JP6090778B2 - Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery - Google Patents

Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery Download PDF

Info

Publication number
JP6090778B2
JP6090778B2 JP2013003754A JP2013003754A JP6090778B2 JP 6090778 B2 JP6090778 B2 JP 6090778B2 JP 2013003754 A JP2013003754 A JP 2013003754A JP 2013003754 A JP2013003754 A JP 2013003754A JP 6090778 B2 JP6090778 B2 JP 6090778B2
Authority
JP
Japan
Prior art keywords
carbonate
active material
lithium secondary
secondary battery
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013003754A
Other languages
Japanese (ja)
Other versions
JP2014135239A (en
Inventor
逢坂 哲彌
哲彌 逢坂
聰之 門間
聰之 門間
時彦 横島
時彦 横島
洋希 奈良
洋希 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2013003754A priority Critical patent/JP6090778B2/en
Publication of JP2014135239A publication Critical patent/JP2014135239A/en
Application granted granted Critical
Publication of JP6090778B2 publication Critical patent/JP6090778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、シリコンを含有するリチウム二次電池の電極の製造方法、及び、シリコンを含有するリチウム二次電池の製造方法に関する。 The present invention relates to a method of manufacturing electrodes for lithium secondary batteries containing silicon, and a method for producing a lithium secondary battery containing silicon.

携帯電子機器等の電源としてリチウム二次電池が用いられている。一般的なリチウム二次電池では、負極の活物質として、黒鉛を代表とする炭素材料が用いられている。しかし、黒鉛からなる活物質では、リチウムがLiCの組成までしか挿入できず、理論エネルギー容量は372mAh/gである。 A lithium secondary battery is used as a power source for portable electronic devices and the like. In a general lithium secondary battery, a carbon material typified by graphite is used as the negative electrode active material. However, in the active material made of graphite, lithium can be inserted only up to the composition of LiC 6 and the theoretical energy capacity is 372 mAh / g.

シリコンを活物質とすると、負極活物質あたりの理論エネルギー容量が4200mAh/gとなり、大容量のリチウム二次電池が実現可能とされている。   When silicon is used as the active material, the theoretical energy capacity per negative electrode active material is 4200 mAh / g, and a large capacity lithium secondary battery can be realized.

しかし、シリコンを活物質とする負極は、充放電するときに大きな体積変化を伴う。このため、活物質の脱落等が発生し、充放電を繰り返すと容量が低下するという問題があった。このため、活物質の第三金属との合金化、カーボン材料とのコンポジット化、薄膜化、多孔質化及び集電体の粗面化等が検討されている。   However, a negative electrode using silicon as an active material is accompanied by a large volume change when charging and discharging. For this reason, there is a problem that the active material is dropped and the capacity is reduced when charging and discharging are repeated. For this reason, studies have been made on alloying the active material with a third metal, compositing with a carbon material, making the film thin, making it porous, and roughening the current collector.

発明者らは、特開2012−89267号公報及び特開2012−204195号公報において、シリコンと酸素と炭素とが均一に分散しており、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相のSi−O−Cからなる活物質を用いることで、充放電による容量変化が小さいリチウム二次電池が提供できることを開示している。この活物質は、シリコンイオン、酸素及び炭素を含有する電解液から、電気化学的成膜法により製造される。   In Japanese Patent Laid-Open Nos. 2012-89267 and 2012-204195, the inventors have uniformly dispersed silicon, oxygen, and carbon, and the composition ratio of silicon to oxygen is SiOx (0.1 ≦ X <2.0), it is disclosed that a lithium secondary battery with a small capacity change due to charge and discharge can be provided by using an active material made of amorphous and metastable Si—O—C. This active material is manufactured from an electrolytic solution containing silicon ions, oxygen, and carbon by an electrochemical film formation method.

しかし、充放電サイクル特性のより良好なリチウム二次電池が求められていた。   However, a lithium secondary battery having better charge / discharge cycle characteristics has been demanded.

ここで、特開2005―116264号公報には、薄帯上にシリコンを電析することにより、リチウム二次電池の負極を製造する方法が開示されている。しかし、上記公報には、析出したSiが酸化してSiO或いはSiOに転化することを防止するように留意することが記載されている。すなわち酸化状態のシリコンを電析する発明は積極的に除外されている。 Here, Japanese Patent Application Laid-Open No. 2005-116264 discloses a method for producing a negative electrode of a lithium secondary battery by electrodepositing silicon on a ribbon. However, the above publication describes that care should be taken to prevent the deposited Si from being oxidized and converted into SiO or SiO 2 . That is, the invention for electrodepositing oxidized silicon is positively excluded.

また、特開2007−19027号公報には、エチレンカーボネート系化合物を含む有機溶媒を用いたリチウム二次電池において、エチレンカーボネート系化合物がシリコン負極の表面にSEI(Solid Electrolyte Interphase)層を形成することが開示されている。   Japanese Patent Laid-Open No. 2007-19027 discloses that in a lithium secondary battery using an organic solvent containing an ethylene carbonate compound, the ethylene carbonate compound forms a SEI (Solid Electrolyte Interphase) layer on the surface of the silicon negative electrode. Is disclosed.

特開2012−89267号公報JP 2012-89267 A 特開2012−204195号公報JP 2012-204195 A 特開2005―116264号公報JP-A-2005-116264 特開2007−19027号公報JP 2007-19027 A

本発明は、良好な充放電サイクル特性を示すリチウム二次電池活物質を製造できるリチウム二次電池活物質の製造方法、及び、前記活物質を具備するリチウム二次電池を提供することを目的とする。   An object of the present invention is to provide a method for producing a lithium secondary battery active material capable of producing a lithium secondary battery active material exhibiting good charge / discharge cycle characteristics, and a lithium secondary battery comprising the active material. To do.

実施形態のリチウム二次電池の電極の製造方法は、シリコンイオンと、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、又は、エチルメチルカーボネートから選ばれる1種以上のカーボネート系溶媒と、を含む電気めっき液を用いて、Si−O−Cからなる活物質を成膜する電析工程と、リチウムイオンを含み、フルオロエチレンカーボネート、又は、ビニレンカーボネートから選ばれる1種以上のカーボネート系添加剤を含まない第1の処理液を用いて、前記活物質を陰極として少なくとも充電を行う第1の処理工程と、前記第1の処理工程の後に、前記カーボネート系添加剤を含む第2の処理液を用いて、前記活物質を陰極として、充放電を行う第2の処理工程と、を上記記載の順番で具備する。 Method of manufacturing an electrode for lithium secondary batteries of the embodiments, a silicon ion, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, or one or more selected from ethyl methyl carbonate An electrodeposition step of forming an active material composed of Si—O—C using an electroplating solution containing a carbonate-based solvent, and one type selected from fluoroethylene carbonate or vinylene carbonate containing lithium ions using a first processing solution containing no more than a carbonate-based additive, the a first processing step of performing at least charging an active material as the cathode, after the first treatment step, the carbonate-based using the second processing solution containing an additive, the active material as the cathode, charge A second processing step, the comprising in the order described above to perform the electrodeposition.

また、別の実施形態のリチウム二次電池の製造方法は、シリコンイオンと、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、又は、エチルメチルカーボネートから選ばれる1種以上のカーボネート系溶媒と、を含む電気めっき液を用いて、Si−O−Cからなる活物質を成膜する電析工程と、リチウムイオンを含み、フルオロエチレンカーボネート、又は、ビニレンカーボネートから選ばれる1種以上のカーボネート系添加剤を含まない第1の処理液を用いて、前記活物質を陰極として少なくとも充電を行う第1の処理工程と、前記第1の処理工程の後に、前記カーボネート系添加剤を含む第2の処理液を用いて、前記活物質を陰極として、充放電を行う第2の処理工程と、を上記記載の順番で具備する。 Moreover, the manufacturing method of the lithium secondary battery of another embodiment is at least one selected from silicon ions and propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, or ethyl methyl carbonate. 1 is selected from fluoroethylene carbonate or vinylene carbonate containing lithium ions, an electrodeposition step of forming an active material composed of Si—O—C using an electroplating solution containing A first treatment step in which at least charging is performed using the active material as a cathode by using a first treatment liquid that does not contain a seed or more carbonate-based additive; and after the first treatment step, the carbonate-based additive. And using the second treatment liquid containing the active material as a cathode A second processing step of performing charge and discharge, the comprising in the order described above.

本発明によれば、良好な充放電サイクル特性を示すリチウム二次電池の電極の製造方法、及び、良好な充放電サイクル特性を示すリチウム二次電池の製造方法、を提供できる。 According to the present invention a method for producing a good charge-discharge cycle characteristics of the lithium secondary batteries shown electrodes, and can provide a manufacturing method of a lithium secondary battery having good charge-discharge cycle characteristics.

実施形態のリチウム二次電池の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the lithium secondary battery of embodiment. 第1実施形態の活物質の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the active material of 1st Embodiment. 実施形態の活物質の製造装置を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing apparatus of the active material of embodiment. 実施形態の活物質を具備する電池等の充放電サイクル特性評価結果である。It is a charge-discharge cycle characteristic evaluation result, such as a battery which comprises an active material of an embodiment. 第2実施形態の活物質の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the active material of 2nd Embodiment.

最初に、実施形態の製造方法により製造されたリチウム二次電池活物質(以下「活物質」という)12を具備するリチウム二次電池(以下、「電池」という)10等について簡単に説明する。図1に示すように電池10は、例えば、集電体11上に形成された活物質12を有する負極13と、正極14と、負極13と正極14との間に配置されて貯留領域17を形成するセパレータ15と、貯留領域17中に充填される電解液16と、封止構造部18と、を有する。すなわち、電池10の基本構成要素は、負極13と、正極14と、電解液16と、である。   First, a lithium secondary battery (hereinafter referred to as “battery”) 10 including a lithium secondary battery active material (hereinafter referred to as “active material”) 12 manufactured by the manufacturing method of the embodiment will be briefly described. As shown in FIG. 1, the battery 10 includes, for example, a negative electrode 13 having an active material 12 formed on a current collector 11, a positive electrode 14, and a negative electrode 13 and a positive electrode 14. It has the separator 15 to form, the electrolyte solution 16 with which the storage area | region 17 is filled, and the sealing structure part 18. As shown in FIG. That is, the basic components of the battery 10 are the negative electrode 13, the positive electrode 14, and the electrolytic solution 16.

次に、図2のフローチャートに沿って、実施形態の活物質12の製造方法について説明する。   Next, the manufacturing method of the active material 12 of the embodiment will be described along the flowchart of FIG.

<ステップS11> 電析
図3に示すように、活物質12は、電気めっき液30を用いて電析を行うことで製造される。例えば電析装置20は、白金線23を陽極とし、銅箔22を陰極としている。銅箔22は集電体11であり、負極13の一部となる。
<Step S11> Electrodeposition As shown in FIG. 3, the active material 12 is manufactured by performing electrodeposition using an electroplating solution 30. For example, the electrodeposition apparatus 20 uses the platinum wire 23 as an anode and the copper foil 22 as a cathode. The copper foil 22 is the current collector 11 and becomes a part of the negative electrode 13.

参照電極21としては、Li/Li(TBAClO)を用いた。TBAは、Tetra Butyl Ammoniumの略号である。 Li / Li + (TBAClO 4 ) was used as the reference electrode 21. TBA is an abbreviation for Tetra Butyl Ammonium.

電気めっき液30は、シリコンイオンとカーボネート系溶媒とを含む。例えば、電気めっき液30は、0.5M/リットルのSiClと、0.5M/リットルのTBAClOと、プロピレンカーボネート(PC)と、からなる。SiClはシリコンイオン供給源であり、TBAClOは電解質イオン供給源であり、PCはカーボネート系溶媒である。 The electroplating solution 30 contains silicon ions and a carbonate-based solvent. For example, the electroplating solution 30 includes 0.5 M / liter SiCl 4 , 0.5 M / liter TBAClO 4 , and propylene carbonate (PC). SiCl 4 is a silicon ion source, TBAClO 4 is an electrolyte ion source, and PC is a carbonate-based solvent.

なお、本発明では、カーボネート系化合物を、カーボネート系溶媒とカーボネート系添加剤とに明瞭に区別している。カーボネート系溶媒とカーボネート系添加剤とは類似しているが、陰極面への吸着能力に差がある。すなわち、カーボネート系溶媒も、カーボネート系添加剤と同じように、「−O−(C=O)−」構造を有するが、C、H、Oから構成されており、求核性及び求電子性が比較的小さい。これに対して、カーボネート系添加剤は、F等の極性原子による分極又は二重結合等による、求核性及び求電子性がある。   In the present invention, the carbonate compound is clearly distinguished into a carbonate solvent and a carbonate additive. A carbonate-based solvent and a carbonate-based additive are similar, but there is a difference in adsorption ability to the cathode surface. That is, the carbonate-based solvent also has a “—O— (C═O) —” structure like the carbonate-based additive, but is composed of C, H, and O, and is nucleophilic and electrophilic. Is relatively small. On the other hand, the carbonate-based additive has nucleophilicity and electrophilicity due to polarization by a polar atom such as F or double bond.

例えば、PC、EC、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネートがカーボネート系溶媒である。   For example, PC, EC, butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate are carbonate solvents.

そして、例えば、フルオロエチレンカーボネート(FEC)に代表される含フッ素環状化合物又は含フッ素鎖状化合物、ビニレンカーボネート(VC)に代表される含多重結合化合物が、カーボネート系添加剤である。   For example, a fluorine-containing cyclic compound or a fluorine-containing chain compound typified by fluoroethylene carbonate (FEC), and a multi-bond compound containing vinylene carbonate (VC) are carbonate-based additives.

カーボネート系溶媒もカーボネート系添加剤も、共に陰極界面において、膜中へのO及びCの共析に寄与する。そして、カーボネート系溶媒、又は、カーボネート系添加剤の少なくともいずれかを含む電気めっき液から製造された活物質12は、アモルファスかつ準安定相のSi−O−Cからなる。このため、カーボネート系添加剤が、電気めっき液30に入っていてもよい。   Both carbonate-based solvents and carbonate-based additives contribute to the co-deposition of O and C into the film at the cathode interface. And the active material 12 manufactured from the electroplating liquid containing at least any one of a carbonate type solvent or a carbonate type additive consists of Si-O-C of an amorphous and metastable phase. For this reason, the carbonate additive may be contained in the electroplating solution 30.

実施形態の活物質の製造方法では、電流密度I=1.0mA/cmにて2C(クーロン)/cmの通電電気量に制御し、活物質12を集電体11である、80μmの銅箔22上に成膜して負極13を製造した。 In the manufacturing method of the active material of the embodiment, the energization electricity amount of 2 C (Coulomb) / cm 2 is controlled at the current density I = 1.0 mA / cm 2 , and the active material 12 is the current collector 11 of 80 μm. A negative electrode 13 was manufactured by forming a film on the copper foil 22.

エネルギー分散型蛍光X線分析装置(EDX)を用い、活物質12を構成する元素の面内分布(マッピング)を測定したところ、SiとOとCとが均一に分散していた。   When an in-plane distribution (mapping) of elements constituting the active material 12 was measured using an energy dispersive X-ray fluorescence analyzer (EDX), Si, O, and C were uniformly dispersed.

次に、X線回折(XRD)解析を行ったところ、Si(111)、Si(220)、Si(311)、Si(400)に相当するピークは確認されなかった。すなわち、活物質12はアモルファス(非晶質)であった。逆に言えば、本発明においてアモルファスとは、通常のXRD解析においてピークが確認されない状態を意味する。   Next, when X-ray diffraction (XRD) analysis was performed, peaks corresponding to Si (111), Si (220), Si (311), and Si (400) were not confirmed. That is, the active material 12 was amorphous (amorphous). Conversely, in the present invention, amorphous means a state in which no peak is confirmed in a normal XRD analysis.

次に、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)による活物質12の解析を行った。活物質12のSi 2p3/2の結合エネルギーは、Siであることを示す99.5eV又はSiOであることを示す103.5eVではなく、その間の101eV〜103eVであった。 Next, the active material 12 was analyzed by X-ray photoelectron spectroscopy (XPS). The binding energy of Si 2p 3/2 of the active material 12 was not 99.5 eV indicating Si or 103.5 eV indicating SiO 2 , but 101 eV to 103 eV therebetween.

Si 2p3/2の結合エネルギーが101eV〜103eVのSi酸化物は、SiOである。SiOは、SiOのような安定相ではなく、非平衡状態の準安定相である。このため、SiOの構造等は不明であるが、活物質12に含有されているSiは、準安定相であることが判明した。 The Si oxide having Si 2p 3/2 binding energy of 101 eV to 103 eV is SiO. SiO is not a stable phase like SiO 2 but a metastable phase in a non-equilibrium state. For this reason, although the structure of SiO etc. is unknown, it turned out that Si contained in the active material 12 is a metastable phase.

なお、準安定相とは熱平衡状態では存在しない相のことであり、熱力学的には不安定ではあるが、何らかの条件が満たされれば暫定的に存在し得る相である。   The metastable phase is a phase that does not exist in a thermal equilibrium state, and is a thermodynamically unstable phase that may exist temporarily if some condition is satisfied.

次に、活物質12のグロー放電発光分光分析(GDOES)による組成分析結果を以下に示す。なお、以下は、表面汚染及び集電体11の影響が少ない、活物質12の表面から深さ1μmの場所の値である。   Next, the composition analysis result of the active material 12 by glow discharge emission spectroscopy (GDOES) is shown below. In addition, the following is a value at a place having a depth of 1 μm from the surface of the active material 12 with less surface contamination and the influence of the current collector 11.

Si : 35.6at%
O : 45.9at%
C : 18.5at%
O/Si=1.29
Si: 35.6 at%
O: 45.9 at%
C: 18.5 at%
O / Si = 1.29

以上のXPSおよびGDOESによる解析結果が示すように、活物質12のSi/Oは、SiOx(X=1.29)の状態であった。なお、より厳密には、活物質12は大量の炭素を含有していることから、「Si−Ox−C(X=1.29、Y:未測定)の状態である。 As shown in the above XPS and GDOES analysis results, the Si / O of the active material 12 was in the state of SiOx (X = 1.29). Strictly speaking, since the active material 12 contains a large amount of carbon, it is in a state of “Si—Ox—C Y (X = 1.29, Y: unmeasured).

活物質12の中の炭素は、活物質12のアモルファス化及び準安定相化に寄与している。   Carbon in the active material 12 contributes to making the active material 12 amorphous and metastable.

すなわち、活物質12は、活物質粉末+導電助剤+バインダ、コアシェル構造、又はμmオーダーレベルのマトリック構造等のバルク的混合物ではなく、原子レベル又はnmオーダーレベルのマトリック構造を有する準安定相のアモルファスである。   That is, the active material 12 is not a bulk mixture such as active material powder + conducting aid + binder, core shell structure, or μm order level matrix structure, but a metastable phase having a matrix structure at the atomic level or nm order level. Amorphous.

<ステップS12> 第1の前処理
第1の前処理では、リチウムイオンを含み、カーボネート系添加剤を含まない第1の前処理液を用いて、電析により形成された活物質12を陰極として、少なくとも充電が行われる。
<Step S12> First Pretreatment In the first pretreatment, an active material 12 formed by electrodeposition is used as a cathode, using a first pretreatment liquid that contains lithium ions and does not contain a carbonate-based additive. At least charging is performed.

第1の前処理液を用いて充電処理されると、活物質12のSiOx(X≦2.0)のシリコンは、リチウムと反応し合金化する。リチウム合金化した活物質12は、シリコンと、酸素と、炭素と、リチウムと、を含有し、リチウムは酸化状態である。   When charged using the first pretreatment liquid, the SiOx (X ≦ 2.0) silicon of the active material 12 reacts with lithium to form an alloy. The lithium alloyed active material 12 contains silicon, oxygen, carbon, and lithium, and lithium is in an oxidized state.

なお、第1の前処理液は、カーボネート系溶媒を含むことが好ましい。これは、適度なO、Cの混入反応により、充放電による容量変化がより小さくなるためである。   Note that the first pretreatment liquid preferably contains a carbonate-based solvent. This is because a change in capacity due to charging / discharging becomes smaller due to an appropriate mixing reaction of O and C.

第1の前処理には、電析装置20と同様の三極式セルを用いた。作用極は負極13を用い、対極はLi箔を用い、参照電極は、Li/Liを用い、電解液は、1M LiClO/EC:PC(1:1 vol%)を用いた。 A tripolar cell similar to the electrodeposition apparatus 20 was used for the first pretreatment. The working electrode was the negative electrode 13, the counter electrode was Li foil, the reference electrode was Li / Li + , and the electrolyte was 1M LiClO 4 / EC: PC (1: 1 vol%).

なお、第1の前処理において、充電の後に放電を行ってもよい。   Note that in the first pretreatment, discharging may be performed after charging.

<ステップS13> 第2の前処理(電池の充放電)
第1の前処理工程の後に、カーボネート系添加剤を含む第2の前処理液を用いて、活物質12を陰極として、充放電を行う第2の前処理工程が行われる。なお、第1の前処理が、充電処理だけの場合には、放電の後に充電が行われる。
<Step S13> Second pretreatment (battery charge / discharge)
After the first pretreatment step, a second pretreatment step of charging / discharging is performed using the second pretreatment liquid containing the carbonate-based additive and using the active material 12 as a cathode. In addition, when the first pretreatment is only the charging treatment, charging is performed after discharging.

カーボネート系添加剤を含む第2の前処理液を用いた第2の前処理により、リチウム合金化した活物質12の表面に、強固なSEI層が形成される。   A strong SEI layer is formed on the surface of the lithium-alloyed active material 12 by the second pretreatment using the second pretreatment liquid containing a carbonate-based additive.

本実施形態においては、第2の前処理液が電解液16の場合であるため、第2の前処理は電池10の最初の充電と見なすことができる。   In the present embodiment, since the second pretreatment liquid is the electrolyte solution 16, the second pretreatment can be regarded as the first charge of the battery 10.

電池10の充放電サイクル特性を評価するには、電析装置20と同様の三極式セルを用いた。作用極は負極13を用い、対極はLi箔を用い、参照電極は、Li/Li(TBAClO)を用い、電解液は、カーボネート系添加剤を含む、1M LiClO/EC:PC(1:1 vol%)を用いた。 In order to evaluate the charge / discharge cycle characteristics of the battery 10, the same tripolar cell as the electrodeposition apparatus 20 was used. The working electrode uses the negative electrode 13, the counter electrode uses Li foil, the reference electrode uses Li / Li + (TBAClO 4 ), and the electrolyte contains 1 M LiClO 4 / EC: PC (1) containing a carbonate-based additive. : 1 vol%) was used.

なお、電気めっき液30、前処理液1、前処理液2、電解液16は、ジメトキシエタン(DME)、ジエトキシエタン(DEE)、アセトニトリル、プロピルニトリル、エチルエーテル、ジメチルスルホキシド、又はメチルピロリドン等の非水溶媒を含んでいても良い。   The electroplating solution 30, the pretreatment solution 1, the pretreatment solution 2, and the electrolyte solution 16 are dimethoxyethane (DME), diethoxyethane (DEE), acetonitrile, propylnitrile, ethyl ether, dimethyl sulfoxide, methylpyrrolidone, or the like. The non-aqueous solvent may be included.

定電流充放電試験(サイクル試験)は、50μA/cm、0.01V〜1.2Vの電位範囲で行った。 The constant current charge / discharge test (cycle test) was performed in a potential range of 50 μA / cm 2 and 0.01 V to 1.2 V.

なお、「カーボネート系添加剤を含む電解液16にてリチウム合金化を行う」、すなわち、「カーボネート系添加剤を含まない第1の前処理液による第1の前処理を行わない」、比較例の電池(活物質)についても、試作/評価を行った。   In addition, “lithium alloying is performed with the electrolytic solution 16 containing the carbonate-based additive”, that is, “the first pretreatment is not performed using the first pretreatment liquid not containing the carbonate-based additive”, Comparative Example The battery (active material) was also prototyped / evaluated.

(A)第1の前処理あり、電解液16に1vol%のFEC
(B)第1の前処理あり、電解液16に1vol%のVC
(C)第1の前処理なし、電解液16に1vol%のFEC
(D)第1の前処理なし、電解液16に1vol%のVC
(A) 1st pre-treatment, 1 vol% FEC in electrolyte 16
(B) There is a first pretreatment, and 1 vol% of VC in the electrolyte solution 16
(C) No first pretreatment, 1 vol% FEC in electrolyte 16
(D) No first pretreatment, 1 vol% VC in electrolyte 16

図4から、第1の前処理を行う本実施形態の効果は明らかである。   From FIG. 4, the effect of the present embodiment in which the first preprocessing is performed is clear.

第1の前処理において、カーボネート系添加剤を含む第1の前処理液を用いた場合、言い換えれば、第1の前処理なしの場合には、最初の充電において、カーボネート系添加剤の分解による多量のO、Cの混入反応が発生するため、リチウム合金化が阻害されたり、表面性が劣化したりするため、特性が悪いと推察される。   In the first pretreatment, when the first pretreatment liquid containing a carbonate additive is used, in other words, in the case of no first pretreatment, the first charge is caused by decomposition of the carbonate additive. Since a mixed reaction of a large amount of O and C occurs, lithium alloying is hindered and surface properties are deteriorated.

これに対して、リチウム合金化を行う第1の前処理においてはO、Cの混入反応を抑制し、リチウム合金化された活物質12の表面にカーボネート系添加剤を含む第2の前処理液を用いた第2の前処理を行う、実施形態の製造方法は良好な充放電サイクル特性を示す電池10が製造できる。   On the other hand, in the first pretreatment for forming a lithium alloy, a second pretreatment liquid containing a carbonate-based additive on the surface of the active material 12 which is made of lithium alloy is suppressed by suppressing the mixing reaction of O and C. According to the manufacturing method of the embodiment in which the second pretreatment using is performed, the battery 10 exhibiting good charge / discharge cycle characteristics can be manufactured.

更に、種々の条件で試作及び充放電サイクル試験を行ったところ、以下の結果を得た。なお、複数回の試作を行い、良好な充放電サイクル特性を示すリチウム二次電池が製造できることを基準に判定を行った。   Furthermore, when the trial production and the charge / discharge cycle test were performed under various conditions, the following results were obtained. In addition, it determined on the basis that the lithium secondary battery which shows a favorable charging / discharging cycling characteristic can be manufactured by making several trial manufactures.

第2の前処理液のカーボネート系添加剤の添加量は、0.001〜10vol%の範囲で一定の効果が得られ、特に好ましくは、0.1〜5vol%の範囲であった。また、溶媒としてPCを、カーボネート系添加剤としてFECを、含む第2の前処理液が最も良い特性を示した。   The amount of the carbonate-based additive added to the second pretreatment liquid has a certain effect in the range of 0.001 to 10 vol%, and particularly preferably in the range of 0.1 to 5 vol%. Further, the second pretreatment liquid containing PC as a solvent and FEC as a carbonate-based additive showed the best characteristics.

また、リチウム合金化前の活物質12の炭素量は、10〜70at%の範囲で、シリコンと酸素の組成比は、SiOx(0.1≦X<2.0)の範囲のとき、一定の効果が得られた。前記組成の活物質12は、アモルファスかつ準安定相であった。   Further, the carbon content of the active material 12 before lithium alloying is in the range of 10 to 70 at%, and the composition ratio of silicon and oxygen is constant when SiOx (0.1 ≦ X <2.0). The effect was obtained. The active material 12 having the above composition was amorphous and metastable.

<第2実施形態>
次に第2実施形態のリチウム二次電池活物質の製造方法及びリチウム二次電池10Aについて説明する。本実施形態の製造方法等は、第1実施形態の製造方法等と類似しているので同じ構成要素には同じ符号を付し説明は省略する。
Second Embodiment
Next, a method for producing a lithium secondary battery active material and a lithium secondary battery 10A according to a second embodiment will be described. Since the manufacturing method and the like of the present embodiment are similar to the manufacturing method and the like of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.

図5のフローチャートに示す、本実施形態の製造方法の電析工程(S21)及び第1の前処理工程(S22)は、すでに説明した第1実施形態のS11及びS12と同じである。   The electrodeposition step (S21) and the first pretreatment step (S22) of the manufacturing method of this embodiment shown in the flowchart of FIG. 5 are the same as S11 and S12 of the first embodiment already described.

そして、本実施形態では、第2の前処理(S23)の後に、電池の充放電(S24)が行われる。すなわち、第2の前処理液と電解液16とが異なる。S23で使用する第2の前処理液はカーボネート系添加剤を含むが、S24で使用する電解液16はカーボネート系添加剤を含まない。   In the present embodiment, the battery is charged / discharged (S24) after the second pretreatment (S23). That is, the second pretreatment liquid and the electrolytic solution 16 are different. The second pretreatment liquid used in S23 includes a carbonate-based additive, but the electrolytic solution 16 used in S24 does not include a carbonate-based additive.

第2実施形態の製造方法で製造された活物質を具備する電池10Aは、電池10よりもやや劣るものの、良好な充放電サイクル試験結果が得られた。   Although the battery 10A including the active material manufactured by the manufacturing method of the second embodiment was slightly inferior to the battery 10, a good charge / discharge cycle test result was obtained.

以上の説明のように、本発明においては、Si−O−C電析活物質のリチウム合金化処理(第1の前処理)を、カーボネート系添加剤を含まない第1の前処理液で行う。その後、カーボネート系添加剤を含む第2の前処理液又は電解液にて充電を行う。   As described above, in the present invention, the lithium alloying treatment (first pretreatment) of the Si—O—C electrodeposited active material is performed with the first pretreatment liquid not containing a carbonate-based additive. . Then, it charges with the 2nd pre-processing liquid or electrolyte solution containing a carbonate type additive.

従来の製造方法においては、最初の充放電と2回目以降の充放電とを同じ溶液で行っていた。これに対して本発明では、リチウム合金化工程である最初の充電をカーボネート系添加剤を含まない溶液で行い、その後、より安定なSEI層を形成するためにカーボネート系添加剤を含む溶液で充放電を行う。   In the conventional manufacturing method, the first charging and discharging and the second and subsequent charging and discharging are performed with the same solution. On the other hand, in the present invention, the first charge, which is the lithium alloying process, is performed with a solution containing no carbonate-based additive, and then charged with a solution containing the carbonate-based additive to form a more stable SEI layer. Discharge.

このため、良好な充放電サイクル特性を示すリチウム二次電池活物質を製造できるリチウム二次電池活物質の製造方法、及び、前記活物質を具備するリチウム二次電池を提供できる。   For this reason, the manufacturing method of the lithium secondary battery active material which can manufacture the lithium secondary battery active material which shows favorable charging / discharging cycling characteristics, and the lithium secondary battery which comprises the said active material can be provided.

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。   The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

10、10A…リチウム二次電池
11…集電体
12…リチウム二次電池活物質
13…負極
14…正極
15…セパレータ
16…電解液
17…貯留領域
18…封止構造部
20…電析装置
21…参照電極
22…銅箔
23…白金線
30…電気めっき液
DESCRIPTION OF SYMBOLS 10, 10A ... Lithium secondary battery 11 ... Current collector 12 ... Lithium secondary battery active material 13 ... Negative electrode 14 ... Positive electrode 15 ... Separator 16 ... Electrolytic solution 17 ... Storage area 18 ... Sealing structure 20 ... Electrodeposition apparatus 21 Reference electrode 22 Copper foil 23 Platinum wire 30 Electroplating solution

Claims (6)

シリコンイオンと、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、又は、エチルメチルカーボネートから選ばれる1種以上のカーボネート系溶媒と、を含む電気めっき液を用いて、Si−O−Cからなる活物質を成膜する電析工程と、
リチウムイオンを含み、フルオロエチレンカーボネート、又は、ビニレンカーボネートから選ばれる1種以上のカーボネート系添加剤を含まない第1の処理液を用いて、前記活物質を陰極として少なくとも充電を行う第1の処理工程と、
前記第1の処理工程の後に、前記カーボネート系添加剤を含む第2の処理液を用いて、前記活物質を陰極として、充放電を行う第2の処理工程と、を上記記載の順番で具備することを特徴とするリチウム二次電池の電極の製造方法。
Using an electroplating solution containing silicon ions and one or more carbonate solvents selected from propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, or ethyl methyl carbonate , Si An electrodeposition step of forming an active material composed of -OC;
It includes a lithium ion, fluoroethylene carbonate, or, by using the first treatment solution free of one or more carbonate-based additive selected from vinylene carbonate, first performing at least charging the active material as a cathode and the treatment process,
After the first processing step, using the second processing solution containing the carbonate-based additive, the active material as a cathode, and a second processing step of performing charge and discharge, the described above method for producing a lithium secondary batteries of the electrode, characterized by comprising in the order.
前記第1の処理液が、前記カーボネート系溶媒を含むことを特徴とする請求項1に記載のリチウム二次電池の電極の製造方法。  The method for producing an electrode of a lithium secondary battery according to claim 1, wherein the first treatment liquid contains the carbonate-based solvent. 前記第2の処理工程が、リチウム二次電池の最初の充放電工程であることを特徴とする請求項2に記載のリチウム二次電池の電極の製造方法。  The method for producing an electrode of a lithium secondary battery according to claim 2, wherein the second processing step is an initial charge / discharge step of the lithium secondary battery. 前記第2の処理工程の後に、前記カーボネート系添加剤を含まない電解液を用いて、リチウム二次電池の充放電が繰り返し行われることを特徴とする請求項2に記載のリチウム二次電池の電極の製造方法。  3. The lithium secondary battery according to claim 2, wherein after the second treatment step, the lithium secondary battery is repeatedly charged and discharged using an electrolyte solution that does not contain the carbonate-based additive. Electrode manufacturing method. 前記Si−O−Cからなる活物質が、シリコンと酸素と10〜70at%の炭素とを含有し、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相であることを特徴とする請求項1から請求項4のいずれか1項に記載のリチウム二次電池の電極の製造方法。  The Si—O—C active material contains silicon, oxygen, and 10 to 70 at% carbon, the composition ratio of silicon and oxygen is SiOx (0.1 ≦ X <2.0), and is amorphous. The method for producing an electrode of a lithium secondary battery according to any one of claims 1 to 4, wherein the method is a metastable phase. シリコンイオンと、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、又は、エチルメチルカーボネートから選ばれる1種以上のカーボネート系溶媒と、を含む電気めっき液を用いて、Si−O−Cからなる活物質を成膜する電析工程と、  Using an electroplating solution containing silicon ions and one or more carbonate solvents selected from propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, or ethyl methyl carbonate, Si An electrodeposition step of forming an active material composed of -OC;
リチウムイオンを含み、フルオロエチレンカーボネート、又は、ビニレンカーボネートから選ばれる1種以上のカーボネート系添加剤を含まない第1の処理液を用いて、前記活物質を陰極として少なくとも充電を行う第1の処理工程と、  A first treatment in which at least charging is performed using the first treatment liquid containing lithium ions and not containing one or more carbonate-based additives selected from fluoroethylene carbonate or vinylene carbonate, using the active material as a cathode. Process,
前記第1の処理工程の後に、前記カーボネート系添加剤を含む第2の処理液を用いて、前記活物質を陰極として、充放電を行う第2の処理工程と、を上記記載の順番で具備することを特徴とするリチウム二次電池の製造方法。  After the first treatment step, the second treatment step of charging and discharging using the second treatment liquid containing the carbonate-based additive and the active material as a cathode is provided in the order described above. A method for producing a lithium secondary battery.
JP2013003754A 2013-01-11 2013-01-11 Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery Active JP6090778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013003754A JP6090778B2 (en) 2013-01-11 2013-01-11 Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013003754A JP6090778B2 (en) 2013-01-11 2013-01-11 Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014135239A JP2014135239A (en) 2014-07-24
JP6090778B2 true JP6090778B2 (en) 2017-03-08

Family

ID=51413363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003754A Active JP6090778B2 (en) 2013-01-11 2013-01-11 Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6090778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6262432B2 (en) * 2013-01-25 2018-01-17 旭化成株式会社 Method for manufacturing lithium ion capacitor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015768A (en) * 2000-06-30 2002-01-18 Japan Storage Battery Co Ltd Manufacturing method of non-aqueous electrolyte secondary battery
JP3714665B2 (en) * 2002-01-25 2005-11-09 Necトーキン栃木株式会社 Method for producing lithium ion secondary battery
US8170197B2 (en) * 2002-03-15 2012-05-01 Intellisist, Inc. System and method for providing automated call center post-call processing
JP4344874B2 (en) * 2003-10-06 2009-10-14 独立行政法人産業技術総合研究所 Method for producing foil strip for negative electrode of lithium ion secondary battery by non-aqueous solvent plating method
JP5046352B2 (en) * 2005-04-06 2012-10-10 日立マクセルエナジー株式会社 Method for producing lithium ion secondary battery
KR100684733B1 (en) * 2005-07-07 2007-02-20 삼성에스디아이 주식회사 Lithium secondary battery
JP2008004466A (en) * 2006-06-26 2008-01-10 Matsushita Electric Ind Co Ltd Manufacturing method for lithium ion secondary battery
FR2928036B1 (en) * 2008-02-26 2010-12-24 Commissariat Energie Atomique METHOD FOR MANUFACTURING SILICON ELECTRODE, SILICON ELECTRODE, AND LITHIUM BATTERY COMPRISING SUCH ELECTRODE
JP2010263058A (en) * 2009-05-07 2010-11-18 Panasonic Corp Energy storage device
JP5697078B2 (en) * 2010-10-15 2015-04-08 学校法人早稲田大学 Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2012204195A (en) * 2011-03-25 2012-10-22 Waseda Univ Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
GB2500163B (en) * 2011-08-18 2016-02-24 Nexeon Ltd Method
JP6057208B2 (en) * 2012-11-12 2017-01-11 学校法人早稲田大学 Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JP2014135239A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
Ma et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries
Chatterjee et al. Synthesis, characterization and application of a non-flammable dicationic ionic liquid in lithium-ion battery as electrolyte additive
Zhao et al. On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity
Zhao et al. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance
Yang et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
JP5687496B2 (en) Negative electrode coated with LiF compound, method for producing the same, and lithium ion secondary battery including the negative electrode
CN109686923B (en) Preparation method of pre-lithium-intercalated negative electrode, pre-lithium-intercalated negative electrode prepared by preparation method, energy storage device, energy storage system and electric equipment
JP6595176B2 (en) Lithium ion secondary battery
EP3168916B1 (en) Electrolytic solution and electrochemical device
TWI275196B (en) Nonaqueous electrolyte comprising oxyanion and lithium secondary battery using the same
WO2018170928A1 (en) Negative electrode of secondary cell, manufacturing method thereof, and secondary cell
JP2016192384A (en) Lithium secondary battery and method of manufacturing the same
WO2012050155A1 (en) Electrodeposited material, active material for use in lithium secondary battery, and lithium secondary battery
US20140231724A1 (en) Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2016100065A (en) Lithium secondary battery
Wang et al. Nitrogen-rich azoles as trifunctional electrolyte additives for high-performance lithium-sulfur battery
CN107112523B (en) Electrode, method of manufacturing electrode, and electrochemical device
JPWO2013069064A1 (en) Lithium ion secondary battery and manufacturing method thereof
JP2016085890A (en) Sodium ion secondary battery
JP6057208B2 (en) Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery
Zou et al. Improved interfacial properties of LiNi0. 8Co0. 15Al0. 05O2 cathode by tris (trimethylsilyl) borate as an electrolyte additive to inhibit HF formation
CN106654168A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same, and conductive additive for nonaqueous electrolyte secondary battery and method for manufacturing same
JP2013069442A (en) Lithium-ion secondary battery
JP6090778B2 (en) Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery
Li et al. One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170201

R150 Certificate of patent or registration of utility model

Ref document number: 6090778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250