JP6097956B2 - Underwater welding method for repaired capillaries for nuclear power generation - Google Patents

Underwater welding method for repaired capillaries for nuclear power generation Download PDF

Info

Publication number
JP6097956B2
JP6097956B2 JP2015201738A JP2015201738A JP6097956B2 JP 6097956 B2 JP6097956 B2 JP 6097956B2 JP 2015201738 A JP2015201738 A JP 2015201738A JP 2015201738 A JP2015201738 A JP 2015201738A JP 6097956 B2 JP6097956 B2 JP 6097956B2
Authority
JP
Japan
Prior art keywords
water
seawater
power generation
condenser
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201738A
Other languages
Japanese (ja)
Other versions
JP2016075469A (en
Inventor
村原正隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Hikari and Energy Laboratory Co Ltd
Original Assignee
M Hikari and Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Hikari and Energy Laboratory Co Ltd filed Critical M Hikari and Energy Laboratory Co Ltd
Priority to JP2015201738A priority Critical patent/JP6097956B2/en
Publication of JP2016075469A publication Critical patent/JP2016075469A/en
Application granted granted Critical
Publication of JP6097956B2 publication Critical patent/JP6097956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

原子力発電用被修復細管の水中溶接方法に関する。 The present invention relates to an underwater welding method for repaired narrow tubes for nuclear power generation .

我が国の原発や火力発電所は沿岸に設備されている。理由は、海水を冷却水として使うからである。その量は“超莫大”で、原発1基(100万kW)あたり、1秒間に70トン、1日で東京ドーム約5杯分である。火力発電所でも1秒間に40トン必要である。これら発電所で冷却水としてくみ上げた海水が約7℃上昇したのち海に戻される。この排海水に蓄熱されたエネルギーの有効利用が必要であることは勿論であるが、休み無く莫大な量の高温水が海に戻されることは、海の生態系や地球の温暖化に重大な影響を与えていると考える。 Our nuclear power plants and thermal power plants are installed on the coast. The reason is that seawater is used as cooling water. The amount is “super huge”, 70 tons per second per 1 nuclear power plant (1 million kW), and about 5 cups of Tokyo Dome per day. Even in thermal power plants are required 4 0 tons per second. The seawater pumped up as cooling water at these power plants rises by about 7 ° C and then returns to the sea. Of course, effective use of the energy stored in the wastewater is necessary, but the return of a huge amount of high-temperature water to the sea without a break is crucial for the marine ecosystem and global warming. I think it has an impact.

温排水の熱を直接利用する試みとして、株式会社日立エンジニアリングサービスの金子らは特許文献1「発電所の融雪装置」(特許公開2003−328309)において、発電施設から出る温排水を、海水ポンプで、発電所施設内に敷設された融雪配管に圧送して除雪を行うことを開示している。鹿島建設株式会社の小山らは特許文献2「土壌加温緑化法」(特許公開平10−295−197)において、非透水性の断熱性発泡資材で囲まれた植栽エリア内の下層部を廃熱水を循環させて、土壌を加温することにより、冬季の公園やグリーンベルト、花壇、屋上、水辺などを緑化することが開示されている。株式会社日立製作所の千野らは特許文献3「凝縮器」(特許公開平5−64703)において、発電所の復水器からの温排水を減圧して凝縮させ、純水製造する方法を開示している。株式会社東芝の伊藤らは特許文献4「養殖システム」(特許公開2003−284449)において、原発の復水器からの温排水で、別途汲みあげた海洋深層水を加温して、海洋水産物を養殖育成することを開示している。株式会社東芝の伊藤らは特許文献5「風力発電プラント」(特許公開2004−44508)において、原子力発電プラントの外部電源が喪失した場合にも、風力発電を非常用電源として機能させることが開示されている。本願発明者は、特許文献6「オンサイト統合工場」(WO 2008/142995)および非特許文献1「“風力よ”エタノール化からトウモロコシを救え<風力発電による海洋資源回収と洋上工場」と非特許文献2の「Climate Change and sustainable Development (第19章)」において、海水から化石燃料の代替エネルギー源としての金属ナトリウムを回収する製造工程で、真水、塩酸、硫酸、マグネシウムを副産物として得、かつ主製造物の金属ナトリウムに水を注ぎ、発生させた水素で、水素燃焼発電を行い、この加水分解で生成する副産物の苛性ソーダを化学工業薬品とし、あるいはこの苛性ソーダを再度溶融塩電気分解してナトリウムを再生産することにより、核燃料サイクルと同じように燃料の再供給の必要が無い、水素/ナトリウム燃料サイクルについて開示している。 As an attempt to directly use the heat of hot wastewater, Kaneko et al. Of Hitachi Engineering Service Co., Ltd. in Japanese Patent Application Laid-Open No. 2003-328309 (Patent Publication 2003-328309) , It discloses that snow removal is carried out by pressure-feeding to a snow melting pipe laid in a power plant facility. Koyama et al. Of Kashima Construction Co., Ltd. in Patent Document 2 “Soil Heating Greening Method” (Patent Publication No. 10-295-197) describes the lower layer in a planting area surrounded by a non-permeable heat insulating foam material. It is disclosed that greening of winter parks, green belts, flower beds, rooftops, watersides, etc. is performed by circulating waste hot water and heating the soil. Chino et al. Of Hitachi, Ltd. disclosed a method for producing pure water by depressurizing and condensing hot waste water from a condenser of a power plant in Patent Document 3 “Condenser” (Patent Publication No. 5-64703). ing. Ito et al. Of Toshiba Corporation, in Patent Document 4 “Aquaculture System” (Patent Publication 2003-284449), warms deep seawater separately pumped up with warm wastewater from the primary condenser, and produces marine marine products. Disclosure of aquaculture. Ito et al. Of Toshiba Corporation disclosed in Patent Document 5 “Wind Power Plant” (Patent Publication 2004-44508) that even when the external power source of the nuclear power plant is lost, the wind power generator functions as an emergency power source. ing. The inventor of the present application is a patent document 6 “on-site integrated factory” (WO 2008/142995) and non-patent document 1 “Reserve corn from ethanol generation” <marine resource recovery by wind power generation and offshore factory ”and non-patent In “Climate Change and sustainable Development (Chapter 19)” in Reference 2, the production process recovers metallic sodium as an alternative energy source of fossil fuel from seawater, and obtains fresh water, hydrochloric acid, sulfuric acid, and magnesium as by-products. Water is poured into the metal sodium of the product, and hydrogen combustion power generation is performed with the generated hydrogen. By-product caustic soda generated by this hydrolysis is used as a chemical industrial chemical, or this caustic soda is electrolyzed again with molten salt to produce sodium. Disclosed is a hydrogen / sodium fuel cycle that does not need to be refueled like a nuclear fuel cycle by regenerating. There.

原子炉内の補修に水中溶接に関し、株式会社東芝の岡田らは特許文献7「遠隔溶接装置および遠隔溶接方法」(特許公開2011−85508)において、原子炉のような人の立ち入りが困難で複雑な場所に設置された炉内構造物に対して水中作業を行うことが開示されている。石川島播磨重工業株式会社の佐藤らは特許文献8「水中溶接装置」(特許公開平11−216586)において、原子炉圧力容器内壁面を遠隔操作で水中溶接する装置を開示している。レーザーを用いた原子炉内での水中溶接に関しては、株式会社東芝の牧野らは特許文献9「ジェットポンプ計測配管の水中レーザー溶接補修方法およびレーザー溶接装置」(特許公開2004−209515)において、レーザー光を原子炉内配管の周方向に照射して水中溶接する方法が開示されている。 Regarding underwater welding for repairs in the reactor, Okada et al. Of Toshiba Corporation, in Patent Document 7 “Remote Welding Apparatus and Remote Welding Method” (Patent Publication 2011-85508), makes it difficult and complicated for people like reactors to enter. It is disclosed that underwater work is performed on an in-furnace structure installed at a different place. Sato et al. Of Ishikawajima-Harima Heavy Industries Co., Ltd. discloses a device for underwater welding of the inner wall surface of a reactor pressure vessel by remote control in Patent Document 8 “Underwater welding device” (Patent Publication No. 11-216586). Regarding underwater welding in a nuclear reactor using a laser, Makino et al., Toshiba Corporation, disclosed a laser in Japanese Patent Application Laid-Open No. 2004-209515 (Patent Publication 2004-209515). A method of underwater welding by irradiating light in the circumferential direction of piping in a nuclear reactor is disclosed.

「発電所の融雪装置」(特許公開2003−328309)"Snow melting equipment for power plants" (Patent Publication 2003-328309) 「土壌加温緑化法」(特許公開平10−295−197)"Soil warming greening method" (Patent Publication 10-295-197) 「凝縮器」(特許公開平5−64703)"Condenser" (Patent Publication 5-64703) 「養殖システム」(特許公開2003−284449)"Aquaculture system" (patent publication 2003-284449) 「風力発電プラント」(特許公開2004−44508)“Wind Power Plant” (Patent Publication 2004-44508) 「オンサイト統合工場」(WO 2008/142995)“Onsite integrated factory” (WO 2008/142995) 「遠隔溶接装置および遠隔溶接方法」(特許公開2011−85508)"Remote welding apparatus and remote welding method" (Patent Publication 2011-85508) 「水中溶接装置」(特許公開平11−216586)"Underwater welding equipment" (Japanese Patent Publication No. 11-216586) 「ジェットポンプ計測配管の水中レーザー溶接補修方法およびレーザー溶接装置」"Underwater laser welding repair method and laser welding equipment for jet pump measurement piping" 「深海資源掘削・回収統合工場」(特許公開2010−180528)“Deep Sea Resource Drilling and Recovery Plant” (Patent Publication 2010-180528) 「光学材料のガラスコーティング方法」(特願2003-298124)、"Glass coating method for optical materials" (Japanese Patent Application 2003-298124), 「透明光酸化層薄膜形成方法」(特願2009-256644)"Transparent photo-oxidation layer thin film formation method" (Japanese Patent Application No. 2009-256644) 「熱半導体を使った熱定数測定装置」(特願昭52-33516)"Thermal constant measuring device using thermal semiconductor" (Japanese Patent Application No. 52-33516) 「レーザーミラー冷却装置」(特願昭53-24972)"Laser mirror cooling device" (Japanese Patent Application No. 53-24972) 「太陽光・熱発電装置」(特願2006-314062)"Solar / thermal power generator" (Japanese Patent Application 2006-314062)

村原正隆・関和市 「“風力よ”エタノール化からトウモロコシを救え」パワー社出版(2007年12月発行)Masataka Murahara / Kanwa City “Wind, save corn from ethanolization” published by Power Company (December 2007) 「Climate Change and sustainable Development (Chapter 19)」Edited by Ruth A. Reck, Ph.D. , Linton Atlantic Books, Ltd.(2010年3月発行)“Climate Change and sustainable Development (Chapter 19)” Edited by Ruth A. Reck, Ph.D., Linton Atlantic Books, Ltd. (issued in March 2010) 村原正隆「Hard protective waterproof coating for high powe laser optical elements」Opticals Letters, 30(24),3416-3418 (2005)Masataka Murahara “Hard protective waterproof coating for high powe laser optical elements” Opticals Letters, 30 (24), 3416-3418 (2005) 村原正隆「石英ガラス室温で接着」(日経産業新聞 2005年4月4日)Masataka Murahara “Quartz Glass Bonded at Room Temperature” (Nikkei Sangyo Shimbun April 4, 2005) 村原正隆「エキシマランプを用いた石英ガラスの室温接着と コーティング」セラミック、41[6]、440-443(2006)Murahara Masataka "Room-temperature adhesion and coating of quartz glass using excimer lamps" Ceramic, 41 [6], 440-443 (2006) 村原正隆「紫外線レーザーやランプによる光表面改質」光アライアンス;Vol.22(8) 19-26頁(2011)Murahara Masataka "Optical surface modification by ultraviolet laser and lamp" Optical Alliance; Vol.22 (8) 19-26 (2011)

原発を海岸に建設する理由は原子炉の冷却水が得やすいためである。一般に、1基の発電機で100万kWの電力を得るために必要とする海水量は、原発で70トン/秒、火力発電で40トン/秒。したがって、原発では1日約600万トンは東京ドーム5杯分、火力発電所の346万トンは東京ドームの3杯分に相当する。しかもその廃水に蓄熱された温度は7℃以上。この大量な高温水が魚貝類や気象に与える影響は計り知れないし、豊富な蓄熱された媒体を利用しないのも非経済的である。本発明が解決しようとすることは、廃水量を減らし、かつ廃水温度を下げ、しかも廃水海水に蓄熱されたエネルギーを化石燃料の代替エネルギーと成る金属ナトリウム製造に利用することである。 The reason for constructing the nuclear power plant on the coast is that it is easy to obtain reactor coolant. Generally, the amount of seawater required to obtain 1 million kW of electricity with one generator is 70 tons / second for nuclear power generation and 40 tons / second for thermal power generation. Therefore, about 6 million tons per day at the nuclear power plant is equivalent to 5 cups of Tokyo Dome, and 3.46 million tons of thermal power plant is equivalent to 3 cups of Tokyo Dome. Moreover, the temperature stored in the wastewater is over 7 ℃. The impact of this large amount of high temperature water on fish and shellfish and the weather is immeasurable, and it is uneconomical not to use abundant heat storage media. The present invention intends to solve the problem of reducing the amount of waste water, lowering the temperature of waste water, and utilizing the energy stored in the waste water sea water for the production of metallic sodium as an alternative energy for fossil fuel.

原発1基から廃出される温熱海水は、1日600トンあり、その温排水には760万キロカロリーの熱エネルギーが蓄熱されている。この熱を利用しなければならない。さらに、600トンの海水には、単純計算すると真水540万トン、ナトリウム6.5万トン、硫酸1.7万トン、マグネシウム7.7千トンが含まれている。この温排水のエネルギーを有効利用して、金属ナトリウムを製造することが本発明の最大の課題である。金属ナトリウムは水を注げば瞬時に大量の水素を発生する固体であるから、本願発明では“水素の元”と命名する。この水素の元を原発や火力発電から廃棄される海水から製造し、この水素の元を火力発電所で水素燃焼発電に供することにより海に廃棄する温排水を極減させ、かつそれを電力エネルギーである“水素の元”を低価格で生産することである。 The hot seawater discharged from one nuclear power plant is 600 tons per day, and 7.6 million kilocalories of thermal energy is stored in the hot wastewater. This heat must be used. Furthermore, 600 tons of seawater contains 5.4 million tons of fresh water, 65,000 tons of sodium, 17,000 tons of sulfuric acid, and 77,000 tons of magnesium. The greatest problem of the present invention is to produce metallic sodium by effectively using the energy of this warm waste water. Since metallic sodium is a solid that generates a large amount of hydrogen instantly when water is poured, it is named “source of hydrogen” in the present invention. The source of this hydrogen is produced from seawater discarded from nuclear power plants and thermal power generation, and this hydrogen source is used for hydrogen combustion power generation at a thermal power plant to minimize the amount of hot wastewater that is discarded into the sea and to use it as power energy. This is to produce the “source of hydrogen” at a low price.

原発が海岸に建設される理由の1つは、冷却海水が得られるためであり、2つ目の理由が、陸続きの首都圏に送電するのに都合が良かったからである。しかし、原発の目的を“ナトリウムの製造”に限定すれば、発生した電力を首都圏の電力消費地に送る送電線の必要はない。従って、冷却海水が得られる場所ならば無人島でも孤島でもあるいは船舶上でも良い。原発の立地を居住地域とは隔離し、そこで海水からナトリウムを製造し、陸地の電力消費地に輸送し、そこの火力発電所で電力を得れば、二酸化炭素も放射能もないクリーンな生活環境を創成することである。 One of the reasons for the construction of the nuclear power plant on the coast is to obtain cooling seawater, and the second reason is that it was convenient to transmit power to the metropolitan area of the land. However, if the purpose of the nuclear power plant is limited to “manufacturing sodium”, there is no need for a transmission line to send the generated power to the power consumption areas in the Tokyo metropolitan area. Therefore, it may be an uninhabited island, an isolated island, or a ship as long as the cooling seawater can be obtained. If the location of the nuclear power plant is separated from the residential area, sodium is produced from seawater, transported to land-based power consumption areas, and if power is obtained at the thermal power plant there, clean living without carbon dioxide and radioactivity Creating an environment.

原発が運転休止や廃炉になった場合でも原発に付設されていた蒸気タービンや発電機あるいは復水器は利用価値がある。そこで原子炉の代替として、金属ナトリウムの加水分解で得られた水素の燃焼熱でボイラーを加熱し、そのボイラーで生成した水蒸気で既存の原子力発電に付設されていた蒸気タービンと発電機を利用することである。 Even when the nuclear power plant is shut down or decommissioned, the steam turbine, generator or condenser attached to the nuclear power plant has utility value. Therefore, as an alternative to nuclear reactors, the boiler is heated with the combustion heat of hydrogen obtained by hydrolysis of metallic sodium, and the steam turbine and generator attached to the existing nuclear power generation are used with the steam generated by the boiler. That is.

原発では、地震の振動で冷却管に亀裂ができ放射能が海に流失する危険性がある。原発の心臓は原子炉内の核燃料。この核燃料は2000℃以上の熱を出して暴走する。この暴走エネルギーは、1秒間に約3トンの水を沸騰させるエネルギーを持っている。そこで暴走を抑制するために、核燃料に直接、約300トンの軽水(真水:1次冷却水)を接触させて、熱を奪い、核燃料表面の温度を約300℃に保つ。同時に、吸熱して高温高圧に成った軽水(水蒸気)で原子炉外の発電用タービンを回転させた後、水蒸気を復水器の中に張り巡らされた細管の中に冷却水(2次冷却水)を通す。この細管は直径2cmのパイプが1万本も連結され、その中を高圧海水が1秒間に約70トン流れる。火力発電の場合でもボイラーで得られた水蒸気でタービンを回転させた後、復水するのに1秒間に約40トンの海水が必要である。この冷却のための細管の数は約1万本である。地震の振動で、その内1本でも亀裂が入ると原発では放射能の汚染水が海水に漏洩する。もしここで海水注入を止めると、原子炉の暴走が始まる。この細管の亀裂を未然に発見し、軽水中で補修することが必要である。 At the nuclear power plant, there is a risk that the cooling pipe will be cracked by the vibration of the earthquake and the radioactivity will be lost to the sea. The heart of the nuclear power plant is nuclear fuel in the reactor. This nuclear fuel runs away with heat above 2000 ° C. This runaway energy has the energy to boil about 3 tons of water per second. Therefore, in order to suppress runaway, about 300 tons of light water (fresh water: primary cooling water) is brought into direct contact with nuclear fuel to remove heat and keep the temperature of the nuclear fuel surface at about 300 ° C. At the same time, after rotating the turbine for power generation outside the reactor with light water (steam) that has absorbed heat and turned to high temperature and pressure, the steam is cooled in the narrow pipe that is stretched around the condenser (secondary cooling). Water). This thin tube is connected with 10,000 pipes with a diameter of 2 cm, and high-pressure seawater flows about 70 tons per second. Even in the case of thermal power generation, about 40 tons of seawater is required per second to condense after rotating the turbine with steam obtained from the boiler. The number of thin tubes for cooling is about 10,000. If even one of them breaks due to earthquake vibration, radioactive contaminated water leaks into seawater at the nuclear power plant. If seawater injection is stopped here, the reactor runaway begins. It is necessary to detect the cracks in the capillaries and repair them in light water.

原発で温排水を海に大量に放水することは、生物環境や地球の温暖化に重大な影響を与える。もし冷却水を全く使わない発電方式があれば、停止中の原子力発電や火力発電の水蒸気タービンを回転させて連動した発電機で電力発生させることができる。圧縮空気でタービンを回転させる方法も選択肢の一つである。再生可能エネルギーで圧縮空気を作るには、風力発電装置を利用することが最も簡便な方法であると考える。本願発明者の村原は特許文献10「深海資源掘削・回収統合工場」(特許公開2010−180528)において、ナセル内に設置したコンプレッサーで圧搾空気を作りタワーに蓄圧し、これを集めて発電することが必要である。 Discharging large amounts of hot wastewater into the sea at the nuclear power plant will have a significant impact on the biological environment and global warming. If there is a power generation system that does not use cooling water at all, power can be generated by a generator that is linked by rotating a steam turbine for nuclear power generation or thermal power generation that is stopped. Another option is to rotate the turbine with compressed air. In order to produce compressed air with renewable energy, it is considered that using a wind power generator is the simplest method. Murahara, the inventor of the present application, in Patent Document 10 “Deep Sea Resource Drilling and Recovery Integrated Factory” (Patent Publication 2010-180528) creates compressed air with a compressor installed in the nacelle, accumulates it in the tower, collects it, and generates power It is necessary.

原発で温排水を海に大量に放水することは、生物環境や地球の温暖化に重大な影響を与える。原発の復水器を冷却するために使われた排海水の放水口での温度は7℃以上である。そこで出来うることなら、この温度差を“ゼロ”に収斂させて、生物環境や地球の温暖化防止することが必要である。 Discharging large amounts of hot wastewater into the sea at the nuclear power plant will have a significant impact on the biological environment and global warming. The temperature at the outlet of the wastewater used to cool the condenser of the nuclear power plant is 7 ℃ or higher. If possible, it is necessary to converge this temperature difference to “zero” to prevent biological environment and global warming.

海水を濃縮し、食塩を30%にすると水溶液電気分解で苛性ソーダを製造することができる。このためには復水器からの温排水の温度を100℃にすれば、減圧せずに蒸留水を回収し、かつ高濃度の濃縮塩を回収することができる。一般に海水を煮詰めると108℃で硫酸カルシウムの析出が始まり、180℃で塩が析出し、塩化マグネシウムがろ液として分離できる。したがって、温排水の温度を100℃にすれば海水中の水は蒸留水として、食塩は濃縮食塩として別途エネルギーを使わずに回収ができる。そこで復水器内で水蒸気を水に還元させる手段と冷却水としての海水を濃縮する手段とに役割分担させるために、復水器内で冷却水としての海水を環流させる冷却用細管系統を、冷却水の排出温度により復水器内の中央部上下で、低温冷却水が排出される下部細管部と高温冷却水が排出される上部細管部に二分割し、上部細管部を環流される温海水はタービン回転後の水蒸気と復水器内で熱交換した後50℃-100℃の高温海水として排出される。更に、この高温海水を減圧蒸留して真水及び濃縮塩水(20-30%)を得る。この濃縮塩水を電気分解工場に移送し、不純物としてのカルシウムイオン、マグネシウムイオン及びイオン交換膜で硫酸イオンを分離した後、そのろ液を水溶液電解して苛性ソーダを製造する。この苛性ソーダを脱水後、溶融塩電解して金属ナトリウムを製造する。一方、復水器のタービン側では水蒸気の圧力は70気圧で温度は280℃であるが、復水器を出て原子炉に戻る水の気圧は極端に低く、温度は50℃以下である。したがって、下部細管部を環流する冷却海水は冷却のみの目的に供し、復水器内での使用後は温排水として海に放水される。 When seawater is concentrated and sodium chloride is 30%, caustic soda can be produced by aqueous electrolysis. For this purpose, if the temperature of the hot waste water from the condenser is set to 100 ° C., distilled water can be recovered without reducing the pressure, and concentrated salt with a high concentration can be recovered. In general, when seawater is boiled, precipitation of calcium sulfate begins at 108 ° C, salt precipitates at 180 ° C, and magnesium chloride can be separated as a filtrate. Therefore, if the temperature of the hot waste water is 100 ° C., the water in the seawater can be recovered as distilled water, and the salt as concentrated salt can be recovered without using energy separately. Therefore the water vapor condenser inside in order to share roles and means for concentrating sea water as a means and the cooling water to be reduced to water, seawater cooling capillary system for reflux as a cooling water in the condenser within the exit temperature of the cooling water at the central portion above and below in the condenser, bisected into upper tube portion of the lower tube portion and the high-temperature cooling water cooled cooling water is discharged is discharged, the temperature of the upper tube portion is reflux Seawater is discharged as high-temperature seawater at 50 ° C to 100 ° C after exchanging heat in the condenser with water vapor after turbine rotation. Further, this high-temperature seawater is distilled under reduced pressure to obtain fresh water and concentrated brine (20-30%). This concentrated salt water is transferred to an electrolysis factory, and calcium ions, magnesium ions as impurities and sulfate ions are separated by an ion exchange membrane, and then the filtrate is electrolyzed with an aqueous solution to produce caustic soda. After dehydrating the caustic soda, molten salt electrolysis is performed to produce metallic sodium. On the other hand, on the turbine side of the condenser, the water vapor pressure is 70 atmospheres and the temperature is 280 ° C., but the water pressure leaving the condenser and returning to the reactor is extremely low, and the temperature is 50 ° C. or less. Therefore, the cooling seawater circulates the lower tubular portion is subjected to cooling purposes only, after use in intra-condenser is water discharge to the sea as a thermal effluents.

復水器の細管内部には高い水圧がかっているため、亀裂の発生が懸念される。従って、この亀裂を誘因する事故を未然に防止するためには、冷却水を抜き、溶接補修しなければならない。しかし、冷却水をその都度抜いて、溶接作業をやることは時間の浪費だ。そこで復水器の外からレーザー光を入射して、細管を水中溶接すれば遠隔操作での溶接ができると考える。ただし高温水中で耐性を持つレーザー反射鏡は市販されていない。そこで本願発明者村原による特許文献11「光学材料のガラスコーティング方法」(特願2003-298124)、特許文献12「透明光酸化層薄膜形成方法」(特願2009-256644)、非特許文献3「Hard protective waterproof coating for high power laser optical elements」Opticals Letters, 30(24),3416-3418 (2005)、非特許文献4「石英ガラス室温で接着」(日経産業新聞 2005年4月4日)、非特許文献5「エキシマランプを用いた石英ガラスの室温接着とコーティング」セラミック、41[6]、440-443(2006)、非特許文献6「紫外線レーザーやランプによる光表面改質」光アライアンス;Vol.22(8) 19-26頁(2011)に開示してあるシリコーンオイルの光酸化を利用した膜を施した鏡を用いれば水中溶接が可能になる。 Because of the high water pressure inside the condenser's narrow tube, there is concern about the occurrence of cracks. Therefore, in order to prevent an accident that causes this crack, it is necessary to drain the cooling water and repair the weld. However, it is a waste of time to drain the cooling water each time and perform the welding work. Therefore, if laser light is incident from the outside of the condenser and the thin tube is welded underwater, welding by remote control is possible. However, laser reflectors that are resistant to high temperature water are not commercially available. Therefore, Patent Document 11 “Optical Material Glass Coating Method” (Japanese Patent Application 2003-298124), Patent Document 12 “Transparent Photo-Oxide Layer Thin Film Formation Method” (Japanese Patent Application 2009-256644), Non-Patent Document 3 by the present inventor Murahara. "Hard protective waterproof coating for high power laser optical elements" Opticals Letters, 30 (24), 3416-3418 (2005), Non-Patent Document 4 "Adhesion at room temperature of quartz glass" (Nikkei Sangyo Shimbun April 4, 2005), Non-patent document 5 “Room-temperature adhesion and coating of quartz glass using excimer lamp” Ceramic, 41 [6], 440-443 (2006), Non-patent document 6 “Optical surface modification by ultraviolet laser and lamp” Photo Alliance; Vol.22 (8) Page 19-26 (2011), it is possible to perform underwater welding by using a mirror provided with a film utilizing photo-oxidation of silicone oil.

風は、向や速度が絶えず変わり風車の回転も変わり、必然的に発電電力は波打つ。従来、風車タワー上部のナセル内に設置していた発電機を地上に降ろし、その代りに周囲の空気を圧縮して体積を小さくするための圧縮装置(コンプレッサー)を取り付ける。そして、従来空洞だったタワー(塔)内部を圧縮空気貯蔵容器(タンク)に置き換え、圧縮空気を貯蔵すれば、風車の回転エネルギーを圧縮空気の形で長時間、保存できる。そして、電力の需要時に、圧縮空気は輸送配管で原発や火力発電所のタービンを回転させて発電を行うことができる。 The direction and speed of the wind changes constantly, and the rotation of the windmill also changes, inevitably generating power undulates. Conventionally, the generator installed in the nacelle at the top of the windmill tower is lowered to the ground, and instead, a compression device (compressor) for compressing the surrounding air and reducing the volume is attached. If the inside of the tower, which has conventionally been hollow, is replaced with a compressed air storage container (tank) and the compressed air is stored, the rotational energy of the windmill can be stored in the form of compressed air for a long time. And at the time of the demand for electric power, compressed air can generate electricity by rotating the turbine of a nuclear power plant or a thermal power plant with transportation piping.

騰水型原子炉の燃料棒又は火力発電用ボイラーで発生した熱により得られた水蒸気、または加圧水型原子炉の水蒸気発生器から発生した水蒸気は、発電用タービンを回転させた後、水蒸気を水に戻す役割を持つ復水器に導入され、復水器の中で冷却されて水に変換された後、復水器の出口から出て、夫々の発熱源に戻る。一般に、水が100℃で気体に成ると体積は約1200倍膨張し、さらに高温になれば、さらに膨張する。ところが、その水蒸気を100℃以下に冷やせば水に変わり、体積は1/1200以下に戻る。この気圧差がタービンを回し、その水蒸気が水に戻った後、原子炉やボイラーに戻す。このタービンは1個で約100万kWの電力を生み出す。このタービンを回すための水蒸気は、「液体+熱→水蒸気→タービンの回転運動に変換→水蒸気+冷却→液体」の工程を繰り返す。この「“+熱”」が燃料棒やボイラーである。「“+冷却”」が復水器(2次冷却水)の役目である。この2次冷却水に海水を用いるため日本の原発や火力発電所は海岸に隣接している。本発明はこの復水器の中に冷却水として海水を環流される冷却用細管系統が、冷却水の温度により復水器内の中央部上下で低温冷却水が移送される下部細管部と高温冷却水が移送される上部細管部に二分割させた位置に設備され、下部細管部を環流する冷却海水は冷却のみの目的に供し、復水器内での使用後は温排水として海に放水する。一方、上部細管部を環流される高温海水は、50℃-100℃に蓄熱された後、減圧蒸留して、望ましくは多段式フラッシュ蒸留缶で減圧蒸留して蒸留水として回収する。同時に脱水された温海水は、20〜30%の濃縮海水として回収され、この濃縮海水は苛性ソーダ製造用に供される。 Boiling Agamizu reactor fuel rods or thermal power boiler with generated steam obtained by heat or steam generated from the pressurized water reactor steam generator, are, after rotating the power generation turbines, steam After being introduced into a condenser having a role of returning to water, cooled in the condenser and converted into water, it exits from the outlet of the condenser and returns to the respective heat source. In general, when water becomes a gas at 100 ° C., the volume expands by about 1200 times, and further expands at higher temperatures. However, if the water vapor is cooled to 100 ° C. or lower, it changes to water and the volume returns to 1/1200 or lower. This pressure difference turns the turbine and the steam returns to the water and then back to the reactor and boiler. One turbine generates about 1 million kW of electricity. The steam for rotating the turbine repeats the process of “liquid + heat → steam → converted into rotational motion of the turbine → steam + cooling → liquid”. This “+ heat” is a fuel rod or boiler. “+ Cooling” is the role of the condenser (secondary cooling water). Because seawater is used for this secondary cooling water, Japanese nuclear power plants and thermal power plants are adjacent to the coast. The present invention is a cooling capillary lines seawater is circulating as coolant in the condenser, the lower tube portion and the high-temperature low-temperature cooling water is transported in the central portion above and below in the condenser by the temperature of the cooling water is equipment cooling water was divided into two upper tube portion being transfer position, the cooling seawater circulates the lower tubular portion is subjected to cooling purposes only, after use in the condenser in the discharge water into the sea as a thermal effluents To do. On the other hand, high-temperature seawater the upper tube portion is reflux, after being accumulated in 50 ° C. -100 ° C., was distilled under reduced pressure, preferably recovered as distilled water was distilled at multistage flash distillation can. Simultaneously dehydrated warm seawater is recovered as 20-30% concentrated seawater, and this concentrated seawater is used for caustic soda production.

縮塩水から不純物を除去した後、水溶液電解により苛性ソーダを製造し、この苛性ソーダを溶融塩電解して金属ナトリウムを製造する方法に関するものである。縮塩水(20-30%)中の不純物としてのカルシウムイオン、マグネシウムイオン及び硫酸イオンを分離する必要がある。先ず、濃縮塩水からCa分を分離する目的で、濃縮塩水(20-30%)に蓚酸ソーダ((COONa)2)あるいは蓚酸((COOH)2)を注ぎ、蓚酸カルシウム(CaC2O4)として沈殿除去する。次にCa分が除去された濾液からマグネシウム(Mg)を遊離させるために苛性ソーダ(NaOH)を注ぎ、水酸化マグネシウム((Mg(OH)2)を沈殿除去する。これに塩酸(HCl)を注ぎ塩化マグネシウム(MgCl2)にした後、熔融塩電気分解を行い、マグネシウム(Mg)を製造する。一方、脱マグネシウムされた濾液の中から硫酸(H2SO4)を取り出すために、その濾液を塩酸(HCl)で中和し、イオン交換膜法(電気透析)により透過分離する。ここで濾液であり、20〜30%まで濃縮された不純物を含まない濃縮海水を水溶液電気分解して苛性ソーダ(NaOH)を製造する。この苛性ソーダを脱水後、溶融塩電解により金属ナトリウムを製造する。 After removing the impurities from the enrichment brine, caustic soda produced by the aqueous electrolyte, to a method for producing a metallic sodium with this caustic molten salt electrolysis to. Calcium ions as impurities in enrichment brine (20-30%) in, it is necessary to separate the magnesium ions and sulfate ions. First, for the purpose of separating Ca from concentrated brine, sodium oxalate ((COONa) 2 ) or oxalic acid ((COOH) 2 ) is poured into concentrated brine (20-30%) as calcium oxalate (CaC 2 O 4 ). Remove the precipitate. Next, caustic soda (NaOH) is poured to liberate magnesium (Mg) from the filtrate from which Ca has been removed, and magnesium hydroxide ((Mg (OH) 2 ) is removed by precipitation, and hydrochloric acid (HCl) is poured thereto. After making magnesium chloride (MgCl 2 ), molten salt electrolysis is performed to produce magnesium (Mg), while in order to remove sulfuric acid (H 2 SO 4 ) from the demagnesized filtrate, the filtrate is used. Neutralized with hydrochloric acid (HCl) and separated by permeation by ion exchange membrane method (electrodialysis), where the filtrate, concentrated concentrated seawater free of impurities, concentrated to 20-30%, was electrolyzed in aqueous solution and caustic soda ( After dehydrating the caustic soda, metallic sodium is produced by molten salt electrolysis.

属ナトリウムに水を注ぐと水素が発生し、副産物として苛性ソーダができる。この水素は水素燃焼コンバインドサイクル方式による水素燃焼発電用に使い、該苛性ソーダは再び溶融塩電解して金属ナトリウムを製造する。ここで重要なことは、水素を作り出す燃料としての金属ナトリウムを全く供給しないことである。供給するのは電力だけである。言い換えれば水素発生の副産物に電力を与えれば水素の元である金属ナトリウムが再生産できることである。この金属ナトリウムを加水分解して水素を発生させる工程を反復させて使用することが本発明の特徴であり、核燃料サイクルと同様に燃料の供給が全く無いエネルギーサイクルであり、違いは核燃料サイクルは高レベル核廃棄物が無い核燃料を特徴とする水素及びナトリウムによる燃料サイクルの形成する方法である。 Hydrogen is generated and pour water on metallic sodium, it is sodium hydroxide as a by-product. This hydrogen is used for hydrogen combustion power generation by a hydrogen combustion combined cycle system, and the caustic soda is subjected to molten salt electrolysis again to produce metallic sodium. What is important here is that no metallic sodium is supplied as a fuel for producing hydrogen. Only power is supplied. In other words, if power is supplied to the byproduct of hydrogen generation, metallic sodium that is the source of hydrogen can be reproduced. The feature of the present invention is that the process of hydrolyzing metal sodium to generate hydrogen is used repeatedly. This is an energy cycle in which no fuel is supplied as in the nuclear fuel cycle. A method of forming a fuel cycle with hydrogen and sodium featuring nuclear fuel without level nuclear waste.

子力発電において原子炉の運転停止時、定期点検時及び/又は収束時に原子炉の代替可能となる電力量を得るために、原子炉建屋に隣接して、耐熱温度が1,700℃以上のタービンを有する建屋を建設し、備蓄金属ナトリウムに真水を滴下して発生した水素を燃料にしたコンバインドサイクル発電方式による水素燃焼発電を行うものである。一般に、原発の発電機と火力発電所の発電機は回転子の極の数が異なり、原発では4極、火力発電用発電機は2極である。したがって、火力発電では原発の2倍の回転数が必要になる。さらに、火力発電では、回転数を2倍にするために、タービンの耐熱温度も、耐圧気圧も高くしなければならない。したがって、それらの諸条件を総合的に判断し、かつ改良を加え、原発の熱効率の30%の2倍以上の60%で運転する。原発1基の出力は100万kW、沸騰水型軽水炉では原子炉内の約300トンの水が、約70気圧、280℃で暖められ、直接タービンに送られる。一方、加圧水型軽水炉では350トンの水が、一旦約160気圧、320℃で蒸気発生器に入り、そこで熱交換が行われ、約60気圧、280℃の水蒸気になって間接的にタービンに送られる。したがって、いずれの方式の原子炉においても、温度は280℃で60から70気圧の水蒸気により発電用タービンを高速回転させる。ここで必要な回転数は、発電周波数が50Hzの地域では1分間に1,500回転、60Hzでは1,800回転である。火力発電用タービン発電機の回転数は、発電周波数が50Hzの地域では1分間に3,000回転、60Hzでは3,600回転である。この高速回転を得るために、石炭火力発電用水蒸気の温度は、原発の約2倍の600℃、気圧は約4倍の250気圧だ。したがって、火力発電の効率は温度が高い分だけ高くなり、原発の効率が30%と低いのに対し、火力では50%と高い。一般に水蒸気の温度が高くなれば水蒸気圧も上がる。しかし原発では、炉心の安全を考慮すると、280℃が限界だ。ところが火力発電では、燃焼温度が高くなれば成るほど効率が上がる。液化天然ガス(LNG)火力発電所のコンバインドサイクル発電方式の中部電力川越火力発電所の4号機の熱効率は48.5%で、1基で原発1基の出力100万kW以上の170.1万kWを出力している。 このように燃焼温度によって、熱効率は高くなり、1100℃で43〜50%、1500℃で53〜60%です。ここで、燃料をLNGから水素に替えれば1700℃で熱効率60%以上が期待できる。コンバインド方式とは、燃料の燃焼で発生した高温ガスでガスタービンを回して発電する機構と、その排気ガスを熱源としたボイラーで作った水蒸気でタービンを回して発電する機構とを組み合わせた方式のことである。水素燃焼の廃熱でボイラーの中を循環する水を熱し、ここで作られた水蒸気で原発用タービンに連動した発電機を回転させ電力を得るのである。水蒸気タービンを回した後の水蒸気は復水器において細管の中を環流する海水で冷却され、水になってボイラーに戻る。
水素燃焼の廃熱でボイラーの中を循環する水を熱し、ここで作られた水蒸気で原発用タービンに連動した発電機を回転させ電力を得るのである。水蒸気タービンを回した後の水蒸気は復水器において細管の中を環流する海水で冷却され、水になってボイラーに戻る。一方、細管を出た高温海水は電気分解工場で減圧蒸留され、真水と濃縮海水として分離回収。この濃縮海水を水溶液電気分解して、苛性ソーダを製造する。水素発生装置でも副産物として苛性ソーダが生成されるため、これら苛性ソーダは苛性ソーダ貯蔵庫に貯蔵された後、余剰電力で溶融塩電気分解を行い、ナトリウムを再生産し発電用“水素の元”を製造する。そして、原発が繋ぎ期間を全うする2025年頃にはタービンの耐熱材料も開発され、2,000℃以上、いや2,500℃に近い温度での発電も可能に成っているかもしれない。
When shutdown of the nuclear reactor in nuclear power, in order to obtain alternative become electric energy reactor at the time of and / or convergence periodic inspection, adjacent to the reactor building, heat resistant temperature 1,700 ° C. or more turbines A hydrogen combustion power generation is performed by a combined cycle power generation system using hydrogen generated by dripping fresh water on storage metal sodium. In general, the number of rotor poles differs between the generator at the nuclear power plant and the thermal power plant, with 4 at the nuclear power plant and 2 at the thermal power generator. Therefore, thermal power generation requires twice as many revolutions as the nuclear power plant. Furthermore, in thermal power generation, in order to double the number of revolutions, the heat-resistant temperature of the turbine and the pressure pressure must be increased. Therefore, these conditions will be judged comprehensively and improvements will be made to operate at 60%, more than twice the 30% of the thermal efficiency of the nuclear power plant. The output of one nuclear power plant is 1 million kW, and in a boiling water light water reactor, about 300 tons of water in the nuclear reactor is heated at about 70 atm and 280 ° C and sent directly to the turbine. On the other hand, in a pressurized water reactor, 350 tons of water once enters the steam generator at about 160 atmospheres and 320 ° C, where heat is exchanged and becomes steam at about 60 atmospheres and 280 ° C, which is indirectly sent to the turbine. It is done. Therefore, in any type of nuclear reactor, the power generation turbine is rotated at high speed by steam at 60 to 70 atm. The required number of revolutions is 1,500 revolutions per minute in the region where the power generation frequency is 50 Hz, and 1,800 revolutions at 60 Hz. The turbine generator for thermal power generation has a rotational speed of 3,000 revolutions per minute in the region where the power generation frequency is 50 Hz and 3,600 revolutions at 60 Hz. In order to obtain this high-speed rotation, the temperature of steam for coal-fired power generation is about 600 ° C, which is about twice that of the nuclear power plant, and the atmospheric pressure is about 250 times, which is about four times. Therefore, the efficiency of thermal power generation increases as the temperature rises, and the efficiency of nuclear power is as low as 30%, while that of thermal power is as high as 50%. In general, the steam pressure increases as the steam temperature rises. However, at the nuclear power plant, considering the safety of the core, 280 ℃ is the limit. However, in thermal power generation, the higher the combustion temperature, the higher the efficiency. Unit 4 of the Chubu Electric Power Kawagoe Thermal Power Station, a combined cycle power generation system for liquefied natural gas (LNG) thermal power plants, has a thermal efficiency of 48.5%, and one unit outputs 1,701,000 kW, which is more than 1 million kW. ing. In this way, the thermal efficiency increases with the combustion temperature: 43-50% at 1100 ° C and 53-60% at 1500 ° C. Here, if the fuel is changed from LNG to hydrogen, a thermal efficiency of 60% or more can be expected at 1700 ° C. The combined system is a system that combines a mechanism that generates electricity by turning a gas turbine with the high-temperature gas generated by the combustion of fuel and a mechanism that generates electricity by rotating the turbine with steam generated from a boiler that uses the exhaust gas as a heat source. That is. The water circulating in the boiler is heated by the waste heat of hydrogen combustion, and the power generated by the steam generated here is rotated to generate power. Steam after turning the steam turbine is cooled in sea water circulating through the capillaries in the condenser, it becomes water returns to the boiler.
The water circulating in the boiler is heated by the waste heat of hydrogen combustion, and the power generated by the steam generated here is rotated to generate power. Steam after turning the steam turbine is cooled in sea water circulating through the capillaries in the condenser, it becomes water returns to the boiler. On the other hand, the high-temperature seawater that exits the narrow tubes is distilled under reduced pressure at an electrolysis plant and separated and recovered as fresh water and concentrated seawater. This concentrated seawater is electrolyzed in aqueous solution to produce caustic soda. Since caustic soda is also produced as a by-product in the hydrogen generator, these caustic soda are stored in a caustic soda storage, and then molten salt electrolysis is performed with surplus power to regenerate sodium and produce a “hydrogen source” for power generation. Around 2025, when the nuclear power plant is connected, a heat-resistant material for turbines was developed, and power generation at temperatures above 2,000 ° C or even close to 2,500 ° C may be possible.

人島または孤島、島嶼に既存の原子力発電施設を建設し、その電力で金属ナトリウムを製造することに関するものである。従来の原発が海岸に立地していた理由の1つは、冷却海水が得られるためであった。そして、2つ目の理由が、陸続きの方が、電力消費地に送電するのが都合が良かったかに他ならない。しかし、原発の目的を“ナトリウムの備蓄”に限定すれば、電力を首都圏の電力消費地に輸送する送電線の必要はない。冷却海水が得られる場所ならば無人島でも、孤島でも船舶上でもよい。ここで最も製造量が多い真水は工業用水として、またナトリウムは電力用燃料として、共に国内供給は勿論のこと輸出もできる。 原子炉の熱により得られた水蒸気は、発電用タービンを回転させた後、水蒸気を水に戻す役割を持つ復水器に送られ、復水器の中で冷却されて水に変換された後、原子炉に戻る。一方、復水器の中の冷却用細管は低温冷却水が移送される下部細管と高温冷却水が移送される上部細管とに中央部で2分割する。この下部細管を環流する冷却海水は冷却のみの目的として使用、熱交換された温排水は海に放水される。 上部細管を環流した高温海水は、前項で示した方法により、真水と苛性ソーダを作る。この上部細管を出た50℃-100℃に蓄熱された高温海水は多段式フラッシュ蒸留缶で減圧蒸留されて蒸留水と濃縮海水に分離回収され、濃縮塩水は電気分解工場に送られ、そこで蓚酸ソーダ((COONa)2)を注ぎCaを除去後、その濾液に苛性ソーダ(NaOH)を注ぎ、水酸化マグネシウム((Mg(OH)2)を沈殿除去します。これに塩酸(HCl)を注ぎ塩化マグネシウム(MgCl2)にした後、熔融塩電気分解を行い、マグネシウム(Mg)を製造します。一方、脱マグネシウムされた濾液の中から硫酸(H2SO4)を取り出すために、その濾液を塩酸(HCl)で中和し、イオン交換膜法(電気透析)により硫酸を分離回収します。最後に30%濃縮海水のみが得られますので、これを水溶液電気分解して、苛性ソーダ(NaOH)を製造します。この苛性ソーダを熔融塩電気分解してナトリウム(Na)を製造して備蓄します。大量に製造される蒸留水は近隣諸国にタンカーで移送することも国際貢献に繋がると考える。 No person islands or island, the construction of the existing nuclear power plants in islands, is concerned with the production of metal sodium in its power. One of the reasons why the conventional nuclear power plant was located on the coast was because of the cooling water. And the second reason is none other than whether it was more convenient for the land continuation to transmit power to the power consumption area. However, if the purpose of the nuclear power plant is limited to “storage of sodium”, there is no need for a transmission line to transport power to the power consumption areas in the Tokyo metropolitan area. It can be an uninhabited island, a solitary island, or a ship as long as it can provide cooling seawater. Here, the fresh water with the largest production volume is industrial water, and sodium is the fuel for electric power. After the steam generated by the heat of the reactor rotates the turbine for power generation, it is sent to a condenser that returns the steam to water, cooled in the condenser, and converted to water Return to the reactor. On the other hand, the cooling thin tube in the condenser is divided into two at the center, a lower thin tube to which the low-temperature cooling water is transferred and an upper thin tube to which the high-temperature cooling water is transferred. The cooling seawater circulating in the lower narrow tube is used only for cooling purposes, and the heat-exchanged hot wastewater is discharged into the sea. Hot seawater upper tubules and reflux is by the method described in the preceding section, produce fresh water and caustic soda. The high-temperature seawater that is stored at 50 ° C-100 ° C from the upper narrow tube is distilled under reduced pressure in a multistage flash distillation can and separated and recovered into distilled water and concentrated seawater, and the concentrated saltwater is sent to an electrolysis factory where it is oxalic acid. After pouring soda ((COONa) 2 ) to remove Ca, caustic soda (NaOH) is poured into the filtrate to precipitate and remove magnesium hydroxide ((Mg (OH) 2 ). After making magnesium (MgCl 2 ), molten salt electrolysis is performed to produce magnesium (Mg), while in order to remove sulfuric acid (H 2 SO 4 ) from the demagnesized filtrate, the filtrate is used. Neutralize with hydrochloric acid (HCl) and separate and recover the sulfuric acid by ion exchange membrane method (electrodialysis) .Lastly, only 30% concentrated seawater can be obtained, so this is electrolyzed with aqueous solution, and caustic soda (NaOH) This caustic soda is electrolyzed with molten salt to produce sodium (Na). It stockpile. Distilled water, which is produced in large amounts is considered to lead to international contribution be transported in tankers to neighboring countries.

請求項に記載の発明は、損傷した細管のレーザー光による修復方法に関するものである。原子力発電又は火力発電用復水器内に敷設された冷却水環流用の細管若しくは加圧水型原発の水蒸気発生器内の細管に亀裂が生じた際に、軽水中または水中でレーザーを用いて水中溶接を行い、亀裂部の損傷を修復するもので、被修復細管が格納されている復水器や水蒸気発生器外にレーザー光を導入する合成石英ガラス製入射窓を固着し、復水器や水蒸気発生器の内部の軽水又は水の中にはレーザー光を任意の場所に走査可能な反射鏡又は被溶接部分にレーザー光を集光できる凹面鏡を配置して、複数の損傷箇所に万遍なくレーザー光を走査・集光できるように煽り可能な複数個の水中溶接用反射鏡を復水器内又は加圧水型原子炉の水蒸気発生器に配備された光学系を有する損傷した細管の修復方法に関するものであり、請求項2に記載の発明は、請求項1記載のレーザー光をNd/YAGレーザーに限定した復水器内又は加圧水型原子炉の水蒸気発生器に配備された光学系を有する損傷した細管の修復方法に関するものである。 The invention of claim 1 relates to repairing method according Les Za light damaged tubules. When a crack occurs in the tubules of nuclear power or steam onset raw vessel tubules or pressurized water nuclear power plant cooling water ring diverted laid in thermal power for the condenser, water using a laser in a light water or in water perform welding, intended to repair the damage of the cracked portion, fixing a synthetic quartz glass entrance window to introduce Les Za light to the condenser and water vapor onset production unit outside wall which the repair tubules are stored condensate in light water or water inside the water vessel and the steam onset raw instrument by placing the concave mirror of the laser beam scannable reflector or be welded portions can condensing the laser beam to any location, a plurality of damaged portion damage having an optical system that is deployed a plurality of underwater welding reflector capable tilt to allow scanning and condensed steam generator condenser or in a pressurized water reactor an evenly Wu Za light It relates repairing method of tubules, according to claim 2 Invention relates to method of repairing damaged tubules having an optical system that is deployed in claim 1 in condenser laser beam is limited to Nd / YAG laser described or pressurized water reactor steam generator.

請求項に記載の発明は、圧縮空気により電力を得る方法に関するものである。火力発電又は原子力発電において冷却水を必要としない発電手段として、発電機と直結したタービンを回転させる駆動力が圧縮空気であり、その圧縮空気を得る手段が、複数の風車で得られた圧縮空気を用いている。従来の風力発電施設は1基につき発電機1基が常識であった。しかも発電機は風車タワーの最上部のナセル内に備えられていた。この発電機を全てコンプレッサーに替え、風力による回転エネルギーを圧縮空気に変換し、体積を小さくしてタワー内部の圧縮空気タンクに貯蔵する。これらの風車群を洋上、沿岸又は陸上に設け、それら複数基からなる風車タワー内部の圧縮空気タンクからの圧縮空気を圧縮空気輸送配管で一堂に集め、集められた圧縮空気で原子力又火力発電用タービンを回転させて電力を得る方法である。 The invention according to claim 4 relates to a method for obtaining electric power by compressed air. As power generation means that does not require cooling water in thermal power generation or nuclear power generation, the driving force for rotating the turbine directly connected to the generator is compressed air, and the means for obtaining the compressed air is compressed air obtained by a plurality of wind turbines. Is used. Conventional wind power generation facilities have a common sense of one generator per unit. Moreover, the generator was installed in the nacelle at the top of the windmill tower. All the generators are replaced with compressors, and the rotational energy from wind power is converted into compressed air, and the volume is reduced and stored in a compressed air tank inside the tower. These wind turbine groups are installed on the ocean, on the coast, or on land, and compressed air from the compressed air tanks inside the wind turbine tower consisting of multiple units is gathered together with compressed air transport piping, and the collected compressed air is used for nuclear power generation or thermal power generation In this method, electric power is obtained by rotating a turbine.

請求項3に記載の発明は、水中溶接用反射鏡又は凹面鏡に耐水・耐熱性を持たせる目的で、該反射鏡又は該凹面鏡表面にシリコーンオイルを光酸化させた保護膜で被覆することを特徴とする請求項1記載の原発用被修復細管の水中溶接方法。The invention described in claim 3 is characterized in that the surface of the reflecting mirror or the concave mirror is covered with a protective film obtained by photo-oxidizing silicone oil for the purpose of imparting water resistance and heat resistance to the reflecting mirror or concave mirror for underwater welding. The underwater welding method for a repaired capillary tube for a nuclear power plant according to claim 1.

上記のように、本発明によれば、原子力発電や火力発電で冷却のために汲み上げた海水の有効利用の方法として、海に戻される莫大な量の温熱海水に蓄熱された熱エネルギーを廃熱すること無く、その熱で蒸留水と濃縮海水を回収し、その濃縮海水を、発電で得られた電力を用い、電気分解して、化石燃料の代替エネルギーと成り得る金属ナトリウムを製造することができる。そして金属ナトリウムを備蓄して、火力発電所で加水分解により発生させた水素で水素燃焼発電を行い、廃棄物として得られる苛性ソーダは化学工業用薬品として供給する。さらに金属ナトリウム製造過程で得られる副産物の真水、塩酸、硫酸、マグネシウムは従来大電力を用いて製造していた製品である。これが只同然で得られるのだから経済効果大である。とくに海水の濃縮物から得られる金属ナトリウムは石油の代替エネルギーとして、枯渇の心配もなく、地域偏存も無いエネルギー資源として、資源戦争の無い世界建設に貢献すると考える。
ただし、原発では、地震の振動で冷却管に亀裂ができ放射能が海に流失する危険性がある。この冷却のための細管の数は約1万本である。地震の振動で、その内1本でも亀裂が入ると原発では放射能の汚染水が海水に漏洩する。もしここで海水注入を止めると、原子炉の暴走が始まる。この細管の亀裂を未然に発見し、軽水中で補修することが必要である。ただし、復水器の細管内部には高い水圧がかっているため、亀裂の発生が懸念される。従って、この亀裂を誘因する事故を未然に防止するためには、冷却水を抜き、溶接補修しなければならない。しかし、冷却水をその都度抜いて、溶接作業をやることは時間の浪費だ。そこで復水器の外からレーザー光を入射して、細管を水中溶接すれば、原発の稼働中止期間を著しく短縮し、産業に貢献すると考える。
As described above, according to the present invention, as a method of effectively using seawater pumped up for cooling by nuclear power generation or thermal power generation, heat energy stored in a huge amount of hot seawater returned to the sea is waste heat. Without using water, distilled water and concentrated seawater can be recovered using the heat, and the concentrated seawater can be electrolyzed using the power generated by power generation to produce metallic sodium that can serve as alternative energy for fossil fuels. it can. Then, metal sodium is stored, hydrogen combustion power generation is performed with hydrogen generated by hydrolysis at a thermal power plant, and caustic soda obtained as waste is supplied as chemicals for the chemical industry. In addition, by-products such as fresh water, hydrochloric acid, sulfuric acid, and magnesium obtained during the metal sodium manufacturing process are products that have been manufactured using high power. Since this can be obtained in the same way, the economic effect is great. In particular, metallic sodium obtained from seawater concentrate is considered to contribute to the construction of a world free of resource warfare as an alternative energy source for oil, as an energy resource without fear of depletion, and without local unevenness.
However, at the nuclear power plant, there is a danger that the cooling pipe will be cracked by the vibration of the earthquake and the radioactivity will be lost to the sea. The number of thin tubes for cooling is about 10,000. If even one of them breaks due to earthquake vibration, radioactive contaminated water leaks into seawater at the nuclear power plant. If seawater injection is stopped here, the reactor runaway begins. It is necessary to detect the cracks in the capillaries and repair them in light water. However, there is a concern about the occurrence of cracks because of the high water pressure inside the condenser narrow tube. Therefore, in order to prevent an accident that causes this crack, it is necessary to drain the cooling water and repair the weld. However, it is a waste of time to drain the cooling water each time and perform the welding work. Therefore, if laser light is incident from the outside of the condenser and the thin tube is welded underwater, the operation stoppage period of the nuclear power plant will be significantly shortened, contributing to the industry.

復水器内で冷却海水が環流する上部細管(真水・濃縮海水回収用)と下部細管(冷却に特化した海水還流用)の2組の冷却用細管系統概略図。 Schematic diagram of two cooling capillaries, an upper narrow tube (for fresh water and concentrated seawater recovery) and a lower thin tube (for seawater recirculation specialized for cooling) through which cooling seawater circulates in the condenser . 原発の電力で、ナトリウムを製造し、火力発電所用燃料として備蓄する構想図。 Conceptual diagram of producing sodium with nuclear power and storing it as fuel for thermal power plants . 3%海水1リットル(1kg)から金属ナトリウムを製造する過程で得られる副産物も含めた製造工程。 3% sea water 1 liter (1 kg) as manufacturing processes which by-products were also included obtained in the process of producing metal sodium. 水素/ナトリウム燃料サイクル⇒苛性ソーダが作る“永遠の燃料”。 Hydrogen / sodium fuel cycle ⇒ “eternal fuel ” produced by caustic soda . 原子炉およびタービンを止め、水素燃焼タービンに交換して水蒸気の温度を6倍の1,700℃にして、現有原発発電効率を2倍以上の「水素燃焼コンバインドサイクル発電として生まれ変わらせる構想概念図である。 Reactor and to stop the turbine, and replace the hydrogen combustion turbine in the 1,700 ° C. six times the temperature of the steam, Ru concept conceptual diagram der to reincarnate the existing nuclear power generation efficiency of more than twice as "hydrogen combustion combined cycle power generation . 冷却水用細管のレーザー水中溶接と軽水中の耐水・耐熱性反射鏡の外略図である(請求項1、2,3説明図)。An outer schematic of water and heat, reflecting mirror in the laser water welding and light water coolant capillary (claim 1,2,3 theory Akirazu). 風車頭部(ナセル)から発電機を外し、圧縮空気コンプレッサーに替えた風力エネルギー貯蔵システム概念図(請求項の説明図)。The wind energy storage system conceptual diagram which removed the generator from the windmill head (nacelle) and replaced with the compressed air compressor (description figure of Claim 4 ). 風力・圧縮空気発電所構想概念(請求項の説明図) Wind and compressed air plant Concept conceptual diagram (diagram of claims 4). ゼーベック素子を用いた温度差発電図。 Temperature difference power generation diagram with a Seebeck element.

以下、本発明の効果的な実施の形態を図1〜図9に基づいて詳細に説明する。 Hereinafter, an effective embodiment of the present invention will be described in detail with reference to FIGS.

図1は復水器内で冷却海水が環流する上部細管(真水・濃縮海水回収用)と下部細管(冷却に特化した海水還流用)の2組の冷却用細管系統概略図である。
本願発明は、沸騰水型原子炉の燃料棒又は火力発電用ボイラーで発生した熱により得られた水蒸気、または加圧水型原子炉の水蒸気発生器から発生した水蒸気は、発電用タービンを回転後、水蒸気入り口1から復水器2に入り低温水出口3から出て、夫々の発熱源に戻る1次冷却水4のループと、海から汲みあげた海水(2次冷却水)5は上部細管6と下部細管7の2方向に分かれ、下部細管7を環流した冷たい海水(2次冷却水)5は温排水8となり海に放水される。他方、真水と濃縮海水を回収するための海水(2次冷却水)5は上部細管6に入る前に、フラッシュ減圧蒸留缶9の中の凝縮用コイル10を通り、上部細管6に入り、1次冷却水4で加熱され50〜100℃の高温海水11に蓄熱されてフラッシュ減圧蒸留缶9に入る。このフラッシュ減圧蒸留缶9は、高温海水11の温度に応じた飽和水蒸気圧に対応し減圧され、50℃では100mmHg、80℃では350mmHg、90℃では510mmHg、100℃では760mmHg(1気圧)の気圧で発生した水蒸気(濃縮塩水からの水蒸気)12はコイル10で冷却され、凝縮して露結した蒸留水13は真水受け皿14で集められ真水回収容器15に回収される。一方減圧蒸留により脱水された高温海水11は約20〜30%の高濃度濃縮塩水16になり、電気分解工場17に送られる。この20〜30%濃縮塩水は脱Ca,脱Mg,イオン交換膜で硫酸分離後、30%塩水を水溶液電気分解し、苛性ソーダを製造し、この苛性ソーダを熔融塩電気分解してナトリウム22を製造する。これら復水器内の海水冷却用細管を上下細管に2分して金属ナトリウムを製造する施設は無人島または孤島、島嶼または船舶にも適用することができる。
Figure 1 is Ru two sets of cooling capillary system schematic diagram der upper tubules reflux seawater in the condenser (fresh, concentrated seawater recovery) and the lower capillary (seawater reflux specialized in cooling).
In the present invention, steam obtained by heat generated in a boiling water reactor fuel rod or a boiler for thermal power generation, or steam generated from a steam generator in a pressurized water reactor, A loop of primary cooling water 4 entering the condenser 2 from the entrance 1 and exiting from the low-temperature water outlet 3 and returning to the respective heat sources, and the seawater (secondary cooling water) 5 pumped from the sea are connected to the upper narrow tube 6. divided into two directions of the lower thin tube 7, cold sea water (secondary coolant) to the lower thin tube 7 and reflux 5 is discharge water to the hot water discharge 8 next sea. On the other hand, seawater (secondary cooling water) 5 for recovering fresh water and concentrated seawater passes through the condensing coil 10 in the flash vacuum distillation can 9 before entering the upper capillary 6 and enters the upper capillary 6. It is heated by the next cooling water 4 and stored in the high temperature seawater 11 at 50 to 100 ° C. and enters the flash vacuum distillation can 9. This flash vacuum distillation can 9 is depressurized according to the saturated water vapor pressure corresponding to the temperature of the hot seawater 11 and is 100 mmHg at 50 ° C, 350 mmHg at 80 ° C, 510 mmHg at 90 ° C, and 760 mmHg (1 atm) at 100 ° C. The water vapor (water vapor from the concentrated salt water) 12 generated in the above is cooled by the coil 10, and the condensed water 13 condensed and condensed is collected in a fresh water tray 14 and collected in a fresh water collection container 15. On the other hand, the high-temperature seawater 11 dehydrated by distillation under reduced pressure becomes about 20-30% highly concentrated concentrated brine 16 and is sent to the electrolysis factory 17. This 20-30% concentrated brine is separated by sulfuric acid using Ca, DeMg, and ion exchange membranes, then 30% brine is electrolyzed in aqueous solution to produce caustic soda, and this caustic soda is electrolyzed with molten salt to produce sodium 22. . The facility for producing metallic sodium by dividing the thin seawater cooling tubules in the condenser into upper and lower tubules can also be applied to uninhabited or isolated islands, islands or ships.

図2は原発の電力で、ナトリウムを製造し、火力発電所用燃料として備蓄する構想図である。
本願発明は沸騰水型原子炉18の燃料棒19又は火力発電用ボイラーで発生した熱により得られた水蒸気1、または加圧水型原子炉の水蒸気発生器から発生した水蒸気1は、発電用タービン20を回転させて発電機21を回した後、水蒸気4を水に戻す役割を持つ復水器2に導入され、復水器2の中で冷却されて水に変換された後、復水器の出口3から出て、夫々の発熱源18に戻る。一方、復水器の中に冷却水として海水を環流される冷却用細管系統が、冷却水の温度により復水器内の中央部上下で低温冷却水が移送される下部配管7と高温冷却水が移送される上部細管6に二分割させた位置に設備し、下部細管7を環流する冷却海水は冷却のみの目的として復水器内で熱交換されて蓄熱された温排水8は海に放水する。 一方、上部細管6を環流した温海水は、50℃-100℃に蓄熱された後、多段式フラッシュ蒸留缶で減圧蒸留して蒸留水と、濃縮海水に分離回収し、回収された濃縮塩水16は電気分解工場17に送られ、そこでCa分を分離する目的で、蓚酸ソーダ((COONa)2)あるいは蓚酸((COOH)2)を注ぎ、蓚酸カルシウム(CaC2O4)として沈殿除去する。Ca分が除去された濾液からマグネシウム(Mg)を遊離させるために苛性ソーダ(NaOH)を注ぎ、水酸化マグネシウム((Mg(OH)2)を沈殿除去する。これに塩酸(HCl)を注ぎ塩化マグネシウム(MgCl2)にした後、熔融塩電気分解を行い、マグネシウム(Mg)を製造する。一方、脱マグネシウムされた濾液の中から硫酸(H2SO4)を取り出すために、その濾液を塩酸(HCl)で中和し、イオン交換膜法(電気透析)により透過分離する。ここで30%まで濃縮された濃縮海水を水溶液電気分解を行い、苛性ソーダ(NaOH)を製造する。この苛性ソーダの大部分は、さらに熔融塩電気分解を行い、金属ナトリウム(Na)22を製造して備蓄し、火力発電所に送る。
Figure 2 is a primary power, to produce a sodium, Ru concept diagram der stockpiling as thermal power plant fuel.
In the present invention, the steam 1 obtained by the heat generated by the fuel rod 19 of the boiling water reactor 18 or the boiler for thermal power generation, or the steam 1 generated from the steam generator of the pressurized water reactor, After rotating and rotating the generator 21, it is introduced into the condenser 2 which has the role of returning the steam 4 to water, cooled in the condenser 2 and converted into water, and then the outlet of the condenser Exit 3 and return to each heat source 18. On the other hand, the cooling capillary lines seawater is circulating as coolant in the condenser is lower pipe 7 and the high-temperature cooling water cooled cooling water is transferred by the central portion and below the inside condenser by the temperature of the cooling water The chilled seawater circulating in the lower tubule 7 is installed in a position that is divided into two upper tubules 6 to which water is transferred, and the warm drainage 8 that has been heat-exchanged in the condenser for the purpose of cooling only is discharged into the sea. To do. On the other hand, warm seawater the upper capillary 6 and reflux, after being accumulated in 50 ° C. -100 ° C., and distilled water was distilled at multistage flash distillation can, separated and recovered in the concentrated seawater, collected concentrated salt water 16 Is sent to an electrolysis plant 17 where sodium oxalate ((COONa) 2 ) or oxalic acid ((COOH) 2 ) is poured and precipitated as calcium oxalate (CaC 2 O 4 ) for the purpose of separating Ca. Pour caustic soda (NaOH) to release magnesium (Mg) from the Ca-free filtrate and precipitate and remove magnesium hydroxide ((Mg (OH) 2 ). After making (MgCl 2 ), molten salt electrolysis is performed to produce magnesium (Mg), while in order to remove sulfuric acid (H 2 SO 4 ) from the demagnesized filtrate, the filtrate is taken up with hydrochloric acid ( Neutralized with HCl) and permeated by ion exchange membrane method (electrodialysis), where the concentrated seawater concentrated to 30% is electrolyzed in aqueous solution to produce caustic soda (NaOH). Performs further molten salt electrolysis, manufactures and stores metallic sodium (Na) 22 and sends it to a thermal power plant.

図3は、3%海水1リットル(1kg)から金属ナトリウムを製造する過程で得られる副産物も含めた製造工程である。 海からくみ上げた原料の3%海水(1kg)は、減圧蒸留により海水を濃縮塩にする第1ステップにより、30%海水(濃縮塩水)は約93gと真水約907g生成される(図1のフラッシュ減圧蒸留缶9の中のコイル10を通った後、復水器2の上部細管6を環流し、蓄熱されて排出される。この50〜100℃の高温海水11は、フラッシュ減圧蒸留缶9を通過しながら脱水され、20〜30%の濃縮塩水16と成って電気分解工場17に送られる)。この30%海水(濃縮塩水)から、不純物のカルシウムを除去するために、第2ステップにおいて蓚酸ソーダを添加して蓚酸カルシウムとして沈殿させ分離回収する。次に濾液中に溶存する塩化マグネシウム(MgCl2)を分離回収するために、第3ステップにおいて苛性ソーダを添加して水酸化マグネシウム(Mg(OH)2)にして分離回収する。この水酸化マグネシウムに塩酸(HCl)を加えて塩化マグネシウムに戻した後、第4ステップにおいて加熱脱水された塩化マグネシウム(MgCl2)は溶融塩電気分解されて金属マグネシウムを約1.3g製造する。この溶融塩電解により副産物として塩素ガス(Cl2)が約3.7g得られる。さらに第5ステップにおいて、30%海水(濃縮塩水)に塩酸を注ぎ中和した後、第6ステップにおいてイオン交換膜法(電気透析)により硫酸を分離回収する。ここで得られた高純度の30%海水(濃縮食塩水)は第7ステップにおいて加熱下で水溶液電気分解を行い苛性ソーダを製造する。この過程で真水、塩素ガス及び水素ガスが副産物として得られる。この苛性ソーダを第8ステップにおいて溶融塩電気分解を行い、約10.75gの金属ナトリウムを製造する。ここで酸素ガスおよび水素ガスが副産物として得られる。最後に本工程中で得られた塩素ガスと水素ガスとを高温で反応させて塩化水素とした後真水に吸収させて塩酸を製造する。 3, Ru manufacturing process der-products were also included obtained in the process of producing metallic sodium 3% sea water 1 liter (1 kg). 3% seawater (1kg) of raw material pumped up from the sea produces about 93g of 30% seawater (concentrated saltwater) and about 907g of fresh water by the first step of converting the seawater into concentrated salt by vacuum distillation (flush in Figure 1). after passing through the coil 10 in the vacuum distillation can 9, and refluxing the upper capillary 6 of the condenser 2, and is discharged heat accumulated. hot seawater 11 of 50 to 100 ° C. is a flash distillation under reduced pressure can 9 It is dehydrated while passing through and is sent to the electrolysis plant 17 as 20-30% concentrated brine 16). In order to remove the impurity calcium from the 30% seawater (concentrated salt water), sodium oxalate is added and precipitated as calcium oxalate in the second step and separated and recovered. Next, in order to separate and recover magnesium chloride (MgCl2) dissolved in the filtrate, caustic soda is added and separated and recovered to magnesium hydroxide (Mg (OH) 2) in the third step. After adding hydrochloric acid (HCl) to the magnesium hydroxide and returning to magnesium chloride, the magnesium chloride (MgCl2) dehydrated by heating in the fourth step is subjected to molten salt electrolysis to produce about 1.3 g of magnesium metal. This molten salt electrolysis yields about 3.7 g of chlorine gas (Cl2) as a by-product. Further, in the fifth step, hydrochloric acid is poured into 30% seawater (concentrated salt water) to neutralize it, and in the sixth step, sulfuric acid is separated and recovered by the ion exchange membrane method (electrodialysis). The high purity 30% seawater (concentrated saline) obtained here is subjected to aqueous solution electrolysis under heating in the seventh step to produce caustic soda. In this process, fresh water, chlorine gas and hydrogen gas are obtained as by-products. This caustic soda is subjected to molten salt electrolysis in the eighth step to produce about 10.75 g of metallic sodium. Here, oxygen gas and hydrogen gas are obtained as by-products. Finally, the chlorine gas and hydrogen gas obtained in this step are reacted at a high temperature to form hydrogen chloride, which is then absorbed in fresh water to produce hydrochloric acid.

図4は、水素/ナトリウム燃料サイクル⇒苛性ソーダが作る“永遠の燃料”である。図3の第8ステップで得られた金属ナトリウム(Na)を水素発生装置の中で加水分解して、生成した水素ガス(H2)は火力発電所(水素燃焼コンバインドサイクル発電施設)において発電用燃料に供され、副産物の苛性ソーダ(Na(OH))は再度余剰電力(深夜電力、風力や太陽光などの再生可能エネルギー)で溶融塩電気分解され金属ナトリウムを再生産する。これを反復させて使用すると、エンドレス・水素/ナトリウム・燃料サイクルが構築される。 Figure 4 is a hydrogen / sodium fuel cycle ⇒ caustic soda to make "eternal fuel" Ru der. The sodium metal (Na) obtained in the 8th step of Fig. 3 is hydrolyzed in a hydrogen generator, and the resulting hydrogen gas (H2) is the fuel for power generation at a thermal power plant (hydrogen combustion combined cycle power plant). The by-product caustic soda (Na (OH)) is again electrolyzed with molten salt using surplus power (renewable energy such as midnight power, wind power and sunlight) to regenerate metallic sodium. When used repeatedly, an endless hydrogen / sodium fuel cycle is built.

図5は、原子炉およびタービンを止め、水素燃焼タービンに交換して水蒸気の温度を6倍の1,700℃にして、現有原発発電効率を2倍以上の「水素燃焼コンバインドサイクル発電」として生まれ変わらせる構想概念図である。原子力発電において原子炉の運転停止時、定期点検時及び/又は収束時に原子炉の代替可能となる電力量を得るために、原子炉建屋に隣接して耐熱温度が1,700℃以上のタービンを有する水素燃焼コンバインドサイクル発電施設38を建設し、水素発生施設39で備蓄金属ナトリウム22に真水40を滴下して発生した水素41を、水素燃焼コンバインドサイクル発電施設38に送り、酸素42と共に燃焼器43で燃焼させる。この水素発生施設39の中に石油(軽油又は灯油)は金属ナトリウム22の加水分解を制御するための触媒としての働きも有している。コンバインドサイクル発電の特徴は、同じ出力の蒸気タービンより始動時間が短く、かつガスタービンの排気からも熱を回収するため、熱効率が高い。燃焼器43で燃焼した水素41と酸素42の高温ガスはガスタービン44を回転させて発電機21を駆動させてガスタービン発電を行う。 同時にボイラー45で作られた水蒸気で、元原子力発電所で使用していた蒸気タービン20を回転させて発電機21を回転させて水蒸気タービン発電を行う。蒸気タービン20を回した後の水蒸気は復水器2において上部細管6及び下部細管7の中を環流する海水で冷却され、水になってボイラー45に戻る。一方、上部細管6を出た高温海水11は電気分解工場17で減圧蒸留され、真水と濃縮海水が回収され、この濃縮海水を水溶液電気分解して、苛性ソーダ46が製造される。他方、水素発生装置で副産物として苛性ソーダ46が生成するが、これら苛性ソーダ46は苛性ソーダ貯蔵庫47に貯蔵される。この苛性ソーダ46は余剰電力で溶融塩電気分解して金属ナトリウムを製造するために使われる。 Figure 5 shows the concept of turning off the nuclear reactor and turbine, replacing it with a hydrogen combustion turbine, raising the steam temperature to 1,700 ° C, six times, and reborn as a “hydrogen combustion combined cycle power generation” with a current nuclear power generation efficiency of more than twice. Ru conceptual diagram der. Hydrogen that has a turbine with a heat-resistant temperature of 1,700 ° C or higher adjacent to the reactor building in order to obtain the amount of power that can be substituted for the nuclear reactor during nuclear shutdown, periodic inspection, and / or convergence. Combustion combined cycle power generation facility 38 is constructed, and hydrogen 41 generated by dripping fresh water 40 onto storage metal sodium 22 at hydrogen generation facility 39 is sent to hydrogen combustion combined cycle power generation facility 38 and combusted in combustor 43 together with oxygen 42. Let In this hydrogen generation facility 39, petroleum (light oil or kerosene) also functions as a catalyst for controlling the hydrolysis of the metallic sodium 22. The combined cycle power generation is characterized in that the start-up time is shorter than that of a steam turbine of the same output and heat is recovered from the exhaust of the gas turbine, so that the thermal efficiency is high. The high temperature gas of hydrogen 41 and oxygen 42 burned in the combustor 43 rotates the gas turbine 44 to drive the generator 21 to perform gas turbine power generation. At the same time, steam generated by the boiler 45 is used to rotate the steam turbine 20 used in the former nuclear power plant and rotate the generator 21 to perform steam turbine power generation. Steam after turning the steam turbine 20 is cooled in sea water circulating through the upper capillary 6 and lower thin tube 7 in the condenser 2, becomes water returns to the boiler 45. On the other hand, high-temperature seawater 11 exiting the upper narrow tube 6 is distilled under reduced pressure at an electrolysis factory 17 to recover fresh water and concentrated seawater, and this concentrated seawater is electrolyzed with an aqueous solution to produce caustic soda 46. On the other hand, caustic soda 46 is produced as a by-product in the hydrogen generator, and these caustic soda 46 is stored in a caustic soda storage 47. The caustic soda 46 is used to produce sodium metal by electrolysis of molten salt with surplus power.

図6は冷却水用配管のレーザー水中溶接と軽水中の耐水・耐熱性反射鏡の外略図である(請求項1,2,3の説明図)。原子力発電又は火力発電用復水器内2に敷設された冷却水環流用の細管6,7若しくは加圧水型原発の水蒸気発生器内の細管に亀裂が生じた際に、軽水4中または水中で、Nd・YAGレーザー23を用いて水中溶接を行い、亀裂部25の損傷を修復するもので、被修復細管が格納されている復水器2や水蒸気発生器外壁にNd/YAGレーザー光23を導入する合成石英ガラス製入射窓24を装着し、復水器2や水蒸気発生器の内部の軽水4又は水の中には、遠隔操作によりレーザー光を任意の場所に走査可能な反射鏡26又は被溶接部(亀裂部)25にレーザー光を集光できる凹面鏡26を配置して、複数の損傷箇所(亀裂部)25に万遍なくNd・YAGレーザー光23を走査・集光できるように煽り可能な複数個の水中溶接用反射鏡26を配備させ、その反射鏡26又は凹面鏡26の表面は、シリコーンオイル光酸化させた石英ガラス膜で被覆されて耐水・耐熱性を持つ保護膜を備えた復水器内又は加圧水型原子炉の水蒸気発生器に配備された光学系を有する損傷した細管の修復方法に関するものである。シリコーンオイルの代表であるジメチルシロキサンシリコーンオイルは天然石英と同じ無機質のシロキサン結合(Si-O-Si)と有機質のメチル基(-CH3)とから成る。図の(A)に示すように、珪素(Si)原子に結合した原子が酸素(O)原子の場合は硬質な石英であり、メチル基の場合は粘性のある油である。このメチル基を紫外線の光化学反応により酸素に置き換えれば有機シリコーンオイルを無機石英ガラスに変質できる。シリコーンオイルを構成するSi-Oの結合エネルギーは802[kJ/mol]でありSi-Cは441[kJ/mol]である。さらにこの吸収スペクトルは300nm以下である。一方紫外線源としてのXe2エキシマランプの波長は157nm(光子エネルギー:693kJ/mol)、あるいはArFエキシマレーザーの波長は193nm(光子エネルギー:617kJ/mol)である。このようにシリコーンオイルも紫外線を吸収し、かつ、Si-C結合を光解離するのに十分な光子エネルギーを持っている。他方 メチル基を構成するC-Hの結合エネルギーは340[kJ/mol]と低いため光解離される。しかしSi-O結合はXe2エキシマランプの光子エネルギーよりも大きいため光解離されない。そこでジメチルシロキサンシリコーンオイルを鏡26に塗布し、空気中でXe2エキシマランプ光を照射すると、表面に吸着した酸素が光照射によって励起され、 O2+hν→O(1D)+O(3P) のように活性酸素O(1D)を生成する。この活性酸素は光励起されたシリコーンオイルと [SiO(CH3)2]n+ nO(1D) + hν→(SiO2)n+CO2+H2O のように反応し、無機ガラスSiO2を形成し、解離したメチル基は残りの酸素と反応してCO2とH2Oを系外に排出する。この光酸化の過程で石英ガラスは無機ガラス化する。 この保護膜は紫外から近赤外線域まで透明で、収縮応力に伴う歪も亀裂の発生もなく、耐熱性、不燃性、耐水性を満し、かつ光散乱も無く、真空紫外線から近赤外線までの全波長を透過するコーティング剤であるため、高温水の中で耐性があり、高温・高圧の水蒸気や熱水中での水中溶接が可能になる。とくにこの細管6,7の内部には高い水圧がかった海水が環流しているため、この亀裂が誘因する事故を未然に防止するためには、軽水4を抜き、溶接補修するのが従来の方法であるが、軽水4をその都度抜いて、溶接作業をやることは時間の浪費だと考える。そこ復水器2の外部からレーザー光23を入射して、細管6,7の亀裂部25を水中溶接すれば遠隔操作での水中溶接ができると考える。 FIG. 6 is a schematic diagram of laser underwater welding of cooling water piping and a water-resistant / heat-resistant reflecting mirror in light water (explanatory diagram of claims 1, 2 and 3 ). When cracks tubules nuclear or 6,7 or a pressurized water steam onset raw instrument of primary capillary coolant ring diverted laid for the condenser in 2 thermal power occurs during light water 4 or water performs underwater welding using a Nd · YAG laser 23, intended to repair damage to the cracking section 25, Nd / YAG laser beam to the condenser 2 and water vapor onset production unit outside wall which the repair tubules are stored the synthetic quartz glass entrance window 24 for introducing an 23 mounted, in light water 4 or water inside the condenser 2 and water vapor onset raw instrument, scannable reflecting anywhere laser light by remote control A concave mirror 26 capable of condensing laser light is arranged on the mirror 26 or the welded part (cracked part) 25, and the Nd / YAG laser light 23 can be scanned and condensed uniformly on a plurality of damaged parts (cracked part) 25. A plurality of underwater welding reflecting mirrors 26 that can be wound like this are arranged, and the surface of the reflecting mirror 26 or the concave mirror 26 is Repair of damaged tubules with optics installed in a condenser or water vapor generator of a pressurized water reactor with a protective film with water and heat resistance coated with a silica glass photooxidized with silicone oil It is about the method. Dimethylsiloxane silicone oil, which is representative of silicone oil, consists of the same inorganic siloxane bonds (Si-O-Si) and organic methyl groups (-CH 3 ) as natural quartz. As shown in (A) of the figure, when the atom bonded to the silicon (Si) atom is an oxygen (O) atom, it is hard quartz, and when it is a methyl group, it is a viscous oil. If this methyl group is replaced with oxygen by ultraviolet photochemical reaction, the organic silicone oil can be transformed into inorganic quartz glass. The binding energy of Si—O constituting the silicone oil is 802 [kJ / mol], and Si—C is 441 [kJ / mol]. Furthermore, this absorption spectrum is 300 nm or less. On the other hand, the wavelength of the Xe 2 excimer lamp as an ultraviolet source is 157 nm (photon energy: 693 kJ / mol), or the wavelength of the ArF excimer laser is 193 nm (photon energy: 617 kJ / mol). Thus, silicone oil also absorbs ultraviolet light and has sufficient photon energy to photodissociate Si-C bonds. On the other hand, the bond energy of CH constituting the methyl group is as low as 340 [kJ / mol], so it is photodissociated. However, the Si-O bond is not photodissociated because it is larger than the photon energy of the Xe 2 excimer lamp. Therefore, when dimethylsiloxane silicone oil is applied to the mirror 26 and irradiated with Xe 2 excimer lamp light in the air, the oxygen adsorbed on the surface is excited by the light irradiation, and O 2 + hν → O ( 1 D) + O ( 3 Active oxygen O ( 1 D) is generated as in (P). The active oxygen of the silicone oil and [SiO (CH 3) 2], which is photoexcited n + nO (1 D) + hν → reacts as (SiO 2) n + CO 2 + H 2 O, an inorganic glass SiO 2 The formed and dissociated methyl group reacts with the remaining oxygen to discharge CO 2 and H 2 O out of the system. During this photo-oxidation process, quartz glass becomes inorganic glass. This protective film is transparent from the ultraviolet to the near-infrared region, is free from distortion and cracking due to shrinkage stress, heat resistance, non-flammability, water resistance, no light scattering, and from vacuum ultraviolet to near infrared Because it is a coating agent that transmits all wavelengths, it is resistant in high-temperature water, enabling underwater welding in high-temperature and high-pressure steam or hot water. In particular, because high-pressure seawater circulates inside the narrow pipes 6 and 7, the conventional method is to remove the light water 4 and repair the weld in order to prevent accidents caused by this crack. However, it is a waste of time to remove the light water 4 each time and perform the welding work. If the laser beam 23 is incident from the outside of the condenser 2 and the cracks 25 of the thin tubes 6 and 7 are welded underwater, it is considered that underwater welding can be performed remotely.

図7は風車頭部(ナセル)から発電機を外し、圧縮空気コンプレッサーに替えた風力エネルギー貯蔵システム概念図である(請求項の説明図)。一般に空気は圧縮すると体積が小さくなり大容量を貯蔵でき、圧搾空気を開放すると大出力放出する。正に風力電池(蓄圧)である。空気の取出し口は風車タワー27上部が望ましく、プロペラ型風車28の回転軸29に連動した空気コンプレッサー30を取り付けて、ナセル31内で圧搾空気を製造し、風車タワー27内部の圧搾空気貯蔵庫容器(タンク)32に貯蔵する。この圧縮空気を圧縮空気輸送配管33で圧力調整弁34を介して発電所35内の空気タービン36を回し、発電機37で発電する。 FIG. 7 is a conceptual diagram of a wind energy storage system in which a generator is removed from a windmill head (nacelle) and replaced with a compressed air compressor (an explanatory diagram of claim 4 ). In general, when air is compressed, its volume decreases and a large capacity can be stored, and when compressed air is released, a large output is released. It is a wind battery (accumulated pressure). The air outlet is preferably at the top of the wind turbine tower 27, and an air compressor 30 linked to the rotating shaft 29 of the propeller type wind turbine 28 is attached to produce compressed air in the nacelle 31, and a compressed air storage container ( Tank) 32. The compressed air is generated by the generator 37 by rotating the air turbine 36 in the power plant 35 through the pressure regulating valve 34 in the compressed air transport pipe 33.

図8は風力・圧縮空気発電所構想概念図である(請求項の説明図)。洋上若しくは沿岸又は陸上に設けられた複数基(100基以上が望ましい)のプロペラ型風車28の圧搾空気貯蔵庫32に蓄圧された圧搾空気は、圧縮空気輸送配管(高圧ホース)33により、原子力発電所や火力発電所の1基の大型空気タービン36に集められ、大型発電機(三相交流)37を回転させて電力を得ることができる。 FIG. 8 is a conceptual diagram of a wind power / compressed air power plant concept (an explanatory diagram of claim 4 ). The compressed air stored in the compressed air storage 32 of a plurality of propeller type wind turbines 28 (desirably 100 or more) installed on the sea, coast, or land is compressed by a compressed air transport pipe (high pressure hose) 33 at a nuclear power plant. It is collected in one large air turbine 36 of a thermal power plant and electric power can be obtained by rotating a large generator (three-phase alternating current) 37.

図9はゼーベック素子を用いた温度差発電構想概念図である。復水器2内の下部細管7から排出される冷却海水を更に冷却し沖合で放水させるために復水器2の下部細管7の冷却海水出口部に延長管となる二重管構造体を有する熱電子半導体温度差発電管48を接続する。この二重管構造体からなる熱電子半導体温度差発電管48の内管となる外壁に複数枚の熱電子発電素子(ゼーベック素子)49を配列し、内管を貫流する温排水8と該二重管構造体外管外壁と接触する表層海水(冷却)50との間の温度差をゼーベック素子による熱電子半導体温度差発電を行なう。このゼーベック素子49の発電電力容量を増加させる手段として、熱電子半導体温度差発電管48の長さを長くし、かつゼーベック素子49の数を増やして温排水8の熱をゼーベック素子49に吸収させる。これにより、温排水8と表層海水50との温度差はゼーベック素子49の起電力に変換されて電力が発生する。このような手段により熱電子半導体温度差発電管排水出口51から放水される温排水8の温度は表層海水50に限りなく近づけることが可能である。これにより温度差を7℃以下に抑えることが可能となる。この二重管構造体からなる熱電子半導体温度差発電管は無人島または孤島、島嶼または船舶に付随して設備することができる。
Figure 9 is Ru temperature difference power generation concept conceptual diagram der using Seebeck element. In order to further cool the cooling seawater discharged from the lower narrow tube 7 in the condenser 2 and discharge it offshore, a double pipe structure serving as an extension pipe is provided at the cooling seawater outlet of the lower thin tube 7 of the condenser 2 A thermoelectric semiconductor temperature difference power generation tube 48 is connected. A plurality of thermionic power generation elements (Seebeck elements) 49 are arranged on the outer wall serving as the inner tube of the thermoelectric semiconductor temperature difference power generation tube 48 having the double-pipe structure, and the hot drainage 8 flowing through the inner tube and the two The temperature difference between the outer surface seawater (cooling) 50 in contact with the outer wall of the outer tube of the heavy pipe structure is subjected to thermoelectric semiconductor temperature difference power generation by the Seebeck element. As means for increasing the generated power capacity of the Seebeck element 49, the length of the thermoelectric semiconductor temperature difference power generation pipe 48 is increased, and the number of Seebeck elements 49 is increased to cause the Seebeck element 49 to absorb the heat of the hot waste water 8. . As a result, the temperature difference between the warm drainage 8 and the surface seawater 50 is converted into the electromotive force of the Seebeck element 49 to generate electric power. By such means, the temperature of the warm drainage 8 discharged from the thermoelectric semiconductor temperature difference power generation tube drain outlet 51 can be brought close to the surface seawater 50 as much as possible. As a result, the temperature difference can be suppressed to 7 ° C. or less. The thermoelectric semiconductor temperature difference power generation tube composed of this double-pipe structure can be installed along with an uninhabited or isolated island, island or ship.

石油や石炭が燃料として君臨できた理由は、それらが軽く、かつ長期貯蔵や長距離輸送ができたからである。しかし、石油も石炭も可採年数は限られ、しかも二酸化炭素を排出する。これとは対照的に、水素は可採年数が無限で、二酸化炭素を出さず、クリーンで環境にも優しい燃料である。ところが、水素自身は軽いにも拘らず、水素を貯蔵する容器(ボンベ)や吸蔵合金が重過ぎて運搬には不向きである。そこで、“水素”を“水素の元(ナトリウム)”に変換した。このナトリウムは、海水や岩塩として世界中に広く分布し、枯渇の心配も偏存の心配も無い。一方、原子力発電や火力発電では、冷却のために汲み上げた莫大な量の海水が、高温のまま海洋放棄されている。この蓄熱された熱エネルギーを利用し、蒸留水と濃縮海水を回収し、その濃縮海水を、電気分解して、化石燃料の代替エネルギーとしての金属ナトリウムを製造備蓄して、電力需要時に火力発電所で発生させた水素で水素燃焼発電を行う。廃棄物として得られる苛性ソーダは化学工業用薬品として供給する。さらに金属ナトリウム製造過程で得られる副産物の真水、塩酸、硫酸、マグネシウムは従来大電力を用いて製造していた製品である。これが只同然で得られため経済効果大である。とくに海水から得られる金属ナトリウムは石油の代替エネルギーとして、枯渇の心配もなく、地域偏存も無い電力を生み出す資源として、我が国の産業へ多大の貢献ができる。
ただし、原発では、地震の振動で冷却管に亀裂ができ放射能が海に流失する危険性がある。この冷却のための細管の数は約1万本である。地震の振動で、その内1本でも亀裂が入ると原発では放射能の汚染水が海水に漏洩する。もしここで海水注入を止めると、原子炉の暴走が始まる。この細管の亀裂を未然に発見し、軽水中で補修することが必要である。ただし、復水器の細管内部には高い水圧がかっているため、亀裂の発生が懸念される。従って、この亀裂を誘因する事故を未然に防止するためには、冷却水を抜き、溶接補修しなければならない。しかし、冷却水をその都度抜いて、溶接作業をやることは時間の浪費だ。そこで復水器の外からレーザー光を入射して、細管を水中溶接すれば、原発の稼働中止期間を著しく短縮することができる。さらに原発が運転休止や廃炉になった場合などに、風力発電装置を利用して作った圧縮空気で、停止中の原子力発電や火力発電の水蒸気タービンを回転させて連動した発電機で電力発生させれば産業に貢献すると考える。


The reason why oil and coal have reigned as fuel is that they are light and can be stored for a long time and transported over long distances. However, both oil and coal are available for a limited number of years and emit carbon dioxide. In contrast, hydrogen is a clean and environmentally friendly fuel that has an indefinite life and does not emit carbon dioxide. However, although hydrogen itself is light, containers (cylinders) for storing hydrogen and storage alloys are too heavy to be suitable for transportation. Therefore, “hydrogen” was converted to “source of hydrogen (sodium)”. This sodium is widely distributed around the world as seawater and rock salt, and there is no worry about depletion or uneven distribution. On the other hand, in nuclear power generation and thermal power generation, a huge amount of seawater pumped for cooling is abandoned at high temperatures. Using this stored thermal energy, distilled water and concentrated seawater are recovered, and the concentrated seawater is electrolyzed to produce and store metallic sodium as an alternative energy for fossil fuels. Hydrogen-fired power generation using hydrogen generated in Caustic soda obtained as waste is supplied as chemical industry chemicals. In addition, by-products such as fresh water, hydrochloric acid, sulfuric acid, and magnesium obtained during the metal sodium manufacturing process are products that have been manufactured using high power. Since this is almost the same, it has a great economic effect. In particular, metallic sodium obtained from seawater can greatly contribute to Japan's industry as an alternative energy source for oil, as a resource for generating electricity without worrying about depletion and without local distribution.
However, at the nuclear power plant, there is a danger that the cooling pipe will be cracked by the vibration of the earthquake and the radioactivity will be lost to the sea. The number of thin tubes for cooling is about 10,000. If even one of them breaks due to earthquake vibration, radioactive contaminated water leaks into seawater at the nuclear power plant. If seawater injection is stopped here, the reactor runaway begins. It is necessary to detect the cracks in the capillaries and repair them in light water. However, there is a concern about the occurrence of cracks because of the high water pressure inside the condenser narrow tube. Therefore, in order to prevent an accident that causes this crack, it is necessary to drain the cooling water and repair the weld. However, it is a waste of time to drain the cooling water each time and perform the welding work. Therefore, if laser light is incident from the outside of the condenser and the thin tube is welded underwater, the operation stoppage period of the nuclear power plant can be significantly shortened. Further to the original calling the shutdown and decommissioning in case, etc. to which became, with compressed air, which was made using a wind turbine generator, linked by rotating the steam turbine of nuclear power and thermal power generation in the power generation stop state We think that it will contribute to industry if electricity is generated by the machine.


1 水蒸気入り口
2 開復水器
3 低温水出口
4 夫々の発熱源に戻る1次冷却水
5 海から汲みあげた海水(2次冷却水)
6 上部細管
7 下部細管
8 温排水
9 フラッシュ減圧蒸留缶
10 凝縮用コイル
11 50〜100℃の高温海水
12 水蒸気(濃縮塩水からの水蒸気)
13 凝縮して露結した蒸留水
14 真水受け皿
15 真水回収容器
16 20〜30%の高濃度濃縮塩水
17 電気分解工場
18 原子炉
19 仰燃料棒
20 発電用タービン
21 発電機
22 金属ナトリウム(Na)
23 Nd・YAGレーザー
24 合成石英ガラス製入射窓
25 亀裂部(被溶接部)
26 レーザー光を任意の場所に走査可能な反射鏡(集光できる凹面鏡)
27 風車タワー
28 プロペラ型風車
29 回転軸
30 空気コンプレッサー
31 ナセル
32 圧搾空気貯蔵庫容器(タンク)
33 圧縮空気輸送配管
34 圧力調整弁
35 発電所
36 空気タービン
37 発電機
38 水素燃焼コンバインドサイクル発電施設
39 水素発生施設
40 真水
41 水素
42 酸素
43 燃焼器
44 ガスタービン
45 ボイラー
46 苛性ソーダ
47 苛性ソーダ貯蔵庫
48 熱電子半導体温度差発電管
49 熱電子発電素子(ゼーベック素子)
50 表層海水(冷却)
51 熱電子半導体温度差発電管排水出口

1 Steam inlet 2 Open condenser
3 Low temperature water outlet 4 Primary cooling water returning to the respective heat source 5 Seawater pumped from the sea (secondary cooling water)
6 Upper narrow tube 7 Lower narrow tube 8 Warm drainage 9 Flash vacuum distillation can 10 Condensation coil 11 High temperature seawater at 50-100 ° C 12 Water vapor (water vapor from concentrated salt water)
13 Condensed condensed water 14 Fresh water tray 15 Fresh water collection vessel 16 High concentration concentrated salt water 17 of 20-30% 17 Electrolysis plant 18 Reactor 19 Hoisting fuel rod 20 Power generation turbine 21 Generator 22 Metal sodium (Na)
23 Nd / YAG laser 24 Synthetic silica glass entrance window 25 Crack (welded part)
26 Reflector that can scan laser light to any location (concave concave mirror)
27 Wind turbine tower 28 Propeller type wind turbine 29 Rotating shaft 30 Air compressor 31 Nacelle 32 Compressed air storage container (tank)
33 Compressed air transport piping 34 Pressure regulating valve 35 Power plant 36 Air turbine 37 Generator 38 Hydrogen combustion combined cycle power generation facility 39 Hydrogen generation facility 40 Fresh water 41 Hydrogen 42 Oxygen 43 Combustor 44 Gas turbine 45 Boiler 46 Caustic soda 47 Caustic soda storage 48 Heat Electronic semiconductor temperature difference generation tube 49 Thermionic power generation element (Seebeck element)
50 Surface seawater (cooling)
51 Thermoelectric semiconductor temperature difference power pipe drain outlet

Claims (3)

原子力発電又は火力発電用復水器内に備えられた冷却水循環用細管又は加圧水型原発の水蒸気発生器内の細管に亀裂が生じた際に、軽水中又は水中で溶接を行う目的で、該復水器若しくは該水蒸気発生器の外壁の任意の位置に設けた合成石英ガラスからなるレーザー入射窓を備え、該復水器や該水蒸気発生器の内部の軽水又は水の中に煽り可能な複数個の平面または凹面からなる水中溶接用反射鏡を配備させ、遠隔操作により被修復細管に万遍なくレーザー光を走査・集光させることを特徴とする原発用被修復細管の水中溶接方法。 For the purpose of welding in light water or underwater when cracks occur in a cooling water circulation narrow tube or a pressurized water steam generator in a condenser for nuclear power generation or thermal power generation. A laser incident window made of synthetic quartz glass provided at an arbitrary position on the outer wall of the water vessel or the water vapor generator, and a plurality of light water or water that can be immersed in the condenser or the water vapor generator. An underwater welding method for a primary tube to be repaired, characterized in that a mirror for underwater welding consisting of a flat surface or a concave surface is provided, and laser light is scanned and collected uniformly over the tube to be repaired by remote control. 前記レーザー光がNd・YAGレーザー光であることを特徴とする請求項1記載の原発用被修復細管の水中溶接方法。 2. The underwater welding method for a repaired capillary tube for a nuclear power plant according to claim 1, wherein the laser beam is an Nd / YAG laser beam. 前記水中溶接用反射鏡又は凹面鏡に耐水・耐熱性を持たせる目的で、該反射鏡又は該凹面鏡表面にシリコーンオイルを光酸化させた保護膜で被覆することを特徴とする請求項1記載の原発用被修復細管の水中溶接方法。
2. The nuclear power plant according to claim 1, wherein a surface of the reflecting mirror or the concave mirror is covered with a protective film obtained by photo-oxidizing silicone oil for the purpose of imparting water resistance and heat resistance to the reflecting mirror or concave mirror for underwater welding. Underwater welding method for repaired narrow tubes.
JP2015201738A 2015-10-13 2015-10-13 Underwater welding method for repaired capillaries for nuclear power generation Active JP6097956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201738A JP6097956B2 (en) 2015-10-13 2015-10-13 Underwater welding method for repaired capillaries for nuclear power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201738A JP6097956B2 (en) 2015-10-13 2015-10-13 Underwater welding method for repaired capillaries for nuclear power generation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011226389A Division JP5970664B2 (en) 2011-10-14 2011-10-14 Use of seawater cooling water in nuclear power plants and thermal power plants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016210213A Division JP6311089B2 (en) 2016-10-27 2016-10-27 Compressed air power generation method for decommissioning or out of operation nuclear power plants

Publications (2)

Publication Number Publication Date
JP2016075469A JP2016075469A (en) 2016-05-12
JP6097956B2 true JP6097956B2 (en) 2017-03-22

Family

ID=55951264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201738A Active JP6097956B2 (en) 2015-10-13 2015-10-13 Underwater welding method for repaired capillaries for nuclear power generation

Country Status (1)

Country Link
JP (1) JP6097956B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210838B (en) * 2021-06-09 2022-11-29 四川航天长征装备制造有限公司 Box sealing circumferential weld repair welding method based on back-pumping friction stir welding process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730570U (en) * 1980-07-25 1982-02-17
US5359172A (en) * 1992-12-30 1994-10-25 Westinghouse Electric Corporation Direct tube repair by laser welding
US5430270A (en) * 1993-02-17 1995-07-04 Electric Power Research Institute, Inc. Method and apparatus for repairing damaged tubes
JP2013057291A (en) * 2011-09-08 2013-03-28 M Hikari Energy Kaihatsu Kenkyusho:Kk Method of using seawater cooling water of nuclear power plant

Also Published As

Publication number Publication date
JP2016075469A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP5970664B2 (en) Use of seawater cooling water in nuclear power plants and thermal power plants
JP2013087302A5 (en) Use of seawater cooling water in nuclear power plants and thermal power plants
JP2013057291A (en) Method of using seawater cooling water of nuclear power plant
JP6311089B2 (en) Compressed air power generation method for decommissioning or out of operation nuclear power plants
JP6243357B2 (en) Methods and systems for energy conversion and generation
El-Ghonemy Future sustainable water desalination technologies for the Saudi Arabia: a review
JP5311366B2 (en) Turbine system, system and method for supplying energy to a supercritical carbon dioxide turbine
JP2008014627A (en) Solar energy tower system, and method of using high-temperature molten salt in solar energy tower system
US20190319285A1 (en) Renewable energy system
KR101056856B1 (en) Superheated steam generator, power line and connecting robot
JP6097956B2 (en) Underwater welding method for repaired capillaries for nuclear power generation
JP6089251B2 (en) How to use hot wastewater and hot waste heat from thermal power plants
CN1800590A (en) Electricity generating method and apparatus
JP2010099628A (en) Seawater desalination system by vaporization(natural) using concentrating solar heat energy or the like and power generation system
JP2004203166A (en) Power generation plant ship
CN206706218U (en) The hydrogen manufacturing of clean energy resource seawater and sodium hypochlorite system
US20090255527A1 (en) Solar-powered system and method for providing utilities
KR101358303B1 (en) Floating marine structure and electricity generation method using the same
CN114990583A (en) Solar hydrogen production system based on magnesium-chlorine thermochemical cycle
KR200209292Y1 (en) Solar energy utilization and storage
JP5325970B2 (en) Power generation method using solar heat and heat other than solar heat
JPS5813172A (en) Power-generation method by pumping-up of capillary phenomenon
WO2018105166A1 (en) System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system
CN201884186U (en) Device for generating electricity by using solar energy
CN110332086A (en) A kind of solar energy optical-thermal water-electricity cogeneration technique

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170125

R150 Certificate of patent or registration of utility model

Ref document number: 6097956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250