JP6087228B2 - Manufacturing method of foam molded article - Google Patents

Manufacturing method of foam molded article Download PDF

Info

Publication number
JP6087228B2
JP6087228B2 JP2013140628A JP2013140628A JP6087228B2 JP 6087228 B2 JP6087228 B2 JP 6087228B2 JP 2013140628 A JP2013140628 A JP 2013140628A JP 2013140628 A JP2013140628 A JP 2013140628A JP 6087228 B2 JP6087228 B2 JP 6087228B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
raw material
polyurethane foam
gas
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013140628A
Other languages
Japanese (ja)
Other versions
JP2015013931A (en
Inventor
毅 田畑
毅 田畑
佳昭 片山
佳昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tachi S Co Ltd
Original Assignee
Tachi S Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tachi S Co Ltd filed Critical Tachi S Co Ltd
Priority to JP2013140628A priority Critical patent/JP6087228B2/en
Publication of JP2015013931A publication Critical patent/JP2015013931A/en
Application granted granted Critical
Publication of JP6087228B2 publication Critical patent/JP6087228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、発泡成形品の製造方法に関し、詳しくは、ポリオールを主とするポリウレタンフォーム原料に炭酸ガスを混入して発泡する低密度発泡工法において、ポリウレタン原料の炭酸ガス溶存濃度を測定する工程に関するものである。   The present invention relates to a method for producing a foam-molded article, and more particularly, to a process for measuring the concentration of carbon dioxide dissolved in a polyurethane raw material in a low-density foaming method in which carbon foam is mixed into a polyurethane foam raw material mainly composed of polyol and foamed. Is.

従来、溶存炭酸ガス濃度表示機は、浴槽内または炭酸水製造装置で生成された炭酸水の溶存炭酸ガス濃度を測定表示するもの(特開2012−237689号公報)、溶存ガスを減圧により析出して、析出した溶存ガスの体積により、溶存ガス濃度を計測するものがある(特開2012−237690号公報)。これらは、溶存ガスを直接析出して、析出した溶存ガスにより、溶存ガス濃度を計測するものである。
ところで、車両用シートを構成するパッド材は、一例として、低密度発泡工法により製造されており、この低密度発泡工法では、ポリウレタンフォーム原料内に、発泡ガスとしての炭酸ガスを強制混入させて、炭酸ガスの膨張力を利用しながら発泡させ、ポリウレタンフォームが製造されている。
Conventionally, a dissolved carbon dioxide concentration indicator is a device that measures and displays the dissolved carbon dioxide concentration in carbonated water generated in a bath or a carbonated water production apparatus (Japanese Patent Laid-Open No. 2012-237789), and deposits dissolved gas under reduced pressure. In some cases, the dissolved gas concentration is measured based on the volume of the precipitated dissolved gas (Japanese Patent Laid-Open No. 2012-237690). In these methods, dissolved gas is directly deposited, and the dissolved gas concentration is measured by the deposited dissolved gas.
By the way, the pad material constituting the vehicle seat is manufactured by a low density foaming method as an example, and in this low density foaming method, carbon dioxide as foaming gas is forcibly mixed in the polyurethane foam raw material, Polyurethane foam is produced by foaming while utilizing the expansion force of carbon dioxide gas.

特開2012−237689号公報JP 2012-237689 A 特開2012−237690号公報JP 2012-237690 A

このように、従来の技術では、ポリウレタンフォーム原料内に、炭酸ガスを強制混入させて、炭酸ガスの膨張力を利用しながら発泡させ、発泡成形品であるポリウレタンフォームが製造されているが、炭酸ガスの溶存濃度を管理しないと、発泡倍率が変化し、製品管理、製品の大きさなどに影響し、初期目的の製品で製造できない。炭酸ガスである発泡ガスの溶存濃度管理ができれば、安定的に発泡倍率が管理でき、発泡成形品は目的通りの体積膨張にすることができ好適である。   As described above, in the conventional technology, a polyurethane foam, which is a foam-molded product, is produced by forcibly mixing carbon dioxide gas into a polyurethane foam raw material and foaming it using the expansion force of the carbon dioxide gas. If the dissolved concentration of gas is not managed, the expansion ratio changes, which affects product management, product size, etc., and cannot be manufactured with the initial product. If the dissolved concentration of the foaming gas, which is carbon dioxide gas, can be controlled, the foaming ratio can be controlled stably, and the foamed molded article can be suitably expanded in volume as desired.

本発明は、発泡ガスの溶存濃度管理ができ、安定的に発泡倍率が管理できる発泡成形品の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the foaming molded product which can manage the dissolved density | concentration of foaming gas and can manage foaming ratio stably.

かかる目的を達成すべく、本発明に係る発泡成形品の製造方法は、炭酸ガスからなる発泡ガスが混入されたポリウレタンフォーム原料から、発泡成形品を形成する発泡成形品の製造方法において、
ポリウレタンフォーム原料内に液化した状態の炭酸ガスが混入される工程と、炭酸ガスが混入されたポリウレタンフォーム原料を炭酸ガスが気化される圧力まで減圧できる減圧容器内に取り入れる工程と、前記減圧容器内の減圧による炭酸ガスの気化により泡化したポリウレタンフォーム原料の体積膨張率を測定することにより、混入された炭酸ガスの濃度を検出する工程を備えたことを特徴とする。
In order to achieve this object, a method for producing a foam molded article according to the present invention is a method for producing a foam molded article from a polyurethane foam raw material mixed with a foaming gas comprising carbon dioxide gas .
A step of carbon dioxide a liquefied state into the polyurethane foam in the raw material Ru is mixed, a step of Ru incorporated vacuum vessel a polyurethane foam raw material carbon dioxide gas is mixed can be depressurized to a pressure carbon dioxide is vaporized, the vacuum container It is characterized by comprising a step of detecting the concentration of the mixed carbon dioxide gas by measuring the volume expansion coefficient of the polyurethane foam raw material foamed by vaporizing the carbon dioxide gas by the reduced pressure inside .

かかる発泡成形品の製造方法では、発泡ガスが溶存するポリウレタンフォーム原料には、主としてポリオールが含まれており、その粘度が20℃で500乃至2000(cps)で、このポリオールを含むポリウレタンフォーム原料を減圧容器内に取り入れると、減圧された発泡ガスが気化しようとし、その時に、ポリウレタンフォーム原料自体が泡化して体積が膨張する。この泡の体積膨張率を測定することにより、ポリウレタンフォーム原料の溶存発泡ガス濃度が測定でき、発泡ガスの溶存濃度管理ができて安定的に発泡倍率が管理できるので、発泡成形品を目的通りの体積膨張にすることができる。 In such a method for producing a foamed molded product, the polyurethane foam raw material in which the foaming gas is dissolved mainly contains a polyol, and the viscosity thereof is 500 to 2000 (cps) at 20 ° C. When taken into the decompression vessel, the decompressed foaming gas tends to vaporize, and at that time, the polyurethane foam raw material itself foams and the volume expands. By measuring the volume expansion rate of the foam, the dissolved foaming gas concentration of the polyurethane foam raw material can be measured, the dissolved gas concentration can be controlled, and the foaming ratio can be controlled stably. Volume expansion can be achieved.

前記発泡ガスは炭酸ガスであることが好ましい。炭酸ガスであれば、オゾン層保護や地球温暖化防止の環境保護の点から好適である   The foaming gas is preferably carbon dioxide. Carbon dioxide gas is suitable for protecting the ozone layer and protecting the environment from global warming.

本発明によれば、発泡ガスの溶存濃度管理ができ、安定的に発泡倍率が管理できる発泡成形品の製造方法が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the foaming molded product which can manage the dissolved density | concentration of foaming gas and can manage foaming ratio stably is obtained.

本発明に係る一実施形態の工程図である。It is process drawing of one Embodiment which concerns on this invention. 図1に示す工程図における要部の工程図である。FIG. 2 is a process diagram of the main part in the process diagram shown in FIG. 1. 図1に示すセンサーの説明図である。It is explanatory drawing of the sensor shown in FIG.

本発明の一実施形態につき、図1乃至図3に基づき説明する。
本発明に係る発泡成形品の製造方法は、図1に示すように、ポリオールを主とするポリウレタンフォーム原料内に発泡ガスとして炭酸ガスを混入して発泡する低密度発泡工法の場合につき説明する。
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the method for producing a foamed molded product according to the present invention will be described in the case of a low density foaming method in which carbon foam is mixed as a foaming gas into a polyurethane foam raw material mainly composed of polyol and foamed.

ポリオールを主とするポリウレタンフォーム原料1は、原料用タンク2内に注入され、炭酸ガス用タンク3から炭酸ガスが混入されるミキシング用タンク4に炭酸ガスとともに原料用タンク2からポリウレタンフォーム原料が注入される。炭酸ガスが混入したポリウレタンフォーム原料はブレンド用タンク5内に注入され、別ルートからの添加剤などが注入されている別タンク6との素材とミキシングされて製品素材となる。 Polyurethane foam raw material 1 mainly composed of polyol is injected into raw material tank 2, and polyurethane foam raw material is injected from raw material tank 2 together with carbon dioxide into mixing tank 4 where carbon dioxide gas is mixed from carbon dioxide gas tank 3. Is done. The polyurethane foam raw material mixed with carbon dioxide gas is injected into the blending tank 5 and mixed with a material with another tank 6 into which additives from another route are injected to become a product material.

溶存炭酸ガス濃度検出器10は、図2、3に示すように、ブレンド用タンク5からのポリウレタンフォーム原料を取り入れて、ポリウレタンフォーム原料を減圧できる減圧用測定器である減圧用タンク7に設けられている。減圧用タンク7は、ブレンド用タンク5内よりもその圧力が減圧、例えば50%減圧されており、ブレンド用タンク5からのポリウレタンフォーム原料は、主として粘度が20℃で500乃至2000(cps)のポリオールを含むので、減圧により炭酸ガスが気化しようとする。この時、ポリウレタンフォーム原料に粘度があるので、泡化して体積が膨張する。溶存炭酸ガス濃度検出器10は、この泡化して体積が膨張するので、体積膨張度合いを非接触式のレベルセンサー8用いて、既定の高さまで膨張する時間を測定することにより、ポリウレタンフォーム原料内の溶存炭酸ガス濃度を測定する。そして、この炭酸ガス濃度が規定値を超えたり、規定値に達しない場合には、警報音により作業者に警告し、規定値となるべく、炭酸ガス用タンク3から炭酸ガスが混入されるミキシング用タンク4への炭酸ガス濃度を調整する。 As shown in FIGS. 2 and 3, the dissolved carbon dioxide concentration detector 10 is provided in a decompression tank 7 which is a measuring instrument for decompression that can take in the polyurethane foam material from the blending tank 5 and depressurize the polyurethane foam material. ing. The pressure reduction tank 7 has a pressure lower than that in the blending tank 5, for example, 50%, and the polyurethane foam raw material from the blending tank 5 mainly has a viscosity of 500 to 2000 (cps) at 20 ° C. Since it contains a polyol, carbon dioxide tends to vaporize under reduced pressure. At this time, since the polyurethane foam raw material has viscosity, it foams and the volume expands. Since the dissolved carbon dioxide concentration detector 10 foams and expands its volume, the volume expansion degree is measured by using a non-contact type level sensor 8 to measure the time during which the volume expands to a predetermined height. Measure the concentration of dissolved carbon dioxide. When the carbon dioxide concentration exceeds the specified value or does not reach the specified value, the operator is warned with an audible alarm, and the mixing gas in which the carbon dioxide gas is mixed from the carbon dioxide gas tank 3 to reach the specified value. The carbon dioxide gas concentration to the tank 4 is adjusted.

その結果、ポリウレタンフォーム原料内の溶存炭酸ガス濃度を随時測定することができるので、ミキシング用タンク4への炭酸ガスの混入量の調節ができ、初期目的のポリウレタンフォームが製造できる。すなわち、安定的に発泡倍率が管理できる発泡成形品が得られる。
この溶存炭酸ガス濃度検出器10は、図3に示すように、ポリウレタンフォーム原料に粘度があるので、泡化して体積が膨張するという特性を利用して、体積膨張度合いを非接触式のレベルセンサー8を用いて、既定の高さまで膨張する時間を測定することにより、ポリウレタンフォーム原料内の溶存炭酸ガス濃度を測定することができるので、溶存ガス濃度の測定が簡単である。しかも、非接触式レベルセンサー8より、溶存炭酸ガス濃度が測定できるので、溶存炭酸ガス濃度検出器10の構造が簡単化でき、安価な溶存炭酸ガス濃度検出器10により、発泡倍率が管理できる発泡成形品が得られる。
As a result, since the dissolved carbon dioxide concentration in the polyurethane foam raw material can be measured at any time, the amount of carbon dioxide mixed into the mixing tank 4 can be adjusted, and the initial purpose polyurethane foam can be produced. That is, it is possible to obtain a foamed molded product that can stably manage the foaming ratio.
As shown in FIG. 3, the dissolved carbon dioxide concentration detector 10 uses a characteristic that the polyurethane foam raw material has a viscosity, so that the volume expands due to foaming, and the degree of volume expansion is a non-contact type level sensor. Since the concentration of dissolved carbon dioxide in the polyurethane foam raw material can be measured by measuring the time of expansion to a predetermined height using 8, the measurement of the dissolved gas concentration is simple. In addition, since the dissolved carbon dioxide concentration can be measured by the non-contact type level sensor 8, the structure of the dissolved carbon dioxide concentration detector 10 can be simplified, and the foaming ratio can be controlled by the inexpensive dissolved carbon dioxide concentration detector 10. A molded product is obtained.

上記では溶存炭酸ガス濃度検出器10は溶存炭酸ガス濃度を測定する場合につき説明しているが、この溶存炭酸ガス濃度検出器10の溶存炭酸ガス濃度により、ミキシング用タンク4への炭酸ガスの混入量の調節ができるように、制御装置9に接続することができることは言うまでもない。
また、発泡ガスとして炭酸ガスを用いた場合につき説明したが、発泡ガスは炭酸ガスに限られるものではない。
In the above, the case where the dissolved carbon dioxide concentration detector 10 measures the dissolved carbon dioxide concentration has been described, but the mixing of the carbon dioxide gas into the mixing tank 4 by the dissolved carbon dioxide concentration of the dissolved carbon dioxide concentration detector 10. It goes without saying that it can be connected to the control device 9 so that the amount can be adjusted.
Moreover, although the case where carbon dioxide gas was used as foaming gas was demonstrated, foaming gas is not restricted to carbon dioxide gas.

10は溶存炭酸ガス濃度検出器である。





Reference numeral 10 denotes a dissolved carbon dioxide concentration detector.





Claims (1)

炭酸ガスからなる発泡ガスが混入されたポリウレタンフォーム原料から、発泡成形品を形成する発泡成形品の製造方法において、
ポリウレタンフォーム原料内に液化した状態の炭酸ガスが混入される工程と、炭酸ガスが混入されたポリウレタンフォーム原料を炭酸ガスが気化される圧力まで減圧できる減圧容器内に取り入れる工程と、前記減圧容器内の減圧による炭酸ガスの気化により泡化したポリウレタンフォーム原料の体積膨張率を測定することにより、混入された炭酸ガスの濃度を検出する工程を備えたことを特徴とする発泡成形品の製造方法。
From the polyurethane foam raw material mixed with the foaming gas consisting of carbon dioxide gas , in the foam molded product manufacturing method for forming the foam molded product,
A step of carbon dioxide a liquefied state into the polyurethane foam in the raw material Ru is mixed, a step of Ru incorporated vacuum vessel a polyurethane foam raw material carbon dioxide gas is mixed can be depressurized to a pressure carbon dioxide is vaporized, the vacuum container A method for producing a foam molded article comprising a step of detecting the concentration of mixed carbon dioxide gas by measuring a volume expansion coefficient of a polyurethane foam raw material foamed by vaporization of carbon dioxide gas under reduced pressure inside .
JP2013140628A 2013-07-04 2013-07-04 Manufacturing method of foam molded article Expired - Fee Related JP6087228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140628A JP6087228B2 (en) 2013-07-04 2013-07-04 Manufacturing method of foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140628A JP6087228B2 (en) 2013-07-04 2013-07-04 Manufacturing method of foam molded article

Publications (2)

Publication Number Publication Date
JP2015013931A JP2015013931A (en) 2015-01-22
JP6087228B2 true JP6087228B2 (en) 2017-03-01

Family

ID=52435906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140628A Expired - Fee Related JP6087228B2 (en) 2013-07-04 2013-07-04 Manufacturing method of foam molded article

Country Status (1)

Country Link
JP (1) JP6087228B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247164A (en) * 1992-02-28 1993-09-24 Mitsui Toatsu Chem Inc Production of low-density soft polyurethane foam
JP3383949B2 (en) * 1994-12-06 2003-03-10 京都電子工業株式会社 Measurement method of dissolved gas amount of fluid
JP4119233B2 (en) * 2002-12-10 2008-07-16 東洋ゴム工業株式会社 Method for producing fine cell resin foam
JP2006124579A (en) * 2004-10-29 2006-05-18 Inoac Corp Polyurethane foam and method for producing the same
JP2006321969A (en) * 2005-04-20 2006-11-30 Toray Ind Inc Method for molding polyurethane foam
US20120145955A1 (en) * 2009-07-27 2012-06-14 Arkema Inc. COMPOSITION OF HCFO-1233zd AND POLYOL BLENDS FOR USE IN POLYURETHANE FOAM

Also Published As

Publication number Publication date
JP2015013931A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
Inkong et al. Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications
Kim et al. Enclathration of tert-butyl alcohol in sII hydrates and its implications in gas storage and CO2 sequestration
JP2016008693A5 (en)
JP6087228B2 (en) Manufacturing method of foam molded article
Makino et al. Pressure–volume–temperature–composition relations for carbon dioxide+ pyrrolidinium-based ionic liquid binary systems
Emmett et al. Adsorption of argon, nitrogen, and butane on porous glass.
RU2016142531A (en) ELASTIC THERMAL CURING FOAMS WITH OPEN PORES AND FOAMING AGENTS AND METHODS FOR PRODUCING THEM
JP2014515409A5 (en)
Brondi et al. Thermosetting polyurethane foams by physical blowing agents: Chasing the synthesis reaction with the pressure
CN103772642B (en) Vehicle inside decoration expanded material
Ronova et al. Study of porous structure of polyimide films resulting by using various methods
JP5785818B2 (en) Processing method by cluster
JP2011244728A (en) Co2 hydrate and method of producing the same
CN103574287A (en) Pressure control method and pressure control device in hydrogen tank
Kamochi et al. Phase equilibrium conditions in cyclopentane hydrate forming systems coexisting with sodium chloride aqueous solution under atmospheric pressure and vacuum condition
Hasan A systematic study of solubility of physical blowing agents and their blends in polymers and their nanocomposites
JP2008247026A (en) Reaction injection molding method of foamed and molded product and foamed and molded product
Li et al. Visualization for measuring the PVT property of viscoelastic polystyrene/CO2 mixtures at elevated temperatures and pressures
Dontsov et al. Shock waves and formation of carbon dioxide hydrate at an increased pressure in the gas-liquid medium
JP4586131B2 (en) Whipping cream manufacturing method and manufacturing apparatus
Kang et al. Phase behavior of CO2 and CH4 hydrate in porous media
JP5392666B2 (en) Method and apparatus for controlling decomposition rate of gas hydrate deposition layer to gas
Zheng et al. Gas diffusion coefficient of fractal porous media by Monte Carlo simulations
US10702845B2 (en) Reaction method with homogeneous-phase supercritical fluid
GB2609111A (en) A two-component polyurethane or polyisocyanurate low pressure spray foam composition containing a gaseous blowing agent comprising pressurized carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170201

R150 Certificate of patent or registration of utility model

Ref document number: 6087228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees