JP6090693B2 - Surface-treated copper foil and printed wiring board using the surface-treated copper foil - Google Patents

Surface-treated copper foil and printed wiring board using the surface-treated copper foil Download PDF

Info

Publication number
JP6090693B2
JP6090693B2 JP2012287322A JP2012287322A JP6090693B2 JP 6090693 B2 JP6090693 B2 JP 6090693B2 JP 2012287322 A JP2012287322 A JP 2012287322A JP 2012287322 A JP2012287322 A JP 2012287322A JP 6090693 B2 JP6090693 B2 JP 6090693B2
Authority
JP
Japan
Prior art keywords
copper foil
nickel
layer
copper
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012287322A
Other languages
Japanese (ja)
Other versions
JP2014129560A (en
Inventor
真鍋 久徳
久徳 真鍋
裕美 城田
裕美 城田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2012287322A priority Critical patent/JP6090693B2/en
Priority to CN201310079806.XA priority patent/CN103909696B/en
Publication of JP2014129560A publication Critical patent/JP2014129560A/en
Application granted granted Critical
Publication of JP6090693B2 publication Critical patent/JP6090693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、銅箔表面にクロム成分を含有する層を形成しなくても引き剥がし強さ及び長期防錆性を備え、粉落ちしない表面処理銅箔及び当該表面処理銅箔を使用したプリント配線板に関する。   The present invention provides a surface-treated copper foil having a peeling strength and a long-term antirust property without forming a layer containing a chromium component on the surface of the copper foil, and a printed wiring using the surface-treated copper foil. Regarding the board.

プリント配線板に使用する銅箔には通常の環境(常態)において樹脂基材と容易に引き剥がれない引き剥がし強さが要求されることに加えて、高温環境や吸湿後であっても、或いは、プリント配線板の製造工程で使用される様々な薬品に浸漬しても劣化せずに引き剥がし強さを維持すること、及び、粉落ちやエッチング残渣が発生しないこと、更には、長期に亘る防錆性も要求される。
前記要求を満たすため、通常プリント配線板用の銅箔の表面にはクロム成分を含有する層が形成されており、多くはクロメート皮膜が形成されている。
The copper foil used for the printed wiring board is required to have a peeling strength that does not easily peel off from the resin base material in a normal environment (normal state). , Maintain the peel strength without deterioration even when immersed in various chemicals used in the manufacturing process of printed wiring boards, and do not generate powder or etching residue. Rust prevention is also required.
In order to satisfy the above requirements, a layer containing a chromium component is usually formed on the surface of a copper foil for a printed wiring board, and in many cases a chromate film is formed.

クロメート皮膜のクロム成分は、X線光電子分光法やジフェニルカルバジド吸光光度法による測定で、毒性がなく環境負荷も少ない三価クロムであることが確認されている。しかしながら、クロメート皮膜処理の処理液中には六価クロムが含まれており、また、クロメート皮膜が形成された表面処理銅箔の廃棄処理方法を誤った場合や、廃棄時の外的環境要因によって、三価クロムが酸化されて六価クロムになることがある。   The chromium component of the chromate film has been confirmed to be trivalent chromium which is not toxic and has a low environmental impact, as measured by X-ray photoelectron spectroscopy or diphenylcarbazide absorptiometry. However, the chromate film treatment solution contains hexavalent chromium, and if the disposal method of the surface-treated copper foil with the chromate film formed is wrong or due to external environmental factors at the time of disposal, Trivalent chromium may be oxidized to hexavalent chromium.

六価クロムは毒性が非常に強く、環境負荷が高い物質であり、欧州では、使用済み自動車の環境に与える負荷を低減するためのELV指令(End-of Life Vehicles Directive)により、自動車部品やその材料に鉛、水銀、カドミウムと同様に六価クロムの使用が原則禁止され、また、同じく欧州の電気・電子機器における特定有害物質の使用を制限するRoHS指令(Restriction of the use of certainHazardous Substances in electrical and electronic equipment)においても六価クロムの使用は禁止されており、クロム成分を含有する表面処理銅箔を使用しているプリント配線板もその対象物となっている。   Hexavalent chromium is a highly toxic substance with a high environmental impact. In Europe, in accordance with the ELV Directive (End-of Life Vehicles Directive) for reducing the environmental impact of used vehicles, automotive parts and their The use of hexavalent chromium is prohibited in principle, as is the case with lead, mercury and cadmium, and the RoHS Directive (Restriction of the use of certain Hazardous Substances in electrical) and electronic equipment) are also prohibited from using hexavalent chromium, and printed wiring boards using surface-treated copper foil containing a chromium component are also the object.

このような、環境負荷に対する意識が高まるにつれて、無毒であるクロム成分であっても有毒である六価クロムへ変化する虞があるので、クロム成分を全く含有せず、かつ、プリント配線板に使用できる特性を備えた表面処理銅箔の開発が望まれていた。   As the awareness of environmental load increases, even non-toxic chromium components may change to toxic hexavalent chromium, so they do not contain any chromium components and are used for printed wiring boards. The development of a surface-treated copper foil having such characteristics has been desired.

特許文献1には、銅箔の表面にニッケル又はニッケル合金層及び熱風乾燥により酸化ニッケル層を形成し、酸化ニッケル層の表面にシランカップリング層を形成したプリント配線板用銅箔で、粗化メッキ層を備えるプリント配線板用銅箔が開示されている。   In Patent Document 1, a nickel or nickel alloy layer and a nickel oxide layer are formed by hot air drying on the surface of the copper foil, and a copper foil for a printed wiring board in which a silane coupling layer is formed on the surface of the nickel oxide layer is roughened. A copper foil for a printed wiring board provided with a plating layer is disclosed.

特許文献2には、粗化処理を施した銅箔の表面にバリヤー層としてニッケル又はニッケル合金層、耐熱層として亜鉛層又は亜鉛合金層、防錆処理層としてモリブデン化合物皮膜、及び、シランカップリング剤層を順に形成したプリント配線板用銅箔が開示されている。   Patent Document 2 discloses that a roughened copper foil has a nickel or nickel alloy layer as a barrier layer, a zinc or zinc alloy layer as a heat-resistant layer, a molybdenum compound film as a rust-proofing layer, and a silane coupling. The copper foil for printed wiring boards which formed the agent layer in order is disclosed.

特開2009−117706JP 2009-117706 A 特開2005−353918JP-A-2005-353918

特許文献1及び特許文献2は、表面に粗化処理を施し表面粗さを上昇させて、投錨効果による接着強度を得ながらクロメート皮膜に代わる引き剥がし強さを確保しようとしている。   Patent document 1 and patent document 2 are trying to ensure the peeling strength which replaces a chromate film | membrane, performing the roughening process on the surface and raising surface roughness and obtaining the adhesive strength by a throwing effect.

粗化処理によって表面粗さが上がれば、投錨効果により樹脂基材とより強固に接着して引き剥がし強さが上昇することはよく知られており、クロメート皮膜に代わる引き剥がし強さを得るには表面粗さは上げた方が良い。   It is well known that if the surface roughness is increased by the roughening treatment, the anchoring effect will result in a stronger adhesion to the resin base material and an increase in the peel strength, so that a peel strength can be obtained instead of the chromate film. It is better to increase the surface roughness.

しかしながら、最近のプリント配線板は、電子機器の小型化に伴って回路が極端に狭ピッチ化しており、表面粗さが上がると狭ピッチの回路を正確に形成できないという問題がある。   However, recent printed wiring boards have a problem in that circuits are extremely narrowed with downsizing of electronic devices, and when the surface roughness is increased, narrow pitch circuits cannot be formed accurately.

また、表面粗さが上がるとエッチングファクターが低下したり、基板上にエッチング残渣や粉落ちが生じるという問題がある。   Further, when the surface roughness increases, there are problems that the etching factor is reduced and etching residues and powder fall off on the substrate.

したがって、基板上に残渣等を発生させず、狭ピッチの回路を正確に形成するには表面粗さは上げない方が好ましく、粗化処理を施さない場合も増えている。しかしながら、粗化処理を施さない場合には、十分な投錨効果が得られず接着強度が下がるため引き剥がし強さも低下するという問題が生じる。   Therefore, it is preferable not to increase the surface roughness in order to accurately form a narrow-pitch circuit without generating a residue or the like on the substrate, and the number of cases where the roughening treatment is not performed is increasing. However, when the roughening treatment is not performed, a sufficient anchoring effect cannot be obtained, and the adhesive strength is lowered, resulting in a problem that the peeling strength is also lowered.

本発明者らは、前記諸問題点を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、銅箔の一方の面に粗化処理層と0.3μm以下の銅粒子、銅-ニッケル粒子、銅-コバルト粒子若しくは銅-ニッケル-コバルト粒子からなる微細粒子層とニッケル又はニッケル-リンからなる層とアルカリ金属ケイ酸塩及びシランカップリング剤からなる層とをこの順に形成すれば、常態引き剥がし強さだけではなく、高温環境や吸湿後、或いは、プリント配線板の製造工程で使用される様々な薬品に浸漬しても引き剥がし強さが維持されると共に長期に亘る防錆性が得られ、かつ、狭ピッチの回路も正確に形成でき、加えて、前記微細粒子層を形成することによって増加する表面積を177μm の領域当り60μm〜900μmの範囲にすれば粉落ちしない表面処理銅箔になるという刮目すべき知見を得て前記技術的課題を達成したものである。
The present inventors made it a technical subject to solve the above-mentioned problems, and as a result of many trial and error trial manufactures and experiments, a roughened layer and 0.3 μm or less were formed on one surface of the copper foil. A fine particle layer composed of copper particles, copper-nickel particles, copper-cobalt particles or copper-nickel-cobalt particles, a layer composed of nickel or nickel-phosphorus, and a layer composed of an alkali metal silicate and a silane coupling agent. If formed in this order, not only the normal peel strength, but also the peel strength is maintained even after being immersed in various chemicals used in high temperature environment, moisture absorption, or printed circuit board manufacturing process. rust resistance can be obtained over a long term, and narrow circuit pitch can be accurately formed, in addition, the area per 60 [mu] m 2 of 177 .mu.m 2 a surface area increased by forming fine particle layer ~900μm The above technical problem has been achieved by obtaining a remarkable knowledge that a surface-treated copper foil that does not fall off is obtained in the range of 2 .

前記技術的課題は本発明によって解決できる。   The technical problem can be solved by the present invention.

本発明は、銅箔の一方の面に粗化処理層と銅粒子、銅-ニッケル粒子、銅-コバルト粒子、銅-ニッケル-コバルト粒子から選択される1種の微細粒子からなる微細粒子層とニッケル又はニッケル-リンからなる層とアルカリ金属ケイ酸塩及びシランカップリング剤からなる層とがこの順に形成されており前記微細粒子の粒子径が0.3μm以下(但し0μmは含まない)であり前記微細粒子層の表面積が前記微細粒子層形成前の前記粗化処理層の表面積より177μm の領域当り60μm〜900μm上昇していることを特徴とする表面処理銅箔に関する(請求項1)。
The present invention provides a roughening layer on one surface of a copper foil and a fine particle layer comprising one kind of fine particles selected from copper particles, copper-nickel particles, copper-cobalt particles, and copper-nickel-cobalt particles. A layer made of nickel or nickel-phosphorus and a layer made of an alkali metal silicate and a silane coupling agent are formed in this order, and the particle diameter of the fine particles is 0.3 μm or less (excluding 0 μm). the surface treated copper foil related (claim 1 the surface area of the fine particle layer, characterized in that the are area per 60μm 2 ~900μm 2 increase of 177 .mu.m 2 than the surface area of the fine particle layer formed prior to the roughening treatment layer ).

また本発明は、前記アルカリ金属ケイ酸塩がM2O・xSiO2・nH2O(M=Na又はK, x=2〜4)で表される水ガラスであることを特徴とする請求項1記載の表面処理銅箔に関する(請求項2)。 The present invention is also characterized in that the alkali metal silicate is water glass represented by M 2 O · xSiO 2 · nH 2 O (M = Na or K, x = 2 to 4). The surface-treated copper foil according to claim 1 (claim 2).

また本発明は、前記シランカップリング剤がアミノ基含有シランカップリング剤、エポキシ基含有シランカップリング剤、ビニル基含有シランカップリング剤から選択される1種以上であることを特徴とする請求項1又は2記載の表面処理銅箔に関する(請求項3)。   In the present invention, the silane coupling agent is at least one selected from an amino group-containing silane coupling agent, an epoxy group-containing silane coupling agent, and a vinyl group-containing silane coupling agent. It is related with the surface-treated copper foil of 1 or 2.

また本発明は、樹脂基材上に請求項1乃至3いずれかに記載の表面処理銅箔を使用した
プリント配線板に関する(請求項4)。
Moreover, this invention relates to the printed wiring board which uses the surface-treated copper foil in any one of Claims 1 thru | or 3 on the resin base material (Claim 4).

本発明によれば、クロム成分を含む層を形成しなくても、エッチング性を損なわずに常態の引き剥がし強さが得られ、また、高温環境や吸湿後においても、或いは、プリント配線板の製造工程で使用される様々な薬品に浸漬しても引き剥がし強さを維持できることに加えて、粉落ちせず、長期防錆性があるので、プリント配線板に使用する銅箔に求められる特性を備えた表面処理銅箔になる。   According to the present invention, even if a layer containing a chromium component is not formed, a normal peeling strength can be obtained without impairing the etching property, and even after a high temperature environment or after moisture absorption, In addition to being able to maintain the peel strength even when immersed in various chemicals used in the manufacturing process, it does not fall off and has long-term rust prevention properties, so the characteristics required for copper foil used for printed wiring boards It becomes the surface treatment copper foil provided with.

本発明の表面処理銅箔に形成される微細粒子層を構成する微細粒子の粒子径は0.3μm以下(但し0μmは含まない)なので、表面粗さの上昇を抑制して表面積を上昇させることができるため、樹脂基材と強固に固着させることができ、クロム成分を含む層を形成しなくても十分な引き剥がし強さを得ることができる。   Since the particle diameter of the fine particles constituting the fine particle layer formed on the surface-treated copper foil of the present invention is 0.3 μm or less (however, 0 μm is not included), the increase in surface roughness is suppressed and the surface area is increased. Therefore, it can be firmly fixed to the resin base material, and sufficient peel strength can be obtained without forming a layer containing a chromium component.

また、表面粗さの上昇が少ないので、エッチング残渣や粉落ちの発生頻度が低下し、かつ、狭ピッチの回路も正確に形成することができるため、小型化した電子機器のプリント配線板にも好適に用いることができる表面処理銅箔になる。   In addition, since the increase in surface roughness is small, the frequency of occurrence of etching residue and powder fall is reduced, and a narrow-pitch circuit can be accurately formed. It becomes the surface treatment copper foil which can be used suitably.

加えて、微細粒子層を形成することによる表面積の増加が、177μm の領域当り60μm〜900μmなので、引き剥がし強さを確保できるが粉落ちやエッチング残渣は発生しないというプリント配線板に使用する上で好ましい性質を兼ね備えた表面処理銅箔になる。
In addition, an increase in surface area due to the formation of the fine particle layer, 1 77 m 2 of So areas per 60μm 2 ~900μm 2, peel strength can be secured although dusting or etching residue on a printed wiring board that do not occur It becomes the surface-treated copper foil which has a preferable property when using it.

本発明における表面処理銅箔にはニッケル又はニッケル-リン層が形成されているので、高温環境でも、或いは、プリント配線板の製造工程に使用される様々な薬品に浸漬したとしても引き剥がし強さを維持できる。   Since the nickel or nickel-phosphorus layer is formed on the surface-treated copper foil in the present invention, the peel strength even in a high temperature environment or even when immersed in various chemicals used in the printed wiring board manufacturing process Can be maintained.

また、ニッケル-リン層は選択エッチング性のあるアルカリエッチング液にも可溶であるため、汎用性が高い。   In addition, the nickel-phosphorus layer is highly versatile because it is soluble in an alkaline etching solution having selective etching properties.

本発明における表面処理銅箔にはアルカリ金属ケイ酸塩及びシランカップリング剤からなる層が形成されているので、樹脂基材と強固に固着して常態引き剥がし強さが向上し、また、吸湿後であっても劣化が抑制されて引き剥がし強さが維持されると共に防錆性も向上する。   Since the surface-treated copper foil in the present invention is formed with a layer comprising an alkali metal silicate and a silane coupling agent, the surface-treated copper foil is firmly fixed to the resin base material to improve the normal peel strength, and also absorbs moisture. Even after, deterioration is suppressed, the peel strength is maintained, and rust prevention is improved.

特に、M2O・xSiO2・nH2O(M=Na又はK, x=2〜4)で表される水ガラスとアミノ基含有、エポキシ基含有若しくはビニル基含有のシランカップリング剤とを使用すれば吸湿後の劣化がより抑制され、防錆性もより向上する。 In particular, water glass represented by M 2 O.xSiO 2 .nH 2 O (M = Na or K, x = 2 to 4) and an amino group-containing, epoxy group-containing or vinyl group-containing silane coupling agent If used, deterioration after moisture absorption is further suppressed, and rust prevention is further improved.

本発明における表面処理銅箔の断面の模式図である。It is a schematic diagram of the cross section of the surface treatment copper foil in this invention.

(銅箔)
本発明に使用する各処理前の銅箔(以下未処理銅箔という)は特に限定されるものではなく、表裏の区別のない銅箔、表裏の区別のある銅箔いずれも使用することができる。
(Copper foil)
The copper foil before each treatment (hereinafter referred to as untreated copper foil) used in the present invention is not particularly limited, and any copper foil having no distinction between the front and back and a copper foil having a distinction between the front and back can be used. .

表面処理を施す一方の面(以下処理面という)は特に限定されるものではなく、圧延銅箔はいずれの面でも良いことはもちろんのこと、電解銅箔においても析出面又は光沢面のいずれの面でも良い。   One surface to be surface-treated (hereinafter referred to as the treated surface) is not particularly limited, and the rolled copper foil may be any surface, and any electrolytic copper foil may be either a precipitation surface or a glossy surface. The surface is good.

未処理銅箔の厚さは表面処理後にプリント配線板に使用できる厚さであれば特に限定されるものではないが、6μm〜300μmが好ましく、より好ましくは9μm〜150μmである。   Although the thickness of untreated copper foil will not be specifically limited if it is the thickness which can be used for a printed wiring board after surface treatment, 6 micrometers-300 micrometers are preferable, More preferably, they are 9 micrometers-150 micrometers.

本発明において、未処理銅箔の処理面には予め粗化処理を施すことが好ましい。微細粒子層が形成しやすくなると共に、常態の引き剥がし強さの向上も望めるからである。
しかしながら、粗化処理による表面粗さの上昇が好ましくない場合には、未処理銅箔の処理面に直接微細粒子層を形成させることもできる。本発明における微細粒子層は表面粗さは上昇させないが、表面積を上昇させるので、樹脂基材と固着して引き剥がし強さが得られるからである。
In the present invention, it is preferable to subject the treated surface of the untreated copper foil to a roughening treatment in advance. This is because a fine particle layer can be easily formed and an improvement in the normal peeling strength can be expected.
However, when an increase in surface roughness due to the roughening treatment is not preferable, a fine particle layer can be directly formed on the treated surface of the untreated copper foil. This is because the fine particle layer in the present invention does not increase the surface roughness, but increases the surface area, so that the fine particle layer adheres to the resin substrate and provides a peel strength.

粗化処理を施す場合としては、処理面に銅又は銅合金の樹枝状粉を付着させた後に被覆めっきを施す方法を例示することができる。   An example of the case where the roughening treatment is performed is a method in which coating plating is performed after the dendritic powder of copper or copper alloy is attached to the treated surface.

前記粗化処理は、限界電流密度以上の電流で銅又は銅合金の樹枝状粉を付着させる工程(工程1)と付着した樹枝状粉の脱落を防ぐために、限界電流密度未満の電流で被覆めっきする工程(工程2)とから構成される。   In the roughening treatment, in order to prevent the step of attaching the dendritic powder of copper or copper alloy with a current equal to or higher than the limit current density (step 1) and the dropping of the attached dendritic powder, the coating is performed with a current less than the limit current density. (Step 2).

例えば、工程1は、硫酸銅五水和物12g/L〜70g/L、硫酸30g/L〜200g/Lの混合液に塩素イオン、コバルトイオン、ニッケルイオン、鉄イオン、チタンイオン、モリブデンイオン、バナジウムイオン、亜鉛イオン、タングステンイオン、アルミニウムイオン、1−10−フェナントロリン、4,7−ジフェニル−1,10−フェナントロリン、3−メルカプト−1−プロパンスルホン酸から選択される1又は2種以上を添加し、液温25℃〜50℃に調整した後、電極に白金属酸化物被覆チタン板等の不溶性電極を使用して、電流密度5A/dm2〜100A/dm2の条件で樹枝状銅粉を付着させればよい。 For example, in Step 1, a mixed solution of copper sulfate pentahydrate 12 g / L to 70 g / L and sulfuric acid 30 g / L to 200 g / L is added to chlorine ions, cobalt ions, nickel ions, iron ions, titanium ions, molybdenum ions, Add one or more selected from vanadium ion, zinc ion, tungsten ion, aluminum ion, 1-10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 3-mercapto-1-propanesulfonic acid Then, after adjusting the liquid temperature to 25 ° C. to 50 ° C., an insoluble electrode such as a white metal oxide-coated titanium plate is used as the electrode, and the dendritic copper powder is used at a current density of 5 A / dm 2 to 100 A / dm 2. Can be attached.

例えば、工程2は、硫酸銅五水和物150g/L〜300g/L、硫酸50g/L〜200g/Lの混合液を液温25℃〜50℃に調整した後、電極に白金属酸化物被覆チタン板等の不溶性電極を使用して電流密度2A/dm2〜60A/dm2の条件で被覆めっきすればよい。なお、必要に応じて公知技術であるゼラチンを適量添加してもよい。 For example, in Step 2, after adjusting a mixed liquid of copper sulfate pentahydrate 150 g / L to 300 g / L and sulfuric acid 50 g / L to 200 g / L to a liquid temperature of 25 ° C. to 50 ° C., a white metal oxide is applied to the electrode. an insoluble electrode such as coated titanium plate may be coated plated at a current density of 2A / dm 2 ~60A / dm 2 using. If necessary, an appropriate amount of gelatin, which is a known technique, may be added.

(微細粒子層)
微細粒子層を形成する粒子は粒子径が0.3μm以下の銅粒子、銅-ニッケル粒子、銅-コバルト粒子又は銅-ニッケル-コバルト粒子であり、より好ましくは0.25μm以下の前記微細粒子である。
(Fine particle layer)
The particles forming the fine particle layer are copper particles having a particle size of 0.3 μm or less, copper-nickel particles, copper-cobalt particles or copper-nickel-cobalt particles, and more preferably the fine particles having a particle size of 0.25 μm or less. is there.

粒子径が0.3μmより大きければ表面粗さが著しく上がり、エッチング性が悪くなると共に固着性も弱くなり、粉落ちが発生して生産ラインの汚染が生じたり、基板面にエッチング残渣が発生する虞があるため好ましくない。   If the particle size is larger than 0.3 μm, the surface roughness is remarkably increased, the etching property is deteriorated and the sticking property is also weakened, powder falling occurs and the production line is contaminated, or an etching residue is generated on the substrate surface. Since there is a possibility, it is not preferable.

未処理銅箔の処理面に微細粒子層を形成することにより上昇する表面積は177μm の領域当り60μm〜900μmであることが好ましく、より好ましくは70μm〜800μm、さらに好ましくは100μm〜700μmである。
60μm未満であると十分な引き剥がし強さを得ることができず、また、吸湿後の劣化率が大きくなるので好ましくなく、また、900μmより多ければ、引き剥がし強さは得られるものの、表面粗さが上がり、粉落ちも発生するので生産ラインの汚染が生じたり、基板面にエッチング残渣が発生する虞があり、プリント配線板に使用する表面処理銅箔としては好ましくない。
Preferably the surface area increases by forming a fine particle layer on the treated surface of the untreated copper foil is an area per 60μm 2 ~900μm 2 of 177 .mu.m 2, more preferably 70μm 2 ~800μm 2, more preferably 100 [mu] m 2 ˜700 μm 2 .
Can not be is less than 60 [mu] m 2 to obtain a sufficient peel strength, also not preferable because the deterioration rate after moisture absorption is large, if the amount exceeds 900 .mu.m 2, although the peel strength is obtained, Since the surface roughness increases and powder falling occurs, the production line may be contaminated, and etching residue may be generated on the substrate surface, which is not preferable as a surface-treated copper foil used for a printed wiring board.

表面積は、例えば、可視光限界波長408nmのバイオレットレーザーを使用したレーザー顕微鏡等で測定することができる。   The surface area can be measured by, for example, a laser microscope using a violet laser having a visible light limit wavelength of 408 nm.

本発明における微細粒子層は電気めっき法によって形成することができる。   The fine particle layer in the present invention can be formed by electroplating.

本発明の微細粒子層は、例えば、銅含有化合物10g/L〜100g/L又は銅含有化合物10g/L〜100g/Lとコバルト含有化合物1g/L〜60g/L、及び/又は、ニッケル含有化合物1g/L〜60g/Lを含有する液に、ジエチレントリアミン塩を5g/L〜300g/Lとなるように添加した混合液をpHが2.5〜13.0、液温が20℃〜70℃になるよう調整し、陽極に銅を用いて電流密度0.5A/dm2〜10.0A/dm2、電気量10A・sec/dm2〜400A・sec/dm2の条件で形成することができる。 The fine particle layer of the present invention is, for example, a copper-containing compound 10 g / L to 100 g / L or a copper-containing compound 10 g / L to 100 g / L and a cobalt-containing compound 1 g / L to 60 g / L and / or a nickel-containing compound. A liquid mixture containing 1 g / L to 60 g / L and a diethylenetriamine salt added so as to be 5 g / L to 300 g / L has a pH of 2.5 to 13.0 and a liquid temperature of 20 ° C. to 70 ° C. And using copper as the anode, the current density is 0.5 A / dm 2 to 10.0 A / dm 2 and the amount of electricity is 10 A · sec / dm 2 to 400 A · sec / dm 2. it can.

銅含有化合物としては硫酸銅五水和物、コバルト含有化合物として硫酸コバルト七水和物、塩化コバルト、ニッケル含有化合物としては硫酸ニッケル六水和物、塩化ニッケルが好適である。   The copper-containing compound is preferably copper sulfate pentahydrate, the cobalt-containing compound is cobalt sulfate heptahydrate, cobalt chloride, and the nickel-containing compound is nickel sulfate hexahydrate or nickel chloride.

ジエチレントリアミン塩としてはジエチレントリアミン五酢酸五ナトリウムが好適である。   Diethylenetriaminepentaacetic acid pentasodium is preferred as the diethylenetriamine salt.

(ニッケル又はニッケル-リン層)
本発明におけるニッケル又はニッケル-リン層の付着量は5mg/m2〜300mg/m2が好ましく、より好ましくは10mg/m2〜200mg/m2である。5mg/m2未満であると微細粒子層が形成されている銅箔表面を完全に被覆できずに、樹脂基材と銅が反応して脆弱層を形成して高温環境や薬品浸漬後の引き剥がし強さの劣化率が上昇する虞があるため好ましくない。また、付着量が300mg/m2より多ければ、エッチング残渣の発生や、エッチングの速度が遅くなる虞があるため好ましくなく、また、300mg/m2より多くても耐熱・耐薬品特性の向上は望めないためである。
(Nickel or nickel-phosphorus layer)
Nickel or nickel in the present invention - the adhesion amount of the phosphorus layer is preferably 5mg / m 2 ~300mg / m 2 , more preferably from 10mg / m 2 ~200mg / m 2 . If it is less than 5 mg / m 2 , the copper foil surface on which the fine particle layer is formed cannot be completely coated, and the resin base material reacts with copper to form a brittle layer, which is pulled after high temperature environment or chemical immersion. This is not preferable because the deterioration rate of the peel strength may increase. Further, if the amount exceeds the amount of adhered 300 mg / m 2, generation of etching residue is not preferable because there is a risk that the rate of etching is slow, also be greater than 300 mg / m 2 increase in heat and chemical characteristics It is because it cannot be expected.

本発明におけるニッケル又はニッケル-リン層は電気めっき法により形成することができる。   The nickel or nickel-phosphorus layer in the present invention can be formed by electroplating.

本発明におけるニッケル又はニッケル-リン層は、例えば、ニッケル含有化合物10g/L〜100g/L又はニッケル含有化合物10g/L〜100g/Lにリン酸塩0.1g/L〜10g/Lを含有する液に酢酸ナトリウム三水和物を2g/L〜20g/Lとなるように添加した混合液を、pHが3.0〜5.5、液温が20℃〜50℃になるよう調整し、陽極に白金を用いて電流密度0.1A/dm2〜10.0A/dm2、電気量1.0A・sec/dm2〜30.0A・sec/dm2の条件で形成することができる。 The nickel or nickel-phosphorus layer in the present invention contains, for example, a nickel-containing compound of 10 g / L to 100 g / L or a nickel-containing compound of 10 g / L to 100 g / L and a phosphate of 0.1 g / L to 10 g / L. The liquid mixture in which sodium acetate trihydrate was added to the liquid so as to be 2 g / L to 20 g / L was adjusted so that the pH was 3.0 to 5.5 and the liquid temperature was 20 ° C. to 50 ° C., It can be formed using platinum as the anode under the conditions of a current density of 0.1 A / dm 2 to 10.0 A / dm 2 and an electric quantity of 1.0 A · sec / dm 2 to 30.0 A · sec / dm 2 .

ニッケル含有化合物としては、硫酸ニッケル六水和物、塩化ニッケル、リン酸塩としては次亜リン酸ナトリウム一水和物、亜リン酸ナトリウムが好適である。   As the nickel-containing compound, nickel sulfate hexahydrate, nickel chloride, and as the phosphate, sodium hypophosphite monohydrate and sodium phosphite are suitable.

(アルカリ金属ケイ酸塩及びシランカップリング剤層)
本発明におけるアルカリ金属ケイ酸塩は特に限定されるものではないが、M2O・xSiO2・nH2O(M=Na又はK,x=2〜4)で表される水ガラスが好適に用いられる。水ガラスは、ナトリウム塩、カリウム塩いずれも使用することができるが、カリウム塩がより好ましい。
(Alkali metal silicate and silane coupling agent layer)
The alkali metal silicate in the present invention is not particularly limited, but water glass represented by M 2 O · xSiO 2 · nH 2 O (M = Na or K, x = 2 to 4) is preferable. Used. As the water glass, either a sodium salt or a potassium salt can be used, but a potassium salt is more preferable.

本発明におけるシランカップリング剤は特に限定されるものではなく、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基及びメルカプト基を含有するシランカップリング剤を使用することができるが、アミノ基、エポキシ基又はビニル基含有のシランカップリング剤は耐吸湿性と防錆性の効果が非常に高く、より好適である。   The silane coupling agent in the present invention is not particularly limited, and a silane coupling agent containing a vinyl group, an epoxy group, a styryl group, a methacryl group, an acrylic group, an amino group, a ureido group, and a mercapto group should be used. However, amino group, epoxy group or vinyl group-containing silane coupling agents are more suitable because they have very high effects of moisture absorption resistance and rust prevention.

シランカップリング剤は1種でも、2種以上を組み合わせて使用しても良い。   A silane coupling agent may be used alone or in combination of two or more.

本発明におけるアルカリ金属ケイ酸塩及びシランカップリング剤層は、アルカリ金属ケ
イ酸塩とシランカップリング剤とを溶解して、20℃〜60℃に調整した混合水溶液に浸漬した後、または、スプレー等の方法で散布した後、水洗することで形成することができる。
In the present invention, the alkali metal silicate and silane coupling agent layer is prepared by dissolving an alkali metal silicate and a silane coupling agent and immersing them in a mixed aqueous solution adjusted to 20 ° C. to 60 ° C. or spraying. It can form by spraying by the method etc., and washing with water.

混合水溶液中のアルカリ金属ケイ酸塩の濃度は0.5mL/L〜100mL/Lが好ましく、更に好ましくは1mL/L〜80mL/Lである。0.5mL/L未満では吸湿処理後の引き剥がし強さの劣化率が高くなるので好ましくなく、100mL/Lを超えて添加しても、それ以上の吸湿後の劣化率の低下は望めないためである。   The concentration of the alkali metal silicate in the mixed aqueous solution is preferably 0.5 mL / L to 100 mL / L, more preferably 1 mL / L to 80 mL / L. If it is less than 0.5 mL / L, the deterioration rate of the peel strength after the moisture absorption treatment is increased, which is not preferable. Even if it is added in excess of 100 mL / L, no further decrease in the deterioration rate after moisture absorption can be expected. It is.

混合水溶液中のシランカップリング剤の濃度は0.3mL/L〜100mL/Lが好ましく、より好ましくは0.5mL/L〜80mL/Lである。0.3mL/L未満だと吸湿後の劣化率の低下及び防錆性の効果が十分ではなく、また、100mL/Lを超えて添加してもそれ以上の効果の向上は望めないためである。   The concentration of the silane coupling agent in the mixed aqueous solution is preferably 0.3 mL / L to 100 mL / L, more preferably 0.5 mL / L to 80 mL / L. If it is less than 0.3 mL / L, the deterioration rate after moisture absorption and the effect of rust prevention are not sufficient, and even if added over 100 mL / L, no further improvement in effect can be expected. .

以下に本発明の実施例を示すが、本発明はこれに限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

(粗化処理)
表面粗さRzJIS 1.1μm、厚さ18μmの圧延銅箔を硫酸銅五水和物45g/L、硫酸100g/L、塩素イオン20ppm、液温30℃に調整した混合液に浸漬した後、白金を陽極として電流密度10A/dm2、電解時間12秒の条件で、圧延銅箔表面に樹枝状銅粉を付着させた。
(Roughening treatment)
After immersing a rolled copper foil having a surface roughness of RzJIS 1.1 μm and a thickness of 18 μm in a mixed liquid adjusted to 45 g / L of copper sulfate pentahydrate, 100 g / L of sulfuric acid, 20 ppm of chloride ions, and a liquid temperature of 30 ° C., platinum As an anode, dendritic copper powder was adhered to the surface of the rolled copper foil under the conditions of a current density of 10 A / dm 2 and an electrolysis time of 12 seconds.

付着した樹枝状銅粉の脱落を防止するため硫酸銅五水和物250g/L、硫酸100g/L、液温30℃に調整した混合液に浸漬した後、白金を陽極として電流密度5A/dm2、電解時間70秒で電解して、付着した樹枝状銅粉を銅めっきで完全に被覆し、粗化処理を施した圧延銅箔を得た。 In order to prevent the adhering dendritic copper powder from falling off, it was immersed in a mixed solution adjusted to 250 g / L of copper sulfate pentahydrate, 100 g / L of sulfuric acid, and a liquid temperature of 30 ° C., and then current density of 5 A / dm using platinum as an anode. 2. Electrolysis was performed in an electrolysis time of 70 seconds, and the attached dendritic copper powder was completely covered with copper plating to obtain a rolled copper foil subjected to roughening treatment.

本発明の実施例及び比較例は全て粗化処理を施した圧延銅箔を使用した。   All the examples and comparative examples of the present invention used rolled copper foil subjected to roughening treatment.

(微細粒子層)
粗化処理を施した圧延銅箔を10秒間水洗後、硫酸銅五水和物、硫酸ニッケル六水和物、硫酸コバルト七水和物、ジエチレントリアミン五酢酸五ナトリウム(商品名:クレワットDP80 (含有率35〜45%)・ナガセケムテックス株式会社製)を表1記載の割合で混合し、銅を陽極として、同じく表1記載のpH、液温、電流密度及び電解時間の条件で電気めっきを行って、実施例1〜12及び比較例1〜5の表面処理銅箔の微細粒子層を形成した。
(Fine particle layer)
Roughened rolled copper foil was washed with water for 10 seconds, copper sulfate pentahydrate, nickel sulfate hexahydrate, cobalt sulfate heptahydrate, diethylenetriaminepentaacetic acid pentasodium (trade name: Clewat DP80 (content rate 35 to 45%) ・ Nagase ChemteX Co., Ltd.) is mixed at the ratio shown in Table 1, and copper is used as the anode, and electroplating is performed under the same conditions of pH, liquid temperature, current density and electrolysis time as shown in Table 1. And the fine particle layer of the surface treatment copper foil of Examples 1-12 and Comparative Examples 1-5 was formed.

(ニッケル又はニッケル-リン層)
微細粒子層が形成された圧延銅箔を10秒間水洗後、硫酸ニッケル六水和物、次亜リン酸ナトリウム一水和物、酢酸ナトリウム三水和物を表2記載の割合で混合し、白金を陽極として、同じく表2記載のpH、液温、電流密度及び電解時間の条件で電気めっきを行って、実施例1〜12のニッケル又はニッケル−リン層を形成した。また、比較例1〜5は実施例1と同一の条件で形成した。
(Nickel or nickel-phosphorus layer)
The rolled copper foil on which the fine particle layer was formed was washed with water for 10 seconds, and then nickel sulfate hexahydrate, sodium hypophosphite monohydrate, and sodium acetate trihydrate were mixed at the ratio shown in Table 2 to obtain platinum. Was used as an anode, and electroplating was carried out under the conditions of pH, liquid temperature, current density and electrolysis time shown in Table 2 to form nickel or nickel-phosphorous layers of Examples 1-12. Further, Comparative Examples 1 to 5 were formed under the same conditions as in Example 1.

(アルカリ金属ケイ酸塩及びシランカップリング剤層)
微細粒子層とニッケル又はニッケル−リン層とが形成された圧延銅箔を10秒間水洗後、ケイ酸カリウム(2K珪酸カリ:日本化学工業株式会社製)、ケイ酸ナトリウム、ケイ酸リチウムと、N−2(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビ
ニルトリメトキシシランとを表3記載のとおり混合し、同じく表3記載の液温及び浸漬時間で浸漬した後、10秒間水洗し、その後、自然乾燥を行って実施例1〜12にアルカリ金属ケイ酸塩及びシランカップリング剤層を形成した。比較例1〜5は実施例1と同一の条件で形成した。
(Alkali metal silicate and silane coupling agent layer)
After the rolled copper foil on which the fine particle layer and the nickel or nickel-phosphorous layer are formed is washed with water for 10 seconds, potassium silicate (2K potassium silicate: manufactured by Nippon Chemical Industry Co., Ltd.), sodium silicate, lithium silicate, N -2 (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltrimethoxysilane were mixed as shown in Table 3, and Table 3 After dipping at the described liquid temperature and dipping time, it was washed with water for 10 seconds and then naturally dried to form alkali metal silicate and silane coupling agent layers in Examples 1-12. Comparative Examples 1 to 5 were formed under the same conditions as in Example 1.

(比較例6)
微細粒子層を形成させない以外は実施例1と同一条件で作成した。
(Comparative Example 6)
It was created under the same conditions as in Example 1 except that the fine particle layer was not formed.

(比較例7)
ニッケル又はニッケル−リン層を形成させない以外は実施例1と同一条件で作成した。
(Comparative Example 7)
It was created under the same conditions as in Example 1 except that no nickel or nickel-phosphorus layer was formed.

(比較例8)
アルカリ金属ケイ酸塩及びシランカップリング剤層を形成させない以外は実施例1と同一条件で作成した。
(Comparative Example 8)
It was created under the same conditions as in Example 1 except that the alkali metal silicate and silane coupling agent layers were not formed.

Figure 0006090693
Figure 0006090693

Figure 0006090693
Figure 0006090693

Figure 0006090693
Figure 0006090693

(比較例9)
粗化処理を施した圧延銅箔を使用し、硫酸ニッケル六水和物176g/L、クエン酸一水和物20g/Lの混合液を液温40℃に調整し、陽極に白金を使用して、電流密度2.0A/dm2、電解時間4秒間の条件でニッケルめっき層を形成した。
(Comparative Example 9)
Using a rolled copper foil that has been roughened, a mixed solution of nickel sulfate hexahydrate 176 g / L and citric acid monohydrate 20 g / L is adjusted to a liquid temperature of 40 ° C., and platinum is used for the anode. Then, a nickel plating layer was formed under the conditions of a current density of 2.0 A / dm 2 and an electrolysis time of 4 seconds.

その後、200℃の大気中で熱風乾燥を行うことでニッケルめっき表面に酸化ニッケル層を形成した後、5mL/Lの3-アミノプロピルトリメトキシシラン水溶液に10秒間浸漬し、水洗することなく大気中にて200℃、1分間の乾燥を行って作成した。   Then, after forming a nickel oxide layer on the nickel plating surface by performing hot air drying in the atmosphere at 200 ° C., it is immersed in a 5 mL / L 3-aminopropyltrimethoxysilane aqueous solution for 10 seconds and washed in the air without being washed with water. And was dried at 200 ° C. for 1 minute.

(比較例10)
粗化処理を施した圧延銅箔を使用し、硫酸ニッケル六水和物300g/L、塩化ニッケル45g/L、ホウ酸50g/Lの混合液を、液温50℃に調整し、陽極に白金を使用して、電流密度2A/dm2、電解時間4秒間の条件でニッケルめっき層を形成した。
(Comparative Example 10)
Using a roughed rolled copper foil, a mixed solution of nickel sulfate hexahydrate 300 g / L, nickel chloride 45 g / L, boric acid 50 g / L was adjusted to a liquid temperature of 50 ° C., and platinum was used as the anode. Was used to form a nickel plating layer under the conditions of a current density of 2 A / dm 2 and an electrolysis time of 4 seconds.

ニッケルメッキ層を形成させた圧延銅箔を10秒間水洗後、硫酸亜鉛300g/L、硫酸ナトリウム70g/Lの混合液を、液温40℃に調整し、陽極に白金を使用して、電流密度2A/dm2、電解時間4秒間の条件で、亜鉛めっき層を形成した。 The rolled copper foil on which the nickel plating layer is formed is washed with water for 10 seconds, and then a mixed solution of zinc sulfate 300 g / L and sodium sulfate 70 g / L is adjusted to a liquid temperature of 40 ° C. A galvanized layer was formed under the conditions of 2 A / dm 2 and electrolysis time of 4 seconds.

10秒間水洗後、モリブデン酸ナトリウム二水和物25g/L、クエン酸ナトリウム二水和物30g/Lの混合液を液温25℃、pH5に調整し、陽極に白金を使用して、電流密度0.2A/dm2、陰極電解時間30秒間の条件でモリブデン酸皮膜を形成した。 After washing with water for 10 seconds, the mixture of sodium molybdate dihydrate 25 g / L and sodium citrate dihydrate 30 g / L was adjusted to a liquid temperature of 25 ° C. and pH 5 and platinum was used as the anode to obtain a current density. A molybdate film was formed under the conditions of 0.2 A / dm 2 and cathodic electrolysis time of 30 seconds.

その後10秒間水洗し、10%の3-アミノプロピルトリメトキシシラン液に室温で10秒間浸漬し、直ちに80℃で乾燥を行って作成した。   Thereafter, it was washed with water for 10 seconds, immersed in a 10% 3-aminopropyltrimethoxysilane solution at room temperature for 10 seconds, and immediately dried at 80 ° C. to prepare.

(比較例11)
粗化処理を施した圧延銅箔を使用し、硫酸ニッケル六水和物30g/L、次亜リン酸ナトリウム一水和物0.2g/L、酢酸ナトリウム三水和物10g/Lの混合液を液温30℃、pH4.5に調整し、陽極に白金を使用して、電流密度2.0A/dm2、電解時間2秒の条件でニッケル-リンめっき層を形成した。
(Comparative Example 11)
Using a rolled copper foil that has been roughened, a mixture of nickel sulfate hexahydrate 30 g / L, sodium hypophosphite monohydrate 0.2 g / L, and sodium acetate trihydrate 10 g / L The solution was adjusted to a liquid temperature of 30 ° C. and a pH of 4.5, and platinum was used for the anode to form a nickel-phosphorous plating layer under the conditions of a current density of 2.0 A / dm 2 and an electrolysis time of 2 seconds.

10秒間水洗後、重クロム酸ナトリウム10g/L、水酸化ナトリウム40g/Lの混合液を、液温30℃に調整し、陽極に白金を使用して、電流密度2.0A/dm2、電解時間5秒の条件でクロメート層を形成した後、10秒間水洗し、自然乾燥を行った。 After washing with water for 10 seconds, a mixed solution of sodium dichromate 10 g / L and sodium hydroxide 40 g / L is adjusted to a liquid temperature of 30 ° C., platinum is used for the anode, current density is 2.0 A / dm 2 , electrolysis A chromate layer was formed under conditions of 5 seconds, then washed with water for 10 seconds and air dried.

本発明の実施例及び比較例の測定方法について記載する。   The measuring method of the Example of this invention and a comparative example is described.

(十点平均粗さRzJIS)
JISB0651-2001に規定される触針式表面粗さ計を用いた。
触針は先端の半径2μmのものを使用し、粗さ曲線用カットオフ値0.8mm、測定距離4.0mmとしてJISB0601-1994に定義される十点平均粗さRzJISを測定した。
(10-point average roughness RzJIS)
A stylus type surface roughness meter defined in JISB0651-2001 was used.
A stylus having a tip radius of 2 μm was used, and a 10-point average roughness RzJIS defined in JISB0601-1994 was measured with a cut-off value for a roughness curve of 0.8 mm and a measurement distance of 4.0 mm.

(表面積の測定)
カラー3Dレーザー顕微鏡、可視光限界波長408nmのバイオレットレーザー(株式会社キーエンス製VK-9710)を使用し、表面積177μm2の領域を対物レンズ150倍、高精細、光学6倍ズーム条件で測定した。
(Surface area measurement)
Using a color 3D laser microscope and a violet laser with a visible light limit wavelength of 408 nm (VK-9710 manufactured by Keyence Corporation), an area with a surface area of 177 μm 2 was measured under the objective lens 150 times, high definition, and optical 6 times zoom conditions.

なお、前記測定方法にて測定した粗化処理後の表面粗さはRzJIS2.9μmであった。
したがって、粗化処理によって上昇した表面粗さはRzJIS1.8μmである。
The surface roughness after the roughening treatment measured by the measurement method was RzJIS2.9 μm.
Therefore, the surface roughness increased by the roughening treatment is RzJIS1.8 μm.

また、表面積は177μm2 の領域当り865μm2であった。
表4記載の「上昇した表面積」の値は微細粒子層形成後の表面積から粗化処理後の表面積である865μm2を引いた値である。
Further, the surface area was the region per 865Myuemu 2 of 177 .mu.m 2.
The value of “increased surface area” described in Table 4 is a value obtained by subtracting 865 μm 2 which is the surface area after the roughening treatment from the surface area after the formation of the fine particle layer.

(粒子径)
走査型電子顕微鏡を使用し、倍率10,000倍で微細粒子層を形成する粒子の大きさを測定した。
(Particle size)
Using a scanning electron microscope, the size of particles forming a fine particle layer was measured at a magnification of 10,000.

(常態引き剥がし強さ)
FR-4基材を3枚重ね、圧力40kgf/cm、温度170℃、時間60分間でプレス機により加熱・加圧成型を行って銅張積層板を得た。エッチングマシーンを使用し、エッチングにより1mm幅の銅の回路サンプルを作製した。JIS C 6481に準拠し、万能試験機を用いて、引き剥がし強さを測定した。
(Normal peel strength)
Three FR-4 substrates were stacked, and heated and pressure-molded by a press machine at a pressure of 40 kgf / cm 2 , a temperature of 170 ° C., and a time of 60 minutes to obtain a copper-clad laminate. An etching machine was used to produce a 1 mm wide copper circuit sample by etching. In accordance with JIS C 6481, the peel strength was measured using a universal testing machine.

(加熱処理)
1mm幅の銅の回路サンプルを、大気オーブンを使用し、温度180℃、48時間の条件で加熱処理を行い、引き剥がし強さを測定した。
(Heat treatment)
A copper circuit sample having a width of 1 mm was subjected to a heat treatment at a temperature of 180 ° C. for 48 hours using an atmospheric oven, and the peel strength was measured.

(吸湿処理)
1mm幅の銅の回路サンプルを、120分間イオン交換水の中で煮沸した。次いで水洗を行い、乾燥した後、引き剥がし強さを測定した。
(Hygroscopic treatment)
A 1 mm wide copper circuit sample was boiled in ion exchange water for 120 minutes. Subsequently, it was washed with water and dried, and then the peel strength was measured.

(塩酸水溶液処理)
1mm幅の銅の回路サンプルを、液温25±2℃の18wt%塩酸水溶液に60分間浸漬した後、水洗し、乾燥後、引き剥がし強さを測定した。
(Hydrochloric acid aqueous solution treatment)
A 1 mm wide copper circuit sample was immersed in an 18 wt% aqueous hydrochloric acid solution having a liquid temperature of 25 ± 2 ° C. for 60 minutes, washed with water, dried, and then peeled off.

(劣化率)
各処理後の劣化率(%)は次式により算出した。

Figure 0006090693
(Deterioration rate)
The deterioration rate (%) after each treatment was calculated by the following equation.
Figure 0006090693

(粉落ち試験)
本発明の表面処理銅箔上に、幅30mm、長さ100mmの試験紙(濾紙Grade2)を置き、片方に荷重(200g/φ30mm)を掛けて濾紙を水平方向に120mm引きずった後、濾紙に付着した銅粉を目視観察し、粉の付着が無い場合は○、粉が付着している場合には×の判定を行った。
(Powder falling test)
Place a test paper (filter paper Grade 2) 30 mm wide and 100 mm long on the surface-treated copper foil of the present invention, apply a load (200 g / φ30 mm) on one side, drag the filter paper 120 mm horizontally, and adhere to the filter paper The obtained copper powder was visually observed, and when there was no powder adhesion, it was judged as “good”, and when powder was adhered, it was judged as “poor”.

(防錆性)
恒温・恒湿器を使用し温度60℃、湿度85℃の条件で3日間放置した後、表面処理面を目視によって判定した。
評価は以下の基準で行った。
(Rust prevention)
After leaving for 3 days under conditions of a temperature of 60 ° C. and a humidity of 85 ° C. using a thermo-hygrostat, the surface-treated surface was visually judged.
Evaluation was performed according to the following criteria.

防錆評価基準
○ : 変色、黒点が認められない
× : 変色、黒点のいずれか一方が認められる
×× : 変色、黒点の両方が認められる。
Rust prevention evaluation criteria
○: Discoloration and black spots are not recognized
×: Discoloration or black spot is recognized
XX: Both discoloration and black spots are recognized.

実施例1〜12及び比較例1〜11の常態引き剥がし強さ、各種処理後の引き剥がし強さ及び各引き剥がし強さの劣化率、粉落ち及び防錆性の結果を表4に示す。   Table 4 shows the results of the normal peel strengths of Examples 1 to 12 and Comparative Examples 1 to 11, the peel strength after various treatments, the deterioration rate of each peel strength, the powder falling off, and the rust prevention properties.

Figure 0006090693
Figure 0006090693

前述の粗化処理によって上昇した表面粗さと比較すると、本発明の実施例1〜12の微細粒子層の形成による表面粗さの上昇は非常に低く、しかしながら、表面積は大幅に増加していることが確認できる(表4)。   Compared with the surface roughness increased by the aforementioned roughening treatment, the increase in surface roughness due to the formation of the fine particle layer of Examples 1 to 12 of the present invention is very low, however, the surface area is greatly increased. Can be confirmed (Table 4).

また、本発明の実施例1〜12は、クロメート層が形成されている比較例11よりも常態引き剥がし強さの値が高く、また、各種処理後も引き剥がし強さが維持できると共に粉落ちせず、かつ、変色・黒点が発生しない防錆性に優れたプリント配線板に要求される特性を全て備えたバランスの良い表面処理銅箔であることが確認できる(表4)。   Moreover, Examples 1-12 of this invention have the value of normal state peeling strength higher than the comparative example 11 in which the chromate layer is formed. In addition, it can be confirmed that this is a well-balanced surface-treated copper foil that has all the characteristics required for a printed wiring board excellent in rust prevention property that does not cause discoloration and black spots (Table 4).

加えて、比較例6〜8より、本発明における微細粒子層、ニッケル又はニッケルリン層、アルカリ金属ケイ酸塩及びシランカップリング層のいずれか一つでも欠くと、常態引き剥がし強さが低下し、各処理後の引き剥がし強さの劣化率が上り、また、ニッケル又はニッケルリン層、アルカリ金属ケイ酸塩及びシランカップリング層のいずれかを欠くと防錆性が維持できないので、いずれの層を欠いても本発明の特性を備えた表面処理銅箔にはならないことが確認できる(表4)。   In addition, from Comparative Examples 6 to 8, if any one of the fine particle layer, the nickel or nickel phosphorus layer, the alkali metal silicate layer, and the silane coupling layer in the present invention is lacking, the normal peel strength decreases. , The rate of deterioration of the peel strength after each treatment is increased, and if any of the nickel or nickel phosphorus layer, alkali metal silicate and silane coupling layer is lacking, rust prevention cannot be maintained. It can be confirmed that the surface-treated copper foil having the characteristics of the present invention is not obtained even if lacking (Table 4).

本発明は、クロム成分を含有する層を含まないので環境負荷が低く、クロメート皮膜を形成した表面処理銅箔に代わる常態引き剥がし強さが得られ、また、高温環境や吸湿後に
おいても、或いは、薬品に浸漬後であっても引き剥がし強さが維持できることに加えて、粉落ちせず、長期に亘って防錆性があり、プリント配線板用の銅箔に求められる特性を満たしたバランスの良い表面処理銅箔であって、特別な設備や装置を導入することなく製造できるため産業上の利用可能性が高い。
Since the present invention does not include a layer containing a chromium component, the environmental load is low, a normal peel strength can be obtained in place of the surface-treated copper foil having a chromate film formed, and even in a high temperature environment or after moisture absorption, or In addition to being able to maintain the peel strength even after being immersed in chemicals, it does not fall off, has a long-term rust-proof property, and balance that satisfies the characteristics required for copper foil for printed wiring boards The surface-treated copper foil is highly industrially applicable because it can be manufactured without introducing special equipment or equipment.

1 銅箔
2 微細粒子層
3 ニッケル又はニッケル−リン層
4 アルカリ金属ケイ酸塩及びシランカップリング剤層
粗化処理層
1 Copper foil 2 Fine particle layer 3 Nickel or nickel-phosphorus layer 4 Alkali metal silicate and silane coupling agent layer
5 roughening treatment layer

Claims (4)

銅箔の一方の面に粗化処理層と下記のA群から選択される1種の微細粒子からなる微細粒子層とニッケル又はニッケル-リンからなる層とアルカリ金属ケイ酸塩及びシランカップリング剤からなる層とがこの順に形成されており前記微細粒子の粒子径が0.3μm以下(但し0μmは含まない)であり前記微細粒子層の表面積が前記微細粒子層形成前の前記粗化処理層の表面積より177μm の領域当り60μm〜900μm上昇していることを特徴とする表面処理銅箔。
A群:銅粒子、銅-ニッケル粒子、銅-コバルト粒子、銅-ニッケル-コバルト粒子
A roughened layer on one surface of the copper foil, a fine particle layer made of one kind of fine particles selected from the following group A, a layer made of nickel or nickel-phosphorus, an alkali metal silicate and a silane coupling agent Are formed in this order, and the particle diameter of the fine particles is 0.3 μm or less (however, 0 μm is not included), and the surface area of the fine particle layer is the roughened layer before the formation of the fine particle layer. surface treated copper foil, characterized in that the are area per 60μm 2 ~900μm 2 increase of 177 .mu.m 2 than the surface area.
Group A: copper particles, copper-nickel particles, copper-cobalt particles, copper-nickel-cobalt particles
前記アルカリ金属ケイ酸塩がM2O・xSiO2・nH2O(M=Na又はK, x=2〜4)で表される水ガラスであることを特徴とする請求項1記載の表面処理銅箔。 Surface treatment according to claim 1, wherein the alkali metal silicate is characterized in that it is a water glass which is represented by M 2 O · xSiO 2 · nH 2 O (M = Na or K, x = 2~4) Copper foil. 前記シランカップリング剤が下記のB群から選択される1種以上であることを特徴とする請求項1又は2記載の表面処理銅箔。
B群:アミノ基含有シランカップリング剤、エポキシ基含有シランカップリング剤、ビニル基含有シランカップリング剤
The surface-treated copper foil according to claim 1 or 2, wherein the silane coupling agent is at least one selected from the following group B.
Group B: amino group-containing silane coupling agent, epoxy group-containing silane coupling agent, vinyl group-containing silane coupling agent
樹脂基材上に請求項1乃至3いずれかに記載の表面処理銅箔を使用したプリント配線板。
The printed wiring board which uses the surface-treated copper foil in any one of Claims 1 thru | or 3 on a resin base material.
JP2012287322A 2012-12-28 2012-12-28 Surface-treated copper foil and printed wiring board using the surface-treated copper foil Active JP6090693B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012287322A JP6090693B2 (en) 2012-12-28 2012-12-28 Surface-treated copper foil and printed wiring board using the surface-treated copper foil
CN201310079806.XA CN103909696B (en) 2012-12-28 2013-03-13 Surface treatment copper foil and the printed wiring board of the surface treatment copper foil is used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287322A JP6090693B2 (en) 2012-12-28 2012-12-28 Surface-treated copper foil and printed wiring board using the surface-treated copper foil

Publications (2)

Publication Number Publication Date
JP2014129560A JP2014129560A (en) 2014-07-10
JP6090693B2 true JP6090693B2 (en) 2017-03-08

Family

ID=51035838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287322A Active JP6090693B2 (en) 2012-12-28 2012-12-28 Surface-treated copper foil and printed wiring board using the surface-treated copper foil

Country Status (2)

Country Link
JP (1) JP6090693B2 (en)
CN (1) CN103909696B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326591B2 (en) * 2016-10-25 2018-05-23 石原ケミカル株式会社 Method for forming heat-treatable conductive film on non-conductive metal
CN107623990A (en) * 2017-07-26 2018-01-23 珠海亚泰电子科技有限公司 Thicken copper base and preparation technology
JPWO2020230870A1 (en) * 2019-05-15 2020-11-19

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357674A (en) * 1986-08-28 1988-03-12 Nippon Paint Co Ltd Treating material and method used in forming hydrophilic coating film
JP3769084B2 (en) * 1996-11-12 2006-04-19 日本電解株式会社 Copper foil for printed wiring board and method for producing the same
JP3069094B1 (en) * 1999-07-15 2000-07-24 株式会社神戸製鋼所 Surface-coated metal plate and method for producing the same
JP5322000B2 (en) * 2007-12-07 2013-10-23 ディップソール株式会社 Surface treatment aqueous solution and treatment method for forming a corrosion-resistant film on zinc or zinc alloy plating
JP4978456B2 (en) * 2007-12-19 2012-07-18 日立電線株式会社 Copper foil for printed circuit
JP5242710B2 (en) * 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
JP5563849B2 (en) * 2010-03-02 2014-07-30 福田金属箔粉工業株式会社 Treated copper foil
JP5634103B2 (en) * 2010-04-06 2014-12-03 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.

Also Published As

Publication number Publication date
CN103909696B (en) 2017-06-23
JP2014129560A (en) 2014-07-10
CN103909696A (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5634103B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP5826303B2 (en) Copper foil and copper clad laminate for printed circuit
JP4904933B2 (en) Nickel plating solution and manufacturing method thereof, nickel plating method and copper foil for printed wiring board
JP5885054B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP4626390B2 (en) Copper foil for printed wiring boards in consideration of environmental protection
JPH07278883A (en) Copper foil for printing circuit and surface treatment thereof
TW201800242A (en) Surface-treated copper foil and copper-clad laminate produced using same
JP2620151B2 (en) Copper foil for printed circuits
JP2006319287A (en) Copper foil for printed circuit board, method for manufacturing the same and trivalent chromium chemical conversion treatment liquid to be used for the same manufacture
JP4309817B2 (en) Method for producing blackened surface-treated copper foil for electromagnetic wave shielding
EP2896723B1 (en) Method for surface-treating copper foil and copper foil surface-treated thereby
JP2010180454A (en) Surface-treated copper foil, method for manufacturing the same and copper-clad laminate
JPWO2018181061A1 (en) Surface-treated copper foil and copper-clad laminate using the same
JP6090693B2 (en) Surface-treated copper foil and printed wiring board using the surface-treated copper foil
JP2017508890A (en) Copper foil, electrical parts including the same, and battery
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
JP2009081396A (en) Copper foil for printed wiring board, and processing method of surface thereof
JP2020183565A (en) Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board
JP2016065267A (en) Surface-treated copper foil, method for producing the same, and copper-clad laminate using the same
JP3709142B2 (en) Copper foil for printed wiring board and method for producing the same
JP2017505385A (en) Copper foil, electrical parts including the same, and battery
TWI415742B (en) A method for manufacturing fine grain copper foil with high peel strength and environmental protection for printed circuit board tool
JP3769084B2 (en) Copper foil for printed wiring board and method for producing the same
JP2005042139A (en) Surface treated copper foil, and its production method
JP4034586B2 (en) Copper foil for printed wiring board and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6090693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250