JP6090995B2 - 光子検出装置および放射線測定装置 - Google Patents

光子検出装置および放射線測定装置 Download PDF

Info

Publication number
JP6090995B2
JP6090995B2 JP2013091997A JP2013091997A JP6090995B2 JP 6090995 B2 JP6090995 B2 JP 6090995B2 JP 2013091997 A JP2013091997 A JP 2013091997A JP 2013091997 A JP2013091997 A JP 2013091997A JP 6090995 B2 JP6090995 B2 JP 6090995B2
Authority
JP
Japan
Prior art keywords
photon
scintillator
photons
spad
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013091997A
Other languages
English (en)
Other versions
JP2014215145A (ja
Inventor
徹 名倉
徹 名倉
邦博 浅田
邦博 浅田
飯塚 哲也
哲也 飯塚
久保田 透
透 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2013091997A priority Critical patent/JP6090995B2/ja
Publication of JP2014215145A publication Critical patent/JP2014215145A/ja
Application granted granted Critical
Publication of JP6090995B2 publication Critical patent/JP6090995B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Description

本発明は光子検出装置、およびこれを備えた放射線測定装置に関し、例えばシンチレータ内にγ線が入射されることにより発生する電子軌跡を特定する際に適用して好適なものである。
近年、γ線の飛来方向を検出する放射線検出装置としては、例えば中心角120度の扇形状を有した特性が異なる3種類のシンチレータを金属板で隔てて円筒状容器に収容した放射線検出装置が知られている(例えば、非特許文献1参照)。このような放射線検出装置は、円筒状容器の末端に光電子増倍管が設けられており、各シンチレータにγ線が入射したときに発する光を、光電子増倍管によって光電効果により電子に変換して当該電子を増幅させ得る。放射線検出装置は、区分けした各シンチレータで発する光の計測値がγ線の飛来方向によって変化し、シンチレータ毎に変化する電子量を対比することでγ線がいずれのシンチレータ側から飛来したかを特定し得るようになされている。
しかしながら、このような放射線検出装置では、異なる特性を有した3種類のシンチレータを用いるとともに、電子を増幅させる光電子増倍管を設ける必要があることから、その分、装置構成が複雑化し、大型化してしまうという問題があった。
そこで、γ線の感度を維持しつつ、小型化を図った放射線検出装置の開発が望まれており、例えば、非特許文献2に示すような放射線検出装置が考えられている。この放射線検出装置は、LGSO(ケイ酸ルテチウムガドリニウム)単結晶や、LYSO(ケイ酸ルテチウムイットリウム)単結晶でなる微小な立方体型シンチレータを、光学接着剤により例えば16×16×16個固着させた1.6[mm]角のシンチレータブロックを備え、このシンチレータブロックの6面全てに半導体受光素子が接合されている。
シンチレータブロックの表面に設けられた半導体受光素子は、所定間隔を空けて受光部が設けられているとともに、受光部間の隙間に反射材を設け、シンチレータブロック内から発する光を反射材によってシンチレータブロック内に留め、シンチレータブロック内から光が漏れ出ることを抑制している。これにより半導体受光素子では、シンチレータブロック内に発した弱い光であっても、反射材によって受光部間の隙間から光が漏れ出ることなく、シンチレータブロック内に光を反射させて当該光を受光部により確実に受光し得るようになされている。
これにより放射線検出装置では、シンチレータブロック内に放射線が入射された際、当該シンチレータブロック内で光子が発生した位置を、縦方向・横方向・厚さ方向の全てにおいて検出し、これら得られた検出結果を解析することによりγ線が飛来する方向を推定し得るようになされている。
"飛来放射線の方向とエネルギーが分かるガンマ線検出器の開発に成功"[Online]、平成20年7月16日、科学技術振興機構報 第539号〔2013年4月19日検索〕、インターネット<URL:http://www.jst.go.jp/pr/info/info539/> "理論限界に迫るPET解像度の実現に向けた3次元放射線検出器を開発"[Online]、2011年10月5日、独立行政法人放射線医学総合研究所〔2013年4月19日検索〕、インターネット<URL:http://www.nirs.go.jp/news/press/2011/10_05.shtml>
しかしながら、このようなシンチレータブロックを用いた放射線検出装置では、受光部間の隙間に反射材を設けていることから、シンチレータブロック内にて発生した光がシンチレータブロック内で反射を繰り返してしまい、その分、光子が発生した位置を推定する解析が複雑となり、空間分解能が低下する虞がある。
そこで、本発明は以上の点を考慮してなされたもので、小型化を図るとともに、従来よりも空間分解能を向上し得る光子検出装置および放射線測定装置を提案することを目的とする。
本発明の請求項1記載の光子検出装置は、放射線が入射されることにより光子が発生する多面体形状のシンチレータと、前記シンチレータの各表面に被着され、アレイ状に形成された複数のピンホールから該シンチレータを外部に露出させる光子吸収膜と、複数の受光部がアレイ状に配置された構成を有し、前記シンチレータの各表面に対し前記光子吸収膜を介在させて対向配置され、前記ピンホールを透過した前記光子を各前記受光部により検出可能な光子検出素子とを備えることを特徴とする。
また、本発明の請求項5記載の放射線測定装置は、請求項1〜4のうちいずれか1項記載の光子検出装置と、前記光子検出装置に接続され、各前記受光部における前記光子の検出有無を示す検出結果データを前記光子検出装置から受け取る信号処理部とを備え、前記信号処理部は、3次元座標により前記シンチレータ内の各位置を特定し、一の座標から所定個数の光子が放出されたと仮定したとき、各前記受光部がそれぞれ光子を検出する可能性を確率分布で示したデータベースを、全ての座標で求めた確率分布データテーブルを予め記憶しており、前記シンチレータに前記放射線が入射され、全ての前記受光部から前記検出結果データを受け取ると、前記光子を検出した前記受光部に対応する確率分布を各前記データベース毎に全て加算して、該データベース毎に推定確率分布を算出することを特徴とする。
本発明によれば、シンチレータ内で発生した光子のうち、光子吸収膜に当たる光子は光子吸収膜に吸収され、ピンホールから透過した光子は飛んだ方向にある受光部により検出されることから、シンチレータ内で光子が反射を繰り返すことがなく、その分、光子が発生した位置を推定する解析が従来よりも容易となり、空間分解能を向上できる。また、ピンホールから透過した光子を複数の受光部により検出し、各受光部での光子の検出有無の分布状態に基づいて、光子が発生した位置を推定することができるので、従来のような異なる特性を有した複数種類のシンチレータや、電子を増幅させる光電子増倍管が不要になる分、装置構成が簡素化して小型化を図ることができる。
本発明による放射線測定装置の構成を示す概略図である。 光子検出装置の構成を示す概略図である。 光子検出装置にγ線が入射したときの現象の説明に供する概略図である。 シンチレータ内のある光源から発した光子の移動の様子を示す概略図である。 モンテカルロ法の説明に供する概略図である。 境界面における反射、透過の説明に供する概略図である。 データベース生成処理手順を示すフローチャートである。 光検出データの構成および確率分布データテーブルの構成を示す概略図と、推定確率分布の算出手法の説明に供する概略図である。 光源推定処理手順を示すフローチャートである。 光源位置推定画像の様子を示す概略図である。 推定電子軌跡の説明に供する概略図である。 光源(5,5,5)におけるデータベースを示すグラフである。 光源(1,1,1)におけるデータベースを示すグラフである。 ピンホール数を変えてシミュレーションを行った際の各種設計条件を示した表である。 ピンホール数を変更したときの誤差分布を示すグラフである。 ピンホール数を変更したときの誤り率を示すグラフである。 空間分解能とピンホール数の関係を示すグラフである。 ピンホールの総面積を変えてシミュレーションを行った際の各種設計条件を示した表である。 ピンホールの総面積を変更したときの誤差分布を示すグラフである。 ピンホールの総面積を変更したときの誤り率を示すグラフである。 空間分解能とピンホールの総面積の関係を示すグラフである。 SPADの設計条件を変えてシミュレーションを行った際の各種設計条件を示す表である。 SPADの設計条件を変更したときの誤差分布を示すグラフである。 SPADの設計条件を変更したときの誤り率を示すグラフである。 空間分解能とSPADの中心間距離との関係を示すグラフである。
以下図面に基づいて本発明の実施の形態を詳述する。
(1)放射線測定装置の構成
図1において、1は放射線測定装置を示し、光子検出装置2と信号処理部3とで構成されており、光子検出装置2内にγ線が入射されることにより生じる光子を光子検出装置2にて検出し、その検出結果に基づいて信号処理部3により、光子検出装置2で発生したγ線による電子軌跡(線光源)を推定し得るとともに、γ線の飛来方向をも推定し得るようになされている。
この実施の形態の場合、光子検出装置2は、六面体形状に形成されたCaF2(Eu)からなるシンチレータ5を備えており、当該シンチレータ5内にγ線が入射されると、シンチレータ5内でγ線がコンプトン散乱を起こし光子を放出し得るようになされている。このシンチレータ5は、表面の6面全てが、マルチコート材等の光子吸収膜6で被覆されているものの、外部から飛来したγ線が光子吸収膜6を透過して内部に入射され得る。
ここで、光子吸収膜6は、シンチレータ5の表面との間に隙間が形成されないように当該外表面に被着されており、シンチレータ5全体を覆うように形成されている。光子吸収膜6は、シンチレータ5内で発生した光子が壁部の壁面に当たると、その光子を吸収し、光子吸収膜6での光子の反射や、光子吸収膜6からの光子の透過を抑制し得るようになされている。
これに加えて光子吸収膜6には、壁部の厚みを貫通した複数のピンホール7がアレイ状(縦横に等間隔に配置された状態)に形成されており、当該ピンホール7から内部のシンチレータ5が外部に露出している。これによりシンチレータ5内で発生した光子は、その一部が光子吸収膜6のピンホール7を透過(通過)し、光子吸収膜6に対向配置させたSPAD(single-photon
avalanche diode)アレイ素子9のSPAD(図1では図示せず)で検出され得る。
実際上、この光子検出装置2には、シンチレータ5の6面(各表面)にそれぞれ板状のSPADアレイ素子9が所定距離を設けて対向配置されている。SPADアレイ素子9は、表面が四辺状に形成され、各辺が例えばシンチレータの辺の長さと同程度に選定されている。光検出素子としてのSPADアレイ素子9は、シンチレータ5と対向配置された表面に、SPADがアレイ状に配置された構成を有し、例えば四隅に設けた棒状の支持部11が光子吸収膜6の四隅に固定され得る。これによりSPADアレイ素子9は、SPADが設けられた表面が、支持部11によって光子吸収膜6の平面との間に所定距離を保って当該平面と並行するように対向配置され得る。
各SPADアレイ素子9は、配線を介して信号処理部3と電気的に接続されており、各SPADにより検出した光子の検出有無を検出結果データとして信号処理部3に送出し得るようになされている。信号処理部3は、SPADアレイ素子9全てから得られた全SPADからの検出結果データを取得すると、これら検出結果データをまとめて光検出データとして記憶し得る。
ここで、信号処理部3は、後述する光源推定処理を実行する算出部14を備えており、この算出部14により得られた算出結果を、表示部15に表示してユーザに対し視覚的に通知し得るようになされている。実際上、算出部14は、後述するデータベース生成処理に従って予め生成された確率分布データテーブルを記憶しており、光子検出装置2から得た光検出データを確率分布データテーブルに照らし合わせ、光子を発生させた電子軌跡がシンチレータ5内のどの位置にあるかを推定し得、これにより得られた推定電子軌跡を利用してシンチレータ5に入射したγ線の飛来方向を算出し得るようになされている。
ここで、算出部14は、シンチレータ5の8つの頂点のうち1つの頂点を原点Oとし、この原点Oを中心にシンチレータ5の辺に沿って互いに直交する縦方向z、横方向y、厚さ方向xの3次元座標によりシンチレータ5内の各位置を特定し得るようになされている。これにより算出部14は、シンチレータ5内のどの位置に電子軌跡があるかをこの座標を用いて特定し得るようになされている。表示部15は、算出部14により算出した推定電子軌跡の位置を示す情報や、推測したγ線の飛来方向を示す情報(例えば、図3にて後述するコンプトンコーン等)を、例えばシンチレータ5を模した3次元立体画像に重ねて表示し、ユーザに対して認識させ得る。
次に、光子検出装置2の詳細構成について、図2を用いて説明する。この実施の形態の場合、図2に示すように、シンチレータ5は、例えば一辺Hが10[mm]でなる立方体形状に形成され、各表面にそれぞれ光子吸収膜6によって4個×4個の合計16個の円形状のピンホール7が互いに等間隔を設けて形成された構成を有する。例えば、ピンホール7は、全て同一形状、同一寸法からなり、その直径D1や、隣接するピンホール7との中心間距離W1、一面の領域ER1において全てのピンホール7の面積を合わせた総面積、一面において対向する辺間にピンホール7が1列に並べられる領域L1でのピンホール7の個数を適宜調整することでシンチレータ5内の光源の位置を一段と正確に推定し得る。
なお、この実施の形態においては、ピンホール7全てを同一形状、同一寸法で形成した場合について述べたが、本発明はこれに限らず、例えばシンチレータ5の一面において中心部周辺に位置する複数のピンホールを小径に形成し、小径のピンホールを囲むように配置された複数のピンホールを大径に形成し、シンチレータ5の一面において中心部周辺のピンホール群と、辺近傍にあるピンホール群とで異なる径としてもよい。
また、この実施の形態においては、ピンホール7全ての中心間距離W1を等間隔に選定したが、本発明はこれに限らず、シンチレータ5の一面において中心部周辺と、辺近傍とでピンホールの密集度を変更してもよい。例えばシンチレータ5の一面において中心部から辺に向かうに従ってピンホール7の中心間距離W1が長くなるように配置し、シンチレータ5の一面において中心部周辺のピンホール群が、辺近傍のピンホール群よりも密集するようにしてもよい。
SPADアレイ素子9は、光子吸収膜6との間隔Wが例えば1[mm]以上に選定され、ピンホール7が形成された光子吸収膜6と所定間隔Wだけ離すことで、ピンホール7を透過して所定角度で放出される光源から光子を、光子が飛んだ方向にあるSPAD17にて検出し得る。また、SPADアレイ素子9は、シンチレータ5と対向配置される表面に、例えば複数の円形状のSPAD17が互いに等間隔に配置されており、SPAD17の直径D2や、隣接するSPAD17との中心間距離W2、一面において対向する辺間にSPAD17が1列に並べられる領域L2(図2では省略して辺間の一部の領域のみを囲っている)でのSPAD17の個数を適宜調整することでシンチレータ5内からピンホール7を透過して放出された光子を、光子が飛んだ方向にあるSPAD17で検出し得るようになされている。なお、図2における領域ER2は、SPADアレイ素子9の一部の領域を拡大したものである。
次に、図3に示すように、光子吸収膜6の2つのピンホール7に着目し、γ線Grがシンチレータ5内に入射した際に起こる現象について以下説明する。なお、図3では、説明の便宜上、光子吸収膜6に2つのピンホール7を設け、手前側の光子吸収膜6は省いた構成を示す。また、ここでは、シンチレータ5表面の入射点P1´から光子吸収膜6を透過してシンチレータ5内にγ線Grが入射している。これによりシンチレータ5内では、散乱点P2´にてある確率でコンプトン散乱が起こり、γ線Grのエネルギーの一部が電子に与えられ、散乱点P2´から所定方向に散乱したγ線SGrが生成され、その後吸収され得る。一方、エネルギーを得た電子は、光(シンチレーション光)を放出しながらシンチレータ5内を走行し、走行した部分が軌跡のように光って見える電子軌跡ET1が発生する。
放射線測定装置1では、この際、光子検出装置2から得られた光検出データを基にシンチレータ5内に発生した電子軌跡ET1を信号処理部3により推定し、この電子軌跡ETの長さ(散乱点P2´から電子が止まるまで距離であり、飛程とも呼ぶ)を算出し得る。これにより放射線測定装置1では、一般的に飛程の経験式として与えられている公知の式からγ線Grが電子に与えたエネルギーを求めることができ、この求めたエネルギーと一般的なコンプトン散乱の関係式によって到来角2θ´を求めることができるので、γ線Grの線源位置が到来角2θ´のコンプトンコーン(円錐面)内にあると推定し得る。そして、放射線測定装置1では、このようなコンンプトンコーンを複数算出して重ねてゆくことで線源位置をより正確に特定し得る。
なお、γ線Grが電子に与えたエネルギーを求める際に用いる飛程の経験式や、求めたエネルギーを用いて到来角2θ´を求めるコンプトン散乱の関係式については、「放射線計測基礎論 佐々木真一 高エネルギー加速器研究機構 放射線科学センター(インターネット:URL http://accwww2.kek.jp/oho/OHOtxt/OHO-2011/7_oho11_sasaki_20110822.pdf)」にて記載されていることから、ここではその説明は省略する。
ここで、シンチレータ5内で発生する光は、シンチレータ5とγ線Grのエネルギーとによって放出される光子の数で決まる。光子は、シンチレータ5内の光源から全方位に向けてランダムに放出されると考えられており、この際、いくつかの光子が例えば2つのピンホール7を透過してその先にあるSPADアレイ素子9のSPAD17(図3では図示せず)にて検出され得る。
SPADアレイ素子9は、SPAD17で光子1個を検出すると、当該SPAD17でブレイクダウンを起こすため、そのときのパルス電圧を測定することにより、複数あるSPAD17のうち、光子を検出したSPAD17を判別し得る。例えばシンチレータ5内の電子軌跡ET1のある位置から放出された一の光子は、経路SL1を通り一のピンホール7を透過し、経路SL1上にあるSPADアレイ素子9のSPAD17で検出され得る。また、上述した同じ位置から放出された他の光子は、経路SL1とは異なる経路SL2を通り他のピンホール7を透過し、経路SL2上にあるSPADアレイ素子9のSPAD17で検出され得る。
SPADアレイ素子9では、図3に示すように、シンチレータ5内の光子が放出される場所(電子軌跡ET1中の位置)によって、光子を検出するSPAD17が異なる。本発明では、このような現象を利用して、先ず始めに、シンチレータ5内の一の座標に光源があると仮定し、SPADアレイ素子9のどのSPAD17で光子を検出する可能性があるかを各SPAD17毎に確率分布で表したデータベースを、シンチレータ5内の全ての座標毎にシミュレーションにより求め、これを確率分布データテーブルとして信号処理部3(例えば算出部14)に予め記憶させておく。
(2)データベース生成処理
ここで、ある座標P3´でのデータベースを生成する際は、図4に示すように、当該座標P3´から放出される所定個数の光子1個1個を追跡する。例えば、経路SL3の光子は、あるピンホール7に向けて飛び、そのままピンホール7を透過してSPADアレイ素子9の所定のSPAD17(図4では図示せず)に検出される。また、経路SL4の光子は、光子吸収膜6の壁面に向けて飛び、光子吸収膜6により吸収される。また、経路SL5の光子は、あるピンホール7に向けて飛ぶものの、ピンホール7を透過することなくシンチレータ5と外部の空気との境界面で反射し、反射方向にある他のピンホール7を透過してSPADアレイ素子9の所定のSPAD17に検出される。一方、経路SL6の光子は、同じくピンホール7において反射するものの、反射方向にある光子吸収膜6の壁面に当たり、当該光子吸収膜6に吸収される。
このような光子1個1個を追跡するシミュにレーションを行うにあたり、ある座標から全方位に向けてランダムに放出される光子は、モンテカルロ法を用いてシミュレーションされる。光子を全方位に発生させることは、図5に示すような単位球の球表面上に光子を一様分布させることと等価である。従って、微小表面積dSを表す関数が、微小表面積dSと比例関係になるように変数を決めることによって、単位球の球表面上に一様分布させることができる。
ここで、球座標(1,θ,φ)を設定すると、微小表面積dSは下記の式で表すことができる。
Figure 0006090995
この式では、θ,φの関数として表されるが、微小表面積dSはsinθに比例しているため、この2つの変数をそのまま用いると、球表面上に一様に分布しないため、下記の式を用いて変数変換を行う。
Figure 0006090995
その結果、下記の式となり、座標でのデータベースを生成する際のシミュレーションでは、z,φについて乱数を出すことで、球表面上に一様分布する光子を全方位ランダムに発生させることができる。
Figure 0006090995
発生させた光子は、図4に示したように、光子吸収膜6の壁面か、ピンホール7に必ず入る。ピンホール7において形成されるシンチレータ5と空気との境界面での反射、透過は、図6に示すように、例えばCaF2(Eu)からなるシンチレータ5の屈折率をn1(シンチレータ5がCaF2(Eu)により形成されている場合、n1は1.47)、空気の屈折率をn2(1.000)、入射角θi、屈折角θtとした場合、スネルの法則より、n1 sinθi = n2 sinθtと表すことができる。この場合、n1>n2であることから、sinθi<sinθtが成り立つ。
従って、入射角θiを大きくしてゆくと、あるところで屈折角θt =90度に達する。さらに、入射角θiを大きくすると、sinθt<1により上述した式が成り立たなくなる。入射角θiの限界値である臨界角θcは次の式により計算できる。
Figure 0006090995
従って、シンチレータ5がCaF2(Eu)により形成した場合、42.9度以上の角度で光子がピンホール7に入射した場合は全反射となり、ピンホール7で反射した光子は、光子吸収膜6の壁面か、または他のピンホール7のいずれかに入る。再度、ピンホール7に入る場合には、再び光子が反射または透過するか否かを計算する。一方、このシミュレーションでは、入射角θiが臨界角θc以下のとき、ピンホール7の境界面において、光子の反射または透過が起こるとした。
しかし、光が境界面に入射する際、S波、P波という性質がある。S波は、電界成分が入射面に垂直な電磁波であり、P波は、電界成分が入射面に平行な電磁波のことである。反射と透過の確率は、パワー反射率とパワー透過率とによって決まり、この値はS波とP波とで異なる。S波のパワー反射率をRS、P波のパワー反射率をRPとすると、下記の式のように表すことができる。
Figure 0006090995
また、S波のパワー透過率をTS、P波のパワー透過率をTPとすると、下記の式のように表すことができる。
Figure 0006090995
従って、仮に屈折率n1,n2が同じ値であっても、S波とP波の割合が異なる光は、反射率と透過率が異なることになる。ここで、S波が含まれる割合をPSとし、P波が含まれる割合をPPとすると、真のパワー反射率Rとパワー透過率Tは以下のように表せる。
Figure 0006090995
なお、この場合、PS+PP = 1,R+T = 1が成り立っており、データベースを生成する際のシミュレーションでは、S波とP波の割合を0.5ずつと仮定して行っている。シミュレーションによりある座標を光源としてデータベースを生成する場合、ピンホール7の当たる光子は、算出したパワー反射率Rとパワー透過率Tから反射か透過かが決定される。なお、データベースを生成する際のシミュレーションでは、パワー反射率の値がパワー透過率の値よりも大きいとき、光子がピンホール7で反射し、一方、パワー透過率の値がパワー反射率の値よりも大きいとき、光子がピンホール7を透過するとした。
ある座標でのデータベースを生成するシミュレーションでは、シンチレータ5内の光源位置や、光子吸収膜6のピンホール7の位置、SPADアレイ素子9に配置されたSPAD17の位置を、座標により特定しておく。データベースを生成するシミュレーションでは、上述したモンテカルロ法と、パワー反射率Rおよびパワー透過率Tの算出結果とを利用し、シンチレータ5内の所定の座標に光源があると仮定したときに、SPAD17が光子を検出する可能性がどの程度あるか確率分布で示したデータベースを生成し得る。そして、このようなデータベースをシンチレータ5内の全ての座標において生成し、各座標毎に生成したデータベースをまとめて確率分布データテーブルとして算出部14に予め記憶させておく。
次にこのようなデータベースを生成するデータベース生成処理手順について、図7に示すフローチャートを用いて以下説明する。なお、この実施の形態の場合、データベース生成処理を信号処理部3により実行する場合について以下述べるが、本発明はこれに限らず、他の情報処理装置でデータベース生成処理を実行し、当該情報処理装置で生成した確率分布データテーブルを信号処理部3に記憶させるようにしてもよい。
この場合、図7に示すように、信号処理部3はルーチンRT1の開始ステップから入ってステップSP1において、シンチレータ5内の座標のうち1つの座標を選択してこの座標を光源の場所として決定し、次のステップSP2に移る。
ステップSP2において信号処理部3は、ステップSP1で選択した座標からモンテカルロ法を利用してランダムな方向に光子を発生させ、次のステップSP3に移る。このシミュレーションでは、1回のイベントに1.00×108個の光子を発生させることとするが、先ずはランダムな方向に1個の光子を発生させ、ステップSP3においてこの光子が当たる場所を計算する。
ステップSP4において信号処理部3は、光子の飛んだ方向にピンホール7の座標があるか否か、すなわち光子がピンホール7に当たるか否かを判断する。ここで、否定結果が得られると、このことは、光子が飛んだ方向にピンホール7の座標がないこと、すなわち光子がピンホール7に当たらずに光子吸収膜6の壁面に当たることを表しており、このとき信号処理部3は次のステップSP5に移る。
ステップSP5において信号処理部3は、ステップSP2により光子を発生させた回数が規定回数(1.00×108回)繰り返したか否かを判断する。すなわち、ステップSP5では、1回のイベントに1.00×108個の光子を発生させ、これを規定回数として設定し、ステップSP2により光子を発生させた回数が規定回数繰り返したか否かを判断する。
例えばCaF2(Eu)でなるシンチレータ5では、1回のイベントに1.25×104個程度の光子を放出することから、これら複数の光子について光子の当たる場所を特定する必要がある。そこで、このデータベース生成処理では、シンチレータ5の材質から決まる光子数(1.25×104個程度)よりも多い光子数(例えば1.00×108個)でシミュレーションを行うことで、どのSPAD17に光子が入り易いかを示す確率分布をより正確に生成し得る。
そして、このステップSP5において否定結果が得られると、このことは規定回数ランダムな方向に光子を発生させていないことを表しており、このとき信号処理部3はステップSP2に再び戻り、モンテカルロ法によりランダムな方向に光子を発生させ、上述した処理を繰り返す。
一方、上述したステップSP4において肯定結果が得られると、このことは光子が飛んだ方向にピンホール7の座標があること、すなわち光子がピンホール7を当たることを表しており、このとき信号処理部3は次のステップSP6に移る。ステップSP6において信号処理部3は、上述した光子のピンホール7に対する入射角θi、真のパワー反射率Rおよびパワー透過率Tを算出し、光子がピンホール7で反射するか、或いは透過するかを確率的に決定し、次のステップSP7に移る。
ステップSP7において信号処理部3は、ステップSP6で光子がピンホール7を透過すると確率的に決定したか否かを判断する。ここで否定結果が得られると、このことは光子がピンホール7を透過することなく反射したことを表しており、このとき信号処理部3は再びステップSP3に戻り、反射した光子が当たる場所を再度計算し、ステップSP4で否定結果が得られるか、或いはステップSP7において肯定結果が得られるまで上述した処理を繰り返す。
一方、ステップSP7において肯定結果が得られると、このことは光子がピンホール7を透過したこと表しており、このとき信号処理部3は次のステップSP8に移る。ステップSP8において信号処理部3は、ピンホール7を透過した光子の飛んだ方向に、SPADアレイ素子9のSPAD17の座標がある否か、すなわち、光子がSPAD17に当たるか否かを判断する。
なお、光子は、ピンホール7を透過した際、屈折することに注意し、また、SPAD17は円形に選定されおり、座標で示す円内のどこかに光子が入ればSPAD17に光子が当たったとする。ここでステップSP8において肯定結果が得られると、このことは光子が飛んだ方向にSPAD17の座標があること、すなわち光子がSPAD17に当たったことを表しており、このとき信号処理部3は次のステップSP9に移る。
ステップSP9において信号処理部3は、光子が当たったSPADのカウント数に1を加算し、次のステップSP5に移る。また、上述したステップSP8において否定結果が得られると、このことは光子が飛んだ方向にSPAD17の座標がないこと、すなわちピンホール7を透過した光子がSPAD17に当たらなかったことを表しており、このときも信号処理部3は次のステップSP5に移る。
ステップSP5において信号処理部3は、規定回数に到達するまでランダムな方向に光子を発生させ、上述したステップSP2〜ステップSP9を繰り返し、光子の発生回数が規定回数に到達すると肯定結果を得、次のステップSP10に移る。
ステップSP10において信号処理部3は、全てのSPAD17のカウント数をそれぞれ規定回数で除算し、ステップSP1で選択した座標に光源があるとき、各SPAD17に光子があたる可能性を確率的に示したデータベースを生成し、次のステップSP11に移り、データベース生成処理手順を終了する。ここで、SPAD17毎に求めた確率分布は、1回のイベントで発生するとされている光子数(例えば1.25×104個)で正規化されている。
このようにして、信号処理部3は、シンチレータ5内にある全ての座標について光源の場所として選択してゆき、座標毎にデータベースを生成し、図8の中段に示すように、これら各座標毎に生成した全データベース1,…,M(1〜Mは、データベースに割り当てられた単なる番号を示す)を確率分布データテーブルT100として記憶する。
(3)光源推定処理
本発明による放射線測定装置1では、このようにして生成した確率分布データテーブルT100を算出部14に記憶した後、実際に、光子検出装置2にγ線が入射されると、当該γ線によりシンチレータ5内に発生した電子軌跡ET1を、後述する光源推定処理を実行することにより推定し得る。実際上、光子検出装置2は、シンチレータ5内にγ線が入射されることにより生じる光子を各SPAD17で検出し、全SPAD17から得らえた検出結果データを算出部14にそれぞれ送出し、これら検出結果データを当該算出部14において光検出データとして記憶させ得る。
図8の上段は、光子検出装置2に設けた6つのSPADアレイ素子9の全SPAD17の数がN個であるとしたとき、各SPAD17での光子の検出結果を示す光検出データであり、各SPAD17を識別するために付されたビット番号1〜Nに、光子の検出結果データに応じて「0」,「1」の2値のデジタルコードが対応付けられている。ここで、光検出データは、データベース1〜Mを生成した際にシミュレーションで想定したSPAD17と同じ位置にあるSPAD17に対し、データベース1〜MのSPAD17のビット番号1〜Nと同じビット番号1〜Nが付されている。
なお、この実施の形態の場合、例えば光子を検出したSPAD17に「1」のデジタルコードを付し、光子を検出しなかったSPAD17に「0」のデジタルコードを付しており、図8の光検出データでは、ビット番号1,3,…,N-1の各SPAD17で光子を検出しておらず、各デジタルコードが「0」となっている。一方、ビット番号2,…,N-2,Nでは各SPAD17で光子を検出しており、各デジタルコードが「1」となっている。
そして、信号処理部3は、算出部14によって、後述する光源推定処理を実行することにより、光源がある可能性を示す推定確率分布P1〜PMを算出し得る。この場合、算出部14は、光検出データのデジタルコードが「1」となっているSPAD17に注目し、例えばデータベース1において、光検出データのデジタルコードが「1」となっているビット番号2,…,N-2,Nと同じビット番号2,…,N-2,Nの確率分布P12,…,P1N-2,P1Nを全て加算した推定確率分布P1を算出し得る。
また、算出部14は、確率分布データテーブルT100の例えばデータベースMについても、上述と同様に光検出データのデジタルコードが「1」となっているビット番号2,…,N-2,Nと同じビット番号2,…,N-2,Nの確率分布PM2,…,PMN-2,PMNを全て加算した推定確率分布PMを算出し得る。このように算出部14は、確率分布データテーブルT100の全てのデータベース1〜Mについて推定確率分布P1〜PMを算出し、例えばデータベース1〜Mに対応付けた座標を、推定確率分布P1〜PMの数値毎に色分けし、3次元座標上にプロットしてゆくことで光源が存在する可能性のある座標を視覚的に識別させ得る。
次に、このような光源推定処理について、図9に示すフローチャートを用いて以下説明する。この場合、算出部14は、開始ステップRT2からステップSP21に移り、光子検出装置2の全SPAD17での光子の検出結果を示す光検出データを取得し、次のステップSP22に移る。
ステップSP22において算出部14は、データベースm(ここでmは、初期値1であり1≦m≦M)を参照し、次のステップSP23に移る。ステップSP23において算出部14は、光検出データのビット番号nのデジタルコードが「1」であるか否か、すなわちビット番号nのSPAD17が光子を検出しているか否かを判断する。ここで肯定結果が得られると、このことは光検出データのビット番号nのデジタルコードが「1」であること、すなわちビット番号nのSPAD17が光子を検出していることを表しており、このとき算出部14は次のステップSP24に移る。
ステップSP24において算出部14は、データベースmにおけるビット番号nに対応付けられた確率分布の値を、最終的に推定確率分布となる合算値(初期値0)に加算し、次のステップSP25に移る。一方、上述したステップSP23において否定結果が得られると、このことは光検出データのビット番号nのデジタルコードが「0」であること、すなわちビット番号nのSPAD17が光子を検出していないことを表しおり、このこき算出部14は次のステップSP25に移る。
ステップSP25において算出部14は、光検出データのビット番号1〜Nの全てのデジタルコードを確認したか否かを判断する。ここで否定結果が得られると、このことは光検出データのビット番号1〜Nの全てのデジタルコードを確認していないことを表しており、このとき算出部14は次のステップSP26に移る。
ステップSP26において算出部14は、ビット番号を示すnをn=n+1とし、再びステップSP23に戻り、次のビット番号(n+1)のデジタルコードが「1」であるか否かを判断し、ステップSP25において肯定結果を得るまで(光検出データのビット番号1〜Nの全てのデジタルコードを確認するまで)上述した処理を繰り返す。
一方、ステップSP25において肯定結果が得られると、このことは光検出データのビット番号1〜Nの全てのデジタルコードを確認したこと、すなわちデータベースmにおけるビット番号1〜Nのうち、光検出データのデジタルコードが「1」であるビット番号と同じビット番号の確率分布を全て合算した推定確率分布を算出したことを表しており、このとき算出部14は次のステップSP27に移る。
ステップSP27において算出部14は、全てのデータベース1〜Mを、光検出データと比較して推定確率分布P1〜PMを算出したか否かを判断する。その結果、否定結果が得られると、このことは未だ全てのデータベース1〜Mについて光検出データと比較し終えてないこと、すなわち全てのデータベース1〜Mについて推定確率分布P1〜PMを算出していないことを表しており、このとき算出部14は次のステップSP28に移る。ステップSP28において算出部14は、m=m+1とし、ステップSP22に戻り次のデータベース(m+1)を参照し、ステップSP27において肯定結果を得るまで上述した処理を繰り返す。
一方、ステップSP27において肯定結果が得られると、このことは全てのデータベース1〜Mについて光検出データと比較し終えたこと、すなわち全てのデータベース1〜Mについて推定確率分布P1〜PMを算出したことを表しており、このとき算出部14は次のステップSP29に移る。このように生成された推定確率分布P1〜PMは、光源がある可能性高い座標ほどその値が高くなり、これら値を基に光子が発生した光源を推定し得る。
ステップSP29において算出部14は、各データベース1〜Mから求めた推定確率分布P1〜PMを、各データベース1〜Mが示す座標にプロットしてゆき、例えば3次元座標上に推定確率分布P1〜PMを色分けして示した光源位置推定画像データを生成し、次のステップSP30に移り、光源推定処理手順を終了する。
表示部15は、このようにして生成された光源位置推定画像データを算出部14から受け取ると、当該光源位置推定画像データに基づいて、図10Aおよび図10Bに示すような光源位置推定画像を表示し得る。なお、図10Aは、x軸、y軸、z軸の3次元座標上に光源位置推定画像を示したものであり、図10Bは図10Aのうち、x軸の座標5の位置におけるy軸、z軸の2次元座標上における光源位置推定画像である。
因みに、この実施の形態の場合、算出部14は、例えば推定確率分布P1〜PMのうち数値が最も高い推定確率分布を1と仮定し、他の推定確率分布の数値をこれ合わせて調整し、最大値1から低くなるに従って濃淡が変化する光源位置推定画像データを生成し得る。これによりユーザは、表示部15に表示された光源位置推定画像を視認することで、濃淡差から、推定された光源の位置を瞬時に認識することができる。
例えば、図10Aでは、ある座標を中心とした球状に濃淡が変化する光源位置推定画像となっており、その濃淡差から光源の位置を推定し得る。また、図10Bでは、ある座標を中心とした円形状に濃淡が変化する光源位置推定画像となっており、その濃淡差から光源の位置を推定し得る。
なお、光子検出装置2では、光の速さを考慮すると、図11に示すような線状に延びた電子軌跡ET1の始点から終点に沿って時系列的に各位置から発する全ての光子を、SPAD17によって一度に検出し得、複数のSPAD17が同時にブレイクダウンを起こし、電子軌跡ET1に対し各SPAD17が光子を検出したか否かを示す検出結果データを生成し得る。
従って、信号処理部3では、このようなシンチレータ内に発生する線状の電子軌跡ET1から得られた光検出データを基に上述した光源推定処理を実行すると、濃淡分布が楕円状に広がった楕円状確率分布領域を有する光源位置推定画像をとなり得る。次に、信号処理部3は、算出部14によって、中心軸にゆくに従って推定確率分布の値が高い楕円状確率分布領域ER3から推定電子軌跡ET2を求めるため、例えば回帰分析手法に従って楕円状確率分布領域ER3を通る直線を仮定し、推定確率分布の値が高い領域を通る直線を推定電子軌跡ET2として最小二乗法で算出し、この推定電子軌跡ET2をシンチレータ5内に発生した電子軌跡ET1と推定し得る。
なお、信号処理部3では、このようにシンチレータ5内の電子軌跡ET1を推定電子軌跡ET2として推定できることから、上述の「(1)放射線測定装置の構成」にて説明したように、飛程の経験式として与えられている式を利用して推定電子軌跡ET2から、γ線Grが電子に与えたエネルギーを求めることができ、さらにこの求めたエネルギーと一般的なコンプトン散乱の関係式とによって到来角2θを求めることもできるので、γ線Grの線源位置が到来角2θのコンプトンコーン(円錐面)内にあると推定し得る。
(4)検証試験
次に、シンチレータ5の各1辺を10[mm]、ピンホール7の直径D1を25[μm]、ピンホール7の中心間距離W1を150[μm]、1列のピンホール数を64個、ピンホール7の総面積を0.82×πmm2、SPAD17の直径D2を10[μm]、SPADの中心間距離W2を20[μm]、SPADアレイ素子9における1列のSPAD数(以下、SPADアレイの長さとも呼ぶ)を500、ピンホール7およびSPADアレイ素子9間の距離を1[mm]とし、光源のある座標を(5,5,5)または(1,1,1)と想定して、座標(5,5,5)および(1,1,1)のデータベースを生成するためにシミュレーションを実行した。
ここで光源の座標の値はmmを基準としており、原点0はシンチレータ5の頂点に合わせている。従って、座標(5,5,5)はシンチレータ5の中心となり、座標(1,1,1)はシンチレータ5の頂点近くとなる。なお、SPAD17の中心間距離W2が20[μm]であるので、1面にSPAD17が500×500個設けられている。そして、上述した「(2)データベース生成処理」の手順に従って、座標(5,5,5)および(1,1,1)のデータベースを得た。
その結果、座標(5,5,5)に光源を配置させた場合、図12A〜図12Cに示すようなデータベースが得られた。なお、図12A〜図12Cは横軸がSPAD17のビット番号を示し、縦軸が確率分布の数値を示す。また、図12Cは図12Bの一部を拡大したグラフであり、図12Bは図12Aの一部を拡大したグラフである。光源(5,5,5)では、図12A〜図12Cに示すように、中心付近のSPAD17に光子が入る確率が高い確率分布を示すデータベースを生成できた。
一方、座標(1,1,1)に光源を配置させた場合、図13A〜図13Cに示すようなデータベースが得られた。なお、図13A〜図13Cも横軸がSPAD17のビット番号を示し、縦軸が確率分布の数値を示す。また、図13Cは図13Bの一部を拡大したグラフであり、図13Bは図13Aの一部を拡大したグラフである。光源(1,1,1)では、図13A〜図13Cに示すように、光源(5,5,5)のときと異なり、1つの頂点の部分が高い確率分布を示すデータベースを生成できた。
次に、シンチレータ内の全ての座標についてデータベースを生成するシミュレーション(以下、データベース生成シミュレーションとも呼ぶ)を行った後、実際にγ線がシンチレータに入射されるときを想定した光検出データを生成するシミュレーションを行った。但し、このデジタルコードでなる光検出データを生成するシミュレーション(以下、光検出データ生成シミュレーションとも呼ぶ)では、データベース生成シミュレーションとは異なり、光子数を、CaF2(Eu)でなるシンチレータ5にγ線が入射したときに1回のイベントで実際に発生する1.25×104個とし、さらにSPAD17に光子が当たった回数を光子数で除算することなく、1回でも当たったSPAD17のビット番号を「1」とし、1回も当たらなかったSPAD17のビット番号を「0」として「1」と「0」のデジタルコードでなる光検出データを生成した。
なお、ここでは、データベース生成シミュレーションおよび光検出データ生成シミュレーションのいずれも、上述した図12および図13の結果を得たシミュレーションの設計条件と同じ設計条件としつつ、ピンホール数の設計条件だけを変更し、そのときの空間分解能について調べた。但し、ピンホール7の総面積は一定にした。ここで、ピンホール7の総面積を一定にした理由は、1回のイベントによって決まった数の光子がランダムな方向に飛ばされることから、ピンホール7の総面積が変わることでピンホール7に入る確率が変わってしまい、ピンホール7に入る光子の数が変わると、当然、SPAD17に入る光子の数も変わってしまうためである。
図14に示すように、ピンホール数の条件が異なる実施例1〜実施例4の4パターンを用意し、ここではピンホール総面積が一定であることから、ピンホール7の直径D1とピンホール7の中心間距離W1についても変えた。なお、実施例4は、図12および図13の結果を得たシミュレーションと全く同じ条件である。そして、光源の座標は(5,5,5)と(1,1,1)としてデータベース生成シミュレーションおよび光検出データ生成シミュレーションを行った。
なお、データベースは、理想的には座標を無限小に細かく区切ってシミュレーションすることになるが、ここでは実施例1および実施例2は25[μm]、実施例3および実施例4は5[μm]の格子点状に区切り、光検出データのデジタルコードと比較した。
そして、光検出データ生成シミュレーションにより得た光検出データを用いて、上述した「(3)光源推定処理」を実行し、光源の位置を推定した。次に、この推定された光源の位置と、実際の光源の位置とについて比較検討を行った。この時の結果を図15A〜図15Dおよび図16A〜図16Dに示す。
図15A〜図15Dは、実際の光源の位置と、光源推定処理により推定された光源の位置(以下、単に推定光源位置とも呼ぶ)との距離(誤差距離)を横軸に示し、その距離を推定した頻度を縦軸に示している。従って、分布が左側に集まっているほど空間分解能が優れていると言える。図15A〜図15Dを比較すると、ピンホール数が多くなると、実際の光源の位置と、推定された光源の位置との差が徐々に小さくなることが分かった。
図16A〜図16Dは、実際の光源の位置から推定光源位置までの距離を横軸に示し、誤り率を縦軸に示している。ここで、誤り率とは、推定光源位置が、実際の光源の位置から離れている確率である。また、許容できる誤差率を決めれば、その誤り率となる最大の距離が空間分解能となる
ここで、図16A〜図16Dから、ピンホール数が少ないときは、光源の座標を(1,1,1)としたときよりも(5,5,5)としたときの方が、空間分解能が良く、一方、逆にピンホール数が多いときは、光源の座標を(5,5,5)としたときよりも(1,1,1)としたときの方が、空間分解能が良かった。
図17は、このような空間分解能とピンホール数との関係を示し、誤り率が1[%](0.01)となったときの空間分解能を示す。図17から、1列のピンホール数を64×64個にすると、30[μm]以下の高い空間分解能を実現することができることが分かった。
次に、上述した設計条件と同じ設計条件としつつ、ピンホール7の総面積の条件だけを変更し、そのときの空間分解能について調べた。ここでは、図18に示す実施例1、実施例4〜実施例8について、上述したデータベース生成シミュレーションおよび光検出データ生成シミュレーションを行い、光検出データ生成シミュレーションにより得た光検出データを用いて、上述した「(3)光源推定処理」を実行し、光源の位置を推定した。
そして、実際の光源の位置と、推定された光源の位置との距離(誤差距離)を調べ、さらにその距離を推定した頻度についても調べたところ、図19A〜図19Dに示すような結果が得られた。また、実際の光源の位置から推定光源位置までの距離と、誤差率との関係についても調べたところ、図20A〜図20Dに示すような結果が得られた。
これら結果を基に、誤り率1[%]となっているところを空間分解能と定義し、この空間分解能とピンホール7の総面積との関係を調べたところ、図21に示すような結果が得られた。図21から、ピンホール7の総面積を変えたことによる空間分解能の変化は大きくはないが、ピンホール7の直径D1や個数、配列状態を選定してピンホール7の総面積を調整することで、空間分解能を小さくすることも可能であることが確認できた。
次に、上述した設計条件と同じ設計条件としつつ、SPAD17の設計条件を変更し、そのときの空間分解能について調べた。ここでは、図22に示す実施例4、実施例9〜実施例11について、上述したデータベース生成シミュレーションおよび光検出データ生成シミュレーションを行い、光検出データ生成シミュレーションにより得た光検出データを用いて、上述した「(3)光源推定処理」を実行し、光源の位置を推定した。
そして、実際の光源の位置と、推定された光源の位置との距離(誤差距離)を調べ、さらにその距離を推定した頻度についても調べたところ、図23A〜図23Dに示すような結果が得られた。また、実際の光源の位置から推定光源位置までの距離と、誤差率との関係についても調べたところ、図24A〜図24Dに示すような結果が得られた。
なお、この場合、SPAD17の中心間距離W2を小さくすると、SPAD17の直径も小さくなることから、SPAD17の中心間距離W2を小さくするほど、開口率(SPAD17の中心部を中心とした中心間距離W2四方の領域でのSPAD17の占有率)が下がり、その一方、SPAD17の中心間距離W2を大きくするほど、開口率が上がる。
図23Aから、SPAD17の中心間距離W2を小さくして、開口率(SPAD17の占有率)が小さくなると、分布が広範囲にわたって広がり、空間分解能が悪くなることが確認できた。一方、図23Dに示すように、SPAD17の中心間距離W2を大きくして、開口率が大きくなると、分布が左側に多くなり空間分解能が向上することが確認できた。
ここで、これら結果を基に、誤り率1[%]となっているところを空間分解能と定義し、この空間分解能とSPAD17の中心間距離W2との関係を調べたところ、図25に示すような結果が得られた。図25から、ピンホール7の設計条件を一定にした下では、SPAD17の中心間距離W2を大きくしてゆき、開口率を大きくすると、空間分解能が良くなることが確認できた。このことは、SPAD17の中心間距離W2を小さくして開口率を小さくすると、SPAD17に当たらない光子が多くなり、SPAD17における光子の検出確率が落ちてしまうためと考えられる。
(5)作用および効果
以上の構成において、光子検出装置2では、γ線が入射されることにより光子が発生する多面体形状のシンチレータ5と、このシンチレータ5の各表面に被着され、アレイ状に形成された複数のピンホール7からシンチレータ5を外部に露出させる光子吸収膜6と、複数のSPAD17がアレイ状に配置されたSPADアレイ素子9とを設けた。また、光子検出装置2では、シンチレータ5の各表面に対し光子吸収膜6を介在させてSPADアレイ素子9を対向配置し、ピンホール7を透過した光子を各SPAD17により検出可能な構成とした。
これにより光子検出装置2では、シンチレータ5内で発生した光子のうち、光子吸収膜6に当たる光子を光子吸収膜6で吸収し、ピンホール7から透過した光子を、光子が飛んだ方向にあるSPAD17により検出できるので、シンチレータ5内で光子が反射を繰り返すことがなく、その分、光子が発生した位置を特定する解析が従来よりも容易となり、空間分解能を向上し得る。
また、光子検出装置2では、ピンホール7から透過した光子を複数のSPAD17により検出し、各SPAD17での光子の検出有無の分布状態に基づいて、光子が発生した位置を推定することができるので、従来のような異なる特性を有した複数種類のシンチレータや、電子を増幅させる光電子増倍管が不要になる分、装置構成が簡素化して小型化が可能となり、かくして、小型化を図るとともに、従来よりも空間分解能を向上し得る光子検出装置2を提案できる。
この場合、光子検出装置2では、各SPADアレイ素子9が信号処理部3に接続されており、各SPAD17における光子の検出有無を示す検出結果データを信号処理部3に送出する。ここで信号処理部3には、3次元座標によりシンチレータ5内の各位置を特定し、一の座標から所定個数の光子が放出されたと仮定したとき、各SPAD17がそれぞれ光子を検出する可能性を確率分布で示したデータベース1〜Mを、全ての座標毎に求めた確率分布データテーブルT100が予め記憶されている。
その後、実際にγ線を測定するとき、信号処理部3では、シンチレータ5にγ線が入射されると、全てのSPAD17から検出結果データを受け取り、これら検出結果データを基に光子を検出したSPAD17を特定し、特定したSPAD17に対応する確率分布を各データベース1〜M毎に全て加算して、データベース1〜M毎に推定確率分布P1〜PMを算出する。
これにより信号処理部3では、光源がある可能性が高い座標ほど値が高くなる推定確率分布P1〜PMを得ることができ、これら推定確率分布P1〜PMの値を基にシンチレータ5内にて光子を発生させた位置を推定することができる。
因みに、信号処理部3では、回帰分析手法に従って推定確率分布P1〜PMの値が高い領域を通る直線を推定電子軌跡ET2として最小二乗法により算出することができ、この推定電子軌跡ET2をシンチレータ5内に発生した電子軌跡ET1と見なすことで、飛程の経験式として与えられている式を利用して推定電子軌跡ET2から、γ線Grが電子に与えたエネルギーを求め、さらにこの求めたエネルギーと一般的なコンプトン散乱の関係式とによって到来角2θ´を求めることもでき、かくして到来角2θ´のコンプトンコーン(円錐面)内にγ線Grの線源位置があると推定することもできる。
(6)他の実施の形態
なお、本発明は、本実施の形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能であり、光子を検出する受光部としてSPAD17以外を適用してもよく、ピンホール7の形状も円形状以外の四角形状、三角形状等その他種々の形状であってもよい。さらに、放射線としてγ線以外のX線等を適用してもよい。
さらに、上述した実施の形態においては、立方体形状でなるシンチレータ5を適用した場合について述べたが、本発明はこれに限らず、直方体形状等その他種々の六面体形状のシンチレータを適用してもよく、また、三角錐等の四面体形状や、四角錐等の五面体形状等その他種々の多面体形状でなるシンチレータを適用してもよい。この場合、シンチレータの各表面に対してSPADアレイ素子が対向配置され得る。
さらに、上述した実施の形態においては、CaF2(Eu)からなるシンチレータ5を適用した場合について述べたが、本発明はこれに限らず、例えばBGOや、ZnS(Ag)等その他種々のシンチレータを適用してもよい。但し、本発明に用いるシンチレータとしては、光子が予想されていた屈折率で屈折し、想定したSPAD17にて光子が検出されることが望ましい。
また、本発明では、シンチレータ5からSPADアレイ素子9まで距離があることから、屈折率が高いと光子がSPADアレイ素子9から外れてしまう虞があるため、屈折率が低いシンチレータが望ましい。さらに、電子軌跡を測定するため、可能な限り電子軌跡が長く観測できるシンチレータが適切である。これらの条件からシンチレータ5としては、CaF2(Eu)を使用することができる。
さらに、上述した実施の形態においては、推定確率分布P1〜PMの値に応じた濃淡画像を各座標毎に全てプロットしてゆき光源位置推定画像を生成するようにした場合について述べたが、本発明はこれに限らず、推定確率分布P1〜PMのうち最も値の大きい推定確率分布のみを3次元座標上にプロットして推定光源であると推定してもよい。
この場合、信号処理部3は、光検出データを得るたびに推定確率分布P1〜PMを算出し、このうち最も値の大きい推定確率分布のみを選択して3次元座標にプロットしてゆくことで、複数の推定光源を求め、回帰分析手法に従って複数の推定光源に近い直線を最小二乗法により算出し、この直線を推定電子軌跡ET2としてもよい。
さらに、上述した実施の形態においては、棒状の支持部11によってSPADアレイ素子9を光子吸収膜6に対し所定距離を設けて固定させるようにした場合について述べたが、本発明はこれに限らず、例えば光子を透過可能な光学接着材によってSPADアレイ素子9を光子吸収膜6に対し所定距離を設けて固定させるようにしてもよい。この場合、光学接着材は、例えば光子吸収膜6全体を覆うようにして光子吸収膜6の外面に所定の厚みを設けて形成され、ピンホール7を透過した光子をSPADアレイ素子9まで到達させ得る。
1 放射線測定装置
2 光子検出装置
3 信号処理部
5 シンチレータ
6 光子吸収膜
7 ピンホール
9 SPADアレイ素子(光検出素子)
17 SPAD(受光部)

Claims (6)

  1. 放射線が入射されることにより光子が発生する多面体形状のシンチレータと、
    前記シンチレータの各表面に被着され、アレイ状に形成された複数のピンホールから該シンチレータを外部に露出させる光子吸収膜と、
    複数の受光部がアレイ状に配置された構成を有し、前記シンチレータの各表面に対し前記光子吸収膜を介在させて対向配置され、前記ピンホールを透過した前記光子を各前記受光部により検出可能な光子検出素子と
    を備えることを特徴とする光子検出装置。
  2. 前記光子検出素子は、前記受光部での前記光子の検出有無を示す検出結果データを前記受光部全てから取得する
    ことを特徴とする請求項1記載の光子検出装置。
  3. 前記光子検出素子は、前記光子吸収膜から所定の距離を設けて配置されている
    ことを特徴とする請求項1または2記載の光子検出装置。
  4. 前記シンチレータは六面体形状からなり、四辺状の前記光子検出素子が該シンチレータの各表面に前記光子吸収膜を介在させて対向配置されている
    ことを特徴とする請求項1〜3のうちいずれか1項記載の光子検出装置。
  5. 請求項1〜4のうちいずれか1項記載の光子検出装置と、
    前記光子検出装置に接続され、各前記受光部における前記光子の検出有無を示す検出結果データを前記光子検出装置から受け取る信号処理部とを備え、
    前記信号処理部は、
    3次元座標により前記シンチレータ内の各位置を特定し、一の座標から所定個数の光子が放出されたと仮定したとき、各前記受光部がそれぞれ光子を検出する可能性を確率分布で示したデータベースを、全ての座標で求めた確率分布データテーブルを予め記憶しており、
    前記シンチレータに前記放射線が入射され、全ての前記受光部から前記検出結果データを受け取ると、前記光子を検出した前記受光部に対応する確率分布を各前記データベース毎に全て加算して、該データベース毎に推定確率分布を算出する
    ことを特徴とする放射線測定装置。
  6. 各前記データベースは、前記シンチレータの材質から決まる光子数よりも多い光子数が前記一の座標から放出されると仮定し、各前記受光部がそれぞれ光子を検出する可能性を示した確率分布でなる
    ことを特徴とする請求項5記載の放射線測定装置。
JP2013091997A 2013-04-25 2013-04-25 光子検出装置および放射線測定装置 Expired - Fee Related JP6090995B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091997A JP6090995B2 (ja) 2013-04-25 2013-04-25 光子検出装置および放射線測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091997A JP6090995B2 (ja) 2013-04-25 2013-04-25 光子検出装置および放射線測定装置

Publications (2)

Publication Number Publication Date
JP2014215145A JP2014215145A (ja) 2014-11-17
JP6090995B2 true JP6090995B2 (ja) 2017-03-08

Family

ID=51941026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091997A Expired - Fee Related JP6090995B2 (ja) 2013-04-25 2013-04-25 光子検出装置および放射線測定装置

Country Status (1)

Country Link
JP (1) JP6090995B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6903435B2 (ja) * 2017-01-11 2021-07-14 キヤノンメディカルシステムズ株式会社 核医学診断装置及びキャリブレーション方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150219B2 (ja) * 2007-11-14 2013-02-20 浜松ホトニクス株式会社 放射線位置検出器
JP5585094B2 (ja) * 2010-01-22 2014-09-10 独立行政法人放射線医学総合研究所 放射線位置検出器の位置演算方法及び装置
JP5631013B2 (ja) * 2010-01-28 2014-11-26 キヤノン株式会社 X線撮像装置
WO2011121707A1 (ja) * 2010-03-29 2011-10-06 独立行政法人放射線医学総合研究所 3次元放射線位置検出器、及び、その検出位置特定方法
US8247778B2 (en) * 2010-06-30 2012-08-21 General Electric Company Scintillator arrays and methods of making the same

Also Published As

Publication number Publication date
JP2014215145A (ja) 2014-11-17

Similar Documents

Publication Publication Date Title
US9709684B2 (en) Systems and methods for scintillators having micro-crack surfaces
US7667206B1 (en) Neutron source detector
JP2007256285A (ja) 放射線透過検査システムを位置合せする方法
JP5585094B2 (ja) 放射線位置検出器の位置演算方法及び装置
WO2018079735A1 (ja) 放射線位置検出器及びpet装置
JP6090995B2 (ja) 光子検出装置および放射線測定装置
Bravar et al. Design and testing of a position-sensitive plastic scintillator detector for fast neutron imaging
WO2022037473A1 (zh) 探测准直单元、探测装置及spect成像***
Song et al. Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers
US7863567B1 (en) Multimodal radiation imager
Cao et al. Ultra high energy ντ detection with a cosmic ray tau neutrino telescope using fluorescence/Cerenkov light technique
Commichau et al. Monte Carlo studies of geomagnetic field effects on the imaging air Cherenkov technique for the MAGIC telescope site
CN105044760A (zh) 一种基于闪烁光纤的分布式单端反射型在线放射性探测仪及其探测方法
JP6808214B2 (ja) 放射線計測装置
JP2017138296A (ja) 放射線強度比測定による放射線源の三次元空間位置特定装置
CN109655929B (zh) 一种基于pgnaa技术的地雷位置精确确定方法
JP6752106B2 (ja) 荷電粒子飛跡検出器
JP4217788B2 (ja) 放射線到達位置検出方法及び装置
JP7496181B1 (ja) 測定装置および測定方法
Bonvech et al. Spatiotemporal Structure of a Reflected Cherenkov Light Signal, as Seen by the Sphere-2 Telescope
US11693134B2 (en) System and method for directional detection of radiation
Cao et al. LHAASO-KM2A detector simulation using Geant4
JP7140902B2 (ja) 荷電粒子線装置
Vanier et al. Directional detection of fission-spectrum neutrons
Bravar et al. FNIT: the fast neutron imaging telescope for SNM detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6090995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees