JP6098275B2 - 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池 - Google Patents

非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池 Download PDF

Info

Publication number
JP6098275B2
JP6098275B2 JP2013062629A JP2013062629A JP6098275B2 JP 6098275 B2 JP6098275 B2 JP 6098275B2 JP 2013062629 A JP2013062629 A JP 2013062629A JP 2013062629 A JP2013062629 A JP 2013062629A JP 6098275 B2 JP6098275 B2 JP 6098275B2
Authority
JP
Japan
Prior art keywords
particles
less
secondary battery
carbon
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013062629A
Other languages
English (en)
Other versions
JP2014186956A (ja
Inventor
哲 赤坂
哲 赤坂
山田 俊介
俊介 山田
藤井 達也
達也 藤井
布施 亨
亨 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013062629A priority Critical patent/JP6098275B2/ja
Publication of JP2014186956A publication Critical patent/JP2014186956A/ja
Application granted granted Critical
Publication of JP6098275B2 publication Critical patent/JP6098275B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水系二次電池に用いる非水系二次電池負極用炭素材と、その炭素材を用いて形成された負極と、その負極を備える非水系二次電池に関するものである。
リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPFおよびLiBFなどのリチウム塩を溶解させた非水系電解液からなる非水系リチウム二次電池が開発され、実用に供されている。
この電池の負極材としては種々のものが提案されているが、高容量であること及び放電電位の平坦性に優れていることなどから、天然黒鉛、コークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材料が用いられている。
また、極板中の炭素材料の充填率を高め放電容量を向上させるために、粒径の異なる黒鉛粒子を混合した炭素材料が用いられている。
例えば、特許文献1には、円形度が0.86以上の鱗片状粒子を球形化した球状黒鉛質粒子と円形度が0.86未満である鱗片状黒鉛質粒子からなる負極材を用いることによって、放電容量とスラリー特性を両立する技術が開示されている。
また、特許文献2には、アスペクト比が3以上の鱗片状黒鉛化炭素とアスペクト比が1〜2の球状炭素との混合物から成る負極材が開示されている。このことにより、鱗片状黒鉛質粒子間に空隙が確保され、負極内部への電解液の浸透が良好となり、放電容量の向上と負荷特性の向上が達成されることが報告されている。
しかしながら、黒鉛のみを負極材とした場合、不可逆容量が大きいことやレート特性が低いことが課題となっており、これを解決するために黒鉛と結晶性(黒鉛化度)の低い炭素材料を組み合わせた負極材の検討が進んでいる。
特許文献3には、球形化黒鉛の表面を非晶質炭素で被覆した炭素材料と平均円形度が0.88以上の黒鉛質粒子との混合物から成る負極材が開示されている。前者の炭素材料は急速な充電放電時において優れた特性を有し、後者の黒鉛質粒子は導電性に優れたているため、両者を混合することにより急速充放電特性とサイクル維持率の向上が達成されることが報告されている。
例えば、特許文献4には、黒鉛粉末粒子とカーボンブラックおよびピッチ炭化物との複合粒子からなり、複合粒子の体積基準平均粒径(d50)が8〜15μm、BET比表面積が15m/g以下であることを特徴とするリチウムイオン二次電池用負極材が提案されている。
加えて、特許文献5には、炭素材が天然黒鉛を球状に賦形した母材にピッチとカーボンブラックの混合物を含浸・被覆し、900℃〜1500℃で焼成して得た、表面に微小突起を有する概略球形の黒鉛粒子とピッチとカーボンブラックの混合物を900℃〜1500℃で焼成して粉砕、整粒した炭素質粒子の混合物であって、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトル分光分析において、1600cm−1付近、及び1580cm−1付近にピークを有するGバンドの複合ピークとDバンドの1380cm−1付近に少なくとも1つのピークを有し、X線広角回折で得られる結晶面の面間隔d002が0.335〜0.337nmである多相構造を有する粉末状の炭素材からなるリチウムイオン二次電池用負極活物質が提案されている。
特開2000−226206号公報 特開平9−147862号公報 特開2010−251315号公報 国際公開第2007/086603号 特開2009−004304号公報
しかし、本発明者らの検討によると、特許文献1〜3に記載の負極材は、黒鉛質粒子表面と電解液との過剰な副反応が起こることへの対策が不十分であるため、低温時の不可逆容量の増大、ガス発生の増大、サイクル特性の低下が問題となることがわかった。
また、特許文献4及び5に記載の負極材は、低温時の電池特性が改善されるものの、負極とした時の充填率が低く、電極の比表面積が高いため充放電時の表面反応性が高く、サイクル特性が低下することが問題であることがわかった。
また、炭素粒子(A)と複合粒子(B)を混合することで、全体の電極の比表面積を下げることができ、電解液との表面反応を抑制することで、ロスを低減し容量を改善する効果がある。
即ち、本発明の要旨は、球状の炭素粒子(A)及び球状の複合粒子(B)を含有する非水系二次電池負極用炭素材であって、複合粒子(B)は黒鉛質粒子(C)と炭素質粒子(D)と炭素質物との複合粒子であり、複合粒子(B)の体積基準平均粒径(d50)が5μm以上50μm以下であり、炭素粒子(A)の体積基準平均粒径(d50)が複合粒子(B)の体積基準平均粒径(d50)の0.1倍以上0.8倍以下であり、炭素質粒子(D)の1次粒径が3nm以上500nm以下であり、炭素質粒子(D)の含有量が黒鉛質粒子(C)に対して0.01質量%以上20質量%以下であり、かつ炭素粒子(A)及び複合粒子(B)の合計量に対して炭素粒子(A)の含有量が0.1質量%以上50質量%以下であることを特徴とする非水系二次電池負極用炭素材に存する。
本発明者らは、上記課題を解決すべく鋭意検討した結果、粒径の異なる2種類の球状黒鉛質粒子を用いることで、低温抵抗が低減でき良好な入出力特性を有し、また高容量である非水系二次電池負極用炭素材が作成できることを見い出した。詳しくは、本発明の非水系二次電池負極用炭素材は、球状の炭素粒子(A)と球状の複合粒子(B)を含むものであり、炭素粒子(A)の粒径は複合粒子(B)の粒径よりも小さく、複合粒子(B)は黒鉛質粒子(C)と炭素質粒子(D)と炭素質物との複合粒子からなるものである。
本発明の非水系二次電池負極用炭素材が優れた電池特性を示すメカニズムは明らかとなっていないが、おそらく大粒径の複合粒子(B)の粒子間に、小粒径の炭素粒子(A)が入り込むことで電解液の大きな流路と充填性が確保されたことにより、充放電時の活物質の膨張収縮に起因するパス切れが抑制されサイクル特性が向上したことに加え、複合粒子(B)表面に炭素質粒子の微小な凹凸によって電解液の細かな流路が確保されたことにより、低温時の入出力特性が向上したことが要因として考えられる。
また、炭素粒子(A)と複合粒子(B)を混合することで、全体の電極の比表面積を下げることができ、電解液との表面反応を抑制することで、ロスを低減し容量を改善する効果がある。
即ち、本発明の要旨は、球状の炭素粒子(A)及び球状の複合粒子(B)を含有する非水系二次電池負極用炭素材であって、炭素粒子(A)の体積基準平均粒径(d50)が複合粒子(B)の体積基準平均粒径(d50)よりも小さく、複合粒子(B)は黒鉛質粒子(C)と炭素質粒子(D)と炭素質物との複合粒子であることを特徴とする非水系二次電池負極用炭素材に存する。
また、本発明の他の要旨は、上記非水系二次電池負極用炭素材を用いて形成されることを特徴とする、非水系二次電池用負極に存する。
また、本発明の他の要旨は、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を備えると共に、該負極が上記非水系二次電池用負極であることを特徴とする非
水系二次電池に存する。
本発明によれば、非水系電解液の分解による初期ガスおよび保存ガスの発生が少なく、安定性に優れ、不可逆容量が小さく、低温時における抵抗の上昇を抑制し、入出力特性、充放電レート特性、サイクル特性、保存特性、及び容量に優れた非水系二次電池負極用炭素材、及びそれを用いた非水系二次電池を提供することができる。
以下、本発明の内容を詳細に述べる。なお、以下に記載する発明構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの形態に特定されるものではない。
本発明の非水系二次電池負極用炭素材は球状の炭素粒子(A)及び球状の複合粒子(B)を含有し、炭素粒子(A)の体積基準平均粒径(d50)が複合粒子(B)の体積基準平均粒径(d50)よりも小さく、複合粒子(B)は黒鉛質粒子(C)と炭素質粒子(D)と炭素質物との複合粒子であること特徴とする。
以下、本発明に用いる球状の炭素粒子(A)(以下、炭素粒子(A)ということがある)と、球状の複合粒子(B)(以下、複合粒子(B)ということがある)について説明する。
[炭素粒子(A)]
本発明における球状の炭素粒子(A)について以下に説明する。
本発明の炭素粒子(A)は体積基準平均粒径(d50)が複合粒子(B)の体積基準平均粒径(d50)よりも小さく、その形状は球状である。炭素粒子(A)の体積基準平均粒径(d50)が、複合粒子(B)の体積基準平均粒径(d50)よりも小さいことで、電極の比表面積が上昇し、電池の低温入出力特性が改善する。
炭素粒子(A)の形状は、一般的にはSEM写真等で観察すれば容易に判別できる。
なお、球状とは、SEM写真等で観察した際に、円形又は楕円形であるもののことをいい、好ましくは球形化処理された炭素材料であることをいう。
(炭素粒子(A)の特性)
本発明の炭素粒子(A)は、体積基準平均粒径(d50)が複合粒子(B)の体積基準平均粒径(d50)よりも小さく、球状であれば特に制限はないが、具体的には、炭素粒子(A)の体積基準平均粒径(d50)は、複合粒子(B)の体積基準平均粒径(d50)の通常0.9倍以下、好ましくは0.8倍以下、より好ましくは0.7倍以下、更に好ましくは0.6倍以下、また、通常0.1倍以上、好ましくは0.2倍以上、より好ましくは0.3倍以上、更に好ましくは0.4倍以上である。体積基準平均粒径(d50)がこの範囲にあることで、電極中の炭素材の充填率が高まり、容量の向上が期待できる。
さらに、炭素粒子(A)は以下のような特性を持つことが好ましい。
(a)炭素粒子(A)の体積基準平均粒径(d50)
炭素粒子(A)の体積基準平均粒径(d50)(以下、平均粒径d50ともいう)は、通常1μm以上、好ましくは4μm以上、より好ましくは7μm以上であり、また、通常15μm以下、好ましくは14μm以下、より好ましくは13μm以下、更に好ましくは12μm以下である。平均粒径d50が大きすぎると、総粒子が少なくなり複合粒子(B)の粒子間への存在割合が低下するため、導電パス切れ抑制効果の低減、サイクル特性の低下を招く傾向がある。一方、平均粒径d50が小さすぎると、比表面積が大きくなるため電解液の分解が増え、初期効率が低下する傾向がある。
なお粒径の測定方法は、界面活性剤であるポリオキシエチレンソルビタンモノラウレートの0.2質量%水溶液10mLに、炭素材0.01gを懸濁させ、市販のレーザー回折
/散乱式粒度分布測定装置に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、本発明における体積基準平均粒径d50と定義する。
(b)炭素粒子(A)のアスペクト比
炭素粒子(A)のアスペクト比は、通常1以上、好ましくは1.5以上、より好ましくは1.6以上、更に好ましくは1.7以上、通常4以下、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。
アスペクト比が大きすぎると、電極とした際に粒子が集電対と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、急速充放電特性の低下を招く傾向がある。
アスペクト比は、後述の実施例に記載の測定法によって求めることができる。
(c)炭素粒子(A)の円形度
炭素粒子(A)の円形度は、通常0.88以上、好ましくは0.89以上、より好ましくは0.90以上、更に好ましくは0.92以上である。また円形度は通常1以下、好ましくは0.99以下、より好ましくは0.98以下、更に好ましくは0.97以下である。なお、本明細書における珠状を上記円形度の範囲にて表現することもできる。
円形度が小さすぎると、電極とした際に粒子が集電対と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、急速充放電特性の低下を招く傾向がある。円形度が大きすぎると導電パス切れ抑制効果の低減、サイクル特性の低下を招く傾向がある。
円形度は下記式1で定義され、円形度が1のときに理論的真球となる。
(式1)
円形度
=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
円形度の値としては、後述の実施例に記載の測定法によって測定した値を用いる。
(d)炭素粒子(A)の面間隔(d002
X線広角回折法による002面の面間隔(d002)は、通常0.337nm以下、好ましくは0.336nm以下である。d値が大きすぎると結晶性が低下し、放電容量が低下する傾向がある。一方、下限値である0.3356nmは黒鉛の理論値である。
また、炭素粒子(A)の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。この範囲を下回ると、結晶性が低下し、電池の放電容量が低下する傾向がある。
(e)炭素粒子(A)の平均粒径d10
炭素粒子(A)の体積基準で小さい粒子側から累積10%に相当する平均粒径d10は、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは2μm以上であり、また、通常15μm以下、好ましくは14μm以下、より好ましくは2μm以下、更に好ましくは9μm以下である。また、炭素粒子(A)の平均粒径d10は、通常、黒鉛質粒子(C)の平均粒径d10と同程度又はそれより大きくなる傾向がある。
平均粒径d10が小さすぎると、粒子の凝集傾向が強くなり、スラリー粘度上昇などの工程不都合の発生、非水系二次電池における電極強度の低下や初期充放電効率の低下を招く場合がある。平均粒径d10が大きすぎると高電流密度充放電特性の低下、低温入出力特性の低下、導電パス切れ抑制効果の低減によりサイクル特性の低下を招く場合がある。
平均粒径d10は、平均粒径d50測定の際と同様の方法で得られた粒度分布において
、粒子の体積頻度(%)が小さい粒径から積算で10%となった値として定義される。
(f)炭素粒子(A)の平均粒径d90
レーザー回折・散乱法により求めた炭素粒子(A)の平均粒径d90(体積基準で小さい粒子側から累計90%となる粒子径)は、通常6μm以上、好ましくは9μm以上、より好ましくは12μm以上であり、また、通常50μm以下、好ましくは30μm以下、より好ましくは20μm以下、更に好ましくは15μm以下である。また、炭素粒子(A)の平均粒径d90は、通常、黒鉛質粒子(C)の平均粒径d90と同程度又はそれより大きくなる傾向がある。
一般的に大粒径黒鉛は平均粒径d90が大きくなり、本発明の炭素粒子(A)を含むスラリーの塗布時の筋引きが起こりやすい傾向となるため、平均粒径d90が極力大きくならないようにすることも、本発明の効果を発現するために重要である。
平均粒径d90が小さすぎると、非水系二次電池における電極強度の低下や初期充放電効率の低下を招く場合があり、大きすぎるとスラリーの塗布時の筋引きなどの工程不都合の発生、電池の高電流密度充放電特性の低下、低温入出力特性の低下を招く場合がある。
平均粒径d90は、平均粒径d50を測定する際と同様の方法で得られた粒度分布において、粒子の体積頻度%が小さい粒径から積算で90%となった値として定義される。
(g)炭素粒子(A)のBET比表面積(SA)
炭素粒子(A)のBET法で測定した比表面積については、通常0.1m/g以上、好ましくは0.7m/g以上、より好ましくは1m/g以上である。また、通常20m/g以下、好ましくは15m/g以下、より好ましくは12m/g以下、更に好ましくは11m/g以下、特に好ましくは8m/g以下である。また、炭素粒子(A)の比表面積は、通常、黒鉛質粒子(C)の比表面積より小さくなる傾向がある。
比表面積が小さすぎると、リチウムイオンが出入りする部位が少なく、高速充放電特性及び出力特性に劣り、一方、比表面積が大きすぎると、活物質の電解液に対する活性が過剰になり、初期不可逆容量が大きくなるため、高容量電池を製造できない傾向がある。
なおBET比表面積の測定方法は、比表面積測定装置を用いて、窒素ガス吸着流通法によりBET1点法にて測定する。
(h)炭素粒子(A)のタップ密度
炭素粒子(A)のタップ密度は、通常0.5g/cm以上、0.6g/cm以上が好ましく、0.7g/cm以上がより好ましい。また、通常1.5g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、導電パス切れ抑制効果の低減によりサイクル特性の低下を招く場合がある。
本発明において、タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、試料(炭素粒子(A))を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
(i)炭素粒子(A)の水銀圧入法による細孔径10nm〜100000nmの範囲の細孔容積
炭素粒子(A)の水銀圧入法による細孔径10nm〜100000nmの範囲の細孔容積は、通常1mL/g以下、好ましくは、0.9mL/g以下、より好ましくは0.8mL/g以下であり、通常、0.05mL/g以上、好ましくは、0.1mL/g以上、より好ましくは0.15mL/g以上である。全細孔容積が上記範囲を下回ると、非水系電解液の浸入可能な空隙が少なくなり易く、急速充放電をさせた時にリチウムイオンの挿入
脱離が間に合わなくなり、それに伴いリチウム金属が析出しサイクル特性が悪化する傾向がある。一方、上記範囲を上回ると、極板作製時にバインダが空隙に吸収され易くなることに伴う極板強度の低下、電解液との接触が増えることによる副反応の増大に伴う初期効率の低下を招く傾向がある。
(j)炭素粒子(A)の水銀圧入法による細孔径80nm〜900nmの範囲の微細孔容積
炭素粒子(A)の細孔径80nm〜900nmの範囲の微細孔容積は、水銀圧入法(水銀ポロシメトリー)を用いて測定した値であり、通常0.08mL/g以上、好ましくは0.1mL/g以上、より好ましくは0.15mL/g以上、更に好ましくは0.3mL/g以上である。また、通常1mL/g以下であり、好ましくは0.8mL/g以下、更に好ましくは0.5mL/g以下である。
細孔径80nm〜900nmの範囲の微細孔容積が上記範囲を下回ると、非水系二次電池の充放電の際に電解液の移動が十分円滑に行われず、急速充放電をさせた時にリチウムイオンの挿入脱離が間に合わなくなり、それに伴いリチウム金属が析出しサイクル特性が悪化する傾向がある。一方、上記範囲を上回ると、極板作製時にバインダが空隙に吸収され易くなり、それに伴い極板強度の低下や初期効率の低下を招く傾向がある。
上記水銀ポロシメトリー用の装置として、水銀ポロシメータ(オートポア9520:マイクロメリテックス社製)を用いることができる。試料(炭素粒子(A))を0.2g前後の値となるように秤量し、パウダー用セルに封入し、室温、真空下(50μmHg以下)にて10分間脱気して前処理を実施する。
引き続き、4psia(約28kPa)に減圧して前記セルに水銀を導入し、圧力を4psia(約28kPa)から40000psia(約280MPa)までステップ状に昇圧させた後、25psia(約170kPa)まで降圧させる。
昇圧時のステップ数は80点以上とし、各ステップでは10秒の平衡時間の後、水銀圧入量を測定する。こうして得られた水銀圧入曲線からWashburnの式を用い、細孔分布を算出する。
なお、水銀の表面張力(γ)は485dyne/cm、接触角(ψ)は140°として算出する。平均細孔径は、累計細孔体積が50%となるときの細孔径として定義する。
(k)炭素粒子(A)の窒素吸着法による細孔径1nm〜30nmの範囲の微細孔容積
炭素粒子(A)の細孔径1nm〜30nmの範囲の微細孔容積は、窒素吸着法のBJH法解析を用いて測定した値であり、通常0.001mL/g以上、好ましくは0.002mL/g以上、通常0.1mL/g以下、好ましくは0.03mL/g以下、より好ましくは0.01mL/g以下、更に好ましくは0.008mL/g以下である。
細孔径1nm〜30nmの範囲の微細孔容積が上記範囲を下回ると、非水系二次電池を充放電させた時にリチウムイオンの挿入脱離が間に合わなくなることにより入出力特性が悪化する傾向があり、またそれに伴いリチウム金属が析出しサイクル特性が悪化する傾向がある。一方、上記範囲を上回ると、電解液との副反応が増加し初期効率の低下を招く傾向がある。また極板作製時にバインダが空隙に吸収され易くなり、それに伴い極板強度の低下や初期効率の低下を招く傾向がある。
上記、窒素吸着法測定装置として、オートソーブ(カンタークローム社)を用いることができる。試料をパウダー用セルに封入し、350℃、真空下(1.3Pa以下)にて2時間前処理を実施した後、液体窒素温度下で吸着等温線(吸着ガス:窒素)を測定する。
得られた吸着等温線を用いてBJH解析により微細孔分布を求め、そこから細孔径1n
m〜30nmの範囲の微細孔容積を算出する。
[炭素粒子(A)の製造方法]
本発明の炭素粒子(A)のとしては、天然黒鉛、人造黒鉛の何れを用いてもよい。黒鉛としては、不純物の少ないものが好ましく、必要に応じて種々の精製処理を施して用いる。
炭素粒子(A)の原料となる黒鉛の形状は特に制限されず、薄片状、繊維状、不定形粒子などから適宜選択して用いることができるが、好ましくは薄片状である。
前記天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛等が挙げられる。前記鱗状黒鉛の産地は、主にスリランカであり、前記鱗片状黒鉛の産地は、マダガスカル、中国、ブラジル、ウクライナ、カナダ等であり、前記土壌黒鉛の主な産地は、朝鮮半島、中国、メキシコ等である。
これらの天然黒鉛の中で、土壌黒鉛は一般に粒径が小さいうえ、純度が低い。これに対して、鱗片状黒鉛や鱗状黒鉛は、黒鉛化度が高く不純物量が低い等の長所があるため、本発明において好ましく使用することができる。
また上記人造黒鉛としては、ピッチ原料を高温熱処理して製造した、コークス、ニードルコークス、高密度炭素材料等の黒鉛質粒子が挙げられる。
人造黒鉛の具体例としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機物を、通常2500℃以上、3200℃以下の範囲の温度で焼成し、黒鉛化したものが挙げられる。
本発明に用いる炭素粒子(A)は、黒鉛化されている球状の炭素粒子であれば特に限定はないが、上述したように天然黒鉛、人造黒鉛、並びにコークス粉、ニードルコークス粉、及び樹脂等の黒鉛化物の粉体等を用いることができる。これらのうち、天然黒鉛が放電容量の高さ、製造の容易といった面から好ましい。
(炭素粒子(A)の球形化処理)
球状の炭素粒子(A)を得るには、例えば、原料となる黒鉛に対し球形化処理を行う方法が挙げられる。以下に、球形化処理を行う方法について記載するが、この方法に限定されるものではない。
球形化処理に用いる装置としては、例えば、衝撃力を主体に、炭素材料の粒子間の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。
具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、黒鉛を循環させることによって機械的作用を繰り返し与える機構を有するものであるのが好ましい。
炭素材料に機械的作用を与える好ましい装置としては、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。
前記装置を用いて処理する場合、例えば、回転するローターの周速度は通常30〜10
0m/秒であり、40〜100m/秒にするのが好ましく、50〜100m/秒にするのがより好ましい。また、炭素材料に機械的作用を与える処理は、単に黒鉛を通過させるだけでも可能であるが、黒鉛を30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。
(炭素質物を被覆した炭素粒子(A))
本発明に使用される炭素粒子(A)は、炭素質物でその表面の少なくとも一部が被覆されたものが好ましい。
なお、前記炭素質物としては、後述するその製造方法における加熱の温度の相違によって、非晶質炭素及び黒鉛化物が挙げられる。ここでいう非晶質炭素とはd値が通常0.34nm以上の炭素のことであり結晶性が低い。一方、黒鉛質物とはd値が0.34nm未満の黒鉛のことであり結晶性が高い。
具体的には、前記炭素質物は、その炭素質物前駆体を後述するような加熱処理する方法で得ることができる。前記炭素質物前駆体として、以下の(a)又は(b)に記載の炭素材が好ましい。
(a)石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機物
(b)炭化可能な有機物を低分子有機溶媒に溶解させたもの
前記石炭系重質油としては、軟ピッチから硬ピッチまでのコールタールピッチ、乾留液化油等が好ましく、前記直流系重質油としては、常圧残油、減圧残油等が好ましく、前記分解系石油重質油としては、原油、ナフサ等の熱分解時に副生するエチレンタール等が好ましく、前記芳香族炭化水素としては、アセナフチレン、デカシクレン、アントラセン、フェナントレン等が好ましく、前記N環化合物としては、フェナジン、アクリジン等が好ましく、前記S環化合物としては、チオフェン、ビチオフェン等が好ましく、前記ポリフェニレンとしては、ビフェニル、テルフェニル等が好ましく、前記有機合成高分子としては、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、ポリアクリロニトリル、ポリピロール、ポリチオフェン、ポリスチレン等が好ましく、前記天然高分子としては、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロース等の多糖類等が好ましく、前記熱可塑性樹脂としては、ポリフェニレンサルファイド、ポリフェニレンオキシド等が好ましく、前記熱硬化性樹脂としては、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等が好ましい。
また、前記炭素質物前駆体は、ベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液等の炭化物であってもよい。
また、これらは1種を単独で用いても、2種以上を任意の組み合わせで併用してもよい。
(被覆処理)
被覆処理においては、特に限定されないが、例えば、上述した炭素材料を芯材とし、炭素質物を得るための炭素質物前駆体を被覆原料として用い、これらを混合又は被覆した後、これらを焼成することで、炭素質物で被覆された炭素粒子(A)を得ることができる。また、球形化処理していない炭素材料を芯材とし、炭素質物を得るための炭素質物前駆体を被覆原料として用い、これらを混合した後球形化処理し焼成してもよいし、焼成後に球形化処理を行ってもよい。
焼成温度を、通常600℃以上、好ましくは700℃以上、より好ましくは900℃以上、通常2000℃以下、好ましくは1500℃以下、より好ましくは1200℃以下とすると炭素質物として非晶質炭素が得られ、通常2000℃以上、好ましくは2500℃
以上、通常3200℃以下で熱処理を行うと炭素質物として黒鉛化物が得られる。
(炭素質物の含有量)
本発明の炭素粒子(A)における炭素質物の含有量は、芯材に対して、通常0.01質量%以上、好ましくは0.1質量%以上、更に好ましくは0.3%以上、特に好ましくは0.7質量%以上であり、また前記含有量は、通常20質量%以下、好ましくは15質量%以下、更に好ましくは10質量%以下、特に好ましくは7質量%以下、最も好ましくは5質量%以下である。
含有量が多すぎると、非水系二次電池において高容量を達成する為に十分な圧力で圧延を行った場合に、炭素材にダメージが与えられて材料破壊が起こり、初期サイクル時充放電不可逆容量の増大、初期効率の低下を招く傾向がある。
一方、含有量が小さすぎると、被覆による効果が得られにくくなる傾向がある。すなわち、電池において電解液との副反応を十分に抑制できず、初期サイクル時充放電不可逆容量の増大、初期効率の低下を招く傾向がある。
また、炭素質物の含有量は、材料焼成前後のサンプル質量より算出できる。なおこのとき、芯材の焼成前後質量変化はないものとして計算する。
w1を焼成前炭素粒子(A)質量(kg)、w2を焼成後炭素粒子(A)質量(kg)とすると、
炭素質物の含有量(質量%)=[(w2−w1)/w1]×100
として計算される。
[複合粒子(B)]
本発明における球状の複合粒子(B)について以下に説明する。
本発明の複合粒子(B)は、黒鉛質粒子(C)と炭素質粒子(D)と炭素質物との複合粒子である。炭素質粒子(D)を含有させることで、複合粒子(B)の表面に均一かつ連続的な微細流路が生成し、低温下においてもスムーズなリチウムイオンの移動が可能となるため、非水系二次電池の低温時における入出力特性を向上させることが可能となる。
(複合粒子(B)の特性)
本発明の複合粒子(B)の体積基準平均粒径(d50)は、炭素粒子(A)の体積基準平均粒径(d50)よりも大きいことを特徴とする。このことにより、電極の比表面積が上昇し、低温入出力特性が改善される。
また、本発明の複合粒子(B)は以下のような特性を持つことが好ましい。
(a)複合粒子(B)のX線パラメータ
複合粒子(B)の、X線広角回折法による002面の面間隔(d002)は、通常0.337nm以下、好ましくは0.336nm以下である。d002値が大きすぎるということは結晶性が低いことを示し、非水系二次電池とした場合に初期不可逆容量が増加する場合がある。一方、黒鉛の002面の面間隔の理論値は0.3356nmであるため、前記d値は通常0.3356nm以上である。
また、複合粒子(B)の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。この範囲を下回ると、結晶性が低下し、電池の放電容量が低下する傾向がある。なお、Lcの下限は黒鉛の理論値である。
(b)複合粒子(B)の体積基準平均粒径(d50)
複合粒子(B)の平均粒径d50は通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは20μm以下であり、通常5μm以上、好まし
くは、7μm以上、より好ましくは10μm以上である。平均粒径d50が小さすぎると、比表面積が大きくなるため電解液の分解が増え、初期効率が低下する傾向があり、平均粒径d50が大きすぎると急速充放電特性の低下を招く傾向がある。
また、複合粒子(B)の平均粒径d50は、通常、黒鉛質粒子(C)の平均粒径d50と同程度またはそれより小さくなる傾向がある。
(c)複合粒子(B)のアスペクト比
複合粒子(B)のアスペクト比は、通常1以上、好ましくは1.5以上、より好ましくは1.6以上、更に好ましくは1.7以上、通常4以下、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。
アスペクト比が大きすぎると、電極とした際に粒子が集電対と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、急速充放電特性の低下を招く傾向がある。また、複合粒子(B)のアスペクト比は、通常、黒鉛質粒子(C)のアスペクト比と同程度またはそれより小さくなる傾向がある。
(d)複合粒子(B)の平均粒径d10
複合粒子(B)の体積基準で測定した粒径の、小さい粒子側から累積10%に相当する粒径(d10)は通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、また、通常50μm以下、好ましくは30μm以下、より好ましくは20μm以下である。
d10が小さすぎると、粒子の凝集傾向が強くなり、スラリー粘度上昇などの工程不都合の発生、非水系二次電池における電極強度の低下や初期充放電効率が低下する傾向がある。d10が大きすぎると高電流密度充放電特性の低下、低温入出力特性が低下する傾向がある。
(e)複合粒子(B)の平均粒径d90
複合粒子(B)の体積基準で測定した粒径の、小さい粒子側から累積90%に相当する粒径(d90)は通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常100μm以下、好ましくは50μm以下、より好ましくは40μm以下である。
d90が小さすぎると、非水系二次電池における電極強度の低下や初期充放電効率の低下を招く場合があり、大きすぎるとスラリーの塗布時の筋引きなどの工程不都合の発生、高電流密度充放電特性の低下、低温入出力特性の低下を招く場合がある。
(f)複合粒子(B)のBET比表面積(SA)
複合粒子(B)のBET法による比表面積は通常0.5m/g以上、好ましくは1m/g以上、より好ましくは2m/g以上、更に好ましくは3m/g以上である。また、通常15m/g以下、好ましくは12m/g以下、より好ましくは10m/g以下、更に好ましくは8m/g以下、特に好ましくは6m/g以下である。比表面積が大きすぎると負極活物質として用いた時に電解液に露出した部分と電解液との反応性が増加し、初期効率の低下、ガス発生量の増大を招きやすく、好ましい電池が得られにくい傾向がある。比表面積が小さすぎるとリチウムイオンが出入りする部位が少なく、高速充放電特性及び出力特性に劣る傾向がある。
(g)複合粒子(B)のタップ密度
複合粒子(B)のタップ密度は、通常0.8g/cm以上、0.85g/cm以上が好ましく、0.9g/cm以上がより好ましく、0.95g/cm以上が更に好ましい。また、通常1.8g/cm以下、1.5g/cm以下が好ましく、1.3g/
cm以下がより好ましい。
タップ密度が0.8g/cm以上であるということは、複合粒子(B)が球状を呈していることを示す指標の一つである。タップ密度が0.8g/cmより小さいというのは、複合粒子(B)の原料である黒鉛質粒子(C)が充分な球形粒子となっていないことを示す指標の一つである。タップ密度が0.8g/cmより小さいと、電極内で充分な連続空隙が確保されず、空隙に保持された電解液内のリチウムイオンの移動性が落ちることで、急速充放電特性が低下する傾向がある。
(h)複合粒子(B)の円形度
複合粒子(B)の円形度は、通常0.88以上、より好ましくは0.9以上、更に好ましくは0.92以上である。また、円形度は通常1以下、好ましくは0.99以下、より好ましくは0.97以下である。円形度が小さすぎると、非水系二次電池の高電流密度充放電特性が低下する傾向がある。
(i)複合粒子(B)のラマンR値
複合粒子(B)のラマンR値は通常1以下、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.5以下であり、通常0.05以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎてLi挿入サイト数が減り、急速充放電特性の低下を招く傾向がある。一方、この範囲を上回ると、粒子表面の結晶性が乱れ、電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
(j)複合粒子(B)の細孔容積
複合粒子(B)の水銀圧入法による10nm〜100000nmの範囲の細孔容積は、通常1.0mL/g以下、好ましくは、0.9mL/g以下、より好ましくは0.8mL/g以下であり、通常、0.05mL/g以上、好ましくは、0.1mL/g以上、より好ましくは0.15mL/g以上である。全細孔容積が上記範囲を下回ると、非水系電解液の浸入可能な空隙が少なくなり易く、急速充放電をさせた時にリチウムイオンの挿入脱離が間に合わなくなり、それに伴いリチウム金属が析出しサイクル特性が悪化する傾向がある。一方、上記範囲を上回ると、極板作製時にバインダが空隙に吸収され易くなり、それに伴い極板強度の低下を招く傾向がある。
(k)複合粒子(B)の水銀圧入法による細孔径80nm〜900nmの範囲の微細孔容積
複合粒子(B)の細孔径80nm〜900nmの範囲の微細孔容積は、水銀圧入法(水銀ポロシメトリー)を用いて測定した値であり、通常0.08mL/g以上、好ましくは0.1mL/g以上、より好ましくは0.15mL/g以上、更に好ましくは0.3mL/g以上である。また、通常1mL/g以下であり、好ましくは0.8mL/g以下、更に好ましくは0.5mL/g以下である。
細孔径80nm〜900nmの範囲の微細孔容積が上記範囲を下回ると、非水系二次電池の充放電の際に電解液の移動が十分円滑に行われず、急速充放電をさせた時にリチウムイオンの挿入脱離が間に合わなくなり、それに伴いリチウム金属が析出しサイクル特性が悪化する傾向がある。一方、上記範囲を上回ると、極板作製時にバインダが空隙に吸収され易くなり、それに伴い極板強度の低下や初期効率の低下を招く傾向がある。
<複合粒子(B)の製造方法>
本発明の複合粒子(B)としては、黒鉛質粒子(C)と炭素質粒子(D)と炭素質物との複合粒子であれば特に製造方法は限定されないが、例えば、以下の(1)及び(2)の観点を考慮した製造方法を採用することが好ましい。
(1)黒鉛質粒子(C)と炭素質粒子(D)を混合した混合粉体を準備し、それに炭素質物前駆体を混合して、これを不活性ガス中で熱処理すること。
このような製造方法を採用することにより、本発明の複合粒子(B)の好ましい形態である、複合粒子(B)の一部若しくは全面を炭素質粒子(D)と炭素質物が被覆した複層構造炭素材を作製し易くなる利点がある。
(2)黒鉛質粒子(C)と炭素質粒子(D)を混合する装置として、黒鉛質粒子(C)と炭素質粒子(D)を混合・撹拌する混合撹拌機構のみならず、黒鉛質粒子(C)や炭素質粒子(D)を解砕する解砕機構を備える装置、いわゆる解砕混合機を採用して混合すること。
このような解砕混合機を用いて黒鉛質粒子(C)と炭素質粒子(D)を混合することにより、黒鉛質粒子(C)や炭素質粒子(D)の凝集体を解砕して均一に混合することができる。複合化する前に黒鉛質粒子(C)や炭素質粒子(D)の凝集体を十分に解砕して均一に混合しておくことにより、その後の工程において生じる炭素質粒子(D)同士の凝集も抑制することができる。例えば、炭素質粒子(D)の凝集体が多く残存する炭素材は、合計細孔体積及び顕微ラマン分光装置によるラマンR値の比が大きくなる傾向にあり、保存特性が低下する傾向がある。
以上の(1)及び(2)の観点を考慮した製造方法としては、以下の工程(a)〜(c)を含むことを特徴とする製造方法が挙げられる。
工程(a):黒鉛質粒子(C)と炭素質粒子(D)を解砕しながら混合撹拌する工程
工程(b):工程(a)で得られた粉体に炭素質物前駆体を混合する工程
工程(c):工程(b)で得られた混合物を、不活性ガス中で熱処理する工程
なお、黒鉛質粒子(C)、炭素質粒子(D)及び炭素質物前駆体はそれぞれ1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<工程(a)>
黒鉛質粒子(C)と炭素質粒子(D)を解砕しながら混合撹拌する方法は、常法により行うことができる。以下に一例を示す。
(1)黒鉛質粒子(C)と炭素質粒子の混合比率
黒鉛質粒子(C)と炭素質粒子(D)の混合比率は、目的とする複合粒子の組成に基づいて適宜選択されるべきものであるが、黒鉛質粒子(C)に対して、炭素質粒子(D)は、通常0.01質量%、好ましくは0.1質量%、より好ましくは0.15質量%であり、通常20質量%、好ましくは10質量%、より好ましくは5質量%以下、更に好ましくは2.9質量%以下である。上記範囲であると、電池の充放電効率および放電容量などリチウムイオン二次電池に求められる諸特性を満足しつつ、低温下においても入出力特性が高くなる利点がある。
(2)混合装置
黒鉛質粒子(C)と炭素質粒子(D)を混合する装置として解砕混合機を採用する場合、具体的な装置は特に限定されず、市販されているものを適宜採用することができるが、例えばロッキングミキサー、レーディゲミキサー、ヘンシェルミキサー等が挙げられる。また、解砕混合条件も特に限定されないが、解砕羽根(チョッパー)の回転数は、通常100rpm以上、好ましくは1000rpm以上、より好ましくは2000rpm以上であり、通常100000rpm以下、好ましくは30000rpm以下、好ましくは10000rpm以下である。さらに解砕混合時間は、通常30秒以上、好ましくは1分以上、より好ましくは10分以上であり、通常24時間以下、好ましくは3時間以下、より好ましくは1時間以下である。上記範囲内であると、黒鉛質粒子(C)や炭素質粒子の凝集を効果的に防止することができる。
<工程(b)>
工程(a)で得られた粉体と炭素質物前駆体との混合は常法により行うことができる。以下に、一例を示す。
(1)混合温度
混合温度は炭素質物前駆体の軟化点以上である。通常5℃以上であり、好ましくは40℃以上、より好ましくは50℃以上、一方通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。軟化点より低い温度で混合した場合、炭素質物前駆体の流動性が悪くなり、均一に混合できないばかりではなく、加圧処理の際に液漏れの原因となる傾向がある。一方、温度が高すぎる場合、均一に混合又は捏合することが困難になり、且つ液状にするまでの加熱時間の長期化や高温で取り扱う必要が生じるため生産性に欠ける傾向がある。
(2)工程(a)で得られた粉体と炭素質物前駆体の混合比率
工程(a)で得られた粉体と炭素質物前駆体の混合比率は、目的とする複合粒子の組成に基づいて適宜選択されるべきものであるが、黒鉛質粒子(C)に対して、炭素質物前駆体は、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.5質量%以上であり、更に好ましくは1質量%以上であり、通常60質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下であり、更に好ましくは10質量%以下であり、特に好ましくは5質量%以下である。上記範囲であると、電池の充放電効率、放電容量、および低温下における入出力特性が高くなる利点がある。
また、工程(a)で得られた粉体と混合する際に、炭素質物前駆体は有機溶媒によって希釈してもよい。希釈する理由としては、有機溶媒で希釈することで混合する有機化合物の粘度を下げ、より効率良く、均一に原料炭素材を被覆できるからである。
有機溶媒の種類としては、ペンタン、ヘキサン、イソヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ジメチルブタン、シクロヘキサン、メチルシクロヘキサン等の炭化水素;エチルエーテル、イソプロピルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、アミルフェニルエーテル、エチルベンジルエーテル等のエーテル;アセトン、メチルアセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン等のケトン;ギ酸メチル、ギ酸エチル、ギ酸イソブチル、酢酸メチル、酢酸イソアミル、酢酸メトキシブチル、酢酸シクロヘキシル、酪酸メチル、酪酸エチル、安息香酸ブチル、安息香酸イソアミル等のエステル;ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、ジアミルベンゼン、トリアミルベンゼン、テトラアミルベンゼン、ドデシルベンゼン、ジドデシルベンゼン、アミルトルエン、テトラリン、シクロヘキシルベンゼン等の芳香族炭化水素等があるが、これらに限定されるものではない。
また、これらを2種以上混合したものでもよい。この中でも、ベンゼン、トルエン、キシレンが比較的沸点が高く粘度の低い有機溶媒であり、揮発による濃度変化等が起こり難く、炭素質物前駆体の粘度を下げられる点で特に好ましい。
また、有機溶媒による希釈比率は、有機溶媒の質量に対して、炭素質物前駆体が、通常5質量%以上、好ましくは25質量%以上、より好ましくは40質量%以上、更に好ましくは質量50%以上であり、通常90質量%以下、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。この希釈倍率が大きすぎると炭素質物前駆体の濃度が低下し、効率的に原料炭素材を被覆することができない傾向がある。希釈倍率が小さすぎると有機化合物濃度が充分に低下せず、効率的に原料炭素材を被覆することができない傾向がある。
混合は通常は常圧下で行うが、所望ならば、減圧下又は加圧下で行うこともできる。混
合は回分方式及び連続方式のいずれで行うこともできる。いずれの場合でも、粗混合に適した装置及び精密混合に適した装置を組合せて用いることにより、混合効率を向上させることができる。
本工程で得られた混合物又は希釈混合物の粘度は、通常100cP以下、好ましくは70cP以下、より好ましくは50cP以下である。また通常1cP以上、好ましくは10cP以上である。粘度が高すぎると、サイクル時の劣化が起こり易く、サイクル特性が悪くなる傾向がある。
(3)混合装置
回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレートがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散媒体を有するいわゆるビーズミル型式の装置などが用いられる。
またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX−Kなど);更には内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレーディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。
また、混合条件も特に限定されないが、回転翼の回転数は、通常5rpm以上、好ましくは10rpm以上、より好ましくは50rpm以上であり、更に好ましくは100rpm、特に好ましくは150rpm、また通常100000rpm以下、好ましくは10000rpm以下、より好ましくは1000rpm以下、更に好ましくは500rpm以下、特に好ましくは200rpm以下である。さらに混合時間は、通常30秒以上、好ましくは1分以上、より好ましくは10分以上であり、通常24時間以下、好ましくは3時間以下、より好ましくは1時間以下である。上記範囲内であると、黒鉛に炭素質物前駆体を均一に被覆することができる。
<工程(c)>
(1)焼成温度
焼成温度は混合物の調製に用いた炭素質物前駆体により異なるが、炭素化する場合、通常は600℃以上、好ましくは700℃以上、より好ましくは800℃以上に加熱し、通常1500℃以下、好ましくは1400℃以下、より好ましくは1200℃以下に止めるのが好ましい。
黒鉛化する場合、通常は2500℃以上、好ましくは2700℃以上、より好ましくは2900℃以上に加熱する。加熱温度の上限は有機化合物の炭化物が、通常は高くても3500℃以下であり、好ましくは3200℃以下、より好ましくは3100℃以下に止めるのが好ましい。
焼成処理条件において、熱履歴温度条件、昇温速度、冷却速度、熱処理時間等は、適宜設定する。また、比較的低温領域で熱処理した後、所定の温度に昇温することもできる。なお、本工程に用いる反応機は回分式でも連続式でも、また一基でも複数基でもよい。
(2)焼成に使用する炉
焼成に使用する炉は上記要件を満たせば特に制約はないが、例えば、シャトル炉、トンネル炉、リードハンマー炉、ロータリーキルン、オートクレーブ等の反応槽、コーカー(コークス製造の熱処理槽)、タンマン炉、アチソン炉、高周波誘導加熱炉などを用いることができ、加熱方式も、直接式抵抗加熱、間接式抵抗加熱、直接燃焼加熱、輻射熱加熱等を用いることができる。熱処理時には、必要に応じて攪拌を行なってもよい。
<その他の工程>
前述の製造方法によって得られた複合粒子について、別途粉砕処理を行ってもよい。
粉砕処理に使用する粗粉砕機としては、ジョークラッシャー、衝撃式クラッシャー、コ−ンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
この中でも、ボールミル、振動ミル等が、粉砕時間が短く、処理速度の観点から好ましい。
粉砕速度は、装置の種類、大きさによって適宜設定するものであるが、例えば、ボールミルの場合、通常50rpm以上、好ましい100rpm以上、より好ましくは150rpm以上、更に好ましくは200rpm以上である。また、通常2500rpm以下、好ましくは2300rpm以下、より好ましくは2000rpm以下である。速度が速すぎると、粒径の制御が難しくなる傾向があり、速度が遅すぎると処理速度が遅くなる傾向がある。
粉砕時間は、通常30秒以上、好ましい1分以上、より好ましくは1分30秒以上、更に好ましくは2分以上である。また、通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。粉砕時間が短すぎると粒径制御が難しくなる傾向があり、粉砕時間が長すぎると、生産性が低下する傾向がある。
振動ミルの場合、粉砕速度は、通常50rpm以上、好ましい100rpm以上、より好ましくは150rpm以上、更に好ましくは200rpm以上である。また、通常2500rpm以下、好ましくは2300rpm以下、より好ましくは2000rpm以下である。速度が速すぎると、粒径の制御が難しくなる傾向があり、速度が遅すぎると処理速度が遅くなる傾向がある。
粉砕時間は、通常30秒以上、好ましくは1分以上、より好ましくは1分30秒以上、更に好ましくは2分以上である。また、通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。粉砕時間が短すぎると粒径制御が難しくなる傾向があり、粉砕時間が長すぎると、生産性が低下する傾向がある。
さらに、前述の製造方法によって得られた複合粒子について、粒径の分級処理を行ってもよい。
分級処理条件としては、目開きが、通常53μm以下、好ましくは45μm以下、より好ましくは38μm以下である。
分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合:重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)等を用いることができ、湿式篩い分けの場合:機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
(炭素質物の含有量)
本発明の複合粒子(B)における炭素質物の含有量は、黒鉛質粒子(C)に対して、通常0.01質量%以上、好ましくは0.1質量%以上、更に好ましくは0.3%以上、特に好ましくは0.7質量%以上であり、また前記含有量は、通常20質量%以下、好ましくは15質量%以下、更に好ましくは10質量%以下、特に好ましくは7質量%以下、最も好ましくは5質量%以下である。
含有量が多すぎると、非水系二次電池において高容量を達成する為に十分な圧力で圧延を行った場合に、炭素材にダメージが与えられて材料破壊が起こり、初期サイクル時充放電不可逆容量の増大、初期効率の低下を招く傾向がある。
一方、含有量が少なすぎると、被覆による効果が得られにくくなる傾向がある。すなわち、電池において電解液との副反応を十分に抑制できず、初期サイクル時充放電不可逆容量の増大、初期効率の低下を招く傾向がある。
また、炭素質物の含有量は、材料焼成前後のサンプル質量より算出できる。なおこのとき、黒鉛質粒子(C)の焼成前後質量変化はないものとして計算する。
w1を黒鉛質粒子(C)の質量(kg)、w2を焼成後複合粒子(B)質量(kg)とすると、
炭素質物の含有量(質量%)=[(w2−w1)/w1]×100
として計算される。
(炭素質粒子(D)の含有量)
本発明の複合粒子(B)における炭素質粒子(D)の含有量は、黒鉛質粒子(C)に対する炭素質粒子(D)の含有量を示すものであり、本発明においてこれは通常0.01質量%以上、好ましくは0.1質量%以上、更に好ましくは0.3%以上、特に好ましくは0.7質量%以上であり、また前記含有量は、通常20質量%以下、好ましくは15質量%以下、更に好ましくは10質量%以下、特に好ましくは7質量%以下、最も好ましくは5質量%以下である。
含有量が多すぎると、電解液との反応性が高まり、電池のサイクル特性が低下する傾向がある。
一方、含有量が少なすぎると、被覆による効果が得られにくくなる傾向がある。すなわち、電池において電解液との副反応を十分に抑制できず、初期サイクル時充放電不可逆容量の増大、初期効率の低下を招く傾向がある。
また、炭素質粒子(D)の含有量は、炭素質粒子(D)の混合時における添加量とする。
<黒鉛質粒子(C)>
本発明の複合粒子(B)の原料となる、黒鉛質粒子(C)としては、前述の炭素粒子(A)の項に記載の天然黒鉛、人造黒鉛の何れを用いてもよいが、極板構造を制御しやすい等の理由から球形化処理した天然黒鉛を用いることが好ましい。
(黒鉛質粒子(C)の物性)
本発明における黒鉛質粒子(C)は、次に示す物性の何れか1つ又は複数を満たしていることが好ましい。本発明においては、かかる物性を示す黒鉛質粒子(C)1種を単独で用いても、2種以上を任意の組み合わせで併用してもよい。
(a)黒鉛質粒子(C)の体積基準平均粒径d50
黒鉛質粒子(C)の平均粒径d50は通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下であり、通常1μm以上、好ましくは、4μm以上、より好ましくは10μm以上である。平均粒径d50が小さすぎると、比表面積が大きくなるため電解液の分解が増え、初期効率が低下する傾向があり、平
均粒径d50が大きすぎると急速充放電特性の低下を招く傾向がある。
また、黒鉛質粒子(C)の平均粒径d50は電池容量を向上させる点から、炭素粒子(A)よりも大きいことが好ましい。
(b)黒鉛質粒子(C)のアスペクト比
黒鉛質粒子(C)のアスペクト比は、通常1以上、好ましくは1.5以上、より好ましくは1.6以上、更に好ましくは1.7以上、通常4以下、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。
アスペクト比が大きすぎると、電極とした際に粒子が集電対と平行方向に並ぶ傾向があるため、電極の厚み方向への連続した空隙が充分確保されず、厚み方向へのリチウムイオン移動性が低下し、急速充放電特性の低下を招く傾向がある。
(c)黒鉛質粒子(C)平均粒径d10
黒鉛質粒子(C)の体積基準で測定した粒径の、小さい粒子側から累積10%に相当する平均粒径(d10)は通常1μm以上、好ましくは5μm以上、より好ましくは8μm以上であり、また、通常50μm以下、好ましくは30μm以下、より好ましくは20μm以下である。
d10が小さすぎると、粒子の凝集傾向が強くなり、スラリー粘度上昇などの工程不都合の発生、非水系二次電池における電極強度の低下や初期充放電効率が低下する傾向がある。d10が大きすぎると高電流密度充放電特性の低下、低温入出力特性が低下する傾向がある。
(d)黒鉛質粒子(C)平均粒径d90
黒鉛質粒子(C)の体積基準で測定した粒径の、小さい粒子側から累積90%に相当する粒径(d90)は通常5μm以上、好ましくは10μm以上、より好ましくは20μm以上であり、また、通常100μm以下、好ましくは50μm以下、より好ましくは30μm以下である。
d90が小さすぎると、非水系二次電池における電極強度の低下や初期充放電効率の低下を招く場合があり、大きすぎるとスラリーの塗布時の筋引きなどの工程不都合の発生、高電流密度充放電特性の低下、低温入出力特性の低下を招く場合がある。
(e)黒鉛質粒子(C)BET比表面積(SA)
黒鉛質粒子(C)のBET法による比表面積は通常0.5m/g以上、好ましくは1m/g以上、より好ましくは2m/g以上、更に好ましくは3m/g以上である。また、通常15m/g以下、好ましくは10m/g以下、より好ましくは8m/g以下、更に好ましくは7m/g以下、特に好ましくは6m/g以下である。比表面積が大きすぎると負極活物質として用いた時に電解液に露出した部分と電解液との反応性が増加し、初期効率の低下、ガス発生量の増大を招きやすく、好ましい電池が得られにくい傾向がある。比表面積が小さすぎるとリチウムイオンが出入りする部位が少なく、高速充放電特性及び出力特性に劣る傾向がある。
(f)黒鉛質粒子(C)タップ密度
黒鉛質粒子(C)のタップ密度は、通常0.8g/cm以上、0.85g/cm以上が好ましく、0.9g/cm以上がより好ましく、0.95g/cm以上が更に好ましい。また、通常1.8g/cm以下、1.5g/cm以下が好ましく、1.3g/cm以下がより好ましい。
タップ密度が0.8g/cm以上であるということは、黒鉛質粒子(C)が球状を呈していることを示す指標の一つである。タップ密度が0.8g/cmより小さいと、電極内で充分な連続空隙が確保されず、空隙に保持された電解液内のリチウムイオンの移動性が落ちることで、急速充放電特性が低下する傾向がある。
(g)黒鉛質粒子(C)円形度
黒鉛質粒子(C)の円形度は、通常0.88以上、より好ましくは0.9以上、更に好ましくは0.92以上である。また、円形度は通常1以下、好ましくは0.99以下、より好ましくは0.97以下である。円形度が小さすぎると、非水系二次電池の高電流密度充放電特性が低下する傾向がある。
(h)黒鉛質粒子(C)ラマンR値
黒鉛質粒子(C)のラマンR値は通常1以下、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.5以下であり、通常0.05以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎてLi挿入サイト数が減り、急速充放電特性の低下を招く傾向がある。一方、この範囲を上回ると、粒子表面の結晶性が乱れ、電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
(i)黒鉛質粒子(C)細孔容積
黒鉛質粒子(C)の水銀圧入法による10nm〜100000nmの範囲の細孔容積は、通常1.0mL/g以下、好ましくは、0.9mL/g以下、より好ましくは0.8mL/g以下であり、通常、0.05mL/g以上、好ましくは、0.1mL/g以上、より好ましくは0.15mL/g以上である。全細孔容積が上記範囲を下回ると、非水系電解液の浸入可能な空隙が少なくなり易く、急速充放電をさせた時にリチウムイオンの挿入脱離が間に合わなくなり、それに伴いリチウム金属が析出しサイクル特性が悪化する傾向がある。一方、上記範囲を上回ると、極板作製時にバインダが空隙に吸収され易くなり、それに伴い極板強度の低下を招く傾向がある。
(j)黒鉛質粒子(C)の水銀圧入法による細孔径80nm〜900nmの範囲の微細孔容積
黒鉛質粒子(C)の細孔径80nm〜900nmの範囲の微細孔容積は、水銀圧入法(水銀ポロシメトリー)を用いて測定した値であり、通常0.08mL/g以上、好ましくは0.1mL/g以上、より好ましくは0.15mL/g以上、更に好ましくは0.3mL/g以上である。また、通常1mL/g以下であり、好ましくは0.8mL/g以下、更に好ましくは0.5mL/g以下である。
細孔径80nm〜900nmの範囲の微細孔容積が上記範囲を下回ると、非水系二次電池の充放電の際に電解液の移動が十分円滑に行われず、急速充放電をさせた時にリチウムイオンの挿入脱離が間に合わなくなり、それに伴いリチウム金属が析出しサイクル特性が悪化する傾向がある。一方、上記範囲を上回ると、極板作製時にバインダが空隙に吸収され易くなり、それに伴い極板強度の低下や初期効率の低下を招く傾向がある。
<炭素質粒子(D)>
本発明の複合粒子(B)を構成する材となる、炭素質粒子(D)としては種類も特に限定されないが、石炭微粉、気相炭素粉、カーボンブラック、ケッチェンブラック、カーボンナノファイバー等が挙げられる。この中でもカーボンブラックが特に好ましい。カーボンブラックであると、低温下においても入出力特性が高くなり、同時に安価・簡便に入手が可能という利点がある。
また、形状は特に限定されず、粒状、球状、鎖状、針状、繊維状、板状、鱗片状等の何れであってもよい。
(炭素質粒子(D)の物性)
本発明における炭素質粒子(D)は、次に示す物性の何れか1つ又は複数を満たしてい
ることが好ましい。本発明においては、かかる物性を示す炭素質粒子(D)1種を単独で用いても、2種以上を任意の組み合わせで併用してもよい。
(a)炭素質粒子(D)の1次粒径
本発明における炭素質粒子(D)の1次粒径は、通常3nm以上500nm以下である。1次粒径は、好ましくは3nm以上、より好ましくは15nm以上であり、更に好ましくは30nm以上であり、特に好ましくは40nm以上であり、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下である。なお、炭素質粒子の1次粒子径は、SEM等の電子顕微鏡観察やレーザー回折式粒度分布計などによって測定することができる。
1次粒径が大きすぎる場合、比表面積が小さくなり、低温時の入出力特性が低下する傾向がある。また、1次粒径が小さすぎる場合、比表面積が大きくなりとなり、容量が低下する傾向がある
(b)炭素質粒子(D)のBET比表面積(SA)
炭素質粒子のBET法による比表面積は、通常1m/g以上、好ましくは10m/g以上、より好ましくは30m/g以上であり、通常は1000m/g以下、好ましくは500m/g以下、より好ましくは100m/g以下、更に好ましくは70m/g以下の範囲である。比表面積が大きすぎると負極活物質として用いた時に電解液に露出した部分と電解液との反応性が増加し、初期効率の低下、ガス発生量の増大を招きやすく、好ましい電池が得られにくい傾向がある。比表面積が小さすぎるとリチウムイオンが出入りする部位が少なく、高速充放電特性及び出力特性に劣る傾向がある。
(c)炭素質粒子(D)の嵩密度
炭素質粒子(D)の嵩密度は、通常0.01g/cm以上、好ましくは0.1g/cm以上、より好ましくは0.15g/cm以上であり、更に好ましくは0.17g/cm以上であり、通常1g/cm以下、好ましくは0.8g/cm以下、より好ましくは0.6g/cm以下である。
嵩密度が大きすぎる場合、低温入出力特性が低下する傾向がある。また、嵩密度が小さすぎる場合、電池容量が低下するの傾向がある。
嵩密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、原料炭素材を落下させて、セルに満杯に充填した後、その時の体積と試料の重量から密度を求めることによって測定することができる。
(d)炭素質粒子(D)のタップ密度
炭素質粒子(D)のタップ密度は、通常0.1g/cm以上、好ましくは0.15g/cm以上、より好ましくは0.2g/cm以上であり、通常2g/cm以下、好ましくは1g/cm以下、より好ましくは0.8g/cm以下である。タップ密度が大きすぎる場合、低温入出力特性が低下する傾向があり、小さすぎる場合、電池容量が低下するの傾向がある。
(e)炭素質粒子(D)のDBP吸油量
炭素質粒子(D)のDBP吸油量は、通常10ml/100g以上、好ましくは50ml/100g以上、より好ましくは60ml/100g以上、通常1000ml/100g以下、好ましくは500ml/100g以下、より好ましくは200ml/100g以下、更に好ましくは100ml/100g以下である。
DBP吸油量が大きすぎる場合、容量が低下する傾向があり、小さすぎる場合、低温入
出力特性が低下する傾向がある。
<炭素質物前駆体>
本発明の複合粒子(B)の原料となる、炭素質物前駆体としては、前述の「炭素質物を被覆した炭素粒子(A)」の項に記載の炭素質物前駆体の何れを用いてもよい
[非水系二次電池負極用炭素材]
本発明の非水系二次電池負極用炭素材は、上記の炭素粒子(A)及び複合粒子(B)を含む混合炭素材である。
<炭素粒子(A)及び複合粒子(B)の混合割合>
本発明の非水系二次電池負極用炭素材において、炭素粒子(A)及び複合粒子(B)の総量に対する炭素粒子(A)の質量割合は、通常0質量%より大きく、好ましくは0.1質量%以上、より好ましくは1質量%以上、特に好ましくは3質量%以上であり、通常40質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下、特に好ましくは6質量%以下である。
炭素粒子(A)及び複合粒子(B)の総量に対する炭素粒子(A)の割合が多すぎると、初期効率の低下、極板強度の低下を招く傾向がある。また、炭素粒子(A)の割合が少なすぎると、炭素粒子(A)の特に導電パス切れ抑制効果の低減によりサイクル特性の低下を招く傾向がある。
なお、炭素粒子(A)及び複合粒子(B)が均一に混合されれば混合方法は特に制限はないが、例えば、回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレートがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散媒体を有するいわゆるビーズミル型式の装置などが用いられる。
またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX−Kなど);更には内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。
(非水系二次電池負極用炭素材のタップ密度)
本発明の非水系二次電池負極用炭素材は、タップ密度は通常0.6g/cm以上、好ましくは0.7g/cm以上であり、一方、通常1.8g/cm以下、好ましくは1.5g/cm以下、さらに好ましくは1.3g/cm以下である。
タップ密度が上記範囲より小さいと、電極内で充分な連続空隙が確保されず、空隙に保持された電解液内のリチウムイオンの移動性が落ちることで、急速充放電特性が低下する傾向がある。
<他の材料との混合>
本発明の非水系二次電池負極用炭素材は、炭素粒子(A)と複合粒子(B)を、他の一種又は二種以上のその他の材料と混合し、これを非水系二次電池、好ましくは非水系二次電池の負極材料として用いてもよい。
上述の非水系二次電池負極用炭素材にその他炭素材料を混合する場合、非水系二次電池負極用炭素材及びその他炭素材料の総量に対する非水系二次電池負極用炭素材の混合割合は、通常10質量%以上、好ましくは20質量%以上、また、通常90質量%以下、好ましくは80質量%以下の範囲である。その他炭素材料の混合割合が、前記範囲を下回ると、添加した効果が現れ難い傾向がある。一方、前記範囲を上回ると、本発明の非水系二次電池負極用炭素材の特性が現れ難い傾向がある。
その他の材料としては、天然黒鉛、人造黒鉛、非晶質被覆黒鉛、非晶質炭素、金属粒子、金属化合物の中から選ばれる材料を用いる。これらの材料は、何れかを一種を単独で用いてもよく、二種以上を任意の組み合わせ及び組成で併用してもよい。
天然黒鉛としては、例えば、高純度化した鱗片状黒鉛質粒子や鱗状黒鉛を用いることができる。天然黒鉛の体積基準平均粒径は、通常8μm以上、好ましくは12μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。天然黒鉛のBET比表面積は、通常3.5m2/g以上、好ましくは、4.5m2/g以上、また、通常8m2/g
以下、好ましくは6m2/g以下の範囲である。
人造黒鉛としては、炭素材料を黒鉛化した粒子等が挙げられ、例えば、単一の黒鉛前駆体粒子を粉状のまま焼成、黒鉛化した粒子などを用いることができる。
非晶質被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に非晶質前駆対を被覆、焼成した粒子や、天然黒鉛や人造黒鉛に非晶質をCVDにより被覆した粒子を用いることができる。
非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、炭素化可能なピッチ等を不融化処理し、焼成した粒子を用いることができる。
非水系二次電池負極用炭素材とその他炭素材料との混合に用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmil
l型混合機、流動化型混合機等を用いることができる。
金属粒子としては、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、Nb、Mo、Cu、Zn、Ge、In、Ti等からなる群から選ばれる金属又はその化合物が好ましい。また、2種以上の金属からなる合金を使用しても良く、金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその化合物が好ましい。
金属化合物としては、金属酸化物、金属窒化物、金属炭化物等が挙げられる。また、2種以上の金属からなる合金を使用しても良い。
この中でも、Si又はSi化合物が高容量化の点で、好ましい。Si化合物としては、具体的には、SiOx,SiNx,SiCx、SiZxOy(Z=C、N)などが挙げられ、好ましくは、一般式で表すとSiOxである。この一般式SiOxは、二酸化Si(SiO)と金属Si(Si)とを原料として得られるが、そのxの値は通常0≦x<2である。SiOxは、黒鉛と比較して理論容量が大きく、更に非晶質SiあるいはナノサイズのSi結晶は、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能となる。
具体的には、SiOxと表されるものであり、xは通常0≦x<2であり、より好ましくは、0.2以上、1.8以下、更に好ましくは、0.4以上、1.6以下、特に好ましくは、0.6以上、1,4以下である。この範囲であれば、高容量であると同時に、Li
と酸素との結合による不可逆容量を低減させることが可能となる。
<非水系二次電池用負極>
本発明はまた、本発明の非水系二次電池負極用炭素材を用いて形成される非水系二次電池用負極に関するものであり、例えば、リチウムイオン二次電池用負極が挙げられる。
非水系二次電池用負極の製造方法や非水系二次電池用負極を構成する本発明の非水系二次電池負極用炭素材以外の材料の選択については、特に限定されない。
本発明の非水系二次電池用負極は、集電体と、集電体上に形成された活物質層とを備え、かつ前記活物質層が少なくとも本発明の非水系二次電池負極用炭素材を含有するものである。前記活物質層は、好ましくは、さらにバインダを含有する。
バインダは、特に限定されないが、分子内にオレフィン性不飽和結合を有するものが好ましい。具体例としては、スチレン−ブタジエンゴム、スチレン・イソプレン・スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン・プロピレン・ジエン共重合体などが挙げられる。
このようなオレフィン性不飽和結合を有するバインダを用いることにより、活物質層の電解液に対する膨潤性を低減することができる。中でも入手の容易性から、スチレン−ブタジエンゴムが好ましい。
このような分子内にオレフィン性不飽和結合を有するバインダと、本発明の非水系二次電池負極用炭素材とを組み合わせて用いることにより、負極板の機械的強度を高くすることができる。負極板の機械的強度が高いと、充放電による負極の劣化が抑制され、サイクル寿命を長くすることができる。
分子内にオレフィン性不飽和結合を有するバインダは、分子量が大きいもの及び/又は不飽和結合の割合が大きいものが好ましい。
バインダの分子量としては、重量平均分子量を通常1万以上とすることができ、また、通常100万以下とすることができる。この範囲であれば、機械的強度及び可撓性の両面を良好な範囲に制御できる。重量平均分子量は、好ましくは5万以上であり、また、好ましくは30万以下の範囲である。
バインダの分子内のオレフィン性不飽和結合の割合としては、全バインダ1g当たりのオレフィン性不飽和結合のモル数を通常2.5×10−7モル以上とすることができ、また、通常5×10−6モル以下とすることができる。この範囲であれば、強度向上効果が十分に得られ、可撓性も良好である。モル数は、好ましくは8×10−7モル以上であり、また、好ましくは1×10−6モル以下である。
また、オレフィン性不飽和結合を有するバインダについては、その不飽和度を、通常15%以上、90%以下とすることができる。不飽和度は、好ましくは20%以上、より好ましくは40%以上であり、また、好ましくは80%以下である。本願明細書において、不飽和度とは、ポリマーの繰り返し単位に対する二重結合の割合(%)を表す。
バインダとして、オレフィン性不飽和結合を有さないバインダも、使用することができる。分子内にオレフィン性不飽和結合を有するバインダとオレフィン性不飽和結合を有さないバインダとを併用することによって、塗布性の向上等が期待できる。
オレフィン性不飽和結合を有するバインダを100質量%とした場合、オレフィン性不飽和結合を有さないバインダの混合比率は、活物質層の強度が低下するのを抑制するため、通常150質量%以下とすることができ、好ましくは120質量%以下である。
オレフィン性不飽和結合を有さないバインダの例としては、メチルセルロース、カルボキシメチルセルロース、澱粉、カラギーナン、プルラン、グアーガム、ザンサンガム(キサンタンガム)等の増粘多糖類;ポリエチレンオキシド、ポリプロピレンオキシド等のポ
リエーテル類;ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール類;ポリアクリル酸、ポリメタクリル酸等のポリ酸またはこれらの金属塩;ポリフッ化ビニリデン等の含フッ素ポリマー;ポリエチレン、ポリプロピレンなどのアルカン系ポリマーまたはこれらの共重合体などが挙げられる。
活物質層には、負極の導電性を向上させるために、導電助剤を含有させてもよい。導電助剤は、特に限定されず、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、平均粒径1μm以下のCu、Ni又はこれらの合金からなる微粉末などが挙げられる。
導電助剤の添加量は、本発明の非水系二次電池負極用炭素材に対して、10質量%以下であることが好ましい。
本発明の非水系二次電池用負極は、本発明の非水系二次電池負極用炭素材と場合によりバインダ及び/又は導電助剤とを分散媒に分散させてスラリーとし、これを集電体に塗布、乾燥することにより形成することができる。分散媒としては、アルコールなどの有機溶媒や、水を用いることができる。
スラリーを塗布する集電体としては、特に限定されず、公知のものを用いることができる。具体的には、圧延銅箔、電解銅箔、ステンレス箔等の金属薄膜などが挙げられる。
集電体の厚さは通常4μm以上とすることができ、また、通常30μm以下とすることができる。厚さは、好ましくは6μm以上であり、また、好ましくは20μm以下である。
スラリーを塗布、乾燥して得られる非水系二次電池負極用炭素材層(以下、単に「活物質層」と称することもある。)の厚さは、負極としての実用性及び高密度の電流値に対する十分なリチウムイオンの吸蔵・放出の機能の点から、通常5μm以上とすることができ、また、通常200μm以下とすることができる。好ましくは20μm以上、より好ましくは30μm以上であり、また、好ましくは100μm以下、より好ましくは75μm以下である。
活物質層の厚さは、スラリーの塗布、乾燥後にプレスすることにより、上記範囲の厚さになるように調整してもよい。
活物質層における非水系二次電池負極用炭素材の密度は、用途により異なるものの、例えば車載用途やパワーツール用途などの入出力特性を重視する用途においては、通常1.1g/cm以上、1.65g/cm以下である。
この範囲であれば、密度が低すぎることによる粒子同士の接触抵抗の増大を回避することができ、一方、密度が高すぎることによるレート特性の低下も抑制することができる。
密度は、好ましくは1.2g/cm以上、さらに好ましくは1.25g/cm以上である。
携帯電話やパソコンといった携帯機器用途などの容量を重視する用途では、通常1.45g/cm以上とすることができ、また、通常1.9g/cm以下とすることができる。
この範囲であれば、密度が低すぎることによる単位体積あたりの電池の容量低下を回避することができ、一方、密度が高すぎることによるレート特性の低下も抑制することができる。
密度は、好ましくは1.55g/cm以上、さらに好ましくは1.65g/cm以上、特に好ましくは1.7g/cm以上である。
<非水系二次電池>
本発明に係る非水系二次電池の基本的構成は、例えば、公知のリチウムイオン二次電池と同様とすることができ、通常、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備え、前記負極は上述した本発明に係る非水系二次電池用負極である。
<正極>
正極は、集電体と、集電体上に形成された活物質層とを備えることができる。活物質層は、正極用活物質の他に、好ましくはバインダを含有する。
正極用活物質としては、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物などが挙げられる。中でもリチウムイオンを吸蔵・放出可能な金属カルコゲン化合物が好ましい。
金属カルコゲン化合物としては、バナジウム酸化物、モリブデン酸化物、マンガン酸化物、クロム酸化物、チタン酸化物、タングステン酸化物などの遷移金属酸化物;バナジウム硫化物、モリブデン硫化物、チタン硫化物、CuSなどの遷移金属硫化物;NiPS、FePS等の遷移金属のリン−硫黄化合物;VSe、NbSeなどの遷移金属のセレン化合物;Fe0.250.75、Na0.1CrSなどの遷移金属の複合酸化物;LiCoS、LiNiSなどの遷移金属の複合硫化物等が挙げられる。
中でも、リチウムイオンの吸蔵・放出の観点から、V、V13、VO、Cr、MnO、TiO、MoV、LiCoO、LiNiO、LiMn、TiS、V、Cr0.250.75、Cr0.50.5などが好ましく、LiCoO、LiNiO、LiMnや、これらの遷移金属の一部を他の金属で置換したリチウム遷移金属複合酸化物が特に好ましい。
これらの正極活物質は、単独で用いても複数を混合して用いてもよい。
正極用のバインダは、特に限定されず、公知のものを任意に選択して用いることができる。例としては、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン等の不飽和結合を有さない樹脂などが挙げられる。中でも好ましいのは、酸化反応時に分解しにくいため、不飽和結合を有さない樹脂である。
バインダの重量平均分子量は、通常1万以上とすることができ、また、通常300万以下とすることができる。重量平均分子量は、好ましくは10万以上であり、また、好ましくは100万以下である。
正極活物質層中には、正極の導電性を向上させるために、導電助剤を含有させてもよい。導電助剤は、特に限定されず、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。
本発明の正極は、上述したような負極の製造方法と同様にして、活物質と、場合によりバインダ及び/又は導電助剤を分散媒に分散させてスラリーとし、これを集電体表面に塗布することにより形成することができる。正極の集電体は、特に限定されず、アルミニウム、ニッケル、ステンレススチール(SUS)などが挙げられる。
<電解質>
電解質(「電解液」と称することもある。)は、特に限定されず、非水系溶媒に電解質としてリチウム塩を溶解させた非水系電解液や、該非水系電解液に有機高分子化合物等を添加することによりゲル状、ゴム状、または固体シート状にしたものなどが挙げられる。
非水系電解液に使用される非水系溶媒は、特に限定されず、公知の非水系溶媒を用いることができる。
例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類;1,2−ジメトキシエタン等の鎖状エーテル類;テト
ラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の環状エーテル類;ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類などが挙げられる。
非水系溶媒は、単独でも、2種以上を併用してもよい。混合溶媒の場合は、環状カーボネートと鎖状カーボネートを含む混合溶媒の組み合わせが導電性と粘度のバランスから好ましく、環状カーボネートが、エチレンカーボネートであることが好ましい。
非水系電解液に使用されるリチウム塩も特に制限されず、公知のリチウム塩を用いることができる。例えば、LiCl、LiBrなどのハロゲン化物;LiClO、LiBrO、LiClOなどの過ハロゲン酸塩;LiPF、LiBF、LiAsFなどの無機フッ化物塩などの無機リチウム塩;LiCFSO、LiCSOなどのパーフルオロアルカンスルホン酸塩;Liトリフルオロメタンスルフォニルイミド((CFSONLi)などのパーフルオロアルカンスルホン酸イミド塩などの含フッ素有機リチウム塩などが挙げられる。中でもLiClO、LiPF、LiBFが好ましい。
リチウム塩は、単独で用いても、2種以上を併用してもよい。非水系電解液中におけるリチウム塩の濃度は、0.5mol/L以上、2.0mol/L以下の範囲とすることができる。
上述の非水系電解液に有機高分子化合物を含ませることで、ゲル状、ゴム状、或いは固体シート状にして使用する場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω−メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω−メトキシオリゴオキシエチレンメタクリレート−co−メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン−フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
上述の非水系電解液は、さらに被膜形成剤を含んでいてもよい。
被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物;エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;1,3−プロパンスルトン、1,4−ブタンスルトンなどのスルトン化合物;マレイン酸無水物、コハク酸無水物などの酸無水物などが挙げられる。
非水系電解液にはさらに、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。
上記各種添加剤を用いる場合、初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼさないようにするために、添加剤の総含有量は非水系電解液全体に対して通常10質量%以下とすることができ、中でも8質量%以下、さらには5質量%以下、特に2質量%以下の範囲が好ましい。
また、電解質として、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。
高分子固体電解質としては、前述のポリエーテル系高分子化合物にLi塩を溶解させたものや、ポリエーテルの末端水酸基がアルコキシドに置換されているポリマーなどが挙げられる。
<その他>
正極と負極との間には、通常、電極間の短絡を防止するために、多孔膜や不織布などの多孔性のセパレータを介在させることができ、非水系電解液は、多孔性のセパレータに含浸させて用いることが便利である。セパレータの材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエーテルスルホンなどが用いられ、好ましくはポリオレフィンである。
非水系二次電池の形態は特に限定されず、例えば、シート電極及びセパレータをスパイラル状にしたシリンダータイプ;ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ;ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状及び大きさにして用いることができる。
非水系二次電池を組み立てる手順も特に限定されず、電池の構造に応じて適切な手順で組み立てることができる。例えば、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、さらに負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。
<電池の性能>
上述のように作製した電池は以下の様な性能を示すものである。
初期効率は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは91%以上、特に好ましくは92%以上である。また、放電容量は、通常200mAh/g以上、好ましくは300mAh/g、より好ましくは320mAh/g以上、更に好ましくは340mAh/g以上、特に好ましくは350mAh/g以上、最も好ましくは360mAh/g以上である。初期効率や放電容量が低すぎると、消費電力が大きな機器への適用や長時間の使用ができなくなる傾向がある。
サイクル容量維持率は、通常70%以上、好ましくは75%以上、より好ましくは80%以上、更に好ましくは90%以上である。サイクル維持率が低すぎると、充放電を繰り返し、長い期間使用するような用途へ適さない。ここでサイクル維持率とは、1サイクル目の放電容量に対する、500サイクル目の放電容量のことを表す。
次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。なお、各物性の測定方法は、上述した測定方法に準じるものとする。
<平均粒径d50の測定方法>
粒径の測定方法は、界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標))の0.2質量%水溶液10mLに、炭素材0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置「HORIBA製LA−920」に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定し、本発明における平均粒径d50と定義した。
<平均粒径d10の測定方法>
平均粒径d10は、平均粒径d50測定の際と同様の方法で得られた粒度分布において、粒子の体積頻度(%)が小さい粒径から積算で10%となった値として定義した。
<平均粒径d90の測定方法>
平均粒径d10は、平均粒径d50測定の際と同様の方法で得られた粒度分布において、粒子の体積頻度(%)が小さい粒径から積算で90%となった値として定義した。
<BET比表面積(SA)の測定方法>
BET比表面積の測定方法は、例えば大倉理研社製比表面積測定装置「AMS8000」を用いて、窒素ガス吸着流通法によりBET1点法にて測定する。具体的には、試料(炭素材)0.4gをセルに充填し、350℃に加熱して前処理を行った後、液体窒素温度まで冷却して、窒素30%、He70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた結果から、通常のBET法により比表面積を算出した。
<タップ密度の測定方法>
本発明において、タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、原料炭素材を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から密度を求めた。
<円形度の測定方法>
フロー式粒子像分析装置(シスメックスインダストリアル社製FPIA)を用い、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用し、分散媒としてイオン交換水を使用し、円相当径による円形度の算出を行うことで求めた。円相当径とは、撮影した粒子像と同じ投影面積を持つ円(相当円)の直径であり、円形度とは、相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率である。円形度が1のときに理論的真球となる。測定した相当径が10〜40μmの範囲の粒子の円形度を平均し、本発明における円形度を求めた。
<容量の測定方法>
後述の方法で作製した非水系二次電池(2016コイン型電池)を用いて、下記の測定方法で電池充放電時の容量を測定した。
0.16mA/cm2の電流密度リチウム対極に対して5mVまで充電し、さらにmVの一定電圧で電圧がmVになるまで充電し、負極中にリチウムをドープした後、0.33mA/cm2の電流密度でリチウム対極に対して1.5Vまで放電を行った。このときの放電容量を本炭素材の容量とした。
<低温回生特性の測定方法>
後述の方法で作製した非水系二次電池(ラミネート型電池)を用いて、下記の測定方法で低温回生特性を測定した。
25℃環境下で、0.33Cの定電流により90分間充電を行ない、その後−30℃の恒温槽に3時間以上保管した後に、各々0.25C、0.50C、0.75C、1.00、1.25C、1.50C、1.75、2.00Cで10秒間充電させ、その2秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる3角形の面積を低温回生特性(W)とした。
なお、低温回生特性とは低温時の入力特性を示すものである。
<サイクル容量維持率の測定方法>
後述の方法で作製した非水系二次電池(ラミネート型電池)を用いて、下記の測定方法で電池充放電時のサイクル容量維持率を測定した。 25℃環境下で、0.33Cの定電流放電により3.0Vまで放電後、0.2Cにて240分間充電を行ない、その後60℃の恒温槽に24時間保管した後に、25℃の環境下に3時間以上保管した後に0.33Cにて3.0Vまで定電流放電を行った。
この電池を再度60℃の恒温槽に写し、1時間後に2Cの定電流にて4.1Vまで充電し、その後、定電流にて3.0Vまで放電する繰り返し充放電を500回繰り返した。(
500サイクル目の放電容量)/(1サイクル目の放電容量)×100をサイクル容量維持率とした。
<電極シートの作製>
実施例又は比較例の黒鉛質粒子を用い、活物質層密度1.60±0.03g/cm3
活物質層を有する極板を作製した。具体的には、負極材20.00±0.02gに、1質量%カルボキシメチルセルロースナトリウム塩水溶液を20.00±0.02g(固形分換算で0.200g)、及び重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョン0.50±0.05g(固形分換算で0.2g)を、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。
このスラリーを、集電体である厚さ18μmの銅箔上に、負極材料が14.5±0.3mg/cm2付着するように、ドクターブレードを用いて幅5cmに塗布し、室温で風乾
を行った。更に110℃で30分乾燥後、直径20cmのローラを用いてロールプレスして、活物質層の密度が1.60±0.03g/cm3になるよう調整し電極シートを得た
<非水系二次電池(2016コイン型電池)の作製>
上記方法で作製した電極シートを直径12.5mmの円盤状に打ち抜き、リチウム金属箔を直径14mmの円板状に打ち抜き対極とした。両極の間には、エチレンカーボネートとエチルメチルカーボネートの混合溶媒(容積比=3:7)に、LiPF6を1mol/
Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、2016コイン型電池をそれぞれ作製した。
<非水系二次電池(ラミネート型電池)の作製方法>
上記方法で作製した電極シートを4cm×3cmの正方形に切り出し負極とし、LiCoOからなる正極を同面積で切り出し、負極と正極の間にはセパレータ(多孔性ポリエチレンフィルム製)を置き、組み合わせた。エチレンカーボネートとエチルメチルカーボネートの混合溶媒(容積比=3:7)に、LiPFを1mol/Lになるように溶解させ、更に添加剤としてビニレンカーボネートを1容積%添加した電解液を250μl注液してラミネート型電池を作製した。
<炭素材料>
・炭素粒子(A)−1:
黒鉛質粒子(C)−1(体積基準平均粒径(d50)=10.1μm、(d90)=14.9μm、(d10)=6.9μm、BET法比表面積(SA)=8.9m/g、円形度=0.91、タップ密度=0.92g/cm)と黒鉛質前駆体としてナフサ熱分解時に得られる石油系重質油を混合し、不活性ガス中で1100℃熱処理を施した後、焼成物を粉砕・分級処理することにより、黒鉛質粒子の表面に非晶質炭素が複合化された球状の炭素粒子(A)を得た。
焼成収率から、得られた炭素粒子(A)は、黒鉛質粒子(C)−1に対して3質量部の非晶質炭素で被覆されていることが確認された。前記測定法で粒径、SA、円形度、タップ密度を測定した。結果を下記表1に示す。
・炭素粒子(A)−2:
黒鉛質粒子(C)−2(体積基準平均粒径(d50)=16.3μm、(d90)=25.7μm、(d10)=10.8μm、BET法比表面積(SA)=6.8m/g、円形度=0.93、タップ密度=0.99g/cm)と黒鉛質前駆体としてナフサ熱分解時に得られる石油系重質油を混合し、不活性ガス中で1100℃熱処理を施した後、焼成物を粉砕・分級処理することにより、黒鉛質粒子の表面に非晶質炭素が複合化された球状の炭素粒子(A)を得た。
焼成収率から、得られた炭素粒子(A)は、黒鉛質粒子(C)−2に対して3質量部の非晶質炭素で被覆されていることが確認された。前記測定法で粒径、SA、円形度、タップ密度を測定した。結果を下記表1に示す。
・複合粒子(B):
黒鉛質粒子(C)−2に対して、炭素質粒子(D)としてカーボンブラック(一次粒子径=40nm、BET比表面積(SA)=62m/g)を2質量%添加し、チョッパーによるカーボンブラック凝集体の解砕機構とシャベルの回転による粉体の混合攪拌機構を有する回転式ミキサーにより、チョッパー回転数3000rpmで20分攪拌した。その混合粉体と黒鉛質前駆体としてナフサ熱分解時に得られる石油系重質油を混合し、不活性ガス中で1100℃熱処理を施した後、焼成物を粉砕・分級処理することにより、黒鉛質粒子の表面にカーボンブラック微粒子と非晶質炭素とが複合化された球状の複合粒子(B)−1を得た。
焼成収率から、得られた複合粒子(B)は、黒鉛質粒子(C)−2に対して3質量部の非晶質炭素で被覆されていることが確認された。前記測定法で粒径、SA、円形度、タップ密度を測定した。結果を下記表1に示す。
Figure 0006098275
[実施例1]
炭素粒子(A)−1及び複合粒子(B)の総量に対する炭素粒子(A)−1の質量割合が50質量%となるように、炭素粒子(A)−1と複合粒子(B)を混合してサンプルを得た(混合比が炭素粒子(A)−1:複合粒子(B)=50:50となる)。このサンプル及びそれから作成した非水系二次電池について、前記測定法で容量、低温回生抵抗及びサイクル容量維持率を測定した。結果を下記表2に示す。
[比較例1]
複合粒子(B)から作成した非水系二次電池について、実施例1と同様に電池特性の評価を行った。結果を下記表2に示す。
[比較例2]
炭素粒子(A)−1から作成した非水系二次電池について、実施例1と同様に電池特性の評価を行った。結果を下記表2に示す。
[比較例3]
炭素粒子(A)−2から作成した非水系二次電池について、実施例1と同様に電池特性の評価を行った。結果を下記表2に示す。
Figure 0006098275
表2から判るように、炭素粒子(A)と複合粒子(B)を含む非水系二次電池負極用炭素材(実施例1)は炭素粒子(A)のみからなる非水系二次電池負極用炭素材(比較例2,3)と比べ、低温回生特性が高いことが確認された。この結果より、炭素粒子(A)と複合粒子(B)を混合することで電極内でのリチウムイオンの拡散が向上し、低温入出力特性が向上されていると考えられる。
また、炭素粒子(A)と複合粒子(B)を含む非水系二次電池負極用炭素材(実施例1)は複合粒子(B)のみからなる非水系二次電池負極用炭素材(比較例1)と比べ、容量が高いことが確認された。この結果より、炭素粒子(A)と複合粒子(B)を混合することで電極の比表面積が下がり、電極表面での電解液との反応性が抑制されるため、容量が向上すると考えられる。
これより、本発明の非水系二次電池負極用炭素材を用いることで低温入出力特性と容量及びサイクル容量維持率が高いレベルでバランスが取れた非水系二次電池を提供することができる。

Claims (7)

  1. 球状の炭素粒子(A)及び球状の複合粒子(B)を含有する非水系二次電池負極用炭素材であって、複合粒子(B)は黒鉛質粒子(C)と炭素質粒子(D)と炭素質物との複合粒子であり、複合粒子(B)の体積基準平均粒径(d50)が5μm以上50μm以下であり、炭素粒子(A)の体積基準平均粒径(d50)が複合粒子(B)の体積基準平均粒径(d50)の0.1倍以上0.8倍以下であり、炭素質粒子(D)の1次粒径が3nm以上500nm以下であり、炭素質粒子(D)の含有量が黒鉛質粒子(C)に対して0.01質量%以上20質量%以下であり、かつ炭素粒子(A)及び複合粒子(B)の合計量に対して炭素粒子(A)の含有量が0.1質量%以上50質量%以下であることを特徴とする非水系二次電池負極用炭素材。
  2. 炭素粒子(A)及び/又は複合粒子(B)の円形度が0.88以上1以下であることを特徴とする請求項1に記載の非水系二次電電池負極用炭素材。
  3. 炭素粒子(A)の体積基準平均粒径(d50)が1μm以上15μm以下であることを特徴とする請求項1又は2に記載の非水系二次電池負極用炭素材。
  4. 黒鉛質粒子(C)が、天然黒鉛であることを特徴とする請求項1乃至3の何れか1項に記載の非水系二次電池負極用炭素材。
  5. 素質粒子(D)がカーボンブラックであることを特徴とする請求項1乃至4の何れか1項に記載の非水系二次電池負極用炭素材。
  6. 集電体と、前記集電体上に形成された活物質層とを備える非水系二次電池用負極であって、前記活物質層が、請求項1乃至5の何れか1項に記載の非水系二次電池負極用炭素材を含有することを特徴とする非水系二次電池用負極。
  7. 正極及び負極、並びに、電解質を備える非水系二次電池であって、前記負極が請求項6に記載の非水系次電池用負極であることを特徴とする非水系二次電池。
JP2013062629A 2013-03-25 2013-03-25 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池 Active JP6098275B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013062629A JP6098275B2 (ja) 2013-03-25 2013-03-25 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062629A JP6098275B2 (ja) 2013-03-25 2013-03-25 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池

Publications (2)

Publication Number Publication Date
JP2014186956A JP2014186956A (ja) 2014-10-02
JP6098275B2 true JP6098275B2 (ja) 2017-03-22

Family

ID=51834340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062629A Active JP6098275B2 (ja) 2013-03-25 2013-03-25 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池

Country Status (1)

Country Link
JP (1) JP6098275B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6240586B2 (ja) * 2014-10-28 2017-11-29 Jfeケミカル株式会社 リチウムイオン二次電池負極材料用黒鉛質粒子、リチウムイオン二次電池負極およびリチウムイオン二次電池
JP6606702B2 (ja) * 2015-07-17 2019-11-20 エス・イー・アイ株式会社 リチウム二次電池
JP7067029B2 (ja) * 2016-11-22 2022-05-16 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
WO2018207333A1 (ja) 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
EP3780185A4 (en) * 2018-03-29 2021-05-12 Mitsubishi Chemical Corporation NEGATIVE ELECTRODE MATERIAL FOR WATER-FREE SECONDARY BATTERIES, NEGATIVE ELECTRODE FOR WATER-FREE SECONDARY BATTERIES, AND WATER-FREE SECONDARY BATTERY
JP7263284B2 (ja) * 2020-03-24 2023-04-24 東海カーボン株式会社 リチウムイオン二次電池用負極材の製造方法
JP2021152996A (ja) * 2020-03-24 2021-09-30 東海カーボン株式会社 リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311592B2 (ja) * 2003-06-05 2013-10-09 昭和電工株式会社 リチウム二次電池
JP4974597B2 (ja) * 2006-07-19 2012-07-11 日本カーボン株式会社 リチウムイオン二次電池用負極及び負極活物質

Also Published As

Publication number Publication date
JP2014186956A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6432519B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
KR101942599B1 (ko) 비수계 이차 전지용 부극 탄소재, 및 부극 그리고, 비수계 이차 전지
JP6251968B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP6098275B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP6476814B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
JP6120626B2 (ja) 非水系二次電池用複合炭素材の製造方法
JP2015164127A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP5994319B2 (ja) 非水系二次電池用複合黒鉛粒子の製造方法及びその製造方法で得られた複合黒鉛粒子、負極並びに非水系二次電池
JP6409377B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2014067639A (ja) 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池
JP2015026579A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2014067680A (ja) 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池
JP6318758B2 (ja) 非水系二次電池用炭素材、及び、非水系二次電池
JP6127427B2 (ja) 非水系二次電池用炭素材料、及び負極並びに、非水系二次電池
JP7248019B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP2022095866A (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6379565B2 (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池
JP2014067636A (ja) 非水系二次電池負極用複合炭素材、及び負極並びに、非水系二次電池
JP6422208B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP6432520B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP6492407B2 (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池
JP2014067644A (ja) 非水系二次電池用炭素材、及び負極並びに、非水系二次電池
JP6070016B2 (ja) 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350