JP6097904B2 - Surface processing method of aluminum substrate - Google Patents

Surface processing method of aluminum substrate Download PDF

Info

Publication number
JP6097904B2
JP6097904B2 JP2013133411A JP2013133411A JP6097904B2 JP 6097904 B2 JP6097904 B2 JP 6097904B2 JP 2013133411 A JP2013133411 A JP 2013133411A JP 2013133411 A JP2013133411 A JP 2013133411A JP 6097904 B2 JP6097904 B2 JP 6097904B2
Authority
JP
Japan
Prior art keywords
processing
fine
aluminum
rough surface
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013133411A
Other languages
Japanese (ja)
Other versions
JP2015006719A (en
Inventor
雄輔 関
雄輔 関
海老原 健
健 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2013133411A priority Critical patent/JP6097904B2/en
Publication of JP2015006719A publication Critical patent/JP2015006719A/en
Application granted granted Critical
Publication of JP6097904B2 publication Critical patent/JP6097904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)

Description

この発明は、アルミニウム又はアルミニウム合金で形成され、鏡面又は鏡面に近い状態に鏡面加工された鏡面加工後のアルミ基材の表面に、球状微粒子を含む粒子分散液を噴射する微細粗面加工を施し、アルミ基材の表面に微細な凹凸が均一に付与された微細粗面を形成するアルミ基材の表面加工方法に関し、特に限定するものではないが、液晶表示装置、CRTディスプレイ、ELディスプレイ等の画像表示装置の視認性を向上させる防眩フィルムを製造するためのエンボスロール等の金型を始めとして、印刷用ロール、陽極酸化用ロール、光学部品用ロール等の用途に用いるロール材などを製造する上で有用なアルミ基材の表面加工方法に関する。   In the present invention, the surface of an aluminum substrate that is formed of aluminum or an aluminum alloy and is mirror-finished to a mirror surface or a state close to a mirror surface is subjected to a fine rough surface process for injecting a particle dispersion containing spherical fine particles. The surface treatment method of the aluminum base material that forms a fine rough surface with fine irregularities uniformly applied to the surface of the aluminum base material is not particularly limited, but includes a liquid crystal display device, a CRT display, an EL display, etc. Manufactures roll materials used for printing rolls, anodizing rolls, rolls for optical components, etc., including molds such as embossing rolls for producing anti-glare films that improve the visibility of image display devices The present invention relates to a surface processing method of an aluminum base useful for making.

アルミニウム又はアルミニウム合金で形成されたアルミ基材の表面に、微細な凹凸が付与された微細粗面を形成する微細粗面加工の方法としては、酸性溶液又はアルカリ性溶液でのエッチング処理等の化学的な方法が知られており、この方法はエッチング液を用いてアルミ基材の表面を化学的に溶解することによりその表面に凹凸を付与するものである。   As a method of processing the fine rough surface to form a fine rough surface with fine irregularities on the surface of an aluminum substrate formed of aluminum or an aluminum alloy, chemical treatment such as etching treatment with an acidic solution or an alkaline solution is possible. In this method, the surface of an aluminum substrate is chemically dissolved by using an etching solution to give unevenness to the surface.

しかしながら、この化学的な方法においては、酸性溶液又はアルカリ性溶液を用いてアルミ基材の表面を溶解することから、アルミ基材中に含まれる第二相化合物に起因する表面欠陥が生じたり、局所的に過剰な溶解が生じて表面処理が不均一になる等の問題があるほか、溶解によってアルミ基材の表面に減肉が発生し、板材では平坦度が低下し、また、ロール材では真円度が低下し、所望の規定形状を維持できないという問題もある。   However, in this chemical method, since the surface of the aluminum substrate is dissolved using an acidic solution or an alkaline solution, surface defects caused by the second phase compound contained in the aluminum substrate may occur, In addition, there is a problem that the surface treatment becomes uneven due to excessive melting, and the thinning occurs on the surface of the aluminum base material due to melting, the flatness of the plate material decreases, and the roll material is true. There is also a problem that the circularity is lowered and a desired prescribed shape cannot be maintained.

また、アルミ基材の表面に微細粗面を形成する微細粗面加工の方法として、液体ホーニングやドライブラスト等の物理的・機械的な手法も知られており、この手法はアルミ基材の表面に研磨材を吹き付け、この吹き付けられた研磨材により表面を削りながら凹凸を付与するものである。このような物理的・機械的な手法としては、例えば以下のような方法が提案されている。   In addition, physical and mechanical methods such as liquid honing and drive last are also known as methods of fine rough surface processing that form a fine rough surface on the surface of an aluminum base material. Abrasive material is sprayed on the surface, and irregularities are imparted while the surface is shaved by the sprayed abrasive material. As such physical and mechanical methods, for example, the following methods have been proposed.

特許文献1〜3においては、炭化ケイ素、窒化ケイ素、窒化ホウ素等からなる粒径20〜80μmの研磨材(特許文献1)、ポリマー微粉末からなる粒径20〜200μmの研磨材(特許文献2)、酸化アルミニウム、炭化ケイ素、窒化ケイ素、窒化ホウ素等からなる平均粒径10〜50μmの研磨材(特許文献3)を用い、湿式ホーニング法により電子写真感光体用導電性基体(アルミニウムパイプ)の表面を粗面化することが開示されている。   In Patent Documents 1 to 3, an abrasive having a particle diameter of 20 to 80 μm (Patent Document 1) made of silicon carbide, silicon nitride, boron nitride or the like, and an abrasive having a particle diameter of 20 to 200 μm made of a fine polymer powder (Patent Document 2). ), An abrasive having an average particle diameter of 10 to 50 μm (Patent Document 3) made of aluminum oxide, silicon carbide, silicon nitride, boron nitride, etc. It is disclosed to roughen the surface.

また、特許文献4においては、鉄やアルミニウム等の金属製円筒ロールの表面に、ニッケル及び/又はクロムの金属メッキ層を設け、この金属メッキ層の表面を鏡面研磨した後に、炭化珪素、アルミナ、酸化クロム、酸化ジルコニウム等(セラミックビース)からなる平均粒径1〜100μmの研磨材を用いてブラスト処理し、表面に微細な凹凸を有するエンボスロールを製造することが開示されている。   Moreover, in patent document 4, after providing the metal plating layer of nickel and / or chromium on the surface of metal cylinder rolls, such as iron and aluminum, and mirror-polishing the surface of this metal plating layer, silicon carbide, an alumina, It is disclosed that an embossing roll having fine irregularities on its surface is manufactured by blasting using an abrasive having an average particle diameter of 1 to 100 μm made of chromium oxide, zirconium oxide or the like (ceramic beads).

更に、特許文献5においては、鉄製ベースロールの表面に銅めっき層を設け、この銅めっき層を鏡面研磨した後、鏡面研磨後の銅めっき層にエッチング液と砥粒を含んだウエットブラスト処理を施して、銅めっき層の表面に凹凸が形成されたエンボスロールを製造することが開示されている。   Further, in Patent Document 5, a copper plating layer is provided on the surface of the iron base roll, and after the copper plating layer is mirror-polished, the copper plating layer after the mirror polishing is subjected to a wet blast treatment including an etching solution and abrasive grains. It is disclosed to produce an embossing roll having irregularities formed on the surface of a copper plating layer.

更にまた、特許文献6には、研磨された金属(アルミニウム板等)の表面にジルコニアやアルミナ等のセラミック系ビーズ、スチール製等の金属系ビーズ等の微粒子をぶつけて凹凸を形成し、その凹凸面に無電解ニッケルメッキを施して防眩フィルム製造用の金型とすることが記載されており、また、特許文献7には、アルミニウムロール等の金属の表面に銅めっき又はニッケルめっきを施し、そのめっき面を研磨した後、その研磨面にジルコニアやアルミナ等のセラミック系ビーズ、スチール製等の金属系ビーズ等の微粒子をぶつけて凹凸を形成し、その凹凸面にクロムめっきを施して防眩フィルム製造用の金型とすることが記載されている。   Furthermore, in Patent Document 6, irregularities are formed by hitting the surface of a polished metal (such as an aluminum plate) with fine particles such as ceramic beads such as zirconia and alumina, and metal beads such as steel. It is described that the surface is subjected to electroless nickel plating to produce a mold for producing an antiglare film, and in Patent Document 7, copper plating or nickel plating is applied to the surface of a metal such as an aluminum roll, After polishing the plated surface, bumps are formed on the polished surface by hitting fine particles such as ceramic beads such as zirconia and alumina, and metal beads made of steel, etc., and the uneven surface is chrome plated to prevent glare It describes that it is a mold for film production.

しかしながら、上記の特許文献1〜3及び5〜7に記載されている液体ホーニングの方法は、研磨材を含んだ液体(加工液)を吹き付けることにより、アルミ基材の表面を削り落しながら凹凸を付与する方法であり、不可避的にアルミ基材の減肉が発生し、化学的な方法の場合と同様に、板材では平坦度が低下し、また、ロール材では真円度が低下し、所望の規定形状を維持できないという問題がある。   However, the liquid honing methods described in the above-mentioned Patent Documents 1 to 3 and 5 to 7 are provided with unevenness while scraping off the surface of the aluminum base material by spraying a liquid (processing liquid) containing an abrasive. This is a method of imparting, unavoidably reducing the thickness of the aluminum base material, and in the same way as in the chemical method, the flatness is lowered in the plate material, and the roundness is lowered in the roll material. There is a problem that the prescribed shape cannot be maintained.

しかも、このような研磨材を含む液体(加工液)をアルミ基材の表面に吹き付けて凹凸を付与する液体ホーニングの方法においては、アルミ基材表面の被加工面が噴射ノズルの幅寸法を超えて大きくなると、この被加工面の全面を微細粗面に加工するためには、被加工面に向けて加工液を噴射する噴射ノズル走査を複数回に分けて実施しなければならなくなり、各噴射ノズル走査を行った際に、噴射された加工液中の研磨材が被加工面に衝突して形成され、噴射ノズルの幅寸法に応じて生じる走査処理後の走査処理面の走査方向両端(最初の噴射ノズル走査と最後の噴射ノズル走査では片端)において、加工液が重複して噴射され、重複して加工処理される部分(以下、「処理継ぎ目」という。)が不可避的に発生する。また、このような処理継ぎ目は、単に加工液が被加工面に衝突して形成される処理面の走査方向両端(又は片端)において発生するだけでなく、例えばエンボスロールの製造時においては各噴射ノズル走査の開始部分と終了部分においても不可避的に発生する。そして、このような複数回の噴射ノズル走査により発生した処理継ぎ目は、アルミ基材の表面に形成された微細粗面において帯状に観察され、加工後に得られたエンボスロール等の金型を始めとする製品の美観を損ねるだけでなく、エンボスロール等の金型を用いて製造される防眩フィルムにも転写され、特に高画質が求められる画像表示装置で用いられるとその視認性を低下させる原因にもなる。   In addition, in the liquid honing method in which a liquid (working fluid) containing such an abrasive is sprayed on the surface of the aluminum substrate to provide irregularities, the surface to be processed on the surface of the aluminum substrate exceeds the width dimension of the injection nozzle. In order to process the entire surface to be processed into a fine rough surface, it is necessary to carry out the injection nozzle scanning for injecting the processing liquid toward the processing surface in a plurality of times. When nozzle scanning is performed, the abrasive in the injected working fluid collides with the surface to be processed, and both ends in the scanning direction of the scanning processing surface after the scanning processing that occurs according to the width dimension of the injection nozzle (initially In one of the injection nozzle scan and the last injection nozzle scan, the processing liquid is ejected in an overlapping manner, and a portion that is processed in an overlapping manner (hereinafter referred to as a “processing seam”) inevitably occurs. Further, such processing seams are not only generated at both ends (or one end) in the scanning direction of the processing surface formed by the machining liquid colliding with the processing surface, but for example, at the time of manufacturing an embossing roll, It also inevitably occurs at the start and end of nozzle scanning. And the processing seam generated by such a plurality of injection nozzle scans is observed in a band shape on the fine rough surface formed on the surface of the aluminum base material, and includes a mold such as an emboss roll obtained after processing. Causes that not only detract from the beauty of the product to be used, but also transferred to an antiglare film manufactured using a mold such as an embossing roll, and when used in an image display device that particularly requires high image quality It also becomes.

また、特許文献4に記載されているドライブラストの方法においては、ブラスト装置から噴霧された気体に乗せて研磨材のセラミックビーズを飛ばす必要があることから、使用するビーズはそのサイズや比重が必然的に大きくなり、また、球状でないものも含まれ、均一で微細な凹凸面の加工には不向きである。このドライブラストの方法で数μm〜数十μmの微小なサイズの研磨材を使用すると、ブラスト装置から噴射した微小な研磨材は大気の抵抗を受けて拡散してしまい、広い範囲のアルミ基材を均一に処理することは困難である。   Further, in the drive last method described in Patent Document 4, since it is necessary to fly the ceramic beads of the abrasive on the gas sprayed from the blasting device, the beads to be used necessarily have the size and specific gravity. In addition, some of them are not spherical and are not suitable for processing a uniform and fine uneven surface. When a small size abrasive of several μm to several tens of μm is used with this drive last method, the fine abrasive sprayed from the blasting device diffuses due to atmospheric resistance, and a wide range of aluminum base materials It is difficult to uniformly treat

なお、アルミ基材の表面に微細な凹凸を形成する方法として、エキシマレーザー等による加工方法もあるが、この方法ではその加工限界が最小径については20μmφ程度であって、最小深さについては10μm程度であり、加工時間が長くなるほか加工コストも高く、例えば300mm×300mmを超える大面積への加工は不得意である。   As a method for forming fine irregularities on the surface of the aluminum substrate, there is a processing method using an excimer laser or the like. In this method, the processing limit is about 20 μmφ for the minimum diameter, and the minimum depth is 10 μm. The processing time is long and the processing cost is high. For example, processing to a large area exceeding 300 mm × 300 mm is not good.

特開平04-300,163号公報Japanese Patent Laid-Open No. 04-300,163 特開平09-054,444号公報JP 09-054,444 A 特開平09-179,324号公報JP 09-179,324 A 特開2004-090,187号公報Japanese Patent Laid-Open No. 2004-090,187 特開2008-221,562号公報JP 2008-221,562 特開2006-053,371号公報JP 2006-053,371 特開2007-187,952号公報JP 2007-187,952

そこで、本発明者らは、鏡面加工後のアルミ基材の被加工面(鏡面)に微細粗面加工を施して微細粗面を形成するに際し、微細粗面加工前に形成された硬度の平坦度や真円度を損なうことがなく、被加工面(鏡面)に微細な凹凸が均一に付与された微細粗面を形成することができるアルミ基材の表面加工方法について鋭意検討した結果、微細粗面加工の際に用いる加工液中の球状微粒子の目標粒径と、微細粗面加工の際の加工液の噴射圧力と、微細粗面加工時にアルミ基材の被加工面に衝突する球状微粒子の粒子総数(目標粒径換算)を所定の範囲に調整することにより、目的を達成できることを見出し、本発明を完成した。   Accordingly, the inventors of the present invention, when applying a fine rough surface to the processed surface (mirror surface) of the aluminum base material after the mirror surface processing to form a fine rough surface, the flatness of the hardness formed before the fine rough surface processing. As a result of diligent investigation on the surface processing method of aluminum base material that can form a fine rough surface with fine irregularities uniformly applied to the processed surface (mirror surface) without impairing the degree of roundness and roundness. The target particle size of spherical fine particles in the machining fluid used for rough surface machining, the injection pressure of the machining fluid for fine rough surface machining, and the spherical fine particles that collide with the work surface of the aluminum substrate during fine rough surface machining. It was found that the object can be achieved by adjusting the total number of particles (converted to the target particle size) within a predetermined range, and the present invention was completed.

従って、本発明の目的は、鏡面加工後のアルミ基材の被加工面(鏡面)に微細粗面加工を施して微細粗面を形成するに際し、微細粗面加工前に形成された高度の平坦度や真円度を損なうことがなく、被加工面(鏡面)に微細な凹凸が均一に付与された微細粗面を形成することができるアルミ基材の表面加工方法を提供することにある。   Accordingly, an object of the present invention is to provide a high degree of flatness formed before the fine rough surface processing when the fine rough surface processing is performed on the processed surface (mirror surface) of the aluminum base material after the mirror surface processing. An object of the present invention is to provide a surface processing method for an aluminum base material that can form a fine rough surface in which fine irregularities are uniformly provided on a surface to be processed (mirror surface) without impairing the degree of roundness and roundness.

すなわち、本発明は、アルミニウム又はアルミニウム合金で形成されたアルミ基材の表面に、この表面を鏡面状態又は鏡面に近い状態の被加工面に加工する鏡面加工を施し、次いで前記鏡面加工後のアルミ基材の被加工面に球状微粒子を分散させて調製した加工液を噴射する噴射ノズル走査により、前記被加工面を微細な凹凸を有する微細粗面に加工する微細粗面加工を施し、アルミ基材の表面に微細粗面を形成するアルミ基材の表面加工方法であって、
前記微細粗面加工の噴射ノズル走査において処理継ぎ目が発生しないものであって、この微細粗面加工の際に用いられる加工液中の球状微粒子の目標粒径が3〜100μmであり、また、前記微細粗面加工の際における加工液の噴射圧力が0.15〜0.4MPaであると共に、この微細粗面加工時に微細粗面が形成されるまでの間にアルミ基材の被加工面に噴射する球状微粒子の粒子総数(目標粒径換算)が1×107〜5×108個/mm2であり、前記微細粗面加工後の微細粗面において、鏡面加工後で微細粗面加工前のアルミ基材の被加工面における平坦度及び/又は真円度が実質的に維持されることを特徴とするアルミ基材の表面加工方法である。
That is, the present invention provides a surface of an aluminum base material formed of aluminum or an aluminum alloy by performing a mirror surface processing for processing the surface into a processed surface in a mirror surface state or a state close to a mirror surface, and then performing the mirror surface processing. By subjecting the surface to be processed to a fine rough surface having fine irregularities by spray nozzle scanning for spraying a processing liquid prepared by dispersing spherical fine particles on the surface to be processed, an aluminum base is provided. A surface processing method for an aluminum base material that forms a fine rough surface on the surface of the material,
Be those processed seams in the spray nozzle scans the fine surface roughening does not occur, the target particle diameter of the spherical particles of the machining fluid used in the micro-surface roughening is 3 to 100 m, Further, the The spray pressure of the working fluid during fine rough surface machining is 0.15 to 0.4 MPa, and the fine rough surface is formed during the fine rough surface processing until the fine rough surface is formed. The total number of spherical fine particles to be converted (target particle size conversion) is 1 × 10 7 to 5 × 10 8 particles / mm 2 , and on the fine rough surface after the fine rough surface processing, after the mirror surface processing and before the fine rough surface processing. The aluminum substrate surface processing method is characterized in that the flatness and / or roundness of the processed surface of the aluminum substrate is substantially maintained.

また、本発明は、アルミニウム又はアルミニウム合金で形成されたアルミ基材の表面に、この表面を鏡面状態又は鏡面に近い状態の被加工面に加工する鏡面加工を施し、次いで前記鏡面加工後のアルミ基材の被加工面に、球状微粒子を分散させて調製した加工液を噴射する噴射ノズル走査により、前記被加工面を微細な凹凸を有する微細粗面に加工する微細粗面加工を施し、アルミ基材の表面に微細粗面を形成するアルミ基材の表面加工方法であって、
この微細粗面加工の際に用いられる加工液中の球状微粒子の目標粒径が3〜100μmの中にある特定の数値であり、また、前記微細粗面加工の際における加工液の噴射圧力が0.1〜0.4MPaであると共に、この微細粗面加工時に微細粗面が形成されるまでの間にアルミ基材の被加工面に噴射する球状微粒子の粒子総数(目標粒径換算)が1×104〜5×108個/mm2であり、
前記微細粗面加工の噴射ノズル走査において処理継ぎ目が発生するものであって、鏡面加工後のアルミ基材の被加工面に噴射する球状微粒子の粒子総数を複数のN画(Nは2以上の自然数)に分割し、この分画された各画の粒子数の球状微粒子を含むN画の分割加工液を調製し、微細粗面加工時には前記アルミ基材の被加工面の全面に亘って各分割加工液を噴射する加工液噴射操作をN回繰り返して実施することを特徴とするアルミ基材の表面加工方法。
In addition, the present invention provides a surface of an aluminum substrate formed of aluminum or an aluminum alloy by performing a mirror surface processing for processing the surface into a processed surface in a mirror surface state or a state close to a mirror surface, and then applying the mirror surface processing to the aluminum after the mirror surface processing. The surface to be processed of the base material is subjected to fine rough surface processing for processing the surface to be processed into a fine rough surface having fine irregularities by spray nozzle scanning for injecting a processing liquid prepared by dispersing spherical fine particles. A surface processing method for an aluminum base material that forms a fine rough surface on the surface of the base material,
The target particle diameter of the spherical fine particles in the machining liquid used in the fine rough surface machining is a specific numerical value within 3 to 100 μm, and the injection pressure of the machining liquid in the fine rough surface machining is In addition to 0.1 to 0.4 MPa, the total number of spherical fine particles (target particle size conversion) to be injected onto the work surface of the aluminum base material until the fine rough surface is formed during the fine rough surface processing. 1 × 10 4 to 5 × 10 8 pieces / mm 2
Be those processed seam occurs in the spray nozzle scans the fine surface roughening, a plurality of N images of particles total number of spherical fine particles for injecting the treated surface of the aluminum substrate after mirror finishing (N is 2 or more (Natural number) is divided into N fractions containing spherical fine particles having the same number of fractions as each fraction, and each surface is processed over the entire surface of the aluminum substrate during fine roughing. A surface processing method for an aluminum base material, characterized in that a processing liquid injection operation for injecting a divided processing liquid is repeated N times.

本発明において、上記アルミ基材の材質や形状については、それがアルミニウム又はアルミニウム合金で形成されており、また、全体的にあるいは部分的に所望の平坦度や真円度を付与するために鏡面加工を適用することができる形状であれば、特に制限されるものではなく、本発明で提供されるアルミ基材の用途に応じて要求される強度、耐食性、加工性等の種々の物性や形状に基づいて、適宜選択して使用することができる。   In the present invention, the material and shape of the aluminum base material are formed of aluminum or an aluminum alloy, and are mirror-finished to give desired flatness or roundness in whole or in part. As long as the shape can be processed, it is not particularly limited, and various physical properties and shapes such as strength, corrosion resistance, and workability required according to the use of the aluminum substrate provided in the present invention. Can be selected and used as appropriate.

また、アルミ基材に所定の平坦度や真円度を付与する鏡面加工についても、機械的な又は化学的な種々の加工を適用することができ、例えばNC旋盤やマシニングセンタ等を用いた切削加工、超硬ツール等を用いたバニッシング加工等の機械的な加工や、ダイヤモンドペースト、酸化マグネシウム等を用いた化学研磨や電解研磨等の化学的な加工や、機械的な加工の後に化学的な加工を行う併用方法等を例示できる。特に、低コストで広い面積の表面を鏡面状態又は鏡面に近い状態に加工するためには、切削加工やバニッシング加工あるいはこれら切削加工とバニッシング加工の組合せにより鏡面加工を行うのがよい。この鏡面加工により、鏡面であって引き続いて実施される微細粗面加工の被加工面となる高い平坦度又は真円度の表面を有するアルミ基材が得られる。   In addition, various mechanical or chemical processes can be applied to the mirror surface processing that gives a predetermined flatness and roundness to the aluminum base material. For example, cutting using an NC lathe, a machining center, or the like. , Mechanical processing such as burnishing using cemented carbide tools, chemical processing such as chemical polishing and electrolytic polishing using diamond paste, magnesium oxide, etc., and chemical processing after mechanical processing The combination method etc. which perform can be illustrated. In particular, in order to process a surface with a large area at a low cost into a mirror surface state or a state close to a mirror surface, it is preferable to perform mirror surface processing by cutting processing, burnishing processing, or a combination of these cutting processing and burnishing processing. By this mirror surface processing, an aluminum base material having a high flatness or roundness surface that is a mirror surface and is a surface to be processed in the subsequent fine rough surface processing is obtained.

本発明においては、前記鏡面加工後のアルミ基材の被加工面に、球状微粒子を分散させて調製した加工液を噴射する微細粗面加工を施し、前記被加工面を微細な凹凸を有する微細粗面に加工する。   In the present invention, the surface to be processed of the mirror-finished aluminum base material is subjected to fine rough surface processing in which a processing liquid prepared by dispersing spherical fine particles is sprayed, and the surface to be processed has a fine unevenness. Process to a rough surface.

ここで、鏡面加工後のアルミ基材の被加工面に微細粗面加工を施すための加工液については、球状微粒子を分散させて調製した球状微粒子分散液が用いられるが、この加工液を調製するための球状微粒子としては、例えば、炭化ケイ素、窒化ケイ素、窒化ホウ素、アルミナ、ジルコニア、酸化クロム等のセラミック系ビーズ、スチール製等の金属系ビーズ、ホウケイ酸ガラス等のガラス系ビーズ等を挙げることができるが、好ましくは比較的低比重で容易に入手し得るホウケイ酸ガラスビーズの使用が好ましく、また、加工液を調製するための溶剤としては、低粘度で前記球状微粒子と反応せず、加工液中で球状微粒子の凝集を防止し得るものであるのがよく、加工液噴射装置で使用できるものであれば特に限定されないが、好ましくは安価で入手し易い水道水、蒸留水、脱イオン水等を例示することができる。   Here, a spherical fine particle dispersion prepared by dispersing spherical fine particles is used as a working liquid for applying a fine rough surface to the processed surface of the aluminum base material after mirror finishing, and this working liquid is prepared. Examples of the spherical fine particles to be used include ceramic beads such as silicon carbide, silicon nitride, boron nitride, alumina, zirconia, and chromium oxide, metal beads such as steel, and glass beads such as borosilicate glass. However, it is preferable to use borosilicate glass beads that can be easily obtained with a relatively low specific gravity, and the solvent for preparing the processing liquid is low viscosity and does not react with the spherical fine particles. It should be capable of preventing the aggregation of spherical fine particles in the working fluid, and is not particularly limited as long as it can be used in the working fluid jetting apparatus, but is preferably inexpensive. Get easily tap water, distilled water, it can be exemplified such as deionized water.

本発明において、加工液の調製に使用する球状微粒子については、目標粒径(形状を付けるための粒径の狙い値)が、3μm以上100μm以下の範囲中の特定の数値であり、狙い値は適宜選択される。また、目標粒径を最頻粒子径とした粒子を使用するのが好ましい。更に、噴射される粒子が粒度分布の分布幅が狭い粒子である程、小粒子の基材への埋め込みを低減することができる。すなわち、その目標粒径を中心に分布が±30%以内、好ましくは20%以内であるのがよい。粒子径分布が目標粒径の±30%を超えて広がると、加工液噴射操作の際に、アルミ基材の被加工面に対して先に衝突した比較的小粒径の小粒子に比較的大粒径の大粒子が追突し、小粒子が被加工面に埋め込まれ、形成された微細粗面に埋没粒子が残存し、例えばその後に陽極酸化処理や脱脂処理等を行うとその処理条件によっては皮膜欠陥等の問題が生じる虞がある。   In the present invention, for the spherical fine particles used for the preparation of the processing liquid, the target particle size (target value of particle size for forming a shape) is a specific numerical value in the range of 3 μm or more and 100 μm or less, and the target value is It is selected appropriately. Further, it is preferable to use particles whose target particle size is the mode particle size. Furthermore, the embedding of the small particles into the base material can be reduced as the particles to be ejected are particles having a narrow distribution width of the particle size distribution. That is, the distribution around the target particle size should be within ± 30%, preferably within 20%. When the particle size distribution exceeds ± 30% of the target particle size, relatively small particles with a relatively small particle size that collided first with the processed surface of the aluminum base material during the machining liquid injection operation Large particles of large size collide, small particles are embedded in the surface to be processed, and embedded particles remain on the formed fine rough surface.For example, when anodizing or degreasing is performed thereafter, depending on the processing conditions May cause problems such as film defects.

なお、本発明において、「球状」とは粒子の電子顕微鏡写真から短径と長径とを測定し、短径/長径比を真球度としたとき、測定された粒子の真球度が0.7以上、好ましくは0.8以上、より好ましくは0.9以上であることを意味する。また、「目標粒径」とは微細粗面を形成する微細な凹凸について目標とする大きさの凹みを形成するのに必要な球状微粒子の粒径であり、目標とする粒径の狙い値である。更に、微細粗面加工の加工液噴射操作の際に、アルミ基材の被加工面に埋め込まれ、微細粗面に残存した埋没粒子は、走査型電子顕微鏡による表面観察、GD-OES(グロー放電発光分析法)等の方法でアルミ基材表面の元素を分析し、例えば球状微粒子がホウケイ酸ガラスビーズであれば、SiやBの元素を調べることにより、容易に判定できる。   In the present invention, “spherical” means that the short diameter and long diameter are measured from an electron micrograph of the particles, and the short diameter / long diameter ratio is taken to be sphericity, the measured sphericity of the particles is 0. It means 7 or more, preferably 0.8 or more, more preferably 0.9 or more. In addition, the “target particle size” is the particle size of the spherical fine particles necessary to form a dent having a target size with respect to fine irregularities forming a fine rough surface, and is a target value of the target particle size. is there. Furthermore, the embedded particles embedded in the processed surface of the aluminum base material and remaining on the fine rough surface during the machining liquid injection operation for fine rough surface processing are observed by surface observation with a scanning electron microscope, GD-OES (glow discharge). The element on the surface of the aluminum base material is analyzed by a method such as an emission analysis method. For example, if the spherical fine particles are borosilicate glass beads, it can be easily determined by examining the elements of Si and B.

また、前記鏡面加工後のアルミ基材の被加工面に微細粗面加工を施すための加工液については、噴射されてアルミ基材の被加工面に衝突させる際の噴射圧力が0.1MPa以上0.4MPa以下、好ましくは0.15以上0.25MPa以下であって、微細粗面加工を開始して終了するまでに被加工面に噴射する微細粒子の粒子総数が目標粒径に換算して1mm2当り1×104個以上5×108個以下、好ましくは1×105個以上1×108個以下である必要がある。噴射圧力が0.1MPaより低いと、アルミ基材の被加工面における塑性変形が不十分になって、目標粒径に応じて設定される目標の大きさの凹みを有する凹凸の形成が難しくなり、反対に、0.4MPaを超えて高くすると、この微細粗面加工で形成された微細粗面に球状微粒子が埋め込まれる粒子埋没現象が発生し、連続的で均一な微細粗面の形成が難しくなるほか、その後に陽極酸化や脱脂処理を行う場合にその条件によっては皮膜欠陥等の問題を引き起こす虞がある。また、被加工面に噴射する微細粒子の粒子総数(目標粒径換算)が1×104個/mm2より少ないと、被加工面に微細粗面が形成されない領域が残る虞があり、反対に5×108個/mm2より多くなると、被加工面に必要以上の多数の球状微粒子が衝突することになり、初めにできた連続的で均一な微細粗面の凹凸形状が次に衝突する球状微粒子によって潰され、結果として連続的で均一な微細粗面の形成が困難になる。 In addition, with respect to the processing liquid for performing the fine rough surface processing on the processed surface of the aluminum base material after the mirror processing, the injection pressure when being injected to collide with the processed surface of the aluminum base material is 0.1 MPa or more 0.4 MPa or less, preferably 0.15 or more and 0.25 MPa or less, and the total number of fine particles to be injected on the work surface before starting and finishing the fine rough surface processing is converted into the target particle size. 1 × 10 4 or more and 5 × 10 8 or less, preferably 1 × 10 5 or more and 1 × 10 8 or less per 1 mm 2 . If the injection pressure is lower than 0.1 MPa, the plastic deformation on the work surface of the aluminum base material becomes insufficient, and it becomes difficult to form irregularities having a dent of a target size set according to the target particle size. On the other hand, when the pressure exceeds 0.4 MPa, a particle embedding phenomenon occurs in which spherical fine particles are embedded in the fine rough surface formed by this fine rough surface processing, and it is difficult to form a continuous and uniform fine rough surface. In addition, when anodizing or degreasing is subsequently performed, problems such as film defects may occur depending on the conditions. On the other hand, if the total number of fine particles (target particle size conversion) sprayed on the work surface is less than 1 × 10 4 particles / mm 2 , there is a possibility that a region where the fine rough surface is not formed may remain on the work surface. If it exceeds 5 × 10 8 particles / mm 2, a larger number of spherical fine particles than necessary will collide with the work surface. As a result, it becomes difficult to form a continuous and uniform fine rough surface.

ところで、鏡面加工後のアルミ基材の被加工面に加工液を吹き付けて微細粗面を形成する微細粗面加工の加工液噴射操作においては、図1に示すように、アルミ基材が板材1aでその被加工面2が広くて1回の噴射ノズル3による走査では被加工面2の全面をカバーしきれない場合、複数回の噴射ノズル走査を実施することになるが、この際には各噴射ノズル走査において噴射された加工液4中の球状微粒子が板材1aの被加工面2に噴射して形成され、噴射ノズル3の幅寸法に応じて生じる走査処理後の走査処理面5の走査方向両端(最初の噴射ノズル走査と最後の噴射ノズル走査では片端)において、加工液4が重複して噴射され、この噴射された加工液が被加工面2に到達する間に僅かに拡がり、この広がった部分で重複して加工処理される処理継ぎ目6の領域が不可避的に生じる。また同様に、図2に示すように、アルミ基材がロール材1bの場合には、少なくとも加工液4の噴射ノズル走査の開始部分と終了部分において重複して噴射される処理継ぎ目6の領域が不可避的に生じる。そして、このような処理継ぎ目6は、アルミ基材の表面に形成された微細粗面において薄い帯状に観察され、加工後に得られたエンボスロール等の金型を始めとする製品の美観を損ねるだけでなく、エンボスロール等の金型を用いて製造される防眩フィルムにも転写され、特に高画質が求められる画像表示装置で用いられるとその視認性を低下させる原因にもなる。また、このような問題は、アルミ基材が板材の場合でもまたロール材の場合でも、その被加工面が広ければ広いほど発生し易くなる。これは、微細粗面加工の際に、処理継ぎ目の領域において衝突する球状微粒子の粒子数が他の領域よりも多くなることに起因する。   By the way, as shown in FIG. 1, in the machining liquid injection operation of the fine rough surface processing in which the processing liquid is sprayed on the processed surface of the aluminum base material after mirror finishing to form a fine rough surface, the aluminum base material is a plate material 1a. If the work surface 2 is wide and the entire surface of the work surface 2 cannot be covered by a single scan with the injection nozzle 3, a plurality of injection nozzle scans are performed. Spherical fine particles in the machining liquid 4 ejected in the ejection nozzle scanning are formed by being ejected onto the work surface 2 of the plate material 1 a, and the scanning direction of the scanning processing surface 5 after the scanning process that occurs according to the width dimension of the ejection nozzle 3. At both ends (one end in the first spray nozzle scan and the last spray nozzle scan), the processing liquid 4 is sprayed in an overlapping manner, and the sprayed processing liquid spreads slightly while reaching the processing surface 2, and this spread Are processed in duplicate. That region of the processing seam 6 is unavoidably. Similarly, as shown in FIG. 2, when the aluminum base material is the roll material 1b, there is a region of the processing seam 6 to be jetted at least at the start portion and the end portion of the jet nozzle scan of the machining liquid 4. Inevitable. And such a process seam 6 is observed in the thin strip | belt shape in the fine rough surface formed in the surface of an aluminum base material, and only impairs the beauty | look of products including molds, such as an embossing roll obtained after a process. In addition, it is also transferred to an antiglare film manufactured using a mold such as an embossing roll, and when used in an image display device that requires particularly high image quality, it may cause a decrease in visibility. Such a problem is more likely to occur as the surface to be processed is wider, regardless of whether the aluminum base material is a plate material or a roll material. This is due to the fact that the number of spherical fine particles colliding in the region of the processing seam is larger than in other regions during the fine rough surface processing.

そこで、本発明においては、この問題を解決するために、前記微細粗面加工において、鏡面加工後のアルミ基材の被加工面に噴射する球状微粒子の粒子総数をN画に分割し、この分画された各画の粒子数の球状微粒子を含むN画の分割加工液を調製し、微細粗面加工時には複数回の噴射ノズル走査により被加工面全面に各分割加工液を噴射する加工液噴射操作をN回繰り返して実施する。すなわち、微細粗面加工時に鏡面加工後のアルミ基材の被加工面に向けて噴射する加工液中の球状微粒子の粒子総数については微細粗面加工を1回の加工液噴射操作で行う場合の粒子総数と実質的に同じに設計するが、この球状微粒子の粒子総数をN画に分割し、この分画された各画の粒子数の球状微粒子を含むN画の分割加工液を調製し、微細粗面加工時には調製した各分割加工液を用いて複数回の噴射ノズル走査で被加工面全面に各分割加工液を噴射する加工液噴射操作をN回繰り返すものであり、好ましくは、各分割加工液の粒子濃度を、1回の加工液噴射操作で微細粗面加工を行う場合に使用する加工液の粒子濃度よりも、低い濃度に調整するのがよい。   Therefore, in the present invention, in order to solve this problem, in the fine rough surface processing, the total number of spherical fine particles sprayed on the processed surface of the aluminum base material after the mirror surface processing is divided into N images. N-part divided machining fluid containing spherical fine particles having the number of particles of each picture drawn, and machining liquid injection for injecting each divided machining liquid over the entire surface to be processed by a plurality of injection nozzle scans at the time of fine rough surface machining The operation is repeated N times. That is, for the total number of spherical fine particles in the machining liquid sprayed toward the machined surface of the aluminum base material after mirror finishing at the time of fine roughing, when the fine roughing is performed by one machining liquid injection operation Although designed to be substantially the same as the total number of particles, the total number of spherical fine particles is divided into N fractions, and an N-part divided working fluid containing spherical fine particles having the fractional number of particles is prepared. The machining liquid spraying operation for injecting each of the divided machining liquids to the entire surface of the work surface by scanning the nozzles a plurality of times using each divided machining liquid at the time of fine rough surface machining is repeated N times. It is preferable to adjust the particle concentration of the machining fluid to a concentration lower than the particle concentration of the machining fluid used when fine rough surface machining is performed by one machining fluid injection operation.

ここで、球状微粒子の粒子総数を分画して形成される分割加工液のN画については、その数が増加すればするほど、アルミ基材の表面に形成された微細粗面において処理継ぎ目が帯状に観察されるのを防止することができるが、特に視認性の向上が求められる高画質ディスプレイの如き画像表示装置の防眩フィルムを製造するエンボスロール等の金型を製造するためには、好ましくは球状微粒子の粒子総数を3画以上20画以下、より好ましくは5画以上15画以下の画数に分割し、画数に応じて調製された分割加工液を用いて加工液噴射操作を繰り返すのがよい。なお、各分割加工液の粒子濃度については、使用する加工液噴射装置の噴射条件等を考慮して設定され、各分割加工液において同じ濃度であっても、また、必要により互いに異なる濃度であってもよい。   Here, as for the N image of the divided processing liquid formed by fractionating the total number of spherical fine particles, as the number increases, the treatment seam is formed on the fine rough surface formed on the surface of the aluminum substrate. In order to produce a mold such as an embossing roll for producing an antiglare film of an image display device such as a high-quality display that is particularly required to be improved in visibility, although it can be prevented from being observed in a band shape. Preferably, the total number of spherical fine particles is divided into 3 to 20 strokes, more preferably 5 to 15 strokes, and the machining fluid injection operation is repeated using the divided machining fluid prepared according to the number of strokes. Is good. The particle concentration of each of the divided machining fluids is set in consideration of the injection conditions of the machining fluid injection device to be used. Even if the concentration is the same in each of the divided machining fluids, it may be different from one another as necessary. May be.

また、本発明において、アルミ基材の被加工面に対して加工液を噴射する加工液噴射操作の噴射方法については、液体ホーニングやウエットブラスト処理等の方法等で採用されている通常の高圧ポンプや圧縮空気による方法等を採用することができる。そして、加工液噴射装置の噴射ノズルの幅寸法と被加工面の幅寸法との関係で、噴射ノズルの幅寸法が被加工面の幅寸法より大きい場合には、加工液噴射操作を1回の噴射ノズル走査で実施してもよいほか、必要により複数回の噴射ノズル走査で実施してもよく、また、噴射ノズルの幅寸法が被加工面の幅寸法より小さい場合(アルミ基材の被加工面が広い面積を有する場合)には、必然的に加工液噴射操作を複数回の噴射ノズル走査で実施することになるが、この際には、加工液をN画に分割し、N画の分割加工液を調製してN回の加工液噴射操作を実施するのがよい。   Further, in the present invention, a normal high-pressure pump employed in a method such as liquid honing or wet blasting is used as a spraying method for a processing fluid spraying operation for spraying a processing fluid onto a work surface of an aluminum base. Alternatively, a method using compressed air can be employed. If the width dimension of the injection nozzle is larger than the width dimension of the workpiece surface due to the relationship between the width dimension of the injection nozzle of the machining fluid ejection device and the width dimension of the workpiece surface, the machining fluid ejection operation is performed once. It may be performed by spray nozzle scanning, or may be performed by multiple spray nozzle scans if necessary. Also, when the width dimension of the spray nozzle is smaller than the width dimension of the surface to be processed (working of the aluminum substrate) In the case where the surface has a large area), the machining liquid ejection operation is inevitably performed by a plurality of ejection nozzle scans. In this case, the machining liquid is divided into N images, It is preferable to prepare a divided machining fluid and perform N machining fluid ejection operations.

更に、本発明の加工液噴射操作において、微細粗面が形成されるまでの間にアルミ基材の被加工面に噴射する球状微粒子の粒子総数(目標粒径換算)を調整する方法についても、例えば、アルミ基材がロール材であって、ロール材を回転させながら、かつ、噴射ノズルをロール材の軸方向に移動させながら噴射ノズル走査を行う場合には、ロール材の回転速度や噴射ノズルの走査速度を調整することにより、被加工面に噴射する球状微粒子の粒子総数(目標粒径換算)を目標とする範囲内に調整することができる。   Further, in the machining liquid injection operation of the present invention, a method for adjusting the total number of spherical fine particles (converted to a target particle size) to be injected onto the processed surface of the aluminum base until the fine rough surface is formed, For example, if the aluminum base material is a roll material and the injection nozzle is scanned while the roll material is rotated and the injection nozzle is moved in the axial direction of the roll material, the rotation speed of the roll material or the injection nozzle By adjusting the scanning speed, it is possible to adjust the total number of spherical fine particles (converted to the target particle size) to be injected to the processing surface within a target range.

ところで、微細粗面加工の加工液噴射操作によりアルミ基材が塑性変形を起こし、微細粗面の凹みが隣接する箇所でエッジ部が盛り上がり、一般面に比べて著しく高い***箇所が生じることがある。そこで、微細粗面加工の際に形成された微細粗面に***箇所が生じている場合には、化学的溶解法や電解研磨法で***箇所を除去し、実質的に***箇所の無い微細粗面を形成するようにしてもよい。   By the way, the aluminum base material undergoes plastic deformation by the processing liquid injection operation of the fine rough surface processing, and the edge portion swells at the location where the concave portion of the fine rough surface is adjacent, and a significantly higher raised portion than the general surface may occur. . Therefore, in the case where a raised portion is generated on the fine rough surface formed during the fine rough surface processing, the raised portion is removed by a chemical dissolution method or an electrolytic polishing method, and the fine rough surface substantially free of the raised portion is removed. A surface may be formed.

ここで、***箇所が存在するか否かの確認や***箇所が除去されたか否かの確認は、微細粗面の表面粗さをレーザー顕微鏡等で測定し、表面粗さのパラメーターである十点平均粗さ(Rzjis:JIS B0601-2001)と算術平均粗さ(Ra:JIS B0601-2001)を求め、その比(Rzjis/Ra)がRzjis/Ra<5であるか否かで判断するのがよく、このRzjis/Raが5以上であると微細粗面に局所的に凸な箇所(***箇所)が存在すると判定する。   Here, the confirmation of whether or not the raised portion is present and whether or not the raised portion has been removed are measured by measuring the surface roughness of the fine rough surface with a laser microscope or the like, and are 10 parameters that are parameters of the surface roughness. The average roughness (Rzjis: JIS B0601-2001) and arithmetic average roughness (Ra: JIS B0601-2001) are calculated, and the ratio (Rzjis / Ra) is determined by whether or not Rzjis / Ra <5. When this Rzjis / Ra is 5 or more, it is determined that a locally convex portion (a raised portion) exists on the fine rough surface.

また、微細粗面の***箇所を除去するための化学的溶解法や電解研磨法は、アルミニウム又はアルミニウム合金で一般的に採用されている方法でよく、例えば、化学的溶解法についてはリン酸やアルカリによる化学的研磨が、また、電解研磨法については過塩素酸−エタノール溶液やリン酸−硫酸浴中での短時間の電解研磨がある。この微細粗面の***箇所を除去するための処理は、微細粗面の視認性や平坦度又は真円度を損なうことなく***箇所を除去する必要があり、処理条件については、例えば、採用する化学的溶解法や電解研磨法に応じて予め実験的に求めることができる。   Further, the chemical dissolution method and the electropolishing method for removing the raised portion of the fine rough surface may be a method generally adopted for aluminum or aluminum alloy. For example, for the chemical dissolution method, phosphoric acid or There are chemical polishing using alkali, and electropolishing methods include electropolishing for a short time in a perchloric acid-ethanol solution or a phosphoric acid-sulfuric acid bath. The processing for removing the raised portion of the fine rough surface needs to remove the raised portion without impairing the visibility, flatness, or roundness of the fine rough surface. It can be experimentally determined in advance according to the chemical dissolution method or the electropolishing method.

本発明の方法によれば、鏡面加工後のアルミ基材の被加工面(鏡面)に微細粗面加工を施して微細粗面を形成するに際し、微細粗面加工前に形成された高度の平坦度や真円度を損なうことがなく、被加工面(鏡面)に微細な凹凸が均一に付与された微細粗面を容易に形成することができる。   According to the method of the present invention, when forming a fine rough surface by subjecting a processed surface (mirror surface) of an aluminum base material after mirror finishing to form a fine rough surface, a high degree of flatness formed before the fine rough surface processing is performed. It is possible to easily form a fine rough surface in which fine irregularities are uniformly provided on the surface to be processed (mirror surface) without impairing the degree and roundness.

図1は、板材からなるアルミ基材の被加工面に対して複数回の噴射ノズル走査で微細粗面加工を行う場合に、処理継ぎ目が発生する状況を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining a situation where a processing seam is generated when a fine rough surface is processed by a plurality of injection nozzle scans on a processing surface of an aluminum base material made of a plate material.

図2は、ロール材からなるアルミ基材の被加工面に対して複数回の噴射ノズル走査で微細粗面加工を行う場合に、処理継ぎ目が発生する状況を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a situation where a processing seam is generated when a fine rough surface processing is performed by a plurality of injection nozzle scans on a processing surface of an aluminum base material made of a roll material.

以下、実施例、参考例、及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be described specifically based on examples , reference examples, and comparative examples.

参考例1
厚さ10mm及び純度99.99%のアルミニウム製のアルミロールに切削用バニッシングロールを押し付け、このアルミロールから繰り出される板状アルミニウム材の表面に機械的鏡面加工を施し、この鏡面加工後の板状アルミニウム材から厚さ10mm×幅25mm×長さ50mmのアルミ板材(アルミ基材)を切り出した。得られた鏡面加工後のアルミ板材の表面(微細粗面加工の被加工面)は、その最大断面高さ(Rt)Rt<0.2μmに鏡面加工されていた。
[ Reference Example 1 ]
A vanishing roll for cutting is pressed against an aluminum roll made of aluminum having a thickness of 10 mm and a purity of 99.99%, and the surface of the plate-like aluminum material fed out from the aluminum roll is mechanically mirror-finished. An aluminum plate (aluminum substrate) having a thickness of 10 mm, a width of 25 mm, and a length of 50 mm was cut out from the aluminum material. The surface of the obtained aluminum plate material after mirror finishing (surface to be processed by fine roughening) was mirror-finished so that the maximum cross-sectional height (Rt) was Rt <0.2 μm.

次に、調製された鏡面加工後のアルミ板材の被加工面に対して、加工液噴霧装置として幅寸法25mmの噴射ノズルを備えた噴射装置(マコー社製:Baby BlastII)を用い、また、目標粒径5μmのガラスビーズ(球状微粒子、ポッターズ・バロティーニ社製商品名:EMB-10、真球度0.8以上、比重2.6、粒径範囲0.5〜11μm)を常温の水道水に80g/Lの粒子濃度で分散させた加工液を用い、噴射ノズル走査幅25mm、噴射圧力0.1MPa、及び同じ面に対する加工液噴射操作回数1回の条件で、また、被加工面に噴射するガラスビーズの粒子総数(目標粒径換算)が5×107個/mm2となるように微細粗面加工を実施し、アルミ板材に微細粗面を形成した。 Next, an injection device (Mako Co., Ltd .: Baby Blast II) equipped with an injection nozzle with a width of 25 mm is used as a machining liquid spraying device on the processed surface of the prepared mirror-finished aluminum sheet, and the target 80 g / L particles of glass beads with a particle size of 5 μm (spherical fine particles, trade name: EMB-10, sphericity of 0.8 or more, specific gravity of 2.6, particle size range of 0.5-11 μm, manufactured by Potters Ballotini) in tap water at room temperature The total number of glass bead particles to be sprayed onto the surface to be processed under the conditions that the processing liquid dispersed in the concentration is used, the spray nozzle scanning width is 25 mm, the spraying pressure is 0.1 MPa, and the processing surface is sprayed once on the same surface. Fine rough surface processing was performed so that (target particle size conversion) was 5 × 10 7 particles / mm 2, and a fine rough surface was formed on the aluminum plate.

〔アルミ板材微細粗面の均一性評価〕
この参考例1で得られたアルミ板材の微細粗面について、照度2000Lux以上の蛍光灯下で目視観察を行い、以下に示す評価基準に基づいて微細粗面の均一性を評価した。◎:未処理部が無く全体が均一である、○:未処理部が殆ど認められず全体が概ね均一である、△:未処理部が僅かに認められる、×:未処理部が明確に認められる。
このアルミ板材の微細粗面の均一性評価の結果を表1に示す。
[Evaluation of uniformity of fine rough surface of aluminum plate]
The fine rough surface of the aluminum plate obtained in Reference Example 1 was visually observed under a fluorescent lamp with an illuminance of 2000 Lux or more, and the uniformity of the fine rough surface was evaluated based on the following evaluation criteria. ◎: No unprocessed part and uniform as a whole, ○: Almost no unprocessed part is observed and the whole is generally uniform, △: Slightly unprocessed part is observed, X: Unprocessed part is clearly recognized It is done.
Table 1 shows the results of the evaluation of the uniformity of the fine rough surface of the aluminum plate.

〔アルミ板材微細粗面の埋没粒子評価〕
この参考例1で得られたアルミ板材について、その微細粗面の凡そ50μm×50μmの範囲(3000倍程度の視野に相当)を走査型顕微鏡で観察し、微細粗面に埋め込まれて残留したガラスビーズが存在するか否かを調べ、以下に示す評価基準に従って埋没粒子評価を行った。◎:殆ど埋没粒子が観察されない、○:視野中に1〜2個の埋没粒子が観察される、△:視野中に3〜10個の埋没粒子が観察されるが用途によって使用可能である、×:視野中に10個を超える埋没粒子が観察される。
このアルミ板材の微細粗面の埋没粒子評価の結果を表1に示す。
[Evaluation of embedded particles on fine rough surface of aluminum sheet]
The aluminum plate obtained in Reference Example 1 was observed with a scanning microscope in a range of about 50 μm × 50 μm of the fine rough surface (corresponding to a field of view of about 3000 times), and the glass remained embedded in the fine rough surface. Whether or not beads were present was examined, and embedded particles were evaluated according to the following evaluation criteria. A: Almost no embedded particles are observed, O: 1-2 embedded particles are observed in the visual field, Δ: 3-10 embedded particles are observed in the visual field, but can be used depending on the application. X: Over 10 embedded particles are observed in the visual field.
Table 1 shows the results of evaluation of the embedded particles on the fine rough surface of the aluminum plate.

〔実施例2〕
噴射圧力を0.2MPaとした以外は参考例1と同様にしてアルミ板材(アルミ基材)に微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
[Example 2]
A fine rough surface is formed on an aluminum plate (aluminum substrate) in the same manner as in Reference Example 1 except that the injection pressure is 0.2 MPa, and evaluation of the fine rough surface (uniformity evaluation and burial) is performed in the same manner as in Reference Example 1. Particle evaluation). The results are shown in Table 1.

〔実施例3〕
噴射圧力を0.3MPaとした以外は参考例1と同様にしてアルミ板材(アルミ基材)に微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 3
A fine rough surface is formed on an aluminum plate (aluminum substrate) in the same manner as in Reference Example 1 except that the injection pressure is set to 0.3 MPa, and the evaluation of the fine rough surface (uniformity evaluation and burial) is performed in the same manner as in Reference Example 1. Particle evaluation). The results are shown in Table 1.

参考例4
微細粗面加工時の粒子総数(目標粒径換算)を2×106個/mm2とし、また、噴射圧力を0.2MPaとした以外は参考例1と同様にしてアルミ板材(アルミ基材)に微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
[ Reference Example 4 ]
Aluminum plate (aluminum base material) in the same manner as in Reference Example 1 , except that the total number of particles (target particle size conversion) at the time of micro rough surface processing was 2 × 10 6 particles / mm 2 and the injection pressure was 0.2 MPa. ) And a fine rough surface was evaluated (uniformity evaluation and embedded particle evaluation) in the same manner as in Reference Example 1 . The results are shown in Table 1.

〔実施例5〕
微細粗面加工時の粒子総数(目標粒径換算)を2×108個/mm2とし、また、噴射圧力を0.2MPaとした以外は参考例1と同様にしてアルミ板材(アルミ基材)に微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 5
Aluminum plate material (aluminum base material) in the same manner as in Reference Example 1 except that the total number of particles at the time of micro rough surface processing (target particle size conversion) was 2 × 10 8 particles / mm 2 and the injection pressure was 0.2 MPa. ) And a fine rough surface was evaluated (uniformity evaluation and embedded particle evaluation) in the same manner as in Reference Example 1 . The results are shown in Table 1.

〔実施例6〕
目標粒径5μmのガラスビーズ(球状微粒子、ブライト標識工業(株)製商品名:E2-10、真球度0.8以上、比重2.6、粒径範囲4〜6μm)を用い、噴射圧力を0.2MPaとした以外は参考例1と同様にしてアルミ板材(アルミ基材)に微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 6
Using glass beads with a target particle size of 5μm (spherical fine particles, product name: E2-10, Brightness 0.8 or higher, specific gravity of 2.6, particle size range of 4-6μm, manufactured by Bright Tagging Industry Co., Ltd.), injection pressure of 0.2 MPa A fine rough surface was formed on an aluminum plate (aluminum substrate) in the same manner as in Reference Example 1 except that the evaluation was performed (evaluation of uniformity and evaluation of embedded particles) in the same manner as in Reference Example 1 . . The results are shown in Table 1.

〔実施例7〕
目標粒径20μmのガラスビーズ(球状微粒子、ブライト標識工業(株)製商品名:E2-20、真球度0.8以上、比重2.6、粒径範囲15〜25μm)を用い、噴射圧力を0.2MPaとした以外は参考例1と同様にしてアルミ板材(アルミ基材)に微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 7
Using glass beads with a target particle size of 20 μm (spherical microparticles, product name: E2-20, sphericity of 0.8 or more, specific gravity of 2.6, particle size range of 15 to 25 μm, manufactured by Bright Label Industry Co., Ltd.), the injection pressure is 0.2 MPa. A fine rough surface was formed on an aluminum plate (aluminum substrate) in the same manner as in Reference Example 1 except that the evaluation was performed (evaluation of uniformity and evaluation of embedded particles) in the same manner as in Reference Example 1 . . The results are shown in Table 1.

〔実施例8〕
実施例2と同様にして得られたアルミ板材(アルミ基材)の微細粗面に対して、エタノール80質量%、過塩素酸14質量%、及び水6質量%の組成を有する電解浴を用い、電解電圧30V、初期電流密度12000A/m2、定常期電流密度400A/m2、電流制御:無し、浴温度0℃、及び処理時間10秒の処理条件で陽極電解処理を施し、微細粗面の表面粗さをRzjis/Ra<5に調整した。調整されたアルミ板材の微細粗面について、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 8
Using an electrolytic bath having a composition of 80% by mass of ethanol, 14% by mass of perchloric acid, and 6% by mass of water with respect to the fine rough surface of the aluminum plate (aluminum substrate) obtained in the same manner as in Example 2. Electrolytic voltage 30V, initial current density 12000A / m 2 , steady-state current density 400A / m 2 , current control: none, bath temperature 0 ° C, and treatment time of 10 seconds, anodic electrolysis was performed to give a fine rough surface The surface roughness was adjusted to Rzjis / Ra <5. The fine rough surface of the adjusted aluminum sheet was evaluated in the same manner as in Reference Example 1 (evaluation of uniformity and evaluation of embedded particles). The results are shown in Table 1.

〔実施例9〕
実施例2と同様にして得られたアルミ板材(アルミ基材)の微細粗面に対して、硫酸10質量%、リン酸70質量%、及び水20質量%の組成を有する電解浴を用い、浴温度70℃、及び処理時間20秒の処理条件とした以外は実施例8と同様にして陽極電解処理を施し、微細粗面の表面粗さをRzjis/Ra<5に調整した。調整されたアルミ板材の微細粗面について、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 9
Using an electrolytic bath having a composition of 10% by mass of sulfuric acid, 70% by mass of phosphoric acid, and 20% by mass of water with respect to the fine rough surface of the aluminum plate (aluminum substrate) obtained in the same manner as in Example 2, Anodization was performed in the same manner as in Example 8 except that the bath temperature was 70 ° C. and the processing time was 20 seconds, and the surface roughness of the fine rough surface was adjusted to Rzjis / Ra <5. The fine rough surface of the adjusted aluminum sheet was evaluated in the same manner as in Reference Example 1 (evaluation of uniformity and evaluation of embedded particles). The results are shown in Table 1.

〔実施例10〕
実施例2と同様にして得られたアルミ板材(アルミ基材)の微細粗面に対して、リン酸80質量%、硝酸5質量%及び水15質量%の組成を有する浸漬液を用い、浸漬温度90℃及び処理時間15秒の条件で化学研磨を行った以外は実施例8と同様にして微細粗面の表面粗さをRzjis/Ra<5に調整した。調整されたアルミ板材の微細粗面について、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 10
A dipping solution having a composition of 80% by mass of phosphoric acid, 5% by mass of nitric acid and 15% by mass of water is used for the fine rough surface of the aluminum plate (aluminum substrate) obtained in the same manner as in Example 2. The surface roughness of the fine rough surface was adjusted to Rzjis / Ra <5 in the same manner as in Example 8 except that chemical polishing was performed at a temperature of 90 ° C. and a processing time of 15 seconds. The fine rough surface of the adjusted aluminum sheet was evaluated in the same manner as in Reference Example 1 (evaluation of uniformity and evaluation of embedded particles). The results are shown in Table 1.

〔実施例11〕
参考例1と同様にして得られた厚さ10mm×幅50×長さ50mmのアルミ板材(アルミ基材)を用い、また、目標粒径5μmのガラスビーズ(球状微粒子、ポッターズ・バロティーニ社製商品名:EMB-10、真球度0.8以上、比重2.6、粒径範囲0.5〜11μm)を常温の水道水に16g/Lの粒子濃度で分散させた加工液(分割加工液)を用い、アルミ板材の加工面に対して、2回の噴射ノズル走査で加工面全面にガラスビーズを衝突させる加工液噴射操作を5回繰り返して実施し、加工面に噴射したガラスビーズの粒子総数を5×107個/mm2に調整した以外は実施例2と同様にしてアルミ板材に微細粗面を形成し、以下のようにして微細粗面の均一性評価を行うと共に、参考例1と同様にして微細粗面の埋没粒子評価を行った。結果を表1に示す。
Example 11
Using an aluminum plate (aluminum substrate) having a thickness of 10 mm × width 50 × length 50 mm obtained in the same manner as in Reference Example 1, and glass beads having a target particle size of 5 μm (spherical fine particles, manufactured by Potters Barotini) (Product name: EMB-10, sphericity 0.8 or more, specific gravity 2.6, particle size range 0.5-11μm) is dispersed in room temperature tap water at a particle concentration of 16g / L, and aluminum is used. The processing liquid spraying operation for causing the glass beads to collide with the entire processing surface by two injection nozzle scans is repeated 5 times on the processing surface of the plate material, and the total number of glass beads particles sprayed on the processing surface is 5 × 10. A fine rough surface was formed on the aluminum plate material in the same manner as in Example 2 except that it was adjusted to 7 pieces / mm 2 , and the uniformity of the fine rough surface was evaluated in the following manner and in the same manner as in Reference Example 1. Evaluation of embedded particles on fine rough surfaces was performed. The results are shown in Table 1.

〔アルミ板材微細粗面の均一性評価〕
この実施例11で得られたアルミ板材の微細粗面については、参考例1の場合と同様に、照度2000Lux以上の蛍光灯下で目視観察を行い、以下に示す評価基準に基づいて微細粗面の均一性を評価した。◎:処理継ぎ目が全く認められない/未処理部が無く全体が均一である、○:処理継ぎ目が殆ど認められない/未処理部が殆ど認められず全体が概ね均一である、△:処理継ぎ目が僅かに認められる/未処理部が僅かに認められる、×:処理継ぎ目が明確に認められる/未処理部が明確に認められる。
[Evaluation of uniformity of fine rough surface of aluminum plate]
About the fine rough surface of the aluminum plate material obtained in Example 11, as in Reference Example 1 , visual observation was performed under a fluorescent lamp with an illuminance of 2000 Lux or more, and the fine rough surface was based on the evaluation criteria shown below. Was evaluated for uniformity. ◎: No processing seam is recognized / unprocessed part is uniform and the whole is uniform, ○: Processed seam is hardly recognized / Unprocessed part is hardly recognized, and the whole is generally uniform, Δ: Processed seam Is slightly recognized / untreated portion is slightly observed, x: treated seam is clearly recognized / untreated portion is clearly recognized.

〔実施例12〕
粒子濃度8g/Lの加工液を用い、加工液噴射操作を10回繰り返してアルミ板材(アルミ基材)に微細粗面を形成した以外は実施例11と同様にしてアルミ板材に微細粗面を形成し、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 12
A fine rough surface was formed on the aluminum plate in the same manner as in Example 11 except that the machining liquid having a particle concentration of 8 g / L was used and the machining liquid injection operation was repeated 10 times to form a fine rough surface on the aluminum plate (aluminum base material). After the formation, evaluation of the fine rough surface (uniformity evaluation and embedded particle evaluation) was performed in the same manner as in Example 11. The results are shown in Table 1.

〔実施例13〕
アルミ基材として純度99.99%のアルミニウム製のアルミロールに切削用のバニッシングロールを押し付け、このアルミロールから繰り出されるアルミロールの表面の凹凸を押しこみながら切削刃を送り、アルミロール表面の最大断面高さ(Rt)をRt<0.2μmにする機械的鏡面加工を施し、機械的鏡面加工後の直径20mmのアルミロール材(アルミ基材)を作製した。
Example 13
Press the burnishing roll for cutting against an aluminum roll made of aluminum with a purity of 99.99% as the aluminum base, and feed the cutting blade while pressing the unevenness of the surface of the aluminum roll fed out from this aluminum roll, and the maximum surface of the aluminum roll Mechanical mirror surface processing was performed so that the cross-sectional height (Rt) was Rt <0.2 μm, and an aluminum roll material (aluminum base material) having a diameter of 20 mm after the mechanical mirror surface processing was produced.

得られた機械的鏡面加工後のアルミロール材の被加工面に対して、加工液噴霧装置として幅寸法25mmの噴射ノズルを備えたマコー(株)社製噴射装置:Baby blast IIを用い、また、目標粒径5μmのガラスビーズ(球状微粒子、ブライト標識工業(株)製商品名:E2-10、真球度0.8以上、比重2.6、粒径範囲0.5〜11μm)を常温の水道水に160g/Lの粒子濃度で分散させた加工液(分割加工液)を用い、噴射ノズル走査幅25mm、噴射圧力0.2MPa、アルミロール材の回転数130rpm、及び同じ面に対する加工液噴射操作回数5回の条件で、また、被加工面に噴射するガラスビーズの粒子総数(目標粒径換算)が1×107個/mm2となるようにアルミロール材の被加工面に微細粗面加工を施し、表面に微細粗面を有するアルミロール材を作製した。 Using the machine blast II II manufactured by Mako Co., Ltd. equipped with an injection nozzle having a width of 25 mm as a machining liquid spraying device on the processed surface of the aluminum roll material after mechanical mirror finishing, Glass beads with a target particle size of 5 μm (spherical fine particles, product name: E2-10, Brightness of 0.8 or more, specific gravity of 2.6, particle size range of 0.5-11 μm, manufactured by Bright Label Industry Co., Ltd.) in room temperature tap water at 160 g / Using a working fluid dispersed at a particle concentration of L (divided working fluid) , the spray nozzle scanning width is 25 mm, the jetting pressure is 0.2 MPa, the rotation speed of the aluminum roll material is 130 rpm, and the working fluid jetting operation is performed five times on the same surface. In addition, fine rough surface processing is performed on the processed surface of the aluminum roll material so that the total number of glass bead particles (target particle size conversion) sprayed onto the processed surface is 1 × 10 7 particles / mm 2 . An aluminum roll material having a fine rough surface was produced.

この実施例13で得られたアルミロール材の微細粗面について、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。   The fine rough surface of the aluminum roll material obtained in Example 13 was evaluated in the same manner as in Example 11 (evaluation of uniformity and evaluation of embedded particles). The results are shown in Table 1.

〔実施例14〕
実施例13と同様にして得られたアルミロール材を用い、加工液の粒子濃度を80g/Lとし、アルミロール材の回転数を260rpmとし、また、同じ面に対する加工液噴射操作回数10回とした以外は実施例13と同様にしてアルミロール材に微細粗面を形成し、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 14
Using the aluminum roll material obtained in the same manner as in Example 13, the particle concentration of the machining liquid was 80 g / L, the rotation speed of the aluminum roll material was 260 rpm, and the number of machining liquid injection operations on the same surface was 10 times. Except that, a fine rough surface was formed on the aluminum roll material in the same manner as in Example 13, and the fine rough surface was evaluated (uniformity evaluation and embedded particle evaluation) in the same manner as in Example 11. The results are shown in Table 1.

〔実施例15〕
実施例13と同様にして得られたアルミロール材を用い、目標粒径5μmのガラスビーズ(球状微粒子、ブライト標識工業(株)製 商品名:E2-10、真球度0.8以上、比重2.6、粒径範囲4〜6μm)を用いた以外は実施例13と同様にしてアルミロール材に微細粗面を形成し、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 15
Using an aluminum roll material obtained in the same manner as in Example 13, glass beads having a target particle size of 5 μm (spherical fine particles, manufactured by Bright Label Industrial Co., Ltd., trade name: E2-10, sphericity of 0.8 or more, specific gravity of 2.6, A fine rough surface was formed on the aluminum roll material in the same manner as in Example 13 except that a particle size range of 4 to 6 μm was used, and the fine rough surface was evaluated in the same manner as in Example 11 (uniformity evaluation and embedded particle evaluation). ) The results are shown in Table 1.

〔実施例16〕
実施例13と同様にして得られたアルミロール材の微細粗面に対して、エタノール80質量%、過塩素酸14質量%、及び水6質量%の組成を有する電解浴を用い、電解電圧30V、初期電流密度12000A/m2、定常期電流密度400A/m2、電流制御:無し、浴温度0℃、及び処理時間10秒の処理条件で陽極電解処理を施し、微細粗面の表面粗さをRzjis/Ra<5に調整した。調整されたアルミ板材の微細粗面について、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表1に示す。
Example 16
Using an electrolytic bath having a composition of 80% by mass of ethanol, 14% by mass of perchloric acid, and 6% by mass of water with respect to the fine rough surface of the aluminum roll material obtained in the same manner as in Example 13, an electrolysis voltage of 30 V , Initial current density 12000A / m 2 , steady-state current density 400A / m 2 , current control: none, bath temperature 0 ° C, treatment time 10 seconds, anodic electrolytic treatment was performed, surface roughness of fine rough surface Was adjusted to Rzjis / Ra <5. The fine rough surface of the adjusted aluminum sheet was evaluated in the same manner as in Example 11 (evaluation of uniformity and evaluation of embedded particles). The results are shown in Table 1.

Figure 0006097904
Figure 0006097904

〔比較例1〕
噴射圧力を0.05MPaとし、加工液の粒子濃度を80g/Lとし、被加工面に噴射させる粒子総数を1×107個/mm2として処理した以外は参考例1と同様にしてアルミ板材の微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表2に示す。
[Comparative Example 1]
Aluminum plate material in the same manner as in Reference Example 1 except that the injection pressure was set to 0.05 MPa, the particle concentration of the machining fluid was set to 80 g / L, and the total number of particles to be injected onto the work surface was 1 × 10 7 particles / mm 2. The fine rough surface was formed, and the fine rough surface was evaluated (uniformity evaluation and embedded particle evaluation) in the same manner as in Reference Example 1 . The results are shown in Table 2.

〔比較例2〕
噴射圧力を0.5MPaとした以外は比較例1と同様にしてアルミ板材の微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表2に示す。
[Comparative Example 2]
A fine rough surface of the aluminum plate was formed in the same manner as in Comparative Example 1 except that the injection pressure was changed to 0.5 MPa, and the fine rough surface was evaluated (uniformity evaluation and embedded particle evaluation) in the same manner as in Reference Example 1. It was. The results are shown in Table 2.

〔比較例3〕
噴射圧力を0.2MPaとし、加工液の粒子濃度を0.04g/Lとし、被加工面に噴射させる粒子総数を5×103個/mm2として処理した以外は比較例1と同様にしてアルミ板材の微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表2に示す。
[Comparative Example 3]
The same as Comparative Example 1 except that the injection pressure was 0.2 MPa, the particle concentration of the machining fluid was 0.04 g / L, and the total number of particles to be injected onto the work surface was 5 × 10 3 particles / mm 2. A fine rough surface of the aluminum plate was formed, and evaluation of the fine rough surface (uniformity evaluation and embedded particle evaluation) was performed in the same manner as in Reference Example 1 . The results are shown in Table 2.

〔比較例4〕
噴射圧力を0.2MPaとし、被加工面に噴射させる粒子総数を1×1010個/mm2とした以外は比較例1と同様にしてアルミ板材の微細粗面を形成し、参考例1と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表2に示す。
[Comparative Example 4]
The injection pressure was 0.2 MPa, except that the particles total number to be injected with 1 × 10 10 pieces / mm 2 on the surface to be processed in the same manner as in Comparative Example 1 to form fine rough surface of the aluminum plate, as in Reference Example 1 In the same manner, evaluation of fine rough surfaces (uniformity evaluation and embedded particle evaluation) was performed. The results are shown in Table 2.

〔比較例5〕
実施例11の比較例であって、加工液の粒子濃度を80g/Lとし、被加工面に噴射させる粒子総数を1×107個/mm2 とし、また、同じ面に対する加工液噴射操作回数を1回とした以外は実施例11と同様にしてアルミ板材の微細粗面を形成し、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表2に示す。
[Comparative Example 5]
This is a comparative example of Example 11, in which the particle concentration of the machining fluid is 80 g / L, the total number of particles to be ejected onto the work surface is 1 × 10 7 particles / mm 2, and the number of machining fluid ejection operations on the same surface A fine rough surface of an aluminum plate was formed in the same manner as in Example 11 except that the number of times was changed to one, and the fine rough surface was evaluated (uniformity evaluation and embedded particle evaluation) in the same manner as in Example 11 . The results are shown in Table 2.

実施例17
加工液(分割加工液)の粒子濃度を40g/Lとし、被加工面に噴射させる粒子総数を1×107個/mm2をとし、また、同じ面に対する加工液噴射操作回数を2回とした以外は実施例11と同様にしてアルミ板材の微細粗面を形成し、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表2に示す。
[ Example 17 ]
The particle concentration of the machining fluid (divided machining fluid) is 40 g / L, the total number of particles sprayed onto the surface to be machined is 1 × 10 7 particles / mm 2, and the number of machining fluid ejection operations on the same surface is 2 times. Except that, a fine rough surface of an aluminum plate was formed in the same manner as in Example 11, and the fine rough surface was evaluated (uniformity evaluation and embedded particle evaluation) in the same manner as in Example 11. The results are shown in Table 2.

〔比較例7〕
実施例13の比較例であって、この実施例13と同様にして得られたアルミロール材の被加工面に対して、アルミロール材の回転数を40rpmとし、また、同じ面に対する加工液噴射操作回数を1回とした以外は実施例13と同様にしてアルミロール材に微細粗面を形成し、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表2に示す。
[Comparative Example 7]
It is a comparative example of Example 13, Comprising: With respect to the to-be-processed surface of the aluminum roll material obtained similarly to this Example 13, the rotation speed of an aluminum roll material shall be 40 rpm, and the process liquid injection with respect to the same surface A fine rough surface was formed on the aluminum roll material in the same manner as in Example 13 except that the number of operations was one, and the fine rough surface was evaluated (uniformity evaluation and embedded particle evaluation) in the same manner as in Example 11. It was. The results are shown in Table 2.

実施例18
実施例13と同様にして得られたアルミロール材の被加工面に対して、目標粒径が6μmのガラスビーズ(球状微粒子、ブライト標識工業(株)製商品名:E2-10、真球度0.8以上、比重2.6、粒径範囲0.5〜11μm)を用いて調製した加工液(分割加工液)を使用し、アルミロール材の回転数を128rpmとし、被加工面に噴射させる粒子総数を1×108個/mm2 とし、また、同じ面に対する加工液噴射操作回数を3回とした以外は実施例13と同様にしてアルミロール材に微細粗面を形成し、実施例11と同様にして微細粗面の評価(均一性評価及び埋没粒子評価)を行った。結果を表2に示す。
[ Example 18 ]
With respect to the processed surface of the aluminum roll material obtained in the same manner as in Example 13, glass beads with a target particle size of 6 μm (spherical fine particles, trade name: E2-10, manufactured by Bright Labeling Industries, Ltd., sphericity) Using a machining fluid (split machining fluid) prepared using 0.8 or more, specific gravity 2.6, particle size range 0.5 to 11 μm), the number of rotations of the aluminum roll material is 128 rpm, and the total number of particles to be injected onto the work surface is 1 × 10 8 pieces / mm 2, and a fine rough surface was formed on the aluminum roll material in the same manner as in Example 13 except that the number of times of machining fluid jetting operation on the same surface was set to 3 times. Evaluation of fine rough surfaces (uniformity evaluation and embedded particle evaluation) was performed. The results are shown in Table 2.

Figure 0006097904
Figure 0006097904

本発明のアルミ基材の表面加工方法は、鏡面加工後のアルミ基材における鏡面(被加工面)の高度な平坦度や真円度を損なうことなく、この鏡面(被加工面)に微細粗面加工を施して微細な凹凸が均一に付与された微細粗面を形成することができるので、画像表示装置の視認性を向上させる防眩フィルムを製造するためのエンボスロール等の金型を始めとして、印刷用ロール、陽極酸化用ロール、光学部品用ロール等の用途に用いるロール材等を製造する上で、工業的に極めて有用である。   The surface processing method for an aluminum base material of the present invention can be applied to the mirror surface (machined surface) without damaging the high degree of flatness and roundness of the mirror surface (machined surface) in the mirror-finished aluminum base material. Since the surface can be processed to form a fine rough surface with fine irregularities evenly applied, such as dies such as embossing rolls for manufacturing anti-glare films that improve the visibility of image display devices. As described above, it is industrially extremely useful for producing roll materials used for printing rolls, anodizing rolls, optical component rolls, and the like.

1a…板材(アルミ基材)、1b…ロール材(アルミ基材)、2…被加工面、3…噴射ノズル、4…加工液、5…走査処理面、6…処理継ぎ目。   DESCRIPTION OF SYMBOLS 1a ... Plate material (aluminum base material), 1b ... Roll material (aluminum base material), 2 ... Surface to be processed, 3 ... Injection nozzle, 4 ... Processing liquid, 5 ... Scanning processing surface, 6 ... Processing seam.

Claims (7)

アルミニウム又はアルミニウム合金で形成されたアルミ基材の表面に、この表面を鏡面状態又は鏡面に近い状態の被加工面に加工する鏡面加工を施し、次いで前記鏡面加工後のアルミ基材の被加工面に、球状微粒子を分散させて調製した加工液を噴射する噴射ノズル走査により、前記被加工面を微細な凹凸を有する微細粗面に加工する微細粗面加工を施し、アルミ基材の表面に微細粗面を形成するアルミ基材の表面加工方法であって、
前記微細粗面加工の噴射ノズル走査において処理継ぎ目が発生しないものであって、この微細粗面加工の際に用いられる加工液中の球状微粒子の目標粒径が3〜100μmの中にある特定の数値であり、また、前記微細粗面加工の際における加工液の噴射圧力が0.15〜0.4MPaであると共に、この微細粗面加工時に微細粗面が形成されるまでの間にアルミ基材の被加工面に噴射する球状微粒子の粒子総数(目標粒径換算)が1×107〜5×108個/mm2であることを特徴とするアルミ基材の表面加工方法。
The surface of the aluminum base material formed of aluminum or an aluminum alloy is subjected to mirror surface processing for processing the surface into a mirror surface state or a state close to the mirror surface, and then the mirror surface processing surface of the aluminum base material In addition, the surface of the aluminum base material is finely processed by spraying a nozzle, which sprays a processing liquid prepared by dispersing spherical fine particles, and processing the surface to be processed into a fine rough surface having fine irregularities. A surface processing method of an aluminum substrate for forming a rough surface,
Be those processed seams in the spray nozzle scans the fine surface roughening does not occur, the particular target particle size of the spherical particles of the machining fluid used in the micro-surface roughening is in the 3~100μm In addition, the injection pressure of the working fluid in the fine rough surface processing is 0.15 to 0.4 MPa, and the aluminum base is formed before the fine rough surface is formed during the fine rough surface processing. A surface processing method for an aluminum base material, characterized in that the total number of spherical fine particles (target particle size conversion) to be sprayed on the work surface of the material is 1 × 10 7 to 5 × 10 8 particles / mm 2 .
前記加工液を形成する球状微粒子は、その目標粒径から±30%以内の分布を有する請求項1に記載のアルミ基材の表面加工方法。2. The surface treatment method for an aluminum substrate according to claim 1, wherein the spherical fine particles forming the machining liquid have a distribution within ± 30% from the target particle diameter. 前記微細粗面加工で形成された微細粗面に対し、化学的溶解処理又は電解研磨処理を施し、算術平均粗さRa(JIS B0601:2001)に対する十点平均粗さRThe fine rough surface formed by the fine rough surface processing is subjected to chemical dissolution treatment or electropolishing treatment, and the ten-point average roughness R with respect to the arithmetic average roughness Ra (JIS B0601: 2001). zjiszjis (JIS B0601:2001)の比(R(JIS B0601: 2001) ratio (R zjiszjis /Rz)がR/ Rz) is R zjiszjis /Ra<5となるように調整する請求項1又は2に記載のアルミ基材の表面加工方法。The surface treatment method for an aluminum substrate according to claim 1 or 2, wherein the surface roughness is adjusted so that / Ra <5. アルミニウム又はアルミニウム合金で形成されたアルミ基材の表面に、この表面を鏡面状態又は鏡面に近い状態の被加工面に加工する鏡面加工を施し、次いで前記鏡面加工後のアルミ基材の被加工面に、球状微粒子を分散させて調製した加工液を噴射する噴射ノズル走査により、前記被加工面を微細な凹凸を有する微細粗面に加工する微細粗面加工を施し、アルミ基材の表面に微細粗面を形成するアルミ基材の表面加工方法であって、
この微細粗面加工の際に用いられる加工液中の球状微粒子の目標粒径が3〜100μmの中にある特定の数値であり、また、前記微細粗面加工の際における加工液の噴射圧力が0.1〜0.4MPaであると共に、この微細粗面加工時に微細粗面が形成されるまでの間にアルミ基材の被加工面に噴射する球状微粒子の粒子総数(目標粒径換算)が1×104〜5×108個/mm2であり、
前記微細粗面加工の噴射ノズル走査において処理継ぎ目が発生するものであって、鏡面加工後のアルミ基材の被加工面に噴射する球状微粒子の粒子総数を複数のN画(Nは2以上の自然数)に分割し、この分画された各画の粒子数の球状微粒子を含むN画の分割加工液を調製し、微細粗面加工時には前記アルミ基材の被加工面の全面に亘って各分割加工液を噴射する加工液噴射操作をN回繰り返して実施することを特徴とするアルミ基材の表面加工方法。
The surface of the aluminum base material formed of aluminum or an aluminum alloy is subjected to mirror surface processing for processing the surface into a mirror surface state or a state close to the mirror surface, and then the mirror surface processing surface of the aluminum base material In addition, the surface of the aluminum base material is finely processed by spraying a nozzle, which sprays a processing liquid prepared by dispersing spherical fine particles, and processing the surface to be processed into a fine rough surface having fine irregularities. A surface processing method of an aluminum substrate for forming a rough surface,
The target particle diameter of the spherical fine particles in the machining liquid used in the fine rough surface machining is a specific numerical value within 3 to 100 μm, and the injection pressure of the machining liquid in the fine rough surface machining is In addition to 0.1 to 0.4 MPa, the total number of spherical fine particles (target particle size conversion) to be injected onto the work surface of the aluminum base material until the fine rough surface is formed during the fine rough surface processing. 1 × 10 4 to 5 × 10 8 pieces / mm 2
Be those processed seam occurs in the spray nozzle scans the fine surface roughening, a plurality of N images of particles total number of spherical fine particles for injecting the treated surface of the aluminum substrate after mirror finishing (N is 2 or more (Natural number) is divided into N fractions containing spherical fine particles having the same number of fractions as each fraction, and each surface is processed over the entire surface of the aluminum substrate during fine roughing. A surface processing method for an aluminum base material, characterized in that a processing liquid injection operation for injecting a divided processing liquid is repeated N times.
前記各分割加工液の粒子濃度は、前記微細粗面加工時にアルミ基材の被加工面に噴射される球状微粒子の粒子総数が1回の加工液噴射操作で達成される際に使用される加工液の粒子濃度よりも低い請求項4に記載のアルミ基材の表面加工方法。 The particle concentration of each of the divided machining fluids is a process used when the total number of spherical fine particles ejected onto the work surface of the aluminum base during the fine rough surface machining is achieved by one machining fluid ejection operation. The surface processing method of the aluminum base material of Claim 4 lower than the particle | grain density | concentration of a liquid. 前記加工液を形成する球状微粒子は、その目標粒径から±30%以内の分布を有する請求項4又は5に記載のアルミ基材の表面加工方法。 6. The method of surface treatment of an aluminum substrate according to claim 4, wherein the spherical fine particles forming the machining liquid have a distribution within ± 30% from the target particle size. 前記微細粗面加工で形成された微細粗面に対し、化学的溶解処理又は電解研磨処理を施し、算術平均粗さRa(JIS B0601:2001)に対する十点平均粗さRzjis(JIS B0601:2001)の比(Rzjis/Rz)がRzjis/Ra<5となるように調整する請求項4〜6のいずれかに記載のアルミ基材の表面加工方法。 The fine rough surface formed by the fine rough surface processing is subjected to chemical dissolution treatment or electropolishing treatment, and the ten-point average roughness R zjis (JIS B0601: 2001) with respect to the arithmetic average roughness Ra (JIS B0601: 2001). ) (R zjis / Rz) is adjusted so that R zjis / Ra <5. 7. The surface processing method for an aluminum substrate according to claim 4 .
JP2013133411A 2013-06-26 2013-06-26 Surface processing method of aluminum substrate Expired - Fee Related JP6097904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133411A JP6097904B2 (en) 2013-06-26 2013-06-26 Surface processing method of aluminum substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133411A JP6097904B2 (en) 2013-06-26 2013-06-26 Surface processing method of aluminum substrate

Publications (2)

Publication Number Publication Date
JP2015006719A JP2015006719A (en) 2015-01-15
JP6097904B2 true JP6097904B2 (en) 2017-03-22

Family

ID=52337426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133411A Expired - Fee Related JP6097904B2 (en) 2013-06-26 2013-06-26 Surface processing method of aluminum substrate

Country Status (1)

Country Link
JP (1) JP6097904B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020171975A (en) * 2019-04-09 2020-10-22 本田技研工業株式会社 Method of manufacturing vehicular component, method of manufacturing vehicle, and vehicular component
CN112299858A (en) * 2019-07-25 2021-02-02 Oppo(重庆)智能科技有限公司 Preparation method of shell, shell and mobile terminal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187952A (en) * 2006-01-16 2007-07-26 Sumitomo Chemical Co Ltd Anti-glare film, method of manufacturing same, method of manufacturing die for same, and display device
JP2010269346A (en) * 2009-05-22 2010-12-02 Asahi Tec Corp Method for machining surface of casting, and method for manufacturing casting

Also Published As

Publication number Publication date
JP2015006719A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
TWI406719B (en) Magnesium alloy member and method of manufacturing the same
US20110094999A1 (en) Application of surface relief to spot welding electrodes
JP5301531B2 (en) Sputtering target with less generation of particles
JPWO2008081585A1 (en) Sputtering target and manufacturing method thereof
JP6097904B2 (en) Surface processing method of aluminum substrate
Fayazfar et al. An overview of surface roughness enhancement of additively manufactured metal parts: a path towards removing the post-print bottleneck for complex geometries
JP5042871B2 (en) Method for producing metal foil material
US9457493B2 (en) Method for producing cylindrical nanoimprinting mold and method for producing nanoimprinting reproduction mold
US10023939B2 (en) Gold evaporative sources with reduced contaminants and methods for making the same
JP2009178770A (en) Method of machining mold member, method of producing the same, extrusion die, method for production of extruding material, and extruding material
JP7373630B2 (en) Method of manufacturing thermal sprayed parts
Okada et al. Evaluation of finished surface of cemented carbide by direct cutting using diamond-coated carbide end mill
JP3651665B2 (en) Cold-rolled steel sheet with excellent press formability and sharpness after painting
RU2152865C1 (en) Method for treatment of product surface
CN111975297B (en) Preparation and rolling post-treatment strengthening process for high-energy micro-arc deposition layer on copper alloy surface
JP2013166169A (en) Deformed bar rolling roll and method for producing the same
Kameyama et al. Ridge-Texturing for Wettability Modification by Using Angled Fine Particle Peening
JP2002045906A (en) Method for working temper rolling roll for galvanized steel sheet
JP5838860B2 (en) Method for producing mirror-finished aluminum material and mirror-finished aluminum material obtained by this method
CN108138331B (en) Surface treatment method for base material and manufacturing method for mold
JP4981293B2 (en) Thermal spray coating
JP2019127598A (en) Manufacturing method of spray coated member
KR101900531B1 (en) Method for producing steel
JP3896598B2 (en) Anodizing method
JP2024022010A (en) Method for manufacturing rolling die, and apparatus for manufacturing rolling die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20161013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6097904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees