノ粒子化すると回折ピークがブロード化するため、状態評価のためにXRD法(X線回折法)を用いた。また、Au触媒は、ナノ粒子化して初めて高いCO酸化活性を示すため、ナノ粒子化状態の特性評価のためにCO酸化反応を行った。
[Test sample for condition evaluation and characteristic evaluation]
The metal catalyst of the embodiment of the present invention was subjected to a powder X-ray diffraction test for state evaluation and a CO oxidation reaction test for characteristic evaluation. In general, when a metal is made into nanoparticles, a diffraction peak is broadened. Therefore, an XRD method (X-ray diffraction method) was used for state evaluation. In addition, since the Au catalyst exhibits high CO oxidation activity only after being made into nanoparticles, a CO oxidation reaction was performed for evaluating the properties of the nanoparticles.

本発明の実施の形態の金属触媒の試験試料として、本発明の実施の形態の金属触媒の製造方法を用いて、表1に示す実施例1〜7を準備した。各試料とも、前駆物質のAl基金属間化合物を5g製造し、使用している。なお、表1中のAlの溶出量とは、Al基金属間化合物中のAl全量に対する、リーチング処理によるAlの溶出量を表している。 Examples 1 to 7 shown in Table 1 were prepared as test samples for the metal catalyst according to the embodiment of the present invention using the method for producing a metal catalyst according to the embodiment of the present invention. For each sample, 5 g of an Al-based intermetallic compound as a precursor is produced and used. In addition, the elution amount of Al in Table 1 represents the elution amount of Al by leaching with respect to the total amount of Al in the Al-based intermetallic compound.

また、比較のため、表1に示す比較例1〜2も準備した。比較例1は、原料の組成以外は、本発明の実施の形態の金属触媒の製造方法と同様の方法で製造している。比較例2は、ワールド・ゴールド・カウンシルが提供している標準触媒試料Au−Fe(No.82C,#02−05;金担持量 4.4重量%) 5gに対して、水素雰囲気下で、250Cで1時間の還元処理を行って、Au−Feの状態にしたものである。 For comparison, Comparative Examples 1 and 2 shown in Table 1 were also prepared. The comparative example 1 is manufactured by the same method as the manufacturing method of the metal catalyst of embodiment of this invention except the composition of a raw material. In Comparative Example 2, a standard catalyst sample Au-Fe 2 O 3 (No. 82C, # 02-05; gold loading amount 4.4% by weight) provided by the World Gold Council is 5 g in a hydrogen atmosphere. below, performed 1 hour of reduction treatment at 250 o C, it is obtained by the state of the Au-Fe 3 O 4.

[X線回折試験]
実施例1〜5、比較例1を用いて、リーチング処理前のAl基金属間化合物、およびリーチング処理後の金属触媒について、それぞれX線回折試験を行った。このX線回折試験の結果を、図1に示す。なお、比較例2の触媒はリーチング処理を行っていないが、比較例2の触媒についてもX線回折試験を行い、図1(b)に示している。
[X-ray diffraction test]
Using Examples 1 to 5 and Comparative Example 1, an X-ray diffraction test was performed on the Al-based intermetallic compound before the leaching treatment and the metal catalyst after the leaching treatment. The results of this X-ray diffraction test are shown in FIG. The catalyst of Comparative Example 2 was not subjected to leaching treatment, but the catalyst of Comparative Example 2 was also subjected to an X-ray diffraction test and is shown in FIG.

図1(a)に示すように、リーチング処理前のAl基金属間化合物において、Auの組成が1原子%程度までの実施例1〜3では、比較例1と同じ回折ピークパターンを示していることから、Auが構造骨格中に置換されていることが確認された。また、Auの組成が4原子%以上の実施例4〜5では、実施例1〜3や比較例1とは異なる回折ピークパターンを示していることから、他の相が形成されてきていることが確認された。   As shown in FIG. 1 (a), in the Al-based intermetallic compound before the leaching treatment, Examples 1 to 3 in which the composition of Au is up to about 1 atomic% show the same diffraction peak pattern as in Comparative Example 1. From this, it was confirmed that Au was substituted in the structural skeleton. Moreover, in Examples 4-5 in which the composition of Au is 4 atomic% or more, since different diffraction peak patterns are shown in Examples 1-3 and Comparative Example 1, other phases have been formed. Was confirmed.

また、図1(b)に示すように、アルカリ水溶液中でリーチング処理を行うと、実施例1〜5では、比較例2と同様の回折ピークパターンを示していることから、母相が消滅してすべてAuおよびFeに変化していることが確認された。また、実施例1〜5のいずれの試料においても、Auの回折ピークは極めてブロードであり、Auがナノ粒子状態で高分散化していることが確認された。 Moreover, as shown in FIG.1 (b), when the leaching process is performed in alkaline aqueous solution, in Examples 1-5, since the diffraction peak pattern similar to Comparative Example 2 is shown, the parent phase disappears. It was confirmed that all changed to Au and Fe 3 O 4 . Moreover, in any sample of Examples 1-5, the diffraction peak of Au was very broad, and it was confirmed that Au was highly dispersed in a nanoparticle state.

[CO酸化反応試験]
実施例1〜7、比較例1〜2を用いて、COの酸化活性を評価する試験を行った。この試験では、触媒100mgをそれぞれ石英製反応管(内径:4mm)に充填した後、常圧固定床流通式反応装置内に設置した。次に、CO(1容量%)とO(0.5容量%)とHe(残部)とからなる入りガスを各触媒に接触させて、触媒に接触した後の出ガス中に含まれる成分の測定を行った。なお、入りガスの流通条件は、30ml/min,SV=20,000h−1とした。また、出ガス中の成分は、オンラインガスクロマトグラフィー(株式会社島津製作所製;「GC−8A」、検出器:TCD)、カラム:MS 5A(CO,O)並びにPorapak Q(CO)により分析を行った。
[CO oxidation reaction test]
The test which evaluates the oxidation activity of CO was done using Examples 1-7 and Comparative Examples 1-2. In this test, 100 mg of the catalyst was filled in each quartz reaction tube (inner diameter: 4 mm), and then installed in an atmospheric pressure fixed bed flow type reactor. Next, the components contained in the exit gas after contacting the catalyst with an incoming gas composed of CO (1% by volume), O 2 (0.5% by volume), and He (remainder), and contacting the catalyst. Was measured. The inlet gas flow conditions were 30 ml / min, SV = 20,000 h −1 . In addition, the components in the outgas were determined by online gas chromatography (manufactured by Shimadzu Corporation; “GC-8A”, detector: TCD), column: MS 5A (CO, O 2 ), and Porapak Q (CO 2 ). Analysis was carried out.

また、CO酸化反応(CO+1/2O→CO)によるCO転化率を、
[CO転化率(%)]={([入りガス中のCO濃度]−[出ガス中のCO濃度])
/[入りガス中のCO濃度]}×100
により求めた。なお、この試験は触媒ごとに複数回行い、試験中の温度条件は各回ごとに、−12℃,0℃,20℃,50℃,80℃,100℃,120℃,150℃,180℃,200℃,250℃,300℃,350℃のうちいずれかの温度に設定した。
Further, the CO conversion rate by the CO oxidation reaction (CO + 1 / 2O 2 → CO 2 )
[CO conversion rate (%)] = {([CO concentration in incoming gas] − [CO concentration in outgoing gas])
/ [CO concentration in entering gas]} × 100
Determined by This test was performed several times for each catalyst, and the temperature conditions during the test were -12 ° C, 0 ° C, 20 ° C, 50 ° C, 80 ° C, 100 ° C, 120 ° C, 150 ° C, 180 ° C, The temperature was set to any one of 200 ° C, 250 ° C, 300 ° C, and 350 ° C.

CO酸化反応試験の結果を、図2および図3に示す。図2は、金属としてAuを含む実施例1〜5、および比較例1〜2の結果であり、図3は、金属としてそれぞれAu,Pt,Cuを1原子%含む実施例3,6,7、および比較例1の結果である。 The results of the CO oxidation reaction test are shown in FIGS. FIG. 2 shows the results of Examples 1 to 5 containing Au as a metal and Comparative Examples 1 and 2, and FIG. 3 shows Examples 3, 6, and 7 containing 1 atom% of Au, Pt, and Cu as metals , respectively. And the results of Comparative Example 1.

図2に示すように、実施例1〜5のAuを含む触媒は、Auが存在しない触媒(比較例1)に比べ、触媒活性が向上していることが確認された。また、実施例1〜5、特に実施例2〜5に示す本発明の実施の形態の金属触媒は、従来から存在する比較例2の触媒と同程度の活性を有することが確認された。実施例1〜4の結果から、Auの置換量が増えるに従って触媒活性が著しく向上し、実施例3および4の触媒活性が特に高いことが確認された。ただし、実施例5に示すように、置換量が8原子%まで増えると、触媒活性が低下することも確認された。 As shown in FIG. 2, it was confirmed that the catalysts containing Au in Examples 1 to 5 had improved catalytic activity as compared with the catalyst in which no Au was present (Comparative Example 1). Moreover, it was confirmed that the metal catalyst of embodiment of this invention shown in Examples 1-5, especially Examples 2-5 has an activity comparable as the catalyst of the comparative example 2 which exists conventionally. From the results of Examples 1 to 4, it was confirmed that the catalytic activity was remarkably improved as the substitution amount of Au was increased, and the catalytic activities of Examples 3 and 4 were particularly high. However, as shown in Example 5, it was also confirmed that when the substitution amount increased to 8 atomic%, the catalytic activity decreased.

また、図3に示すように、Au以外のPt,Cuといった金属を含むものであっても、触媒活性が高く、担持金属触媒として有効であることが確認された。 Further, as shown in FIG. 3, it was confirmed that even a metal containing Pt or Cu other than Au has high catalytic activity and is effective as a supported metal catalyst .

図4に、実施例3の金属触媒の透過型電子顕微鏡(TEM)写真(明視野像)を示す。図4に示すように、本発明の実施の形態の金属触媒は、ナノ粒子から構成された複合粒子であることが明らかである。また、図5に、実施例3および比較例2の触媒の細孔分布曲線を示す。この細孔分布曲線は、細孔容積(V)を細孔半径(r)で微分した値(dV/dr)を、細孔半径(r)に対してプロットした曲線である。この細孔分布曲線は、表面積測定法であるBET法における吸着等温線から、BJH法を用いて求めたものである。図5に示すように、実施例3の触媒は、約2nmの中心細孔半径を有するポーラス構造を形成しているのに対し、比較例2の触媒は、明確なポーラス構造を有していないことが確認された。すなわち、比較例2の触媒は、ポーラスではなく、Feの粒子の上にAuが載っている構造を有しているのに対し、本発明の実施の形態の金属触媒はポーラスであるため、反応物質を多く溜めることができるという利点を有している。 In FIG. 4, the transmission electron microscope (TEM) photograph (bright field image) of the metal catalyst of Example 3 is shown. As shown in FIG. 4, it is clear that the metal catalyst according to the embodiment of the present invention is a composite particle composed of nanoparticles. FIG. 5 shows pore distribution curves of the catalysts of Example 3 and Comparative Example 2. The pore distribution curve, the value of pore volume (V) is differentiated by pore radius (r p) (dV / dr p), is a curve plotted against the pore radius (r p). This pore distribution curve is obtained using the BJH method from the adsorption isotherm in the BET method which is a surface area measuring method. As shown in FIG. 5, the catalyst of Example 3 forms a porous structure having a central pore radius of about 2 nm, whereas the catalyst of Comparative Example 2 does not have a clear porous structure. It was confirmed. That is, the catalyst of Comparative Example 2 is not porous but has a structure in which Au is placed on Fe 3 O 4 particles, whereas the metal catalyst of the embodiment of the present invention is porous. Therefore, there is an advantage that a large amount of reactants can be stored.

本発明によれば、COの酸化性能に優れ、十分に高度な触媒活性を有する金属触媒およびその製造方法を提供することができる。このような本発明に関する金属触媒は、特に低温でのCO酸化活性に優れているため、CO酸化触媒等の用途に特に有用である。
ADVANTAGE OF THE INVENTION According to this invention, the metal catalyst which is excellent in the oxidation performance of CO, and has a sufficiently high catalyst activity, and its manufacturing method can be provided. Such a metal catalyst according to the present invention is particularly useful for applications such as a CO oxidation catalyst because it is excellent in CO oxidation activity at a low temperature.

Claims (4)

Al100−(x+y) (ただし、MはTi,V,Cr,Mn,Fe,Co,Zr,Nb,Mo,Hf,Ta,WおよびReのうちの少なくとも1つの金属、MはAu,Pt,Ir,Ag,Pd,Rh,RuおよびCuのうちの少なくとも1つの金属、10原子%≦x≦30原子%、0原子%<y≦10原子%)で示される組成のAl基金属間化合物(ただし、Al−Co−Cu系化合物を除く)のインゴットを粉砕した後、アルカリ水溶液でリーチング処理することを特徴とする金属触媒の製造方法。 Al 100- (x + y) M 1 x M 2 y (where M 1 is at least one metal of Ti, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, Hf, Ta, W and Re) M 2 is represented by at least one metal of Au, Pt, Ir, Ag, Pd, Rh, Ru and Cu, 10 atomic% ≦ x ≦ 30 atomic%, 0 atomic% <y ≦ 10 atomic%) A method for producing a metal catalyst , comprising pulverizing an ingot of an Al-based intermetallic compound having a composition (excluding an Al-Co-Cu compound) and then leaching with an alkaline aqueous solution. Al100−(x+y) (ただし、MはTi,V,Cr,Mn,Fe,Co,Zr,Nb,Mo,Hf,Ta,WおよびReのうちの少なくとも1つの金属、MはAu,Pt,Ir,Ag,Pd,Rh,Ru,NiおよびCuのうちの少なくとも1つの金属、21.5原子%≦x≦26原子%、0原子%<y≦10原子%)で示される組成のAl基金属間化合物(ただし、Al−Co−Cu系化合物を除く)のインゴットを、液体急冷法によりフレーク状またはリボン状にした後、アルカリ水溶液でリーチング処理することを特徴とする金属触媒の製造方法。 Al 100- (x + y) M 1 x M 2 y (where M 1 is at least one metal of Ti, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, Hf, Ta, W and Re) , M 2 is at least one metal of Au, Pt, Ir, Ag, Pd, Rh, Ru, Ni and Cu, 21.5 atomic% ≦ x ≦ 26 atomic%, 0 atomic% <y ≦ 10 atomic% ) Ingots of Al-based intermetallic compounds (except for Al-Co-Cu compounds) having a composition represented by (1) are formed into flakes or ribbons by a liquid quenching method, and then subjected to a leaching treatment with an alkaline aqueous solution. A method for producing a metal catalyst . 前記リーチング処理により、金属Mの酸化物粒子または水酸化物粒子に、金属Mの粒子が均一に分散した複合粒子を形成することを特徴とする請求項1または2記載の金属触媒の製造方法。 By the leaching process, the oxide particles or hydroxide particles of the metal M 1, the manufacture of metal catalyst according to claim 1 or 2, wherein the forming a composite particle in which the particles of the metal M 2 are uniformly dispersed Method. 前記Al基金属間化合物を、5〜20質量%濃度のNaOH水溶液でリーチング処理することにより、前記Al基金属間化合物からAlを溶出させることを特徴とする請求項1乃至3のいずれか1項に記載の金属触媒の製造方法。
4. The Al is eluted from the Al-based intermetallic compound by leaching the Al-based intermetallic compound with an aqueous NaOH solution having a concentration of 5 to 20% by mass. 5. A method for producing a metal catalyst according to 1.
JP2013163196A 2013-08-06 2013-08-06 Method for producing metal catalyst Active JP6099202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163196A JP6099202B2 (en) 2013-08-06 2013-08-06 Method for producing metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163196A JP6099202B2 (en) 2013-08-06 2013-08-06 Method for producing metal catalyst

Publications (2)

Publication Number Publication Date
JP2015029974A JP2015029974A (en) 2015-02-16
JP6099202B2 true JP6099202B2 (en) 2017-03-22

Family

ID=52515780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163196A Active JP6099202B2 (en) 2013-08-06 2013-08-06 Method for producing metal catalyst

Country Status (1)

Country Link
JP (1) JP6099202B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368857B (en) * 2021-04-29 2022-08-12 中国环境科学研究院 Preparation method of bulk phase intermetallic compound supported catalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3382343B2 (en) * 1994-03-29 2003-03-04 健 増本 Method for producing catalyst for steam reforming of methanol
JPH08323206A (en) * 1995-03-28 1996-12-10 Mitsui Toatsu Chem Inc Modified raney catalyst and its production
US6156694A (en) * 1998-11-05 2000-12-05 E. I. Dupont De Nemours & Company Raney cobalt catalyst and a process for hydrogenating organic compounds using said catalyst
JP4386662B2 (en) * 2003-03-27 2009-12-16 独立行政法人科学技術振興機構 Method for producing compound catalyst ultrafine particles using quasicrystalline Al alloy particles as carrier

Also Published As

Publication number Publication date
JP2015029974A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
WO2021020377A1 (en) Alloy nanoparticles, aggregate of alloy nanoparticles, catalyst, and method for producing alloy nanoparticles
Bracey et al. Application of copper–gold alloys in catalysis: current status and future perspectives
CN112044434B (en) Single-atom noble metal/transition metal oxide composite material and preparation method and application thereof
WO2011027864A1 (en) Photoreduction catalyst, method for synthesizing ammonia using same, and method for decreasing nitrogen oxide in water using same
Trawczyński et al. Reduction of nitrate on active carbon supported Pd-Cu catalysts
Shubin et al. Successful synthesis and thermal stability of immiscible metal Au–Rh, Au–Ir andAu–Ir–Rh nanoalloys
CN109759133B (en) Atom dispersed composite material, preparation method and application thereof
Xu et al. Replacement reaction-based synthesis of supported palladium catalysts with atomic dispersion for catalytic removal of benzene
Riani et al. Cobalt nanoparticles mechanically deposited on α‐Al2O3: a competitive catalyst for the production of hydrogen through ethanol steam reforming
Hou et al. One-pot synthesis of noble metal nanoparticles with a core–shell construction
JP5398082B2 (en) Method for preparing ruthenium catalyst for cycloolefin production, method for producing cycloolefin, and production apparatus
Wojcieszak et al. Study of Ni–Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine
Li et al. Nanoporous CeO2-Ag catalysts prepared by etching the CeO2/CuO/Ag2O mixed oxides for CO oxidation
JP6099202B2 (en) Method for producing metal catalyst
CN112569944A (en) NiCu alloy hydrogenation catalyst, preparation method and application thereof
Liu et al. Preparation of Co powders for cemented carbides in China
WO2022009870A1 (en) Alloy, aggregate of alloy nanoparticles, and catalyst
Chen et al. Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts
Mao et al. Preparation of bimetallic nanocrystals by coreduction of mixed metal ions in a liquid–solid–solution synthetic system according to the electronegativity of alloys
WO2017047709A1 (en) Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia
Mishra et al. Influence of chemical leaching on Al-Cu-Co decagonal quasicrystals
JP5162404B2 (en) Exhaust gas purification catalyst and method for producing the same
Liu et al. Highly dispersive Au nanoparticles on TiO2 nanofibers as a supported catalyst synthesized from Al-Ti-Au intermetallic compound
JP2017095303A (en) Layering silicon composite material, manufacturing method therefor and precipitation method of metal
Umesh et al. Promotional effects of Pt–CeO2 fabricated by hydrothermal leaching of Al78Ce22-xPtx (x= 0, 0.1) intermetallic compound for efficient catalytic CO oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170217

R150 Certificate of patent or registration of utility model

Ref document number: 6099202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250