JP6098527B2 - Method of joining metal member and resin member - Google Patents

Method of joining metal member and resin member Download PDF

Info

Publication number
JP6098527B2
JP6098527B2 JP2014004380A JP2014004380A JP6098527B2 JP 6098527 B2 JP6098527 B2 JP 6098527B2 JP 2014004380 A JP2014004380 A JP 2014004380A JP 2014004380 A JP2014004380 A JP 2014004380A JP 6098527 B2 JP6098527 B2 JP 6098527B2
Authority
JP
Japan
Prior art keywords
resin member
metal member
resin
joining
rotary tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014004380A
Other languages
Japanese (ja)
Other versions
JP2015131444A (en
Inventor
耕二郎 田中
耕二郎 田中
勝也 西口
勝也 西口
弘祐 住田
弘祐 住田
甲斐 裕之
裕之 甲斐
松田 祐之
祐之 松田
由紀 國府田
由紀 國府田
小林 めぐみ
めぐみ 小林
嗣久 宮本
嗣久 宮本
杉本 幸弘
幸弘 杉本
宣夫 坂手
宣夫 坂手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014004380A priority Critical patent/JP6098527B2/en
Publication of JP2015131444A publication Critical patent/JP2015131444A/en
Application granted granted Critical
Publication of JP6098527B2 publication Critical patent/JP6098527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/97Checking completion of joining or correct joining by using indications on at least one of the joined parts
    • B29C66/972Checking completion of joining or correct joining by using indications on at least one of the joined parts by extrusion of molten material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法および該方法において使用される金属部材と樹脂部材とからなる接合部材セットに関する。   The present invention relates to a method for joining a metal member and a resin member, and a joining member set including a metal member and a resin member used in the method.

従来より、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、あるいはスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、図16に示すように、金属部材211と樹脂部材212とを重ね合わせ、回転ツール216を回転させつつ、金属部材211に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材212を軟化させて金属部材211と樹脂部材212とを接合する方法である。   Conventionally, weight reduction has been demanded in the fields of automobiles, railway vehicles, aircraft, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to reduce the thickness of steel sheets, or aluminum alloy materials have been used as substitutes for steel materials, and the use of resin materials has also advanced. In such a field, development of a joining technique between a metal member and a resin member is important not only from the viewpoint of weight reduction, but also from the viewpoint of realizing an increase in strength, rigidity, and productivity of the joining member. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. As shown in FIG. 16, the friction stir welding method is a method in which a metal member 211 and a resin member 212 are overlapped, and the rotary tool 216 is rotated and pressed against the metal member 211 to generate frictional heat. In this method, the resin member 212 is softened and the metal member 211 and the resin member 212 are joined.

このような摩擦撹拌接合方法においては、例えば、接合強度および簡易接合の観点から、回転ツールの形状や押込み量を特定範囲内に設定する技術(特許文献1)が開示されている。   In such a friction stir welding method, for example, a technique (Patent Document 1) is disclosed in which the shape and push-in amount of the rotary tool are set within a specific range from the viewpoint of joining strength and simple joining.

特開2010−158885号公報JP 2010-158885 A

しかしながら、従来の摩擦撹拌接合方法においては、図17(A)および(B)に示すように樹脂部材212における金属部材との接合表面212aは平面であるため、図17(C)に示すように、回転ツール216と金属部材211との摩擦熱により軟化した樹脂の一部が、端面において、金属部材211と樹脂部材212との間から漏れ出し、冷却後において、いわゆるバリ220が形成されることがある。このようなバリは、接合体の見栄えを悪化させるだけでなく、当該接合体を他の部材と組み付けるに際し、作業効率を悪化させる原因となる。   However, in the conventional friction stir welding method, as shown in FIGS. 17 (A) and 17 (B), since the joining surface 212a of the resin member 212 with the metal member is a flat surface, as shown in FIG. 17 (C). Part of the resin softened by frictional heat between the rotary tool 216 and the metal member 211 leaks from between the metal member 211 and the resin member 212 at the end face, and a so-called burr 220 is formed after cooling. There is. Such a burr not only deteriorates the appearance of the joined body, but also causes work efficiency to deteriorate when the joined body is assembled with other members.

特に、金属部材211と樹脂部材212との接合強度をさらに増大させるために、回転ツール216の金属部材211への押し込み量を大きくして、金属部材と樹脂部材との界面温度を上昇させた場合において、バリ形成の問題が顕著になることがある。   Particularly, in order to further increase the bonding strength between the metal member 211 and the resin member 212, when the amount of pressing of the rotary tool 216 into the metal member 211 is increased, and the interface temperature between the metal member and the resin member is increased. In this case, the problem of burr formation may become prominent.

本発明は、バリの形成を防止する金属部材と樹脂部材との接合方法および該方法において使用される樹脂部材を提供することを目的とする。   An object of this invention is to provide the joining method of the metal member and resin member which prevent formation of a burr | flash, and the resin member used in this method.

本発明は、
金属部材と樹脂部材とを重ね合わせ、熱および圧力を金属部材側から付与することにより樹脂部材を軟化させて金属部材と樹脂部材とを接合する熱圧式接合方法であって、
樹脂部材として、金属部材との接合表面において、接合時に軟化する樹脂を流入させるための溜まり溝を有している樹脂部材を用いることを特徴とする金属部材と樹脂部材との接合方法に関する。
The present invention
It is a hot-pressure bonding method in which a metal member and a resin member are overlapped, the resin member is softened by applying heat and pressure from the metal member side, and the metal member and the resin member are bonded.
The present invention relates to a method for joining a metal member and a resin member, characterized in that a resin member having a retaining groove for allowing a resin softened at the time of joining to flow on a joining surface with the metal member is used as the resin member.

本発明はまた、
上記接合方法において、熱圧式接合方法が摩擦撹拌接合方法であり、
該摩擦撹拌接合方法が以下のステップを含む接合方法に関する:
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化させて金属部材と樹脂部材とを接合する第2ステップ。
The present invention also provides
In the above bonding method, the hot-pressure bonding method is a friction stir welding method,
The friction stir welding method relates to a joining method including the following steps:
A first step of superimposing the metal member and the resin member; and while rotating the rotary tool, the metal member is pressed against the metal member to generate frictional heat, and the frictional heat softens the resin member to form the metal member and the resin member. Second step of joining.

本発明はまた、上記接合方法において使用される樹脂部材に関する。   The present invention also relates to a resin member used in the joining method.

本発明の接合方法によれば、樹脂部材が金属部材との接合表面において溜まり溝を有するため、接合時に軟化する樹脂を該溜まり溝に流入させることができる。このため、金属部材と樹脂部材との間からの軟化樹脂の流出が回避され、バリの形成が十分に防止される。また、併せて溜まり溝の内側において溶融した樹脂の流動状態を安定化させることで、接合強度のバラツキが低減される。   According to the joining method of the present invention, since the resin member has the accumulation groove on the joining surface with the metal member, the resin softened at the time of joining can be caused to flow into the accumulation groove. For this reason, the outflow of the softened resin from between the metal member and the resin member is avoided, and the formation of burrs is sufficiently prevented. Further, by stabilizing the flow state of the molten resin inside the accumulation groove, variation in bonding strength is reduced.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. (A)は本発明の接合方法に使用される第1実施態様の樹脂部材における金属部材との接合表面を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて本発明の接合方法を実施したときの概略断面図である。(A) is a general | schematic sketch which shows the joining surface with the metal member in the resin member of the 1st embodiment used for the joining method of this invention, (B) is the AA cross section of the resin member in (A). It is a schematic sectional drawing when it sees in the arrow direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the resin member of (B). (A)は本発明の接合方法に使用される第2実施態様の樹脂部材における金属部材との接合表面を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて本発明の接合方法を実施したときの概略断面図である。(A) is a general | schematic sketch which shows the joining surface with the metal member in the resin member of the 2nd embodiment used for the joining method of this invention, (B) is the AA cross section of the resin member in (A). It is a schematic sectional drawing when it sees in the arrow direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the resin member of (B). (A)は本発明の接合方法に使用される第3実施態様の樹脂部材における金属部材との接合表面を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて本発明の接合方法を実施したときの概略断面図である。(A) is a general | schematic sketch which shows the joining surface with the metal member in the resin member of the 3rd embodiment used for the joining method of this invention, (B) is the AA cross section of the resin member in (A). It is a schematic sectional drawing when it sees in the arrow direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the resin member of (B). (A)は本発明の接合方法に使用される第4実施態様の樹脂部材における金属部材との接合表面を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて本発明の接合方法を実施したときの概略断面図である。(A) is a general | schematic sketch which shows the joining surface with the metal member in the resin member of the 4th embodiment used for the joining method of this invention, (B) is the AA cross section of the resin member in (A). It is a schematic sectional drawing when it sees in the arrow direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the resin member of (B). (A)は本発明の接合方法に使用される第5実施態様の樹脂部材における金属部材との接合表面を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて本発明の接合方法を実施したときの概略断面図であり、(D)は得られた接合体を(C)のB方向で見たときの概略断面見取り図である。る。(A) is a general | schematic sketch which shows the joining surface with the metal member in the resin member of the 5th embodiment used for the joining method of this invention, (B) is the AA cross section of the resin member in (A). It is a schematic sectional drawing when it sees in the arrow direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the resin member of (B), (D) is the obtained joining It is a general | schematic cross-sectional sketch when a body is seen in the B direction of (C). The (A)は本発明の接合方法に使用される第6実施態様の樹脂部材における金属部材との接合表面を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて本発明の接合方法を実施したときの概略断面図である。(A) is a general | schematic sketch which shows the joining surface with the metal member in the resin member of the 6th embodiment used for the joining method of this invention, (B) is the AA cross section of the resin member in (A). It is a schematic sectional drawing when it sees in the arrow direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the resin member of (B). (A)は本発明の接合方法に使用される第1実施態様の金属部材における樹脂部材との接合表面を示す概略見取り図であり、(B)は(A)における金属部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の金属部材を用いて本発明の接合方法を実施したときの概略断面図である。(A) is a general | schematic sketch which shows the joining surface with the resin member in the metal member of the 1st embodiment used for the joining method of this invention, (B) is the AA cross section of the metal member in (A). It is a schematic sectional drawing when it sees in the arrow direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the metallic member of (B). (A)は本発明の接合方法に使用される第2実施態様の金属部材における樹脂部材との接合表面を示す概略見取り図であり、(B)は(A)における金属部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の金属部材を用いて本発明の接合方法を実施したときの概略断面図である。(A) is a general | schematic sketch which shows the joining surface with the resin member in the metal member of the 2nd embodiment used for the joining method of this invention, (B) is the AA cross section of the metal member in (A). It is a schematic sectional drawing when it sees in the arrow direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the metallic member of (B). (A)は本発明の接合方法に使用される第3実施態様の金属部材における樹脂部材との接合表面を示す概略見取り図であり、(B)は(A)における金属部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は図10(B)の金属部材および図2(A)〜(C)の樹脂部材を用いて本発明の接合方法を実施したときの概略断面図である。(A) is a general | schematic sketch which shows the joining surface with the resin member in the metal member of the 3rd embodiment used for the joining method of this invention, (B) is the AA cross section of the metal member in (A). It is a schematic cross-sectional sketch when viewed in the direction of the arrow, and (C) is when the joining method of the present invention is carried out using the metal member of FIG. 10 (B) and the resin members of FIGS. 2 (A) to (C). FIG. 本発明の接合方法に使用される回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotary tool used for the joining method of this invention. 本発明の接合方法における予熱工程を説明するための断面図である。It is sectional drawing for demonstrating the preheating process in the joining method of this invention. 本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための断面図である。It is sectional drawing for demonstrating the pushing stirring process in the joining method of this invention, a stirring maintenance process, and a holding process. 本発明の接合方法で得られた接合体の断面図である。It is sectional drawing of the conjugate | zygote obtained by the joining method of this invention. (A)は実施例1で使用された樹脂部材を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図である。(A) is a schematic sketch which shows the resin member used in Example 1, (B) is a schematic cross-sectional view when the AA cross section of the resin member in (A) is seen in the arrow direction. (A)は実施例2で使用された樹脂部材を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図である。(A) is a schematic sketch which shows the resin member used in Example 2, (B) is a schematic cross-sectional sketch when the AA cross section of the resin member in (A) is seen in the arrow direction. (A)は実施例3で使用された樹脂部材を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図である。(A) is a schematic sketch which shows the resin member used in Example 3, (B) is a schematic cross-sectional sketch when the AA cross section of the resin member in (A) is seen in the arrow direction. (A)は実施例4で使用された樹脂部材を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて得られた接合体を(B)のB方向で見たときの概略断面見取り図である。(A) is a schematic sketch showing the resin member used in Example 4, (B) is a schematic cross-sectional view when the AA cross section of the resin member in (A) is seen in the direction of the arrow, C) is a schematic cross-sectional sketch when a joined body obtained using the resin member of (B) is viewed in the B direction of (B). 従来技術における金属部材と樹脂部材との接合方法を説明するための模式図である。It is a schematic diagram for demonstrating the joining method of the metal member and resin member in a prior art. (A)は従来の接合方法に使用される樹脂部材を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて従来の接合方法を実施したときの概略断面図である。(A) is a schematic sketch showing a resin member used in a conventional joining method, (B) is a schematic cross sectional view when the AA cross section of the resin member in (A) is seen in the direction of the arrow, (C) is a schematic sectional drawing when the conventional joining method is implemented using the resin member of (B).

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、熱および圧力を、金属部材側から付与することにより、好ましくは金属部材側から局所的に付与することにより、樹脂部材を軟化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。本発明の接合方法において採用される接合方式は、加圧しながら加熱を行う方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、レーザー加熱接合方法、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等であってもよい。中でも、摩擦撹拌接合方法は付与される圧力が最も大きいためにバリの発生が顕著であるところ、本発明の接合方法によりそのようなバリの発生を有効に防止することができる。このため、好ましくは摩擦撹拌接合方法が採用される。   The bonding method of the present invention softens the resin member by superimposing the metal member and the resin member and applying heat and pressure from the metal member side, preferably locally from the metal member side. This is a hot-pressure joining method for joining a metal member and a resin member. The joining method employed in the joining method of the present invention is not particularly limited as long as it is a method of heating while applying pressure. For example, a friction stir welding method, a laser heating joining method, a resistance heating joining method (electric heating) Bonding method), induction heating bonding method, ultrasonic heating bonding method and the like. Among them, the friction stir welding method has the largest applied pressure, and thus the occurrence of burrs is remarkable. However, the occurrence of such burrs can be effectively prevented by the joining method of the present invention. For this reason, the friction stir welding method is preferably employed.

摩擦撹拌接合方法とは、後で詳述するように、接合部材セットを重ね合わせて拘束した状態で、回転ツールを回転させつつ金属部材に対して押圧することにより発生する摩擦熱を利用して接合する方法である。以下、接合されるべき接合前の金属部材と樹脂部材との組み合わせを「接合部材セット」と呼ぶものとする。
レーザー加熱接合方法とは、接合部材セットを重ね合わせて拘束した状態で、レーザーを金属部材に照射することにより生じる熱を利用して接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。
抵抗加熱接合方法とは、接合部材セットを重ね合わせて拘束した状態で、金属部材に直接電流を流すことにより生じる熱を利用して接合する方法である。
誘導加熱接合方法とは、接合部材セットを重ね合わせて拘束した状態で、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用して接合する方法である。
超音波加熱接合方法とは、接合部材セットを重ね合わせて拘束した状態で金属部材側から加圧しながら、金属部材に超音波振動を起こさせ、該振動により生じる金属部材/樹脂部材間の摩擦熱を利用して接合する方法である。
As described in detail later, the friction stir welding method uses friction heat generated by pressing against a metal member while rotating a rotary tool in a state where the joining member sets are overlapped and restrained. It is a method of joining. Hereinafter, a combination of a metal member and a resin member before joining to be joined is referred to as a “joining member set”.
The laser heating bonding method is a method of bonding using heat generated by irradiating a metal member with a laser in a state where the bonding member sets are overlapped and restrained. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.
The resistance heating bonding method is a method of bonding using heat generated by flowing a current directly to a metal member in a state where the bonding member sets are superimposed and restrained.
The induction heating bonding method is a method in which an induction current is generated in a metal member by an electromagnetic induction action in a state where the bonding member sets are superposed and restrained, and the heat generated by the current is used for bonding.
The ultrasonic heating bonding method is a method in which ultrasonic vibration is generated in a metal member while applying pressure from the metal member side in a state where the bonding member set is superposed and restrained, and frictional heat between the metal member and the resin member generated by the vibration is generated. It is the method of joining using.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて説明するが、後述する樹脂部材を用いる限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。   Hereinafter, the joining method of the present invention that employs the friction stir welding method will be described with reference to the drawings. However, as long as the resin member described later is used, the effects of the present invention can be obtained even if other joining methods described above are used. Is clear.

まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、円柱状の回転ツール16を具備している。回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図11A参照)回りに回転しつつ、押圧領域P(押圧予定領域)において、矢印A2のように下方に向けて金属部材11を押圧する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化・溶融し、その結果、金属部材11と樹脂部材12とが接合される。   First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding apparatus suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device that friction stir welds a metal member 11 and a resin member 12, and includes a cylindrical rotary tool 16. As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 11A), the metal member 11 is pressed downward in the pressing region P (scheduled pressing region) as indicated by an arrow A2. Friction heat is generated by the pressing of the rotary tool 16, and this frictional heat is conducted to the resin member 12 to soften and melt the resin member 12, and as a result, the metal member 11 and the resin member 12 are joined.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

(1)接合部材セット
本発明の接合方法において使用される金属部材と樹脂部材とからなる接合部材セットは、樹脂部材の金属部材との接合表面および/または金属部材の樹脂部材との接合表面において、接合時に軟化する樹脂を流入させるための溜まり溝が形成されている。すなわち、樹脂部材として、金属部材との接合表面において、接合時に軟化する樹脂を流入させるための溜まり溝を有している樹脂部材を用いるか、かつ/または金属部材として、樹脂部材との接合表面において、接合時に軟化する樹脂を流入させるための溜まり溝を有している金属部材を用いる。以下、特記しない限り、樹脂部材が金属部材との接合表面において溜まり溝を有する場合について説明するが、接合時に金属部材と樹脂部材との間で軟化した樹脂が溜まり溝に流入し得る限り、溜まり溝は樹脂部材の金属部材との接合表面または金属部材の樹脂部材との接合表面の一方のみに形成されていてもよいし、またはそれらの両方に形成されていてもよい。
(1) Joining member set The joining member set consisting of the metal member and the resin member used in the joining method of the present invention is on the joining surface of the resin member with the metal member and / or the joining surface of the metal member with the resin member. A reservoir groove is formed to allow a softening resin to flow during bonding. That is, as the resin member, a resin member having a retention groove for allowing a resin softened at the time of bonding to flow into the bonding surface with the metal member is used and / or the bonding surface with the resin member as the metal member The metal member which has the accumulation groove for making the resin softened at the time of joining flow in is used. Hereinafter, unless otherwise specified, the case where the resin member has a collecting groove on the bonding surface with the metal member will be described. However, the resin softened between the metal member and the resin member at the time of bonding can be collected as long as the resin can flow into the collecting groove. The groove may be formed on only one of the bonding surface of the resin member with the metal member, the bonding surface of the metal member with the resin member, or may be formed on both of them.

(1.1)樹脂部材
樹脂部材は、金属部材との接合表面において、溜まり溝を有している。溜まり溝とは、接合時において軟化・溶融する樹脂を流入させ、収容するための窪みである。本発明において使用されるこのような樹脂部材の実施態様を示す図2〜図7を用いて詳しく説明する。図2〜図7は溜まり溝120の形状または/および後で詳述する凸部122、誘導溝125Aおよび誘導孔125Bの有無が異なる樹脂部材12の概略図である。図2〜図7において、(A)は各実施態様の樹脂部材における金属部材との接合表面を示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の樹脂部材を用いて本発明の接合方法を実施したときの概略断面図である。図6(D)は得られた接合体を図6(C)のB方向で見たときの概略断面見取り図である。図2〜図7ならびに他の図面(図1、図8〜図10、図11A〜図11Dおよび図12〜図15)において、同じ符号で示される部材、領域および寸法等は部材の形状が異なること以外、それぞれ同じ部材、領域および寸法を指すものとする。
(1.1) Resin member The resin member has a retention groove on the surface joined to the metal member. The reservoir groove is a recess for allowing a resin that is softened and melted during bonding to flow in and accommodate. The embodiment of such a resin member used in the present invention will be described in detail with reference to FIGS. 2 to 7 are schematic views of the resin member 12 in which the shape of the accumulation groove 120 and / or the presence or absence of the convex portion 122, the guide groove 125A, and the guide hole 125B described later are different. 2-7, (A) is a schematic sketch which shows the joining surface with the metal member in the resin member of each embodiment, (B) is the AA cross section of the resin member in (A) in the arrow direction. It is a schematic sectional drawing when it sees, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the resin member of (B). FIG. 6D is a schematic cross-sectional sketch when the obtained bonded body is viewed in the B direction of FIG. 2 to 7 and other drawings (FIGS. 1, 8 to 10, FIGS. 11A to 11D, and FIGS. 12 to 15), members, regions, dimensions, and the like indicated by the same reference numerals are different in shape of the members. Except for this, the same members, regions, and dimensions are used.

本発明において、接合表面12aに溜まり溝120を有する樹脂部材12は、接合時において、図2(C)、図3(C)、図4(C)、図5(C)、図6(C)および図7(C)に示すように、軟化した樹脂121を該溜まり溝120内に流入させ得るので、バリの形成を十分に防止することができる。   In the present invention, the resin member 12 having the retaining groove 120 on the bonding surface 12a is formed at the time of bonding as shown in FIGS. 2 (C), 3 (C), 4 (C), 5 (C), and 6 (C). ) And FIG. 7C, the softened resin 121 can be caused to flow into the accumulation groove 120, so that the formation of burrs can be sufficiently prevented.

樹脂部材12が溜まり溝120を有する金属部材11との接合表面12aとは、接合のために金属部材11と重ね合わせたとき、当該金属部材11と接触する樹脂部材12の表面領域という意味である。   The joining surface 12a of the resin member 12 and the metal member 11 having the accumulation groove 120 means a surface region of the resin member 12 that comes into contact with the metal member 11 when the resin member 12 is overlapped with the metal member 11 for joining. .

接合表面12a上における溜まり溝120の全体形状は、接合時に金属部材11と樹脂部材12との間において軟化した樹脂を流入させ得るような形状であれば特に限定されない。例えば、溜まり溝120は接合表面12a上において、図2(A)、図3(A)、図4(A)、図5(A)、図6(A)および図7(A)に示すように環状に形成されてもよいし、Cの字形状に形成されてもよいし、または単に線状もしくは点状に形成されてもよい。溜まり溝内に軟化樹脂を効率よく収容させることにより、バリの形成をより一層十分に防止する観点から、溜まり溝120は接合表面12a上、環状に形成されることが好ましく、同観点からより好ましくは、当該環状溜まり溝120の内側領域126内において熱および圧力が局所的に付与されることである。環状溜まり溝120の内側領域126は、環状溜まり溝120により規定される島状領域である。このような内側領域126内において熱および圧力が局所的に付与されるとは、金属部材11上における回転ツール16の押圧領域P(図1参照)の直下に対応する接合表面12a上の領域P’(破線で示される斜線領域;図2〜図7参照)が当該内側領域126内に位置するように、樹脂部材12を金属部材11とを重ね合わせ、該金属部材11に対して回転ツールを押圧する、という意味である。   The overall shape of the accumulation groove 120 on the joining surface 12a is not particularly limited as long as the softened resin can flow between the metal member 11 and the resin member 12 during joining. For example, the reservoir groove 120 is formed on the bonding surface 12a as shown in FIGS. 2A, 3A, 4A, 5A, 6A, and 7A. It may be formed in a ring shape, may be formed in a C shape, or may be formed in a linear shape or a dot shape. From the viewpoint of further sufficiently preventing the formation of burrs by efficiently accommodating the softening resin in the pool groove, the pool groove 120 is preferably formed in an annular shape on the bonding surface 12a, more preferably from the same viewpoint. Is that heat and pressure are locally applied within the inner region 126 of the annular reservoir groove 120. The inner region 126 of the annular reservoir groove 120 is an island region defined by the annular reservoir groove 120. The fact that heat and pressure are locally applied in such an inner region 126 means that the region P on the bonding surface 12a corresponding to the region immediately below the pressing region P (see FIG. 1) of the rotary tool 16 on the metal member 11. The resin member 12 is overlapped with the metal member 11 so that '(the hatched area indicated by a broken line; see FIGS. 2 to 7) is located in the inner area 126, and a rotating tool is applied to the metal member 11. It means to press.

接合表面12a上における溜まり溝120の具体的な全体形状のうち、好ましい環形状としては特に限定されるものではなく、例えば、図2(A)、図4(A)、図5(A)、図6(A)および図7(A)に示すような略円形状であってもよいし、図3(A)に示すような略四角形状であってもよい。好ましくは略円形状である。溜まり溝120の全体形状が略円形状の場合、当該略円形状は、バリの形成をより一層十分に防止する観点から、接合表面12a上における熱および圧力の局所的付与領域(すなわち、斜線領域P’)を略中心とする略円形状であることが好ましい。すなわち、該略円形状の略中心に、熱および圧力が局所的に付与されることが好ましい。   Of the specific overall shape of the pool groove 120 on the bonding surface 12a, the preferred ring shape is not particularly limited, and for example, FIG. 2 (A), FIG. 4 (A), FIG. 5 (A), A substantially circular shape as shown in FIGS. 6A and 7A may be used, or a substantially rectangular shape as shown in FIG. 3A may be used. Preferably it is a substantially circular shape. When the overall shape of the accumulation groove 120 is a substantially circular shape, the substantially circular shape is a region for locally applying heat and pressure (that is, a hatched region) on the bonding surface 12a from the viewpoint of more sufficiently preventing the formation of burrs. It is preferably a substantially circular shape centered on P ′). That is, it is preferable that heat and pressure are locally applied to the substantial center of the substantially circular shape.

溜まり溝120の断面形状は、接合時に軟化した樹脂を収容できる形状であれば特に限定されず、例えば、図2(B)、図3(B)、図5(B)、図6(B)および図7(B)に示すような略四角形状であってもよいし、図4(B)に示すような略半円形状であってもよいし、略三角形状であってもよい。   The cross-sectional shape of the reservoir groove 120 is not particularly limited as long as it can accommodate the resin softened at the time of joining. For example, FIG. 2 (B), FIG. 3 (B), FIG. 5 (B), FIG. Also, it may be a substantially square shape as shown in FIG. 7B, a substantially semicircular shape as shown in FIG. 4B, or a substantially triangular shape.

樹脂部材12は、接合時における溶融樹脂の流動を促進して高強度な接合を安定して達成する観点から、接合表面12aにおいて凸部122(例えば図5参照)を有することが好ましい。特に、接合表面12a上における溜まり溝120の全体形状が環状の場合、樹脂部材12は、当該環状溜まり溝120の内側領域126内に凸部122を有することが、上記と同様の観点から、より好ましい。最も好ましくは、図5(A)および(B)に示すように、内側領域126内における熱および圧力の局所的付与領域(すなわち、斜線領域P’)に凸部122を有する。樹脂部材12が環状溜まり溝120の内側領域126内に凸部122を有する場合、環状溜まり溝120の内側領域126内の全域にわたって凸部が有されていてもよい。   The resin member 12 preferably has a convex portion 122 (see, for example, FIG. 5) on the bonding surface 12a from the viewpoint of accelerating the flow of the molten resin during bonding and stably achieving high-strength bonding. In particular, when the overall shape of the accumulation groove 120 on the bonding surface 12a is an annular shape, the resin member 12 may have a convex portion 122 in the inner region 126 of the annular accumulation groove 120 from the same viewpoint as described above. preferable. Most preferably, as shown in FIGS. 5 (A) and 5 (B), it has a convex portion 122 in the locally applied region of heat and pressure (that is, the hatched region P ′) in the inner region 126. When the resin member 12 has the convex portion 122 in the inner region 126 of the annular reservoir groove 120, the convex portion may be provided over the entire area in the inner region 126 of the annular reservoir groove 120.

溜まり溝120の深さ、幅および長さ等の寸法は、樹脂部材12が溜まり溝を有さなかった場合にバリを形成する軟化樹脂を収容できる程度の容積が確保され、かつ樹脂部材12自体の強度が確保される限り特に制限されない。溜まり溝120の容積V(mm)は通常、回転ツール16の金属部材11に対する押し込み体積v1(mm)と凸部122の体積v2(mm)(凸部を有さない場合はv2=0)に応じて決定され、通常はv1+v2〜(v1+v2)×2.0mm、好ましくはv1+v2〜(v1+v2)×1.4mmである。回転ツール16の金属部材11に対する押し込み体積v1(mm)は、得られた接合体におけるツール痕容積に相当する体積であり、例えば図11Dにおいて破線で示される領域の体積である。 The dimensions, such as the depth, width, and length, of the reservoir groove 120 ensure a volume that can accommodate the softening resin that forms burrs when the resin member 12 does not have the reservoir groove, and the resin member 12 itself. As long as the strength of is secured, there is no particular limitation. The volume V (mm 3 ) of the accumulation groove 120 is usually the indentation volume v1 (mm 3 ) of the rotary tool 16 against the metal member 11 and the volume v2 (mm 3 ) of the convex portion 122 (v2 = when there is no convex portion). 0) and is usually v1 + v2− (v1 + v2) × 2.0 mm 3 , preferably v1 + v2− (v1 + v2) × 1.4 mm 3 . The indentation volume v1 (mm 3 ) of the rotary tool 16 with respect to the metal member 11 is a volume corresponding to the tool trace volume in the obtained joined body, for example, a volume in a region indicated by a broken line in FIG. 11D.

具体的には、溜まり溝120の深さt1は、樹脂部材12の厚みをT(mm)としたとき、通常、0.05T〜0.7Tであり、好ましくは0.1T〜0.5Tである。同様のとき、溜まり溝120の幅w1は通常、0.5T〜1.5Tであり、好ましくは0.6T〜1.2Tである。
凸部122の高さh1は特に制限されるものではない。
Specifically, the depth t1 of the accumulation groove 120 is normally 0.05T to 0.7T, preferably 0.1T to 0.5T, where the thickness of the resin member 12 is T (mm). is there. At the same time, the width w1 of the accumulation groove 120 is usually 0.5T to 1.5T, preferably 0.6T to 1.2T.
The height h1 of the convex part 122 is not particularly limited.

樹脂部材12は、接合時に溜まり溝120内に流入する軟化樹脂を系外に誘導するための誘導溝および/または誘導孔をさらに有していてもよい。   The resin member 12 may further include a guide groove and / or a guide hole for guiding the softened resin flowing into the accumulation groove 120 during joining to the outside of the system.

誘導溝は、例えば図6(A)〜(D)において125Aで示され、樹脂部材12における金属部材11との接合表面12aにおいて、溜まり溝120に連続して形成される。誘導溝125Aは、接合時に溜まり溝120内に流入する軟化樹脂121を端面から系外に誘導する。誘導溝125Aの断面形状は特に限定されず、例えば、略半円形状、略四角形状、略三角形状等であってよい。誘導溝125Aの深さt2および幅w2は軟化樹脂121を系外に誘導できる限り特に制限されない。   6A to 6D, the guide groove is indicated by 125A, for example, and is continuously formed in the pool groove 120 on the bonding surface 12a of the resin member 12 with the metal member 11. The guide groove 125A guides the softened resin 121 that flows into the accumulation groove 120 during joining from the end surface to the outside of the system. The cross-sectional shape of the guide groove 125A is not particularly limited, and may be, for example, a substantially semicircular shape, a substantially square shape, a substantially triangular shape, or the like. The depth t2 and the width w2 of the guide groove 125A are not particularly limited as long as the softening resin 121 can be guided out of the system.

誘導孔は、例えば図7(A)〜(C)において125Bで示され、樹脂部材12の厚さ方向において貫通して形成される。誘導孔125Bは、接合時に溜まり溝120内に流入する軟化樹脂121を、接合表面12aとは反対側の面から系外に誘導する。誘導孔125Bの断面形状は特に限定されず、例えば、略円形状、略四角形状、略三角形状等であってよい。誘導孔125Bの幅(略円形状の場合は直径)r1および長さs1は軟化樹脂121を系外に誘導できる限り特に制限されない。   The guide hole is indicated by 125B in FIGS. 7A to 7C, for example, and is formed through the resin member 12 in the thickness direction. The guide hole 125B guides the softened resin 121 that flows into the accumulation groove 120 at the time of joining, from the surface opposite to the joining surface 12a to the outside of the system. The cross-sectional shape of the guide hole 125B is not particularly limited, and may be, for example, a substantially circular shape, a substantially square shape, or a substantially triangular shape. The width (in the case of a substantially circular shape) r1 and the length s1 of the guide hole 125B are not particularly limited as long as the softening resin 121 can be guided out of the system.

樹脂部材12が上記のような誘導溝125Aおよび/または誘導孔125Bを有することにより、溜まり溝120内での軟化樹脂121の流入を検知・検査することができる。すなわち、外部からの観察により誘導溝125Aおよび誘導孔125B内に樹脂の存在が検知された接合体は、少なくとも溜まり溝120に軟化樹脂が流入しているため、溜まり溝120の内側領域126内の良好な接合を保証することができる。一方、外部からの観察により誘導溝125Aおよび誘導孔125B内に樹脂を検知できない接合体は、金属部材11と樹脂部材12との間における樹脂の軟化が不十分な可能性があるため、良好な接合を保証することができない。また、溶融樹脂が誘導溝125Aおよび/または誘導孔125Bから排出されバリが発生した場合でも、溜まり溝120がない場合に発生しうるバリと比較して少量であり、その除去は容易である。   Since the resin member 12 has the guide groove 125A and / or the guide hole 125B as described above, the inflow of the softened resin 121 in the pool groove 120 can be detected and inspected. That is, in the joined body in which the presence of the resin is detected in the guide groove 125A and the guide hole 125B by observation from the outside, at least the softened resin flows into the pool groove 120. Good bonding can be guaranteed. On the other hand, the joined body in which the resin cannot be detected in the guide groove 125A and the guide hole 125B by observation from the outside is good because the resin softening between the metal member 11 and the resin member 12 may be insufficient. Bonding cannot be guaranteed. Further, even when the molten resin is discharged from the guide groove 125A and / or the guide hole 125B and burrs are generated, the amount is small compared to the burrs that can be generated when the pool groove 120 is not provided, and the removal is easy.

以上、樹脂部材12は全体形状として略平板形状を有するものについて説明したが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11と接触する面が前記したような接合表面12aを有する限り、いかなる形状を有していてもよい。   As described above, the resin member 12 has been described as having a substantially flat plate shape as a whole, but is not limited thereto, and is a surface that comes into contact with the metal member 11 when superposed on the metal member 11 for bonding. As long as it has the joining surface 12a as described above, it may have any shape.

樹脂部材における接合表面12aを有する部分の厚みTは通常、2〜5mmであるがこれに限定するものではない。   Although the thickness T of the part which has the joining surface 12a in a resin member is 2-5 mm normally, it is not limited to this.

樹脂部材12はあらゆる公知の方法により製造可能である。例えば、熱可塑性ポリマーおよびその他所望の添加剤を含むポリマー組成物を、熱可塑性ポリマーが溶融する溶融成形法に供することにより、樹脂部材12を成形することができる。溶融成形法とは、加熱して溶融もしくは軟化させた樹脂部材を後に冷却固化させて部品形状を得る成形方法全てを含むものであり、例えば、射出成形法、プレス成形法、押出成形法、引抜成形法、オートクレーブ成形法等が挙げられる。   The resin member 12 can be manufactured by any known method. For example, the resin member 12 can be molded by subjecting a polymer composition containing a thermoplastic polymer and other desired additives to a melt molding method in which the thermoplastic polymer melts. The melt molding method includes all molding methods in which a resin member that has been heated and melted or softened is subsequently cooled and solidified to obtain a part shape. For example, an injection molding method, a press molding method, an extrusion molding method, a drawing method, and the like. Examples thereof include a molding method and an autoclave molding method.

樹脂部材12の溜まり溝120、凸部122、誘導溝125Aおよび誘導孔125Bは、例えば、上記成形方法において、使用される金型の成形面を転写させることにより形成することができる。特に溜まり溝120、誘導溝125Aおよび誘導孔125Bは、樹脂部材12の平面状表面を、切削工具等を用いて切削することにより形成することもできる。   The retaining groove 120, the convex part 122, the guide groove 125A and the guide hole 125B of the resin member 12 can be formed, for example, by transferring a molding surface of a mold used in the molding method. In particular, the accumulation groove 120, the guide groove 125A, and the guide hole 125B can be formed by cutting the planar surface of the resin member 12 using a cutting tool or the like.

樹脂部材12は射出成形法により成形されてなり、該射出成形方法において使用される金型の成形面を転写させることにより溜まり溝120が形成されることが好ましい。   The resin member 12 is preferably formed by an injection molding method, and the pool groove 120 is preferably formed by transferring a molding surface of a mold used in the injection molding method.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA))などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA));
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

樹脂部材12に含まれる添加剤としては、タルク等のフィラー、炭素繊維、ガラス繊維等の強化繊維が挙げられる。   Examples of the additive contained in the resin member 12 include fillers such as talc, and reinforcing fibers such as carbon fibers and glass fibers.

(1.2)金属部材
金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために樹脂部材12と重ね合わせる部分のみが少なくとも略平板形状を有する限り、いかなる形状を有していてもよい。
(1.2) Metal member Although the metal member 11 has a substantially flat plate shape as a whole in FIG. 1 and the like, the metal member 11 is not limited to this, and is a portion overlapped with the resin member 12 for bonding. As long as only has at least a substantially flat plate shape, it may have any shape.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚み(K)は通常、0.5〜4mmであるがこれに限定するものではない。   The thickness (K) of the substantially flat plate-shaped portion that overlaps the resin member 12 in the metal member 11 is usually 0.5 to 4 mm, but is not limited thereto.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウム;
5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
aluminum;
Aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

金属部材11は、樹脂部材12が溜まり溝120を有する代わりに、または誘導溝125Aおよび/または誘導孔125Bを有する代わりに、溜まり溝120、誘導溝125Aおよび/または誘導孔125Bを有していてもよい。なお、溜まり溝120は樹脂部材の金属部材との接合表面または金属部材の樹脂部材との接合表面の少なくとも一方に形成されていればよい。また誘導溝125Aおよび/または誘導孔125Bが形成される場合、誘導溝125Aおよび/または誘導孔125Bは樹脂部材の金属部材との接合表面または金属部材の樹脂部材との接合表面の少なくとも一方に形成されていればよい。金属部材11の誘導溝125Aは金属部材11における樹脂部材12との接合表面11aにおいて、金属部材11および/または樹脂部材12の溜まり溝120に連続して形成される。金属部材11の誘導孔125Bは金属部材11の厚さ方向において貫通して形成される。金属部材11が溜まり溝120を有する樹脂部材12との接合表面11aとは、接合のために樹脂部材12と重ね合わせたとき、当該樹脂部材12と接触する金属部材11の表面領域という意味である。   The metal member 11 has the reservoir groove 120, the guide groove 125A, and / or the guide hole 125B instead of the resin member 12 having the reservoir groove 120, or instead of having the guide groove 125A and / or the guide hole 125B. Also good. The reservoir groove 120 only needs to be formed on at least one of the bonding surface of the resin member with the metal member or the bonding surface of the metal member with the resin member. When the guide groove 125A and / or the guide hole 125B is formed, the guide groove 125A and / or the guide hole 125B is formed on at least one of the bonding surface of the resin member with the metal member or the bonding surface of the metal member with the resin member. It only has to be done. The guide groove 125 </ b> A of the metal member 11 is formed continuously with the pool groove 120 of the metal member 11 and / or the resin member 12 on the bonding surface 11 a of the metal member 11 with the resin member 12. The guide hole 125 </ b> B of the metal member 11 is formed so as to penetrate in the thickness direction of the metal member 11. The joining surface 11a between the metal member 11 and the resin member 12 having the accumulation groove 120 means a surface area of the metal member 11 that comes into contact with the resin member 12 when the metal member 11 is overlapped with the resin member 12 for joining. .

金属部材11が樹脂部材との接合表面11aにおいて溜まり溝120を有する場合における、金属部材の実施態様を図8〜図9に示す。図8〜図9は、誘導溝125Aの有無が異なる金属部材11の概略図である。図8〜図9において、(A)は各実施態様の金属部材11における樹脂部材との接合表面11aを示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の金属部材を用いて本発明の接合方法を実施したときの概略断面図である。図8(C)および図9(C)において樹脂部材12は溜まり溝120も誘導溝125Aも誘導孔125Bも有さない。図8〜図9において領域P''(破線で示される斜線領域)は、金属部材11上における回転ツール16の押圧領域P(図1参照)の直下に対応する樹脂部材との接合表面11a上の領域である。   The embodiment of the metal member in the case where the metal member 11 has the accumulation groove 120 on the bonding surface 11a with the resin member is shown in FIGS. 8 to 9 are schematic views of the metal member 11 with or without the guide groove 125A. 8 to 9, (A) is a schematic sketch showing a bonding surface 11a with the resin member in the metal member 11 of each embodiment, and (B) is an arrow AA cross section of the resin member in (A) It is a schematic sectional drawing when it sees in a direction, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the metallic member of (B). 8 (C) and 9 (C), the resin member 12 does not have the accumulation groove 120, the guide groove 125A, or the guide hole 125B. 8 to 9, a region P ″ (a hatched region indicated by a broken line) is on the bonding surface 11 a with the resin member corresponding to a portion immediately below the pressing region P (see FIG. 1) of the rotary tool 16 on the metal member 11. It is an area.

また金属部材11が溜まり溝を有さず、誘導孔125Bを有する場合における、金属部材の実施態様を図10に示す。図10において、(A)は第3実施態様の金属部材11における樹脂部材との接合表面11aを示す概略見取り図であり、(B)は(A)における樹脂部材のA−A断面を矢印方向で見たときの概略断面見取り図であり、(C)は(B)の金属部材を用いて本発明の接合方法を実施したときの概略断面図である。図10(C)において樹脂部材12は溜まり溝120を有する前記第1実施態様の樹脂部材である。図10において領域P''(破線で示される斜線領域)は図8〜図9においてと同様である。   FIG. 10 shows an embodiment of the metal member in the case where the metal member 11 has no accumulation groove and has a guide hole 125B. In FIG. 10, (A) is a schematic sketch showing the joining surface 11a with the resin member in the metal member 11 of the third embodiment, and (B) is an AA cross section of the resin member in (A) in the direction of the arrow. It is a schematic sectional drawing when it sees, (C) is a schematic sectional drawing when the joining method of this invention is implemented using the metallic member of (B). In FIG. 10C, the resin member 12 is the resin member of the first embodiment having the accumulation groove 120. In FIG. 10, a region P ″ (a hatched region indicated by a broken line) is the same as in FIGS.

金属部材11に形成される溜まり溝120、誘導溝125Aおよび誘導孔125Bはそれぞれ、樹脂部材12に形成される前記した溜まり溝120、誘導溝125Aおよび誘導孔125Bと同様の全体形状、断面形状および寸法を有する。なお、樹脂部材12の厚みT(mm)に対する割合で表す寸法は、厚みTを金属部材11の厚みKに置き換えて適用するものとする。金属部材11における溜まり溝120の形成位置は、金属部材11と樹脂製部材12とを重ね合わせたとき、前記した樹脂部材12における溜まり溝120の形成位置に対応する位置である。誘導溝125Aおよび誘導孔125Bの形成位置は、接合時に溜まり溝120内に流入する軟化樹脂を系外に誘導できる位置であれば特に制限されない。   The reservoir groove 120, the guide groove 125A, and the guide hole 125B formed in the metal member 11 are respectively the same overall shape, cross-sectional shape, and the same as the pool groove 120, the guide groove 125A, and the guide hole 125B described above formed in the resin member 12. Have dimensions. In addition, the dimension represented by the ratio with respect to thickness T (mm) of the resin member 12 shall replace the thickness T with the thickness K of the metal member 11, and shall apply. The formation position of the accumulation groove 120 in the metal member 11 is a position corresponding to the formation position of the accumulation groove 120 in the resin member 12 described above when the metal member 11 and the resin member 12 are overlapped. The formation positions of the guide groove 125A and the guide hole 125B are not particularly limited as long as the softened resin flowing into the accumulation groove 120 during joining can be guided outside the system.

金属部材11の溜まり溝120、凸部122、誘導溝125Aおよび誘導孔125Bは、例えば、金属部材11を、切削工具等を用いて切削することにより形成することができる。   The pool groove 120, the convex part 122, the guide groove 125A, and the guide hole 125B of the metal member 11 can be formed by cutting the metal member 11 with a cutting tool or the like, for example.

(2)回転ツール
図11Aは、回転ツール16の先端部の拡大図である。図11Aにおいて、右半分は回転ツール16の外観を示し、左半分は断面を示している。図11Aに示すように、円柱状の回転ツール16は、先端部(図11Aでは下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図11Aでは下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。
(2) Rotating Tool FIG. 11A is an enlarged view of the tip portion of the rotating tool 16. In FIG. 11A, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 11A, the columnar rotary tool 16 has a pin portion 16a and a shoulder portion 16b at the tip portion (lower end portion in FIG. 11A). The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outwardly (downward in FIG. 11A) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、ショルダ部16bの直径D1は通常、5〜30mm、好ましくは5〜15mmであるがこれに限定されるものではない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter D1 of the shoulder portion 16b is usually 5 to 30 mm, preferably 5 to 15 mm, but is not limited thereto.

(3)本発明に係る接合方法の一実施態様(摩擦撹拌接合方法)
上記摩擦撹拌接合装置1を用いて実施される本発明の接合方法(摩擦撹拌接合方法)について具体的に説明する。
(3) One embodiment of the joining method according to the present invention (friction stir welding method)
The joining method (friction stir welding method) of the present invention performed using the friction stir welding apparatus 1 will be specifically described.

本実施態様に係る接合方法は少なくとも以下のステップを含むものであり、前記した溜まり溝を有する樹脂部材12および/または金属部材11を使用することを特徴とする:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材12を軟化させて金属部材11と樹脂部材12とを接合する第2ステップ。
なお、第1ステップにおいて得られる金属部材11と樹脂部材12とが重ね合わされたものを「ワーク」10と呼ぶ。
The joining method according to the present embodiment includes at least the following steps, and is characterized by using the resin member 12 and / or the metal member 11 having the above-described accumulation groove:
A first step of superimposing the metal member 11 and the resin member 12; and while rotating the rotary tool 16, the metal member 11 is pressed against the metal member 11 to generate frictional heat, and the frictional heat softens the resin member 12 to form the metal member. 2nd step which joins 11 and resin member 12.
The metal member 11 and the resin member 12 obtained in the first step are called “work” 10.

第1ステップにおいては、樹脂部材12が接合表面12aにおいて、図2(A)〜図7(A)に示されるように、環状の溜まり溝120を有する場合、該環状溜まり溝120の内側領域126内に破線の斜線領域P’が位置するように、金属部材11と樹脂部材12とを重ね合わせることが好ましい。破線の斜線領域P’とは、前記したように、金属部材11における回転ツール16の押圧領域P(押圧予定領域;図1参照)の直下に対応する領域である。また金属部材11が接合表面11aにおいて、図8(A)〜図9(A)に示されるように、環状の溜まり溝120を有する場合は、該環状溜まり溝120の内側領域126と樹脂部材12の所望の接合部位とが接触するように、金属部材11と樹脂部材12とを重ね合わせることが好ましい。   In the first step, when the resin member 12 has an annular reservoir groove 120 on the bonding surface 12a as shown in FIGS. 2A to 7A, an inner region 126 of the annular reservoir groove 120 is formed. It is preferable that the metal member 11 and the resin member 12 are overlapped so that the hatched region P ′ of the broken line is located inside. As described above, the dashed hatched area P ′ is an area corresponding to a position immediately below the pressing area P of the rotating tool 16 (scheduled pressing area; see FIG. 1) in the metal member 11. Further, when the metal member 11 has an annular reservoir groove 120 as shown in FIGS. 8A to 9A on the joining surface 11a, the inner region 126 of the annular reservoir groove 120 and the resin member 12 are provided. It is preferable that the metal member 11 and the resin member 12 are overlapped so that the desired bonding site is in contact.

第2ステップにおいては、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行う。
本実施態様においては、第2ステップにおいて、押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましい。
押込み撹拌工程の後には、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましい。
In the second step, at least a push-in stirring step C2 is performed in which the rotary tool 16 is pushed into the metal member 11 to enter a depth that does not reach the joint interface between the metal member 11 and the resin member 12.
In the present embodiment, in the second step, the preheating step C1 for rotating the rotary tool 16 in a state in which only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 is performed before the pushing and stirring step. It is preferable.
After the indentation stirring step, it is preferable to perform an agitation maintaining step C3 in which the rotation operation of the rotary tool 16 is continued at a position where the rotary tool 16 is advanced to a depth that does not reach the joining boundary surface.

以下、図2に示す第1実施態様の樹脂部材12と、溜まり溝120も誘導溝125Aも誘導孔125Bも有さない金属部材11とを用いた場合を例にとり、各工程について詳しく説明する。
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図11Bに示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
In the following, each step will be described in detail, taking as an example the case of using the resin member 12 of the first embodiment shown in FIG. 2 and the metal member 11 having neither the accumulation groove 120 nor the induction groove 125A nor the induction hole 125B.
In the preheating step C1, as shown in FIG. 11B, only the distal end portion of the rotary tool 16 is placed on the surface portion of the metal member 11 (upper surface portion in the illustrated example) by bringing the rotary tool 16 and the receiving member 17 close to each other. This is a step of rotating the rotary tool 16 in a contacted state. In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 N).

予熱工程C1の次の押込み撹拌工程C2は、回転ツール16と受け具17とをさらに相互に近接させることにより、図11Cに示すように、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させる工程である。押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   In the indentation stirring process C2 next to the preheating process C1, the rotating tool 16 and the receiving member 17 are further brought closer to each other, thereby pushing the rotating tool 16 into the metal member 11 and the metal member 11 as shown in FIG. 11C. In this step, the resin member 12 is advanced to a depth not reaching the joint interface with the resin member 12. In the indentation stirring step C2, the rotary tool 16 is moved to a second pressurization time (for example, 0.25) shorter than the first pressurization time with a second pressurization force (for example, 1500 N) that is greater than the first pressurization force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

押込み撹拌工程C2の次の撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図11Cに示すように、上記接合境界面に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、5.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   In the stirring maintaining process C3 subsequent to the indentation stirring process C2, the mutual approach between the rotary tool 16 and the support 17 is stopped, and as shown in FIG. This is a step of continuing the rotation operation of the rotary tool 16 at a position (referred to as “reference position”). In the stirring maintaining step C3, the rotary tool 16 is moved to a third pressurizing time (for example, 5.75) longer than the first pressurizing time with a third pressurizing force (for example, 500 N) smaller than the first pressurizing force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

撹拌維持工程C3の後には、上記回転ツール16の回転を停止し、その状態で上記回転ツール16を所定の加圧力で所定の加圧時間だけ保持する保持工程C4を行ってもよい。
保持工程C4は、同じく図11Cに示すように、回転ツール16の回転を停止し、その状態で回転ツール16を所定の加圧力で所定の時間だけ保持する工程である。保持工程C4では、回転ツール16を、第3の加圧力より大きいが第2の加圧力より小さい第4の加圧力(例えば、1000N)で、第3の加圧時間より短いが第2の加圧時間より長い第4の加圧時間(例えば、5.00秒)だけ保持する。
After the stirring maintaining step C3, a holding step C4 may be performed in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined pressurizing time with a predetermined pressure in that state.
Similarly, as shown in FIG. 11C, the holding step C4 is a step in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined time with a predetermined pressure in that state. In the holding step C4, the rotary tool 16 is moved at a fourth pressure force (for example, 1000 N) that is larger than the third pressure force but smaller than the second pressure force and shorter than the third pressurization time but the second pressure force. Hold for a fourth pressurization time (for example, 5.00 seconds) longer than the pressure time.

上で例示した加圧力、加圧時間、及びツール回転数は、あくまで一例であって、適宜変更が可能である。ただし、例えば、1mm以上2mm以下の厚みの金属部材11と2mm以上4mm以下の厚みの樹脂部材12とを接合する場合の、主として生産性(時間短縮と歩留まりとのバランス)の観点から、予熱工程C1における第1の加圧力は、700N以上1200N未満の値、第1の加圧時間は、0.5秒以上2.0秒未満の値が好ましく、押込み撹拌工程C2における第2の加圧力は、1200N以上1800N未満の値、第2の加圧時間は、0.1秒以上0.5秒未満の値が好ましく、撹拌維持工程C3における第3の加圧力は、100N以上700N未満の値、第3の加圧時間は、1.0秒以上10秒未満の値が好ましい。また、保持工程C4における第4の加圧力は、例えば700N以上1200N未満の値、第4の加圧時間は、例えば1秒以上の値が好ましい。   The pressurizing force, pressurizing time, and tool rotation speed exemplified above are merely examples, and can be appropriately changed. However, for example, in the case of joining the metal member 11 having a thickness of 1 mm or more and 2 mm or less and the resin member 12 having a thickness of 2 mm or more and 4 mm or less, mainly from the viewpoint of productivity (a balance between time reduction and yield), the preheating step The first applied pressure in C1 is preferably 700 N or more and less than 1200 N, and the first pressurizing time is preferably 0.5 second or more and less than 2.0 seconds. The second applied pressure in the indentation stirring step C2 is The value of 1200N or more and less than 1800N, and the second pressurization time is preferably a value of 0.1 second or more and less than 0.5 second, and the third pressure in the stirring and maintaining step C3 is a value of 100N or more and less than 700N, The third pressurization time is preferably 1.0 second or more and less than 10 seconds. Further, the fourth pressing force in the holding step C4 is preferably a value of 700 N or more and less than 1200 N, for example, and the fourth pressurizing time is preferably a value of 1 second or more, for example.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の上記押圧領域Pの範囲及び上記押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押し込み易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P of the metal member 11 and the range in the vicinity of the pressing region P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

予熱工程C1では、摩擦熱は、金属部材11と樹脂部材12との接合境界面を介して、樹脂部材12にも伝わる。摩擦熱は樹脂部材12の内部に伝わり、樹脂部材12における上記押圧領域P直下の対応領域P’の範囲及び当該領域P’の近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、樹脂部材12が軟化・溶融し易くなる。   In the preheating step C <b> 1, the frictional heat is also transmitted to the resin member 12 through the joint interface between the metal member 11 and the resin member 12. The frictional heat is transmitted to the inside of the resin member 12, and the range of the corresponding region P 'immediately below the pressing region P in the resin member 12 and the range in the vicinity of the region P' are preheated. Thereby, the resin member 12 becomes easy to soften and melt in the next indentation stirring step C2.

予熱工程C1の第1の加圧力及び第1の加圧時間は、上記のような回転ツール16の押込み易さの観点及び樹脂部材12の軟化・溶融し易さの観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11及び樹脂部材12の素材の種類等に依存して変化する。   The first pressurizing force and the first pressurizing time in the preheating step C1 are set from the viewpoint of ease of pushing in the rotary tool 16 and the ease of softening / melting of the resin member 12, and values thereof. Varies depending on, for example, the number of rotations of the rotary tool 16 and the types of materials of the metal member 11 and the resin member 12.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。この回転ツール16の押込みにより、金属部材11と樹脂部材12との接合境界面が受け具17側(図例では下側)に移動する。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. By pressing the rotary tool 16, the joining boundary surface between the metal member 11 and the resin member 12 moves to the receiving member 17 side (lower side in the illustrated example).

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is further pushed in (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 exceeds the joining boundary surface. That is, the rotary tool 16 penetrates the metal member 11 and contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、本実施態様では、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の軟化・溶融が促進される。   Therefore, in this embodiment, when the shoulder portion 16b of the rotary tool 16 enters a depth that does not reach the joining boundary surface in the push stirring step C2, the push of the rotary tool 16 is stopped. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, and a large amount of frictional heat is transmitted to the resin member 12 to promote softening and melting of the resin member 12.

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11及び樹脂部材12の素材の種類等に依存して変化する。   The second pressing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 as described above and the rotating tool 16 as close to the resin member 12 as possible. The value changes depending on, for example, the number of rotations of the rotary tool 16 and the types of materials of the metal member 11 and the resin member 12.

押込み撹拌工程C2では、樹脂部材12が上記押圧領域P直下の対応領域P’の範囲及び当該領域P’の近傍の範囲で軟化・溶融し、かつ金属部材11と樹脂部材12との接合境界面が変形するため、当該軟化樹脂が端面に向かって流動する。しかしながら、樹脂部材12は前記したように金属部材11との接合表面12aにおいて溜まり溝120を有するため、軟化樹脂は該溜まり溝120内に流入する。このため、金属部材11と樹脂部材12との接合体の端面において、金属部材11と樹脂部材12との間からの軟化樹脂の流出が回避され、バリの形成が十分に防止される。   In the indentation stirring step C2, the resin member 12 is softened and melted in the range of the corresponding region P ′ immediately below the pressing region P and in the vicinity of the region P ′, and the joint interface between the metal member 11 and the resin member 12 Is deformed, the softening resin flows toward the end face. However, since the resin member 12 has the accumulation groove 120 on the joint surface 12 a with the metal member 11 as described above, the softened resin flows into the accumulation groove 120. For this reason, outflow of the softened resin from between the metal member 11 and the resin member 12 is avoided at the end face of the joined body of the metal member 11 and the resin member 12, and the formation of burrs is sufficiently prevented.

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置に維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、上記押圧領域P直下の対応領域P’の範囲及び上当該領域P’の近傍の範囲を超えて、広い範囲で十分に軟化・溶融する。   In the stirring maintaining step C3, the rotating tool 16 is maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than that of the pushing stirring step C2). Since the rotary tool 16 continues to rotate at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 is sufficiently softened and melted in a wide range beyond the range of the corresponding region P ′ immediately below the pressing region P and the range in the vicinity of the upper region P ′.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、上記のような樹脂部材12の広い範囲での十分な軟化・溶融の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11及び樹脂部材12の素材の種類等に依存して変化する。   The third pressurizing force and the third pressurizing time in the stirring maintaining step C3 are set from the viewpoint of sufficient softening and melting of the resin member 12 as described above, and the values thereof are, for example, the rotary tool 16. Depending on the number of rotations and the types of materials of the metal member 11 and the resin member 12.

保持工程C4では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了する。すなわち、摩擦撹拌接合としての実質的な動作が終了し、ワーク10の冷却が開始する。ワーク10の冷却期間中、加圧力が押込み撹拌工程C2よりも小さいが撹拌維持工程C3よりも大きくなることにより、回転が停止された回転ツール16が金属部材11と樹脂部材12との押圧領域Pを受け具17との間に挟んでクランプする。これにより、金属部材11と樹脂部材12との間の冷却中の密着力が高められ、冷却完了後の接合強度が高められる。   In the holding step C4, the rotation of the rotary tool 16 is stopped, whereby the generation of frictional heat is completed. That is, the substantial operation as the friction stir welding is finished, and cooling of the workpiece 10 is started. During the cooling period of the workpiece 10, the rotating tool 16 whose rotation has been stopped is pressed between the metal member 11 and the resin member 12 because the applied pressure is smaller than the indentation agitation step C <b> 2 but greater than the agitation maintenance step C <b> 3. It clamps by pinching between the receiving tools 17. Thereby, the adhesive force during cooling between the metal member 11 and the resin member 12 is increased, and the bonding strength after completion of cooling is increased.

保持工程C4の第4の加圧力及び第4の加圧時間は、上記のような冷却期間中の押圧領域Pの密着力向上の観点から設定され、その値は、例えば金属部材11及び樹脂部材12の素材の種類等に依存して変化する。   The fourth pressurizing force and the fourth pressurizing time in the holding step C4 are set from the viewpoint of improving the adhesion of the pressing region P during the cooling period as described above, and the values thereof are, for example, the metal member 11 and the resin member. It varies depending on the type of 12 materials.

本実施態様では、少なくとも前記した工程C2を経て、好ましくは以上のような工程C1,C2およびC3ならびに所望により工程C4を経て、最終的に、図11Dに示すように、回転ツール16の回転及び押圧で発生した摩擦熱により樹脂部材12が軟化・溶融して金属部材11と樹脂部材12とが広い範囲で高強度に接合された金属部材11と樹脂部材12との接合体20が得られる。接合体20においては、軟化・溶融した樹脂は溜まり溝120内に流入しており、冷却されて固化しているので、当該軟化樹脂121が金属部材11と樹脂部材12との接合に寄与しつつ、バリの発生が防止される。   In this embodiment, at least through the above-described step C2, preferably through the above-described steps C1, C2 and C3 and optionally through step C4, finally, as shown in FIG. The resin member 12 is softened and melted by the frictional heat generated by the pressing, and the joined member 20 of the metal member 11 and the resin member 12 in which the metal member 11 and the resin member 12 are joined with high strength in a wide range is obtained. In the bonded body 20, the softened and melted resin flows into the accumulation groove 120 and is cooled and solidified, so that the softened resin 121 contributes to the bonding between the metal member 11 and the resin member 12. , Generation of burrs is prevented.

以上、回転ツールを金属部材の接触面上、面方向で連続的に移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明したが、上記面方向において回転ツールを連続的に移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合)においても本発明の効果が得られることは明らかである。   As described above, the case where the metal member and the resin member are joined to each other in a dotted manner without continuously moving the rotating tool in the surface direction on the contact surface of the metal member (point joining) has been described. It is clear that the effect of the present invention can be obtained even when the metal member and the resin member are joined linearly (line joining) while continuously moving the rotary tool.

[実施例1]
(樹脂部材)
図12(A)および(B)に示すような寸法および形状の溜まり溝120を端部に有する平板状樹脂部材12をPA66(旭化成ケミカルズ社製)から射出成形法により製造した。溜まり溝120は射出成形法において使用される金型の成形面の転写により形成した。
(金属部材)
金属部材としては、6000系のアルミニウム合金製の平板状部材(厚さ1.2mm)を用いた。
(回転ツール)
回転ツールとしては、図11Aの各部の寸法がD1=10mm、D2=2mm、h=0.5mmの工具鋼製のものを用いた。
[Example 1]
(Resin member)
A flat resin member 12 having a retaining groove 120 having a size and shape as shown in FIGS. 12A and 12B at its end was manufactured by injection molding from PA66 (manufactured by Asahi Kasei Chemicals Corporation). The reservoir groove 120 was formed by transferring a molding surface of a mold used in the injection molding method.
(Metal member)
As the metal member, a flat plate member (thickness: 1.2 mm) made of a 6000 series aluminum alloy was used.
(Rotation tool)
As the rotating tool, a tool made of tool steel having dimensions of each part in FIG. 11A of D1 = 10 mm, D2 = 2 mm, and h = 0.5 mm was used.

(接合方法)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1に示すように重ね合わせた。詳しくは、樹脂部材12における環状溜まり溝120の内側領域126の中心部に押圧領域P直下の対応領域P’が位置するように、金属部材11と樹脂部材12とを重ね合わせた。
(Joining method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlapped as shown in FIG. Specifically, the metal member 11 and the resin member 12 are overlapped so that the corresponding region P ′ immediately below the pressing region P is positioned at the center of the inner region 126 of the annular pool groove 120 in the resin member 12.

第2ステップ:
図11Bに示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000r)。
次いで、図11Cに示すように、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図11Cに示すように、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間5.75秒、ツール回転数3000rpm)。
次いで、図11Dに示すように、接合体20から回転ツール16を抜き取り、放置冷却した。
Second step:
As shown in FIG. 11B, the rotary tool 16 was rotated in a state where only the tip of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating step C1: pressurizing force 900 N, pressurizing time 1.00 seconds. Tool rotation speed 3000r).
Next, as shown in FIG. 11C, the rotary tool 16 was pushed into the metal member 11 and entered to a depth that did not reach the joint interface between the metal member 11 and the resin member 12 (pushing stirring step C2: applied pressure 1500 N, applied pressure). Pressure time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 11C, the rotation operation of the rotary tool 16 was continued at the position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface (stirring maintenance step C3: pressurizing pressure 500N, pressurizing time) 5.75 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 11D, the rotary tool 16 was extracted from the joined body 20 and allowed to cool.

(接合強度)
JIS Z 3136に規定されている方法により、金属部材と樹脂部材とが接合された接合体を図1の矢印Y,Yに示す方向に引っ張り、せん断引張試験を行った。
(Joint strength)
The joined body in which the metal member and the resin member were joined by a method defined in JIS Z 3136 was pulled in the directions indicated by arrows Y and Y in FIG.

(バリの発生)
接合体の端面における外観を目視により観察したところ、バリは全く発生していなかった。
(Burr generation)
When the appearance on the end face of the joined body was visually observed, no burrs were generated.

[比較例1]
樹脂部材に溜まり溝を形成しなかったこと以外、実施例1と同様の方法により、樹脂部材の製造ならびに接合強度およびバリ発生についての評価を行った。
接合強度は実施例1と同等であったが、バリが著しく発生していた。
[Comparative Example 1]
The resin member was manufactured and the bonding strength and the occurrence of burrs were evaluated by the same method as in Example 1 except that the reservoir groove was not formed in the resin member.
The bonding strength was equivalent to that of Example 1, but burrs were remarkably generated.

[実施例2]
樹脂部材を、図13(A)および(B)に示すような溜まり溝120および凸部122を端部に有する樹脂部材12としたこと以外、実施例1と同様の方法により、樹脂部材の製造ならびに接合強度およびバリ発生についての評価を行った。
バリは全く発生していなかった。
[Example 2]
The resin member was manufactured by the same method as in Example 1 except that the resin member was the resin member 12 having the accumulation groove 120 and the convex part 122 as shown in FIGS. 13A and 13B. In addition, the bonding strength and the occurrence of burrs were evaluated.
There were no burrs.

[比較例2]
樹脂部材に溜まり溝を形成しなかったこと以外、実施例2と同様の方法により、樹脂部材の製造ならびに接合強度およびバリ発生についての評価を行った。
接合強度は実施例2と同等であったが、バリが著しく発生していた。
[Comparative Example 2]
The resin member was manufactured and the bonding strength and the occurrence of burrs were evaluated by the same method as in Example 2 except that the reservoir groove was not formed in the resin member.
The bonding strength was equivalent to that of Example 2, but burrs were remarkably generated.

[実施例3]
樹脂部材を、図14(A)および(B)に示すような溜まり溝120および凸部122を端部に有する樹脂部材12としたこと以外、実施例1と同様の方法により、樹脂部材の製造ならびに接合強度およびバリ発生についての評価を行った。
バリは全く発生していなかった。
[Example 3]
The resin member was manufactured by the same method as in Example 1 except that the resin member was the resin member 12 having the accumulation groove 120 and the convex portion 122 at the ends as shown in FIGS. 14 (A) and 14 (B). In addition, the bonding strength and the occurrence of burrs were evaluated.
There were no burrs.

[比較例3]
樹脂部材に溜まり溝を形成しなかったこと以外、実施例3と同様の方法により、樹脂部材の製造ならびに接合強度およびバリ発生についての評価を行った。
接合強度は実施例3と同等であったが、バリが著しく発生していた。
[Comparative Example 3]
The resin member was manufactured and the bonding strength and the occurrence of burrs were evaluated by the same method as in Example 3 except that the reservoir groove was not formed in the resin member.
The bonding strength was equal to that in Example 3, but burrs were remarkably generated.

[実施例4]
樹脂部材を、図15(A)および(B)に示すような溜まり溝120および誘導溝125Aを端部に有する樹脂部材12としたこと以外、実施例1と同様の方法により、樹脂部材の製造ならびに接合強度およびバリ発生についての評価を行った。
バリは全く発生していなかった。
図15(C)は得られた接合体を図15(B)のB方向で見たときの概略断面見取り図である。
[Example 4]
The resin member was manufactured by the same method as in Example 1 except that the resin member was the resin member 12 having the accumulation groove 120 and the guide groove 125A as shown in FIGS. 15A and 15B. In addition, the bonding strength and the occurrence of burrs were evaluated.
There were no burrs.
FIG. 15C is a schematic cross-sectional view when the obtained bonded body is viewed in the B direction of FIG. 15B.

[比較例4]
樹脂部材に溜まり溝および誘導溝を形成しなかったこと以外、実施例4と同様の方法により、樹脂部材の製造ならびに接合強度およびバリ発生についての評価を行った。
接合強度は実施例4と同等であったが、バリが著しく発生していた。
[Comparative Example 4]
The production of the resin member and the evaluation of the bonding strength and the occurrence of burrs were performed by the same method as in Example 4 except that the reservoir groove and the guide groove were not formed in the resin member.
The bonding strength was the same as in Example 4, but burrs were remarkably generated.

Figure 0006098527
Figure 0006098527

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
11a:金属部材表面における樹脂部材との接触領域
12:樹脂部材
12a:樹脂部材表面における金属部材との接触領域
16:回転ツール
17:受け具
20:接合体
P:金属部材表面における回転ツールによる押圧領域(押圧予定領域)
P’:押圧領域Pの直下に対応する樹脂部材表面の領域
P’’:押圧領域Pの直下に対応する金属部材表面の領域
120:溜まり溝
121:溜まり溝に流入した軟化樹脂
125A:誘導溝
125B:誘導孔
126:環状溜まり溝の内側領域
1: Friction stir welding apparatus 10: Workpiece 11: Metal member 11a: Contact region with resin member on metal member surface 12: Resin member 12a: Contact region with metal member on resin member surface 16: Rotating tool 17: Receiving tool 20 : Bonded body P: Pressing area (scheduled pressing area) by rotating tool on metal member surface
P ′: Resin member surface region corresponding directly below the pressing region P P ″: Metal member surface region corresponding immediately below the pressing region P 120: Reservoir groove 121: Softened resin flowing into the reserving groove 125A: Guide groove 125B: Guide hole 126: Inner region of the annular pool groove

Claims (6)

金属部材と樹脂部材とを重ね合わせる第1ステップ;および
回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させて、熱および圧力を金属部材側から付与することにより、この摩擦熱で樹脂部材を軟化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法に基づく熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
樹脂部材の金属部材との接合表面および/または金属部材の樹脂部材との接合表面において、接合時に軟化する樹脂を流入させるための溜まり溝が形成されており、
上記第2ステップが、回転ツールを金属部材に押し込んで金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程を備えており、
前記回転ツールが先端部に、該回転ツールの円形の先端面を含むショルダ部、および該回転ツールの円形の先端面から外方に突設された、前記ショルダ部よりも小径の円柱状のピン部を有し、
上記第2ステップが、押込み撹拌工程の前に、回転ツールの先端部における前記ピン部および前記ショルダ部のみを金属部材の表面部に接触させた状態で上記回転ツールを回転させる予熱工程をさらに備えており、
上記予熱工程では上記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
上記押込み撹拌工程では上記回転ツールを上記第1の加圧力より大きい第2の加圧力で押圧しつつ上記第1の加圧時間より短い第2の加圧時間だけ回転させることを特徴とする金属部材と樹脂部材との接合方法。
The first step that overlay the metal member and the resin member; and
While rotating the rotary tool, the metal member is pressed to generate frictional heat, and by applying heat and pressure from the metal member side , the resin member is softened by this frictional heat, and the metal member and the resin member are separated. A joining method of a metal member and a resin member by a hot-pressure joining method based on a friction stir welding method including a second step of joining,
In the bonding surface of the resin member with the metal member and / or the bonding surface of the metal member with the resin member, a reservoir groove is formed to allow the resin softened at the time of bonding to flow .
The second step includes a pushing and stirring step of pushing the rotating tool into the metal member to enter a depth not reaching the joining interface between the metal member and the resin member,
The rotary tool has a shoulder portion including a circular tip surface of the rotary tool at the tip portion, and a cylindrical pin having a smaller diameter than the shoulder portion, which protrudes outward from the circular tip surface of the rotary tool. Part
The second step further includes a preheating step of rotating the rotating tool in a state where only the pin portion and the shoulder portion at the tip portion of the rotating tool are in contact with the surface portion of the metal member before the pushing and stirring step. And
In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
In the indentation stirring step, the rotating tool is rotated by a second pressurization time shorter than the first pressurization time while pressing the rotary tool with a second pressurization force larger than the first pressurization force. A method of joining a member and a resin member.
溜まり溝が接合表面において環状に形成されており、該環状溜まり溝の内側領域内において、熱および圧力が付与される請求項1に記載の接合方法。   The joining method according to claim 1, wherein the accumulation groove is formed in an annular shape on the joining surface, and heat and pressure are applied in an inner region of the annular accumulation groove. 樹脂部材および/または金属部材が、接合表面において形成される誘導溝および/または厚さ方向において貫通する誘導孔をさらに有し、該誘導溝および誘導孔は接合時に溜まり溝内に流入する軟化樹脂を系外に誘導する請求項1または2に記載の接合方法。   The resin member and / or the metal member further has a guide groove formed on the bonding surface and / or a guide hole penetrating in the thickness direction, and the guide groove and the guide hole are accumulated at the time of bonding and flow into the groove. The bonding method according to claim 1, wherein the bonding is induced out of the system. 樹脂部材が溶融成形法により成形されてなり、該溶融成形法において使用される金型の成形面を転写させることにより溜まり溝が形成される請求項1〜3のいずれかに記載の接合方法。   The joining method according to any one of claims 1 to 3, wherein the resin member is molded by a melt molding method, and a pool groove is formed by transferring a molding surface of a mold used in the melt molding method. 上記第2ステップが、回転ツールを接合境界面に達しない深さまで進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、
上記撹拌維持工程では上記回転ツールを上記第1の加圧力より小さい第3の加圧力で押圧しつつ上記第1の加圧時間より長い第3の加圧時間だけ回転させる請求項1〜4のいずれかに記載の接合方法。
The second step further comprises an agitation maintaining step of continuing the rotating operation of the rotating tool at a position where the rotating tool has entered to a depth that does not reach the joining boundary surface,
In the stirring step of maintaining of claims 1 to 4 for rotating only between the rotary tool while pressing in the first pressure is less than the third pressure greater than between the first pressurization third pressurization The joining method according to any one of the above.
上記第2ステップが、撹拌維持工程の後に、上記回転ツールの回転を停止し、その状態で上記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程をさらに備えている請求項に記載の接合方法。 The said 2nd step is further equipped with the holding process which stops rotation of the said rotation tool after a stirring maintenance process, and hold | maintains the said rotation tool with a predetermined pressurizing force for a predetermined pressurization time in that state. 5. The joining method according to 5 .
JP2014004380A 2014-01-14 2014-01-14 Method of joining metal member and resin member Expired - Fee Related JP6098527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014004380A JP6098527B2 (en) 2014-01-14 2014-01-14 Method of joining metal member and resin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014004380A JP6098527B2 (en) 2014-01-14 2014-01-14 Method of joining metal member and resin member

Publications (2)

Publication Number Publication Date
JP2015131444A JP2015131444A (en) 2015-07-23
JP6098527B2 true JP6098527B2 (en) 2017-03-22

Family

ID=53899102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014004380A Expired - Fee Related JP6098527B2 (en) 2014-01-14 2014-01-14 Method of joining metal member and resin member

Country Status (1)

Country Link
JP (1) JP6098527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129552A4 (en) * 2020-03-25 2023-11-08 Tohoku University Method for manufacturing composite member, and composite member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693962B2 (en) * 2015-08-11 2020-05-13 昭和電工株式会社 Friction stir welding method
JP6614205B2 (en) * 2017-06-15 2019-12-04 マツダ株式会社 Method of joining metal member and resin member and metal member or resin member used in the method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830475B1 (en) * 1969-12-25 1973-09-20
JPS58132252U (en) * 1982-03-02 1983-09-06 日本サ−ボ株式会社 gear combination
JP3789724B2 (en) * 2000-04-25 2006-06-28 日本ポリペンコ株式会社 Resin molded product having metal boss and method for producing the same
JP2002076155A (en) * 2000-08-30 2002-03-15 Kyocera Corp Electronic component
US7497917B2 (en) * 2005-08-31 2009-03-03 Gm Global Technology Operations, Inc. Friction heating for joining dissimilar materials
JP5817140B2 (en) * 2011-02-21 2015-11-18 昭和電工株式会社 Method of joining metal member and resin member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129552A4 (en) * 2020-03-25 2023-11-08 Tohoku University Method for manufacturing composite member, and composite member

Also Published As

Publication number Publication date
JP2015131444A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6315017B2 (en) Method of joining metal member and resin member
JP6102813B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6098605B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP2017013084A (en) Joining method of metal member and resin member, metal member used in the method, and conjugant of metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP6098606B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP6384408B2 (en) Friction stir welding method and joining apparatus therefor
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6098564B2 (en) Method of joining metal member and resin member
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6137104B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees