JP6084004B2 - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
JP6084004B2
JP6084004B2 JP2012233984A JP2012233984A JP6084004B2 JP 6084004 B2 JP6084004 B2 JP 6084004B2 JP 2012233984 A JP2012233984 A JP 2012233984A JP 2012233984 A JP2012233984 A JP 2012233984A JP 6084004 B2 JP6084004 B2 JP 6084004B2
Authority
JP
Japan
Prior art keywords
flexible substrate
resin
semiconductor element
main surface
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012233984A
Other languages
Japanese (ja)
Other versions
JP2014086546A (en
Inventor
和洋 吉田
和洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2012233984A priority Critical patent/JP6084004B2/en
Priority to CN201380055442.XA priority patent/CN104769720B/en
Priority to EP18185215.3A priority patent/EP3417760A1/en
Priority to PCT/JP2013/077113 priority patent/WO2014065099A1/en
Priority to EP13849748.2A priority patent/EP2913850B1/en
Publication of JP2014086546A publication Critical patent/JP2014086546A/en
Priority to US14/691,920 priority patent/US20150228678A1/en
Application granted granted Critical
Publication of JP6084004B2 publication Critical patent/JP6084004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、半導体素子の第1の主面とは反対の第2の主面に、フレキシブル基板が実装された半導体装置、該半導体装置の製造方法に関する。   The present invention relates to a semiconductor device in which a flexible substrate is mounted on a second main surface opposite to the first main surface of a semiconductor element, and a method for manufacturing the semiconductor device.

従来、半導体素子、例えばCCDやCMOS等の固体撮像素子(以下、単に撮像素子と称す)が設けられた撮像装置を具備する電子内視鏡や、カメラ付き携帯電話、デジタルカメラ等の電子機器が周知である。   2. Description of the Related Art Conventionally, there are electronic devices such as an electronic endoscope, a camera-equipped mobile phone, and a digital camera provided with an imaging device provided with a solid-state imaging device (hereinafter simply referred to as an imaging device) such as a semiconductor device such as a CCD or a CMOS. It is well known.

撮像装置の形態の一つとして、主面の一方に当たる先端面に受光部が設けられた撮像素子と、該撮像素子の先端面に貼着された受光部を保護するカバーガラスとを具備し、撮像素子の先端面とは反対側の主面の他方に当たる後端面に設けられた接続端子に、コンデンサ、抵抗、トランジスタ等の電子部品が実装されたフレキシブル基板が電気的に接続された構成が周知である。   As one of the forms of the imaging device, comprising an imaging element provided with a light receiving portion on the tip surface corresponding to one of the main surfaces, and a cover glass that protects the light receiving portion attached to the tip surface of the imaging device, A configuration in which a flexible board on which electronic components such as a capacitor, a resistor, and a transistor are mounted is electrically connected to a connection terminal provided on the rear end surface corresponding to the other main surface opposite to the front end surface of the image sensor. It is.

尚、フレキシブル基板には信号ケーブルが電気的に接続されることにより、撮像素子の受光部において受光された被検部位の像の電気信号は、フレキシブル基板及び信号ケーブルを介して画像処理装置やモニタ等の外部装置へと伝送される。   The signal cable is electrically connected to the flexible substrate, so that the electrical signal of the image of the test site received by the light receiving portion of the image sensor is transmitted to the image processing apparatus or the monitor via the flexible substrate and the signal cable. Etc. to an external device.

このように、半導体素子の後端面の接続端子にフレキシブル基板が電気的に接続された構成は、特許文献1に開示されている。   Thus, a configuration in which the flexible substrate is electrically connected to the connection terminal on the rear end surface of the semiconductor element is disclosed in Patent Document 1.

特許文献1では、半導体素子の後端面の接続端子にフレキシブル基板が電気的に接続されるとともに、後端面よりも先端面と後端面とを結ぶ半導体素子の厚み方向の後方においてフレキシブル基板が円弧状に曲げられており、また、フレキシブル基板の屈曲に伴う接続端子への負荷を低減させるため、接続端子へのフレキシブル基板の接続部が樹脂で覆われた半導体装置の構成が開示されている。   In Patent Document 1, the flexible substrate is electrically connected to the connection terminal on the rear end surface of the semiconductor element, and the flexible substrate is formed in an arc shape behind the rear end surface in the thickness direction of the semiconductor element connecting the front end surface and the rear end surface. In order to reduce the load on the connection terminal due to the bending of the flexible substrate, a configuration of a semiconductor device in which the connection portion of the flexible substrate to the connection terminal is covered with resin is disclosed.

また、特許文献1における半導体素子の後端面の接続端子に屈曲されたフレキシブル基板が電気的に接続された構成は、先ず、非屈曲状態のフレキシブル基板を半導体素子の後端面の接続端子に電気的に接続し、その後、接続部に樹脂を充填した後、最後にフレキシブル基板を屈曲させることにより形成される。   In addition, in the configuration in which a bent flexible substrate is electrically connected to the connection terminal on the rear end surface of the semiconductor element in Patent Document 1, first, the flexible substrate in an unbent state is electrically connected to the connection terminal on the rear end surface of the semiconductor element. Then, after filling the connecting portion with resin, the flexible substrate is finally bent.

特開2012−38920号公報JP 2012-38920 A

しかしながら、特許文献1に開示された半導体装置の構成及び製造方法においては、フレキシブル基板の接続部に樹脂を充填した後、フレキシブル基板を屈曲させていることから、屈曲の際に、フレキシブル基板の接続端子への接続部及び硬化された樹脂にかかる負荷が過大になると、接続部が外れやすくなってしまうといった問題があった。   However, in the configuration and the manufacturing method of the semiconductor device disclosed in Patent Document 1, since the flexible substrate is bent after filling the connecting portion of the flexible substrate, the connection of the flexible substrate is performed at the time of bending. When the load applied to the connection part to the terminal and the cured resin is excessive, there is a problem that the connection part is easily disconnected.

また、樹脂及びフレキシブル基板が、半導体素子の外形よりも外側にはみ出して位置していることから、半導体装置が大型化してしまうといった問題もあった。   In addition, since the resin and the flexible substrate are located outside the outer shape of the semiconductor element, there is a problem that the semiconductor device is increased in size.

本発明は、上記問題点に鑑みてなされたものであり、半導体素子にフレキシブル基板を強固に固定できるとともに、小型化を図った半導体装置、該半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device capable of firmly fixing a flexible substrate to a semiconductor element, miniaturized, and a method for manufacturing the semiconductor device. .

上記目的を達成するため本発明の一態様による第1の主面、および前記第1の主面とは反対の第2の主面を有する半導体素子と、前記第2の主面に電気的に接続された、少なくとも一箇所が屈曲されることにより、前記半導体素子を前記第1の主面と前記第2の主面とを結ぶ前記半導体素子の厚み方向から平面視した際、前記半導体素子に全体が重なるよう位置するフレキシブル基板と、少なくとも前記半導体素子の前記第2の主面と前記フレキシブル基板の前記第2の主面への実装面との間の空間に充填されるとともに、前記半導体素子を前記厚み方向から平面視した際、前記半導体素子に全体が重なるよう位置する樹脂と、を具備し、前記樹脂は、前記実装面よりも前記厚み方向において前記第2の主面から離間する方向に、前記フレキシブル基板の前記実装面が形成された外周面における屈曲部に沿って前記空間から設定長さはみ出しており、前記屈曲部の前記樹脂が付着する面に、親水性処理が施されている。 In order to achieve the above object, a semiconductor element having a first main surface according to one embodiment of the present invention and a second main surface opposite to the first main surface, and the second main surface electrically When the semiconductor element is planarly viewed from the thickness direction of the semiconductor element connecting the first main surface and the second main surface by bending at least one connected portion, the semiconductor element The semiconductor substrate is filled with a flexible substrate that is positioned so as to be entirely overlapped, and at least a space between the second main surface of the semiconductor element and a mounting surface of the flexible substrate on the second main surface. When the substrate is viewed in plan from the thickness direction, the resin is positioned so as to overlap the semiconductor element as a whole, and the resin is separated from the second main surface in the thickness direction than the mounting surface. And the flexible Set from the space along the bent portion of the outer peripheral surface of the mounting surface of the table board is formed and protrudes length, the surface on which the resin of the bent portion is attached, the hydrophilic treatment is applied.

また、本発明の一態様における半導体装置の製造方法は、フレキシブル基板に、半導体素子の第1の主面とは反対側の第2の主面を実装するフレキシブル基板実装工程と、前記フレキシブル基板の前記第2の主面への実装面とは反対側の面に固定治具を取り付ける治具取り付け工程と、前記フレキシブル基板の少なくとも一箇所を屈曲させることにより、前記半導体素子を前記第1の主面と前記第2の主面とを結ぶ前記半導体素子の厚み方向から平面視した際、前記フレキシブル基板を前記半導体素子に全体が重なるよう位置させるとともに、前記固定治具により前記フレキシブル基板の屈曲形状を保持するフレキシブル基板屈曲工程と、少なくとも前記半導体素子の前記第2の主面と前記フレキシブル基板の前記実装面との間の空間に樹脂を充填することにより、前記空間において、前記半導体素子を前記厚み方向から平面視した際、前記半導体素子に全体が重なるよう前記樹脂を位置させるとともに前記樹脂を硬化させる樹脂充填工程と、を具備し、前記樹脂充填工程において、前記空間に対して前記樹脂が100%充填される第1の量以上かつ、前記実装面を前記半導体素子の外形まで広げた際の前記実装面と前記第2の主面との間の設定空間に対して前記樹脂が100%充填される第2の量以下の充填量によって前記樹脂を充填することにより、前記樹脂は、前記空間から前記実装面よりも前記厚み方向において前記第2の主面から離間する方向に、前記フレキシブル基板の前記実装面が形成された外周面における屈曲部に沿って設定長さはみ出させ、前記樹脂充填工程後、前記固定治具を前記フレキシブル基板から取り外す治具取り外し工程をさらに具備している。 According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: a flexible substrate mounting step of mounting a second main surface opposite to the first main surface of a semiconductor element on a flexible substrate; A jig attaching step of attaching a fixing jig to a surface opposite to the mounting surface on the second main surface, and bending the at least one portion of the flexible substrate, thereby making the semiconductor element the first main surface. When the planar view is taken from the thickness direction of the semiconductor element connecting the surface and the second main surface, the flexible substrate is positioned so as to entirely overlap the semiconductor element, and the flexible substrate is bent by the fixing jig. A flexible substrate bending step for holding the resin, and at least a resin in a space between the second main surface of the semiconductor element and the mounting surface of the flexible substrate By filling, in the space, when the semiconductor element is viewed in plan from the thickness direction, the resin filling step of positioning the resin so as to entirely overlap the semiconductor element and curing the resin, and In the resin filling step, the mounting surface and the second main surface when the mounting surface is expanded to the outer shape of the semiconductor element and the first amount is 100% or more filled with the resin in the space. The resin is filled in the thickness direction from the space to the mounting surface by filling the resin with a filling amount equal to or less than a second amount in which the resin is 100% filled with respect to the set space between in a direction away from said second major surface, said set along the bent portion of the outer peripheral surface of the mounting surface is formed of a flexible substrate is protruding length, after the resin filling step And further comprising a jig removal step of removing said fixture from said flexible substrate.

さらに、本発明の他態様における半導体装置の製造方法は、フレキシブル基板の半導体素子への実装面とは反対側の面に固定治具を取り付ける治具取り付け工程と、前記フレキシブル基板の少なくとも一箇所を屈曲させるとともに前記固定治具により前記フレキシブル基板の屈曲形状を保持するフレキシブル基板屈曲工程と、前記フレキシブル基板の前記実装面に樹脂を塗布する樹脂塗布工程と、前記フレキシブル基板の前記実装面に、前記半導体素子の第1の主面とは反対側の第2の主面を、前記樹脂を押し潰しながら実装することにより、少なくとも前記半導体素子の前記第2の主面と前記フレキシブル基板の前記実装面との間の空間において、前記半導体素子を前記第1の主面と前記第2の主面とを結ぶ前記半導体素子の厚み方向から平面視した際、前記半導体素子に全体が重なるよう屈曲された前記フレキシブル基板及び前記樹脂を位置させるとともに、前記樹脂を硬化させる半導体素子実装工程と、を具備し、前記樹脂塗布工程において、前記空間に対して前記樹脂が100%充填される第1の量以上かつ、前記実装面を前記半導体素子の外形まで広げた際の前記実装面と前記第2の主面との間の設定空間に対して前記樹脂が100%充填される第2の量以下の充填量となるよう前記樹脂を塗布することにより、前記樹脂は、前記空間から前記実装面よりも前記厚み方向において前記第2の主面から離間する方向に、前記フレキシブル基板の前記実装面が形成された外周面における屈曲部に沿って設定長さはみ出す。   Furthermore, the manufacturing method of the semiconductor device according to another aspect of the present invention includes a jig attaching step of attaching a fixing jig to a surface of the flexible substrate opposite to the mounting surface of the flexible substrate, and at least one portion of the flexible substrate. A flexible substrate bending step of bending and holding the bent shape of the flexible substrate by the fixing jig; a resin application step of applying a resin to the mounting surface of the flexible substrate; and the mounting surface of the flexible substrate, By mounting a second main surface opposite to the first main surface of the semiconductor element while crushing the resin, at least the second main surface of the semiconductor element and the mounting surface of the flexible substrate In the space between the semiconductor element and the semiconductor element from the thickness direction of the semiconductor element connecting the first main surface and the second main surface A semiconductor element mounting step for positioning the flexible substrate and the resin bent so as to overlap the semiconductor element as a whole when viewed from above, and curing the resin. With respect to the setting space between the mounting surface and the second main surface when the mounting surface is expanded to the outer shape of the semiconductor element and the first amount is 100% or more filled with the resin By applying the resin so as to have a filling amount equal to or less than a second amount that is 100% filled with the resin, the resin is further removed from the space in the thickness direction than the mounting surface. The set length protrudes along the bent portion of the outer peripheral surface on which the mounting surface of the flexible substrate is formed in a direction away from the mounting surface.

本発明によれば、半導体素子にフレキシブル基板を強固に固定できるとともに、小型化を図った半導体装置、該半導体装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to firmly fix a flexible substrate to a semiconductor element, the semiconductor device reduced in size and the manufacturing method of this semiconductor device can be provided.

第1実施の形態の半導体装置の構成を概略的に示す図The figure which shows schematically the structure of the semiconductor device of 1st Embodiment. 図1中のIIで囲った部位の拡大図Enlarged view of the part surrounded by II in Fig. 1 図1のフレキシブル基板を、半導体素子とともに、図1中のIII方向からみるとともに展開して示す図FIG. 1 is a diagram showing the flexible substrate of FIG. 1 as well as a semiconductor element as viewed from the direction III in FIG. 図1の空間に100%充填される樹脂の第1の量と、フレキシブル基板の実装面を半導体素子の外形まで広げた際の空間に100%充填される樹脂の第2の量とを模式的に示す半導体装置の図1 schematically shows a first amount of resin that is 100% filled in the space of FIG. 1 and a second amount of resin that is 100% filled in the space when the mounting surface of the flexible substrate is extended to the outer shape of the semiconductor element. Figure of the semiconductor device shown in 半導体素子の接続端子に、フレキシブル基板の基板電極を電気的に接続するフレキシブル基板実装工程を示す図The figure which shows the flexible substrate mounting process which electrically connects the board | substrate electrode of a flexible substrate to the connection terminal of a semiconductor element. 図5のフレキシブル基板に固定治具を取り付ける治具取り付け工程を示す図The figure which shows the jig | tool attachment process which attaches a fixing jig to the flexible substrate of FIG. 図6のフレキシブル基板を屈曲させるフレキシブル基板屈曲工程を示す図The figure which shows the flexible substrate bending process which bends the flexible substrate of FIG. 図7の半導体素子とフレキシブル基板との間の空間に樹脂を充填する樹脂充填工程を示す図The figure which shows the resin filling process of filling resin in the space between the semiconductor element of FIG. 7, and a flexible substrate. フレキシブル基板に固定治具を取り付ける治具取り付け工程を示す図The figure which shows the jig attachment process which attaches a fixed jig to a flexible substrate 図9のフレキシブル基板を屈曲させるフレキシブル基板屈曲工程を示す図The figure which shows the flexible substrate bending process of bending the flexible substrate of FIG. 図10のフレキシブル基板の実装面に樹脂を塗布する樹脂塗布工程を示す図The figure which shows the resin application | coating process which apply | coats resin to the mounting surface of the flexible substrate of FIG. フレキシブル基板の基板電極に、半導体素子の接続端子を電気的に接続する半導体素子実装工程を示す図The figure which shows the semiconductor element mounting process which electrically connects the connection terminal of a semiconductor element to the board | substrate electrode of a flexible substrate 図1のフレキシブル基板が1箇所のみ屈曲された変形例を示す半導体装置の図The figure of the semiconductor device which shows the modification in which the flexible substrate of FIG. 1 was bent only in one place 十字状のフレキシブル基板と半導体素子の分解斜視図Exploded perspective view of cross-shaped flexible substrate and semiconductor element 図14の十字状のフレキシブル基板の中心に半導体素子を実装した状態を示す斜視図The perspective view which shows the state which mounted the semiconductor element in the center of the cross-shaped flexible substrate of FIG. 図15のフレキシブル基板の4つの部位を屈曲させ、図15中のXVI方向からみた状態を示す斜視図The perspective view which shows the state seen from the XVI direction in FIG. 15 by bending four parts of the flexible substrate of FIG. 第2実施の形態の半導体装置の構成を概略的に示す図The figure which shows schematically the structure of the semiconductor device of 2nd Embodiment. 図1のフレキシブル基板の内部の空間に、補強樹脂を充填する補強樹脂充填工程を示す図The figure which shows the reinforcement resin filling process which fills the space inside the flexible substrate of FIG. 1 with reinforcement resin. 第3実施の形態の半導体装置の構成を概略的に示す図The figure which shows schematically the structure of the semiconductor device of 3rd Embodiment. 図1の半導体装置を撮像装置として用いた例を示す図1 is a diagram illustrating an example in which the semiconductor device in FIG.

以下、図面を参照して本発明の実施の形態を説明する。尚、図面は模式的なものであり、各部材の厚みと幅との関係、それぞれの部材の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below with reference to the drawings. The drawings are schematic, and it should be noted that the relationship between the thickness and width of each member, the ratio of the thickness of each member, and the like are different from the actual ones. Of course, the part from which the relationship and ratio of a mutual dimension differ is contained.

(第1実施の形態)
図1は、本実施の形態の半導体装置の構成を概略的に示す図、図2は、図1中のIIで囲った部位の拡大図、図3は、図1のフレキシブル基板を、半導体素子とともに、図1中のIII方向からみるとともに展開して示す図である。
(First embodiment)
1 is a diagram schematically showing a configuration of a semiconductor device according to the present embodiment, FIG. 2 is an enlarged view of a portion surrounded by II in FIG. 1, and FIG. 3 is a diagram showing a flexible substrate of FIG. FIG. 3 is a diagram illustrating the state as seen from the direction III in FIG. 1 and developed.

図1に示すように、半導体装置10は、半導体素子1を具備している。半導体素子1の第1の主面である先端面1iとは反対の第2の主面である後端面1tに設けられた接続端子2に、半導体素子1を先端面1iと後端面1tとを結ぶ厚み方向Aから平面視した際、少なくとも1箇所が屈曲されることにより半導体素子1に全体が重なるよう位置するフレキシブル基板5の後述する実装面5jに設けられた基板電極3が電気的に接続されている。   As shown in FIG. 1, the semiconductor device 10 includes a semiconductor element 1. The semiconductor element 1 is connected to the front end surface 1 i and the rear end surface 1 t on the connection terminal 2 provided on the rear end surface 1 t which is the second main surface opposite to the front end surface 1 i which is the first main surface of the semiconductor element 1. When viewed in plan from the connecting thickness direction A, the substrate electrode 3 provided on the mounting surface 5j (described later) of the flexible substrate 5 positioned so as to be entirely overlapped with the semiconductor element 1 by bending at least one portion is electrically connected. Has been.

具体的には、フレキシブル基板5は、図3に示すように、半導体素子1の外形と基板電極3との間の位置において、例えば1点鎖線Cに沿って2箇所、図1に示すように90°以下となるよう部分円弧状に屈曲されることにより、半導体素子1を厚み方向Aから平面視した際、半導体素子1に全体が重なるよう、半導体素子1の厚み方向Aにおいて後端面1tから離間する方向(以下、後方と称す)に位置している。   Specifically, as shown in FIG. 3, the flexible substrate 5 has two positions along the one-dot chain line C, for example, at a position between the outer shape of the semiconductor element 1 and the substrate electrode 3, as shown in FIG. By bending in a partial arc shape so as to be 90 ° or less, when the semiconductor element 1 is viewed in plan from the thickness direction A, the entire semiconductor element 1 overlaps the semiconductor element 1 from the rear end face 1t in the thickness direction A. It is located in a separating direction (hereinafter referred to as the rear).

即ち、フレキシブル基板5には、屈曲部5cが2箇所形成されている。尚、以下、フレキシブル基板5の外周面5gにおいて、2つの屈曲部5c間に位置する半導体素子1の後端面1tに対向する面を実装面5jと称す。   In other words, the flexible substrate 5 has two bent portions 5c. Hereinafter, a surface facing the rear end surface 1t of the semiconductor element 1 located between the two bent portions 5c in the outer peripheral surface 5g of the flexible substrate 5 is referred to as a mounting surface 5j.

また、図3に示すように、フレキシブル基板5の外周面5gには、上述した基板電極3の他、図示しない信号ケーブルが電気的に接続される接続電極5rや、接続電極5rと基板電極3とを電気的に接続する配線パターン5hが露出されて形成されている。   Further, as shown in FIG. 3, on the outer peripheral surface 5 g of the flexible substrate 5, in addition to the substrate electrode 3 described above, a connection electrode 5 r to which a signal cable (not shown) is electrically connected, and the connection electrode 5 r and the substrate electrode 3 are connected. A wiring pattern 5h that electrically connects the two is exposed.

尚、各屈曲部5cの角度が90°以下に設定されているのは、90°よりも大きな角度で屈曲されていると、フレキシブル基板5の外周面5gに電子部品を実装した際や、接続電極5rに信号ケーブルを電気的に接続した際、電子部品や信号ケーブルが半導体素子1の外形よりも外側にはみ出てしまい、半導体装置10が大型化してしまうためである。よって、各屈曲部5cの屈曲角度は、鋭角に設定されていることが好ましい。   Note that the angle of each bent portion 5c is set to 90 ° or less when the electronic component is mounted on the outer peripheral surface 5g of the flexible substrate 5 when the bent portion 5c is bent at an angle larger than 90 °. This is because when the signal cable is electrically connected to the electrode 5r, the electronic component or the signal cable protrudes outside the outer shape of the semiconductor element 1, and the semiconductor device 10 is increased in size. Therefore, it is preferable that the bending angle of each bending part 5c is set to an acute angle.

半導体素子1の後端面1tよりも後方において、少なくとも後端面1tとフレキシブル基板5の実装面5jとの間の空間Kに充填されるよう、例えばアンダーフィル等の樹脂8が、半導体素子1を厚み方向Aから平面視した際、半導体素子1に全体が重なるよう位置している。   A resin 8 such as underfill is used to fill the semiconductor element 1 with a thickness so that at least a space K between the rear end face 1t and the mounting surface 5j of the flexible substrate 5 is filled behind the rear end face 1t of the semiconductor element 1. When viewed in plan from the direction A, the semiconductor element 1 is positioned so as to entirely overlap.

また、樹脂8は、図1、図2に示すように、厚み方向Aに直交する水平方向Bにおいて、半導体素子1の外形よりも外側にはみ出すことがない程度に、空間Kから実装面5jよりも設定長さP1だけ外側にはみ出している。   Further, as shown in FIGS. 1 and 2, the resin 8 from the mounting surface 5j from the space K to the extent that it does not protrude outside the outer shape of the semiconductor element 1 in the horizontal direction B orthogonal to the thickness direction A. Also protrudes outward by the set length P1.

さらに、樹脂8は、図1、図2に示すように、空間Kから実装面5jよりも厚み方向Aにおいて後方にフレキシブル基板5の外周面5gにおける各屈曲部5cに沿って設定長さP2だけはみ出している。即ち樹脂8は、各屈曲部5cの外周面5cgまで空間Kからはみ出している。尚、各屈曲部5cの外周面5cgまではみ出した樹脂8も、半導体素子1の外形よりも水平方向Bにおいて外側にはみ出すことなく位置している。   Further, as shown in FIG. 1 and FIG. 2, the resin 8 has a set length P2 from the space K to the rear in the thickness direction A from the mounting surface 5j along the bent portions 5c on the outer peripheral surface 5g of the flexible substrate 5. It is sticking out. That is, the resin 8 protrudes from the space K to the outer peripheral surface 5cg of each bent portion 5c. The resin 8 that protrudes to the outer peripheral surface 5 cg of each bent portion 5 c is also positioned so as not to protrude outward in the horizontal direction B from the outer shape of the semiconductor element 1.

また、各屈曲部5cの外周面5cgに対するはみ出した樹脂8の付着性が向上するよう、各屈曲部5cの樹脂8が付着する外周面5cgに、プラズマクリーニング等によって親水性処理が施されていても構わないし、各屈曲部5cの外周面5cgの表面粗さが粗く形成されていても構わない。   Further, in order to improve the adhesion of the protruding resin 8 to the outer peripheral surface 5cg of each bent portion 5c, the outer peripheral surface 5cg to which the resin 8 of each bent portion 5c adheres is subjected to a hydrophilic treatment by plasma cleaning or the like. Or the surface roughness of the outer peripheral surface 5cg of each bending part 5c may be formed coarsely.

なお、樹脂8には、カーボン粒子や顔料等を含有させても良く、また、フィラー等を含有させても良い。カーボン粒子や顔料を含有していると、遮光性を向上させることができ、熱伝導率の高いフィラーを含有していると、放熱性を向上させることができる。   The resin 8 may contain carbon particles, pigments, or the like, or may contain fillers or the like. When carbon particles and pigments are contained, light shielding properties can be improved, and when a filler having high thermal conductivity is contained, heat dissipation properties can be improved.

次に、上述した半導体装置10の製造方法について、図4〜図8を用いて説明する。図4は、図1の空間に100%充填される樹脂の第1の量と、フレキシブル基板の実装面を半導体素子の外形まで広げた際の設定空間に100%充填される樹脂の第2の量とを模式的に示す半導体装置の図である。   Next, a method for manufacturing the semiconductor device 10 described above will be described with reference to FIGS. FIG. 4 shows a first amount of resin that is 100% filled in the space of FIG. 1 and a second amount of resin that is 100% filled in the setting space when the mounting surface of the flexible substrate is extended to the outer shape of the semiconductor element. It is a figure of the semiconductor device which shows quantity normally.

また、図5は、半導体素子の接続端子に、フレキシブル基板の基板電極を電気的に接続するフレキシブル基板実装工程を示す図、図6は、図5のフレキシブル基板に固定治具を取り付ける治具取り付け工程を示す図、図7は、図6のフレキシブル基板を屈曲させるフレキシブル基板屈曲工程を示す図、図8は、図7の半導体素子とフレキシブル基板との間の空間に樹脂を充填する樹脂充填工程を示す図である。   5 is a diagram showing a flexible substrate mounting process for electrically connecting the substrate electrode of the flexible substrate to the connection terminal of the semiconductor element, and FIG. 6 is a jig attachment for attaching a fixing jig to the flexible substrate of FIG. FIG. 7 is a diagram showing a flexible substrate bending step for bending the flexible substrate of FIG. 6, and FIG. 8 is a resin filling step for filling the space between the semiconductor element and the flexible substrate of FIG. FIG.

先ず、図5に示すように、半導体素子1の後端面1tに設けられた接続端子2に、非屈曲状態のフレキシブル基板5の基板電極3を電気的に接続するフレキシブル基板実装工程を行う。この接続端子2への基板電極3の電気的接続には、フレキシブル基板5側から熱Nを加えて行う。   First, as shown in FIG. 5, a flexible substrate mounting step is performed in which the substrate electrode 3 of the flexible substrate 5 in an unbent state is electrically connected to the connection terminals 2 provided on the rear end surface 1 t of the semiconductor element 1. The electrical connection of the substrate electrode 3 to the connection terminal 2 is performed by applying heat N from the flexible substrate 5 side.

尚、フレキシブル基板5側から熱Nを加えるのは、半導体素子1の先端面1iに、後述するカバーガラス60(図20参照)が貼着されている場合、半導体素子1側から接続部へ熱Nを加え難くなるためである。   Note that the heat N is applied from the flexible substrate 5 side when the cover glass 60 (see FIG. 20), which will be described later, is attached to the front end surface 1i of the semiconductor element 1, from the semiconductor element 1 side to the connection portion. This is because it becomes difficult to add N.

次に、図6に示すように、フレキシブル基板5の実装面5jとは反対側の内周面5nに対して、半導体素子1を厚み方向Aから平面視した際、半導体素子1に重なる位置に、固定治具20を取り付ける治具取り付け工程を行う。   Next, as shown in FIG. 6, when the semiconductor element 1 is viewed from the thickness direction A with respect to the inner peripheral surface 5 n opposite to the mounting surface 5 j of the flexible substrate 5, the semiconductor element 1 is positioned so as to overlap the semiconductor element 1. Then, a jig attaching step for attaching the fixing jig 20 is performed.

次いで、図7に示すように、フレキシブル基板5を2箇所、具体的には、上述した図3に示すように線Cに沿って90°以下に屈曲させることにより、半導体素子1を厚み方向Aから平面視した際、フレキシブル基板5が半導体素子1に全体が重なるようフレキシブル基板5を位置させるとともに、固定治具20によりフレキシブル基板5の屈曲形状を機械的に保持するフレキシブル基板屈曲工程を行う。尚、屈曲後、フレキシブル基板5の内周面5nは、固定治具20の外周面に接触する。   Next, as shown in FIG. 7, the flexible substrate 5 is bent at two locations, specifically, 90 ° or less along the line C as shown in FIG. When viewed from above, the flexible substrate 5 is positioned so that the flexible substrate 5 entirely overlaps the semiconductor element 1, and a flexible substrate bending step of mechanically holding the bent shape of the flexible substrate 5 by the fixing jig 20 is performed. After bending, the inner peripheral surface 5 n of the flexible substrate 5 comes into contact with the outer peripheral surface of the fixing jig 20.

その後、図8に示すように、少なくとも半導体素子1の後端面1tとフレキシブル基板5の実装面5jとの間の空間Kに樹脂8を充填することにより、半導体素子1を厚み方向Aから平面視した際、後端面1tよりも後方において樹脂8が半導体素子1と全体が重なるよう樹脂8を位置させるとともに、オーブン等によって樹脂8を硬化させる樹脂充填工程を行う。   Thereafter, as shown in FIG. 8, at least the space K between the rear end surface 1t of the semiconductor element 1 and the mounting surface 5j of the flexible substrate 5 is filled with the resin 8, so that the semiconductor element 1 is viewed from the thickness direction A in plan view. In this case, a resin filling step is performed in which the resin 8 is positioned behind the rear end face 1t so that the resin 8 is entirely overlapped with the semiconductor element 1, and the resin 8 is cured by an oven or the like.

具体的には、樹脂充填工程においては、図4に示すように、空間Kに対して樹脂8が100%充填される第1の量α以上かつ、実装面5jを図4の2点鎖線に示すように半導体素子1の外形まで広げた際の実装面5jと後端面1tとの間の設定空間K´に対して樹脂8が100%充填される第2の量α´以下の充填量となる樹脂8を、図8に示すように、実装面5jよりも下方から、具体的には、屈曲部5c近傍から少なくとも空間Kに、例えばディスペンサ25を用いて充填する。   Specifically, in the resin filling step, as shown in FIG. 4, the space 8 is filled with 100% of the resin 8 at a first amount α or more, and the mounting surface 5j is a two-dot chain line in FIG. As shown, a filling amount equal to or less than a second amount α ′ that is 100% filled with the resin 8 in the set space K ′ between the mounting surface 5j and the rear end surface 1t when expanded to the outer shape of the semiconductor element 1; As shown in FIG. 8, the resin 8 to be formed is filled from below the mounting surface 5j, specifically, into at least the space K from the vicinity of the bent portion 5c using, for example, a dispenser 25.

尚、勿論、空間Mに第1の量αを充填した後、各屈曲部5cの外周面5cgに対して樹脂8を別途塗布することにより、樹脂8の各屈曲部5cに沿った設定長さP2のはみ出しを形成しても構わない。   Of course, after the space M is filled with the first amount α, the resin 8 is separately applied to the outer peripheral surface 5cg of each bent portion 5c, whereby the set length of the resin 8 along each bent portion 5c is set. The protrusion of P2 may be formed.

その結果、樹脂8は、図1、図2に示すように、空間Kから実装面5jよりも厚み方向Aにおいて後方に、フレキシブル基板5の各屈曲部5cに沿って設定長さP2はみ出す。   As a result, as shown in FIGS. 1 and 2, the resin 8 protrudes from the space K rearward in the thickness direction A from the mounting surface 5 j along the bent portions 5 c of the flexible substrate 5.

最後に、図8の樹脂充填工程後、固定治具20をフレキシブル基板5から取り外す治具取り外し工程を行うことにより、図1の半導体装置10が製造される。   Finally, after the resin filling step shown in FIG. 8, a jig removing step for removing the fixing jig 20 from the flexible substrate 5 is performed, whereby the semiconductor device 10 shown in FIG. 1 is manufactured.

このように、本実施の形態においては、フレキシブル基板5は、半導体素子1の後端面1tの接続端子2に対して、基板電極3が電気的に接続されることにより半導体素子1の後方に位置しており、2箇所が屈曲されることにより、半導体素子1を厚み方向Aから平面視した際、半導体素子1に全体が重なるよう位置していると示した。   As described above, in the present embodiment, the flexible substrate 5 is positioned behind the semiconductor element 1 by electrically connecting the substrate electrode 3 to the connection terminal 2 on the rear end face 1t of the semiconductor element 1. It was shown that when the semiconductor element 1 was viewed in plan from the thickness direction A, the entire semiconductor element 1 was positioned by being bent at two locations.

また、少なくともフレキシブル基板5の実装面5jと半導体素子1の後端面1tとの間の空間Kに充填される樹脂8は、各屈曲部5cの外周面5cgまで空間Kからはみ出して位置しているともに、樹脂8も半導体素子1を厚み方向Aから平面視した際、半導体素子1に全体が重なるよう充填されていると示した。   Further, at least the resin 8 filled in the space K between the mounting surface 5j of the flexible substrate 5 and the rear end surface 1t of the semiconductor element 1 is located so as to protrude from the space K to the outer peripheral surface 5cg of each bent portion 5c. In both cases, the resin 8 is shown to be filled so as to entirely overlap the semiconductor element 1 when the semiconductor element 1 is viewed in plan from the thickness direction A.

このことによれば、フレキシブル基板5及び樹脂8が半導体素子1の外形から水平方向Bにおいて外側にはみ出すことがないことから半導体装置10を小型化することができる。   According to this, since the flexible substrate 5 and the resin 8 do not protrude outward from the outer shape of the semiconductor element 1 in the horizontal direction B, the semiconductor device 10 can be reduced in size.

また、空間Kから各屈曲部5cの外周面5cgまではみ出した樹脂8が、フレキシブル基板5を強固に固定するとともに、フレキシブル基板5が非屈曲状態に戻ろうとする動作(スプリングバックと呼ばれることもある)を防止することができることにより、フレキシブル基板5の曲げ形状を維持することができることから、接続端子2に対する基板電極3の接続信頼性が向上する。   Further, the resin 8 that protrudes from the space K to the outer peripheral surface 5cg of each bent portion 5c firmly fixes the flexible substrate 5, and the flexible substrate 5 tries to return to an unbent state (sometimes called a springback). ) Can be maintained, the bent shape of the flexible substrate 5 can be maintained, so that the connection reliability of the substrate electrode 3 with respect to the connection terminal 2 is improved.

さらに、本実施の形態においては、半導体装置10の製造方法において、フレキシブル基板5を屈曲させてから、空間Kに樹脂8を充填することから、従来のように、樹脂8硬化後のフレキシブル基板5の屈曲に伴い、樹脂8に負荷がかかってしまうことがない他、容易に、フレキシブル基板5を、半導体素子1を厚み方向Aから平面視した際、半導体素子1に全体が重なるよう位置させることができる。   Furthermore, in the present embodiment, in the manufacturing method of the semiconductor device 10, the flexible substrate 5 is bent and then the space 8 is filled with the resin 8. In addition to the load being applied to the resin 8, the flexible substrate 5 is easily positioned so as to overlap the semiconductor element 1 when the semiconductor element 1 is viewed in plan from the thickness direction A. Can do.

また、フレキシブル基板5の基板電極3に対する半導体素子1の接続端子2の接続は、既知のSMT(Surface Mount Technology)等の一般的な実装方法によって容易に行うことができる。   Further, the connection of the connection terminal 2 of the semiconductor element 1 to the substrate electrode 3 of the flexible substrate 5 can be easily performed by a general mounting method such as known SMT (Surface Mount Technology).

以上から、半導体素子1にフレキシブル基板5を強固に固定できるとともに、屈曲させたフレキシブル基板5を半導体素子1の外形内に位置させることにより小型化を図った半導体装置10、該半導体装置10の製造方法を提供することができる。   From the above, the flexible substrate 5 can be firmly fixed to the semiconductor element 1 and the flexible flexible substrate 5 is positioned within the outer shape of the semiconductor element 1, so that the semiconductor device 10 can be miniaturized and the semiconductor device 10 can be manufactured. A method can be provided.

尚、以下、本実施の形態の半導体装置10の製造方法の変形例を、図9〜図12を用いて示す。   Hereinafter, modified examples of the method for manufacturing the semiconductor device 10 of the present embodiment will be described with reference to FIGS.

図9は、フレキシブル基板に固定治具を取り付ける治具取り付け工程を示す図、図10は、図9のフレキシブル基板を屈曲させるフレキシブル基板屈曲工程を示す図、図11は、図10のフレキシブル基板の実装面に樹脂を塗布する樹脂塗布工程を示す図、図12は、フレキシブル基板の基板電極に、半導体素子の接続端子を電気的に接続する半導体素子実装工程を示す図である。   9 is a diagram illustrating a jig attaching process for attaching a fixing jig to the flexible substrate, FIG. 10 is a diagram illustrating a flexible substrate bending process for bending the flexible substrate in FIG. 9, and FIG. 11 is a diagram of the flexible substrate in FIG. The figure which shows the resin application | coating process which apply | coats resin to a mounting surface, FIG. 12 is a figure which shows the semiconductor element mounting process which electrically connects the connection terminal of a semiconductor element to the board | substrate electrode of a flexible substrate.

先ず、図9に示すように、フレキシブル基板5の実装面5jとは反対側の内周面5nに、固定治具20を取り付ける治具取り付け工程を行う。   First, as shown in FIG. 9, a jig attaching step for attaching the fixing jig 20 to the inner peripheral surface 5n opposite to the mounting surface 5j of the flexible substrate 5 is performed.

次いで、図10に示すように、フレキシブル基板5を2箇所、具体的には、上述した図3に示すように線Cに沿って90°以下に屈曲させることにより、固定治具20によりフレキシブル基板5の屈曲形状を機械的に保持するフレキシブル基板屈曲工程を行う。尚、屈曲後、フレキシブル基板5の内周面5nは、固定治具20の外周面に接触する。   Next, as shown in FIG. 10, the flexible substrate 5 is bent at two places, specifically, 90 ° or less along the line C as shown in FIG. A flexible substrate bending step is performed to mechanically hold the bent shape of No. 5. After bending, the inner peripheral surface 5 n of the flexible substrate 5 comes into contact with the outer peripheral surface of the fixing jig 20.

次いで、図11に示すように、フレキシブル基板5の実装面5jに樹脂8を塗布する樹脂塗布工程を行う。   Next, as shown in FIG. 11, a resin application step of applying resin 8 to the mounting surface 5 j of the flexible substrate 5 is performed.

その後、図12に示すように、半導体素子1の接続端子2を、フレキシブル基板5の実装面5jに設けられた基板電極3に、樹脂8を半導体素子1にて荷重を加えて押し潰しながら電気的に接続することにより、少なくとも空間Kにおいて、半導体素子1を厚み方向Aから平面視した際、後端面1tよりも後方において樹脂8及びフレキシブル基板5が半導体素子1と全体が重なるよう位置させるとともに、フレキシブル基板5への実装を終えるまでに、または実装した後で、加熱手段によって樹脂8を硬化させる半導体素子実装工程を行う。   Thereafter, as shown in FIG. 12, the connection terminal 2 of the semiconductor element 1 is electrically applied to the substrate electrode 3 provided on the mounting surface 5j of the flexible substrate 5 while the resin 8 is crushed by applying a load on the semiconductor element 1. When the semiconductor element 1 is viewed in a plan view from the thickness direction A at least in the space K, the resin 8 and the flexible substrate 5 are positioned so as to overlap the semiconductor element 1 as a whole behind the rear end face 1t. Then, a semiconductor element mounting step is performed in which the resin 8 is cured by heating means before or after the mounting on the flexible substrate 5 is completed.

ここで、樹脂充填工程においては、図4に示すように、空間Kに対して樹脂8が100%充填される第1の量α以上かつ、実装面5jを図4の2点鎖線に示すように半導体素子1の外形まで広げた際の実装面5jと後端面1tとの間の設定空間K´に対して樹脂8が100%充填される第2の量α´’以下の充填量となる樹脂8を、図11に示すように、実装面5jに塗布している。   Here, in the resin filling step, as shown in FIG. 4, the space 8 is filled with the resin 8 by 100% or more, and the mounting surface 5j is shown by a two-dot chain line in FIG. The filling amount is equal to or less than the second amount α ′ ′ that is 100% filled with the resin 8 in the setting space K ′ between the mounting surface 5j and the rear end surface 1t when the outer shape of the semiconductor element 1 is expanded. As shown in FIG. 11, the resin 8 is applied to the mounting surface 5j.

その結果、半導体素子実装工程後、樹脂8は、図1、図2に示すように、空間Kから実装面5jよりも厚み方向Aにおいて後方に、フレキシブル基板5の各屈曲部5cに沿って設定長さP2はみ出す。   As a result, after the semiconductor element mounting process, as shown in FIGS. 1 and 2, the resin 8 is set along the bent portions 5 c of the flexible substrate 5 behind the mounting surface 5 j in the thickness direction A from the space K. The length P2 protrudes.

尚、勿論、実装面5jに第1の量αを塗布した後、上述したように、接続端子2に基板電極3を電気的に接続し、その後、各屈曲部5cの外周面5cgに対して樹脂8を別途塗布することにより、樹脂8の各屈曲部5cに沿った設定長さP2のはみ出しを形成しても構わない。   Of course, after the first amount α is applied to the mounting surface 5j, the substrate electrode 3 is electrically connected to the connection terminal 2 as described above, and then the outer peripheral surface 5cg of each bent portion 5c is connected. By applying the resin 8 separately, the protrusion of the set length P2 along each bent portion 5c of the resin 8 may be formed.

最後に、図12の半導体素子実装工程後、固定治具20をフレキシブル基板5から取り外す治具取り外し工程を行うことにより、図1の半導体装置10が製造される。   Finally, after the semiconductor element mounting step of FIG. 12, a jig removing step for removing the fixing jig 20 from the flexible substrate 5 is performed, whereby the semiconductor device 10 of FIG. 1 is manufactured.

このような製造方法によっても、フレキシブル基板5を屈曲させた後に、フレキシブル基板の基板電極3を、半導体素子1の接続端子2に電気的に接続しているため、フレキシブル基板に加わる曲げ応力を軽減できる他、フレキシブル基板5の屈曲に伴って樹脂8に負荷がかかってしまうことがない等、本実施の形態と同様の効果を得ることができる。   Even with such a manufacturing method, since the substrate electrode 3 of the flexible substrate is electrically connected to the connection terminal 2 of the semiconductor element 1 after the flexible substrate 5 is bent, the bending stress applied to the flexible substrate is reduced. In addition, it is possible to obtain the same effects as those of the present embodiment, such that the load is not applied to the resin 8 as the flexible substrate 5 is bent.

尚、以下、別の変形例を、図13を用いて示す。図13は、図1のフレキシブル基板が1箇所のみ屈曲された変形例を示す半導体装置の図である。   Hereinafter, another modification will be described with reference to FIG. FIG. 13 is a diagram of a semiconductor device showing a modification in which the flexible substrate of FIG. 1 is bent at only one position.

上述した本実施の形態においては、フレキシブル基板5は、2箇所が屈曲されている、即ち、屈曲部5cが2箇所形成されていると示した。   In the present embodiment described above, it has been shown that the flexible substrate 5 is bent at two points, that is, two bent portions 5c are formed.

これに限らず、図13に示すように、1箇所のみに屈曲部5cが形成されることにより、半導体素子1の後方において、半導体素子1を厚み方向Aから平面視した際、フレキシブル基板5が半導体素子1に全体が重なるよう位置していても構わない。   Not limited to this, as shown in FIG. 13, when the bent portion 5 c is formed only at one place, the flexible substrate 5 is formed when the semiconductor element 1 is viewed in plan from the thickness direction A behind the semiconductor element 1. It may be positioned so as to entirely overlap the semiconductor element 1.

尚、図13に示す構成においても、樹脂8は半導体素子1の外形から水平方向Bにおいて外側にはみ出すことがない他、1箇所の屈曲部5cの外周面5cgまで空間Kから設定長さP2だけはみ出して位置している。   In the configuration shown in FIG. 13 as well, the resin 8 does not protrude outward in the horizontal direction B from the outer shape of the semiconductor element 1, and only the set length P2 from the space K to the outer peripheral surface 5cg of one bent portion 5c. It is located overhanging.

また、以下、別の変形例を、図14〜図16を用いて示す。図14は、十字状のフレキシブル基板と半導体素子の分解斜視図、図15は、図14の十字状のフレキシブル基板の中心に半導体素子を実装した状態を示す斜視図、図16は、図15のフレキシブル基板の4つの部位を屈曲させ、図15中のXVI方向からみた状態を示す斜視図である。   Hereinafter, another modification will be described with reference to FIGS. 14 is an exploded perspective view of the cross-shaped flexible substrate and the semiconductor element, FIG. 15 is a perspective view showing a state in which the semiconductor element is mounted at the center of the cross-shaped flexible substrate of FIG. 14, and FIG. FIG. 16 is a perspective view illustrating a state in which four portions of the flexible substrate are bent and viewed from the XVI direction in FIG. 15.

また、図16に示すように、フレキシブル基板5は、4箇所に屈曲部5cが形成されていても構わない。   Also, as shown in FIG. 16, the flexible substrate 5 may have bent portions 5c formed at four locations.

具体的には、図14に示すように、4つの部位5v、5w、5x、5yを有する十字状のフレキシブル基板5の外周面5gに露出する基板電極3に対し、図15に示すように半導体素子1の接続端子2を、十字状のフレキシブル基板5の4つの部位5v、5w、5x、5yが交差する中央部にて電気的に接続した後、図16に示すように各部位5v、5w、5x、5yをそれぞれ90°以下に屈曲させることにより、4箇所に屈曲部5cが形成されていても構わない。   Specifically, as shown in FIG. 14, the substrate electrode 3 exposed on the outer peripheral surface 5g of the cross-shaped flexible substrate 5 having four portions 5v, 5w, 5x, and 5y is shown in FIG. After the connection terminal 2 of the element 1 is electrically connected at the center where the four portions 5v, 5w, 5x, and 5y of the cross-shaped flexible substrate 5 intersect, as shown in FIG. 16, each portion 5v, 5w Bending portions 5c may be formed at four locations by bending 5x and 5y to 90 ° or less, respectively.

尚、図16に示す構成においても、フレキシブル基板5は、半導体素子1の後方において、半導体素子1を厚み方向Aから平面視した際、半導体素子1に全体が重なるよう位置しているとともに、樹脂8は半導体素子1の外形から水平方向Bにおいて外側にはみ出すことがない他、4箇所の屈曲部5cの外周面5cgまで空間Kから設定長さP2だけはみ出して位置している。   In the configuration shown in FIG. 16 as well, the flexible substrate 5 is positioned behind the semiconductor element 1 so as to overlap the semiconductor element 1 when the semiconductor element 1 is viewed from the thickness direction A in plan view. 8 does not protrude outward from the outer shape of the semiconductor element 1 in the horizontal direction B, and is positioned so as to protrude from the space K to the outer peripheral surface 5cg of the four bent portions 5c by the set length P2.

(第2実施の形態)
図17は、本実施の形態の半導体装置の構成を概略的に示す図である。
(Second Embodiment)
FIG. 17 schematically shows a configuration of the semiconductor device of the present embodiment.

この第2実施の形態の半導体装置の構成は、上述した図1、図2に示した第1実施の形態の半導体装置、図5〜図8に示した半導体装置の製造方法と比して、フレキシブル基板の内周面に補強樹脂が固定されている点及びフレキシブル基板の内周面に補強樹脂を充填する工程を有している点が異なる。   The configuration of the semiconductor device of the second embodiment is different from that of the semiconductor device of the first embodiment shown in FIGS. 1 and 2 and the method of manufacturing the semiconductor device shown in FIGS. The difference is that the reinforcing resin is fixed to the inner peripheral surface of the flexible substrate and the step of filling the inner peripheral surface of the flexible substrate with the reinforcing resin.

よって、これらの相違点のみを説明し、第1実施の形態と同様の構成には同じ符号を付し、その説明は省略する。   Therefore, only these differences will be described, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted.

図17に示すように、本実施の形態の半導体装置10においては、フレキシブル基板5の内周面5nに、フレキシブル基板5の屈曲形状を固定する補強樹脂30が固定されている。即ち、フレキシブル基板5の内部の空間Mに補強樹脂30が設けられている。尚、補強樹脂30は、樹脂8と同じ材質であっても良く、異なる材質を用いても良い。   As shown in FIG. 17, in the semiconductor device 10 of the present embodiment, the reinforcing resin 30 that fixes the bent shape of the flexible substrate 5 is fixed to the inner peripheral surface 5 n of the flexible substrate 5. That is, the reinforcing resin 30 is provided in the space M inside the flexible substrate 5. The reinforcing resin 30 may be the same material as the resin 8 or a different material.

また、その他の構成は、上述した第1実施の形態の半導体装置10と同じである。   Other configurations are the same as those of the semiconductor device 10 according to the first embodiment described above.

また、本実施の形態の半導体装置の製造方法を、図18を用いて示す。図18は、図1のフレキシブル基板の内部の空間に、補強樹脂を充填する補強樹脂充填工程を示す図である。   In addition, a method for manufacturing the semiconductor device of this embodiment will be described with reference to FIGS. FIG. 18 is a diagram showing a reinforcing resin filling process in which the space inside the flexible substrate of FIG. 1 is filled with the reinforcing resin.

本実施の形態においては、上述した治具取り外し工程後に形成された図1に示す半導体装置10を(厚み方向Aにおいて逆向きに)倒置した後、図18に示すように、フレキシブル基板5の開口から、内部の空間Mに、フレキシブル基板5の屈曲形状を固定する補強樹脂30を、ディスペンサ35等によって充填する補強樹脂充填工程を行う。   In the present embodiment, after the semiconductor device 10 shown in FIG. 1 formed after the jig removing step described above is inverted (in the opposite direction in the thickness direction A), as shown in FIG. Then, a reinforcing resin filling step is performed in which the reinforcing resin 30 that fixes the bent shape of the flexible substrate 5 is filled in the internal space M by the dispenser 35 or the like.

その結果、フレキシブル基板5の内周面5nには、図17に示すように補強樹脂30が固定される。   As a result, the reinforcing resin 30 is fixed to the inner peripheral surface 5n of the flexible substrate 5 as shown in FIG.

このような構成、製造方法によれば、上述した第1実施の形態の効果に加え、フレキシブル基板5の屈曲形状が補強樹脂30によってさらに補強されることから、半導体装置10の強度をより向上させることができる。   According to such a configuration and manufacturing method, in addition to the effects of the first embodiment described above, the bent shape of the flexible substrate 5 is further reinforced by the reinforcing resin 30, thereby further improving the strength of the semiconductor device 10. be able to.

(第3実施の形態)
図19は、本実施の形態の半導体装置の構成を概略的に示す図である。
(Third embodiment)
FIG. 19 is a diagram schematically showing a configuration of the semiconductor device of the present embodiment.

この第3実施の形態の半導体装置の構成は、上述した図1、図2に示した第1実施の形態の半導体装置、図5〜図8に示した半導体装置の製造方法と比して、フレキシブル基板の内周面に放熱部材が固定されている点及びフレキシブル基板の内周面に放熱部材を固定する工程を有している点が異なる。   The configuration of the semiconductor device of the third embodiment is different from that of the semiconductor device of the first embodiment shown in FIGS. 1 and 2 and the method of manufacturing the semiconductor device shown in FIGS. The difference is that the heat dissipation member is fixed to the inner peripheral surface of the flexible substrate and the step of fixing the heat dissipation member to the inner peripheral surface of the flexible substrate.

よって、これらの相違点のみを説明し、第1実施の形態と同様の構成には同じ符号を付し、その説明は省略する。   Therefore, only these differences will be described, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted.

図19に示すように、本実施の形態の半導体装置10においては、フレキシブル基板5の内周面5nに、フレキシブル基板5の屈曲形状を固定するとともに、半導体素子1からフレキシブル基板5を介して伝熱された熱を放熱する放熱部材40が固定されている。即ち、フレキシブル基板5の内部の空間Mに放熱部材40が設けられている。尚、放熱部材40としては、SUS、アルミ、セラミックス等の無機材料や、樹脂材料等が挙げられる。   As shown in FIG. 19, in the semiconductor device 10 of the present embodiment, the bent shape of the flexible substrate 5 is fixed to the inner peripheral surface 5 n of the flexible substrate 5 and is transmitted from the semiconductor element 1 through the flexible substrate 5. A heat radiating member 40 that radiates the heated heat is fixed. That is, the heat dissipation member 40 is provided in the space M inside the flexible substrate 5. Examples of the heat radiating member 40 include inorganic materials such as SUS, aluminum, and ceramics, and resin materials.

また、その他の構成は、上述した第1実施の形態の半導体装置10と同じである。   Other configurations are the same as those of the semiconductor device 10 according to the first embodiment described above.

尚、本実施の形態の製造方法としては、上述した第1実施の形態の図6または図9に示す治具取り付け工程における固定治具20の代わりに、固定治具20と同形状を有する放熱部材40を用いれば良い。   As a manufacturing method of the present embodiment, heat dissipation having the same shape as the fixing jig 20 is used instead of the fixing jig 20 in the jig attaching step shown in FIG. 6 or 9 of the first embodiment. The member 40 may be used.

尚、本実施の形態においては、空間Mに放熱部材40を残すことから、上述した第1実施の形態に示した治具取り外し工程は不要となる。   In the present embodiment, since the heat radiating member 40 is left in the space M, the jig removing step shown in the first embodiment described above becomes unnecessary.

また、その他の製造方法は、上述した第1実施の形態と同じである。   Other manufacturing methods are the same as those in the first embodiment described above.

このように本実施の形態の構成及び製造方法によれば、上述した第1及び第2実施の形態に示す治具取り外し工程が不要となるため、製造工程数を削減することができる他、第2実施の形態と同様に、フレキシブル基板5の屈曲形状がさらに補強され、さらに、放熱部材40により、半導体装置10の放熱性を向上させることができる。   As described above, according to the configuration and the manufacturing method of the present embodiment, since the jig removing step shown in the first and second embodiments described above is not necessary, the number of manufacturing steps can be reduced. Similar to the second embodiment, the bent shape of the flexible substrate 5 is further reinforced, and the heat dissipation of the semiconductor device 10 can be improved by the heat dissipation member 40.

尚、その他の効果は、上述した第1実施の形態と同じである。   Other effects are the same as those of the first embodiment described above.

また、上述した第1〜第3実施の形態の半導体装置は、例えば撮像装置として用いられる。図20は、図1の半導体装置を撮像装置として用いた例を示す図である。   Moreover, the semiconductor device of the first to third embodiments described above is used as, for example, an imaging device. FIG. 20 is a diagram illustrating an example in which the semiconductor device of FIG. 1 is used as an imaging device.

図20に示すように上述した第1〜第3実施の形態の半導体装置10は、例えば撮像装置として用いられる。即ち、半導体素子1は、撮像素子として用いられる。   As shown in FIG. 20, the semiconductor device 10 according to the first to third embodiments described above is used as an imaging device, for example. That is, the semiconductor element 1 is used as an imaging element.

この場合、撮像素子1の先端面1iには、受光部1eを覆うようカバーガラス60が貼着されている。   In this case, a cover glass 60 is attached to the front end surface 1 i of the image sensor 1 so as to cover the light receiving portion 1 e.

このように、撮像装置に適用すれば、フレキシブル基板5及び樹脂8が半導体装置10の外形内に位置していることから、撮像装置も小型化できるため、小型化、細径化が要求される内視鏡の挿入部の先端に搭載される撮像装置に好適となる。   Thus, when applied to an imaging device, since the flexible substrate 5 and the resin 8 are located within the outer shape of the semiconductor device 10, the imaging device can also be reduced in size, so that downsizing and diameter reduction are required. This is suitable for an imaging device mounted at the distal end of the insertion portion of the endoscope.

また、撮像装置は、例えば医療用または工業用の内視鏡に設けられる他、医療用のカプセル内視鏡に設けられていても構わないし、内視鏡に限らず、カメラ付き携帯電話や、デジタルカメラに適用しても良いことは言うまでもない。さらに、半導体装置10は、撮像装置とは異なる他の装置にも適用可能である。   Further, the imaging device may be provided in a medical capsule endoscope, for example, in addition to a medical or industrial endoscope, and is not limited to an endoscope. Needless to say, it may be applied to a digital camera. Furthermore, the semiconductor device 10 can be applied to other devices different from the imaging device.

1…半導体素子
1i…半導体素子の先端面(第1の主面)
1t…半導体素子の後端面(第2の主面)
5…フレキシブル基板
5c…フレキシブル基板の屈曲部
5cg…屈曲部の外周面(樹脂が付着する面)
5g…フレキシブル基板の外周面
5j…フレキシブル基板の実装面
5n…フレキシブル基板の内周面(実装面とは反対側の面)
8…樹脂
10…半導体装置
20…固定治具
30…補強樹脂
40…放熱部材
A…厚み方向
K…空間
K´…設定空間
α…第1の量
α´…第2の量
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element 1i ... The front end surface (1st main surface) of a semiconductor element
1t: Rear end surface of semiconductor element (second main surface)
5 ... Flexible substrate 5c ... Bending portion 5cg of flexible substrate ... Outer peripheral surface of bending portion (surface to which resin adheres)
5 g: outer peripheral surface of flexible substrate 5 j: mounting surface of flexible substrate 5 n: inner peripheral surface of flexible substrate (surface opposite to mounting surface)
DESCRIPTION OF SYMBOLS 8 ... Resin 10 ... Semiconductor device 20 ... Fixing jig 30 ... Reinforcement resin 40 ... Heat radiation member A ... Thickness direction K ... Space K '... Setting space alpha ... First quantity alpha' ... Second quantity

Claims (8)

第1の主面、および前記第1の主面とは反対の第2の主面を有する半導体素子と、
前記第2の主面に電気的に接続された、少なくとも一箇所が屈曲されることにより、前記半導体素子を前記第1の主面と前記第2の主面とを結ぶ前記半導体素子の厚み方向から平面視した際、前記半導体素子に全体が重なるよう位置するフレキシブル基板と、
少なくとも前記半導体素子の前記第2の主面と前記フレキシブル基板の前記第2の主面への実装面との間の空間に充填されるとともに、前記半導体素子を前記厚み方向から平面視した際、前記半導体素子に全体が重なるよう位置する樹脂と、
を具備し、
前記樹脂は、前記実装面よりも前記厚み方向において前記第2の主面から離間する方向に、前記フレキシブル基板の前記実装面が形成された外周面における屈曲部に沿って前記空間から設定長さはみ出しており、
前記屈曲部の前記樹脂が付着する面に、親水性処理が施されていることを特徴とする半導体装置。
A semiconductor element having a first main surface and a second main surface opposite to the first main surface;
A thickness direction of the semiconductor element that connects the first main surface and the second main surface by bending at least one portion electrically connected to the second main surface. When viewed from above, a flexible substrate positioned so as to overlap the semiconductor element as a whole,
When filling the space between at least the second main surface of the semiconductor element and the mounting surface of the flexible substrate on the second main surface, and when the semiconductor element is viewed in plan from the thickness direction, A resin positioned so as to entirely overlap the semiconductor element;
Comprising
The resin has a set length from the space along the bent portion of the outer peripheral surface where the mounting surface of the flexible substrate is formed in a direction away from the second main surface in the thickness direction than the mounting surface. It is sticking out
A surface of the bent portion to which the resin adheres is subjected to a hydrophilic treatment .
前記フレキシブル基板における前記外周面とは反対の内周面に、前記フレキシブル基板の屈曲形状を固定する補強樹脂が固定されていることを特徴とする請求項に記載の半導体装置。 Wherein the inner peripheral surface opposite to the outer peripheral surface of the flexible substrate, a semiconductor device according to claim 1, reinforcing resin for fixing the bent shape of the flexible substrate is characterized in that it is fixed. 前記フレキシブル基板における前記外周面とは反対の内周面に、前記フレキシブル基板の屈曲形状を固定するとともに前記半導体素子から前記フレキシブル基板を介して伝熱された熱を放熱する放熱部材が固定されていることを特徴とする請求項に記載の半導体装置。 A heat radiating member that fixes the bent shape of the flexible substrate to the inner peripheral surface of the flexible substrate opposite to the outer peripheral surface and radiates heat transferred from the semiconductor element through the flexible substrate is fixed. The semiconductor device according to claim 1 , wherein: フレキシブル基板に、半導体素子の第1の主面とは反対側の第2の主面を実装するフレキシブル基板実装工程と、
前記フレキシブル基板の前記第2の主面への実装面とは反対側の面に固定治具を取り付ける治具取り付け工程と、
前記フレキシブル基板の少なくとも一箇所を屈曲させることにより、前記半導体素子を前記第1の主面と前記第2の主面とを結ぶ前記半導体素子の厚み方向から平面視した際、前記フレキシブル基板を前記半導体素子に全体が重なるよう位置させるとともに、前記固定治具により前記フレキシブル基板の屈曲形状を保持するフレキシブル基板屈曲工程と、
少なくとも前記半導体素子の前記第2の主面と前記フレキシブル基板の前記実装面との間の空間に樹脂を充填することにより、前記空間において、前記半導体素子を前記厚み方向から平面視した際、前記半導体素子に全体が重なるよう前記樹脂を位置させるとともに前記樹脂を硬化させる樹脂充填工程と、
を具備し、
前記樹脂充填工程において、前記空間に対して前記樹脂が100%充填される第1の量以上かつ、前記実装面を前記半導体素子の外形まで広げた際の前記実装面と前記第2の主面との間の設定空間に対して前記樹脂が100%充填される第2の量以下の充填量によって前記樹脂を充填することにより、前記樹脂は、前記空間から前記実装面よりも前記厚み方向において前記第2の主面から離間する方向に、前記フレキシブル基板の前記実装面が形成された外周面における屈曲部に沿って設定長さはみ出させ、
前記樹脂充填工程後、前記固定治具を前記フレキシブル基板から取り外す治具取り外し工程をさらに具備していることを特徴とする半導体装置の製造方法。
A flexible substrate mounting step of mounting a second main surface opposite to the first main surface of the semiconductor element on the flexible substrate;
A jig attaching step of attaching a fixing jig to a surface opposite to the mounting surface of the flexible substrate on the second main surface;
By bending at least one portion of the flexible substrate, the semiconductor substrate is planarly viewed from the thickness direction of the semiconductor element connecting the first main surface and the second main surface. A flexible substrate bending step of positioning the semiconductor device so as to overlap the whole and holding the bent shape of the flexible substrate by the fixing jig;
When filling the space between at least the second main surface of the semiconductor element and the mounting surface of the flexible substrate with a resin, when the semiconductor element is viewed in plan from the thickness direction in the space, the A resin filling step of positioning the resin so as to entirely overlap the semiconductor element and curing the resin;
Comprising
In the resin filling step, the mounting surface and the second main surface when the mounting surface is expanded to the outer shape of the semiconductor element and the first amount is 100% or more filled with the resin in the space. The resin is filled in the thickness direction from the space to the mounting surface by filling the resin with a filling amount equal to or less than a second amount in which the resin is 100% filled with respect to the set space between in a direction away from said second major surface, along the bent portion is protruded set length of the outer peripheral surface of the mounting surface is formed of the flexible substrate,
A method for manufacturing a semiconductor device, further comprising a jig removing step of removing the fixing jig from the flexible substrate after the resin filling step .
フレキシブル基板の半導体素子への実装面とは反対側の面に固定治具を取り付ける治具取り付け工程と、
前記フレキシブル基板の少なくとも一箇所を屈曲させるとともに前記固定治具により前記フレキシブル基板の屈曲形状を保持するフレキシブル基板屈曲工程と、
前記フレキシブル基板の前記実装面に樹脂を塗布する樹脂塗布工程と、
前記フレキシブル基板の前記実装面に、前記半導体素子の第1の主面とは反対側の第2の主面を、前記樹脂を押し潰しながら実装することにより、少なくとも前記半導体素子の前記第2の主面と前記フレキシブル基板の前記実装面との間の空間において、前記半導体素子を前記第1の主面と前記第2の主面とを結ぶ前記半導体素子の厚み方向から平面視した際、前記半導体素子に全体が重なるよう屈曲された前記フレキシブル基板及び前記樹脂を位置させるとともに、前記樹脂を硬化させる半導体素子実装工程と、
を具備し、
前記樹脂塗布工程において、前記空間に対して前記樹脂が100%充填される第1の量以上かつ、前記実装面を前記半導体素子の外形まで広げた際の前記実装面と前記第2の主面との間の設定空間に対して前記樹脂が100%充填される第2の量以下の充填量となるよう前記樹脂を塗布することにより、前記樹脂は、前記空間から前記実装面よりも前記厚み方向において前記第2の主面から離間する方向に、前記フレキシブル基板の前記実装面が形成された外周面における屈曲部に沿って設定長さはみ出すことを特徴とする半導体装置の製造方法。
A jig attaching step for attaching a fixing jig to the surface opposite to the mounting surface of the flexible substrate to the semiconductor element;
A flexible substrate bending step of bending at least one portion of the flexible substrate and holding the bent shape of the flexible substrate by the fixing jig;
A resin application step of applying a resin to the mounting surface of the flexible substrate;
By mounting the second main surface opposite to the first main surface of the semiconductor element on the mounting surface of the flexible substrate while crushing the resin, at least the second of the semiconductor element is mounted. In the space between the main surface and the mounting surface of the flexible substrate, when the semiconductor element is viewed in plan from the thickness direction of the semiconductor element connecting the first main surface and the second main surface, A semiconductor element mounting step for positioning the flexible substrate and the resin bent so as to entirely overlap with a semiconductor element, and curing the resin;
Comprising
In the resin coating step, the mounting surface and the second main surface when the mounting surface is expanded to the outer shape of the semiconductor element and the first amount is 100% or more filled with the resin in the space. By applying the resin so that the filling amount is equal to or less than a second amount in which the resin is 100% filled with respect to the set space between the resin and the mounting surface, the resin is more thicker than the mounting surface. A method of manufacturing a semiconductor device, wherein a set length protrudes along a bent portion of an outer peripheral surface of the flexible substrate on which the mounting surface is formed in a direction away from the second main surface in a direction.
前記樹脂塗布工程後、前記固定治具を前記フレキシブル基板から取り外す治具取り外し工程をさらに具備していることを特徴とする請求項に記載の半導体装置の製造方法。 The semiconductor device manufacturing method according to claim 5 , further comprising a jig removing step of removing the fixing jig from the flexible substrate after the resin coating step. 前記治具取り外し工程後、前記フレキシブル基板における前記外周面とは反対の内周面に、前記フレキシブル基板の屈曲形状を固定する補強樹脂を充填する補強樹脂充填工程をさらに具備することを特徴とする請求項4または6に記載の半導体装置の製造方法。 The method further comprises a reinforcing resin filling step of filling a reinforcing resin for fixing a bent shape of the flexible substrate on an inner peripheral surface of the flexible substrate opposite to the outer peripheral surface after the jig removing step. A method for manufacturing a semiconductor device according to claim 4 or 6 . 前記固定治具は、前記フレキシブル基板の屈曲形状を固定するとともに前記半導体素子から前記フレキシブル基板を介して伝熱された熱を放熱する放熱部材であることを特徴とする請求項4または5に記載の半導体装置の製造方法。 The fixture, according to claim 4 or 5, wherein the a heat radiating member for radiating heat transfer thermal through said flexible substrate from said semiconductor element is fixed a bent shape of the flexible substrate Semiconductor device manufacturing method.
JP2012233984A 2012-10-23 2012-10-23 Semiconductor device and method for manufacturing the same Active JP6084004B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012233984A JP6084004B2 (en) 2012-10-23 2012-10-23 Semiconductor device and method for manufacturing the same
CN201380055442.XA CN104769720B (en) 2012-10-23 2013-10-04 Camera device, endoscope, the manufacture method of semiconductor device and semiconductor device
EP18185215.3A EP3417760A1 (en) 2012-10-23 2013-10-04 Semiconductor apparatus, and manufacturing method of semiconductor apparatus
PCT/JP2013/077113 WO2014065099A1 (en) 2012-10-23 2013-10-04 Imaging device, endoscope, semiconductor device, and method of manufacturing semiconductor device
EP13849748.2A EP2913850B1 (en) 2012-10-23 2013-10-04 Image pickup apparatus and endoscope
US14/691,920 US20150228678A1 (en) 2012-10-23 2015-04-21 Image pickup apparatus, endoscope, semiconductor apparatus, and manufacturing method of semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233984A JP6084004B2 (en) 2012-10-23 2012-10-23 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014086546A JP2014086546A (en) 2014-05-12
JP6084004B2 true JP6084004B2 (en) 2017-02-22

Family

ID=50789334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233984A Active JP6084004B2 (en) 2012-10-23 2012-10-23 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6084004B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018092318A1 (en) 2016-11-21 2019-01-24 オリンパス株式会社 Endoscopic imaging module and endoscope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701550B2 (en) * 2010-09-17 2015-04-15 オリンパス株式会社 Imaging apparatus and manufacturing method of imaging apparatus
JP5675151B2 (en) * 2010-04-07 2015-02-25 オリンパス株式会社 Imaging device, electronic endoscope, and manufacturing method of imaging device

Also Published As

Publication number Publication date
JP2014086546A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2014065099A1 (en) Imaging device, endoscope, semiconductor device, and method of manufacturing semiconductor device
JP5675151B2 (en) Imaging device, electronic endoscope, and manufacturing method of imaging device
KR101791783B1 (en) Display device and manufacturing method of display device
JP5386567B2 (en) Imaging device chip mounting method, endoscope assembling method, imaging module, and endoscope
US10288985B2 (en) Imaging device, optical device, electronic device, vehicle, and production method for imaging device
US9509890B2 (en) Solid image pickup apparatus
JP2009082503A (en) Imaging device and endoscope equipped with the same
JP5173926B2 (en) IMAGING DEVICE AND IMAGING DEVICE MANUFACTURING METHOD
EP2720454B1 (en) Image capture device and electronic apparatus employing same
US10485412B2 (en) Image pickup apparatus and endoscope
JP2010050771A (en) Imaging device module
JP2017532592A (en) Imager module for vehicle camera and method of manufacturing the same
CN109863601A (en) Photographing element installation matrix, photographic device and photographing module
US20150116975A1 (en) Electronic component, electronic device, method of manufacturing mounted member, and method of manufacturing electronic component
JP6084004B2 (en) Semiconductor device and method for manufacturing the same
JP6357784B2 (en) Imaging unit and imaging apparatus
US9583416B2 (en) Mounting structure of semiconductor device and method of manufacturing the same
JP2018089066A (en) Imaging module
US10062480B2 (en) Cable connection structure, cable assembly, method for manufacturing cable assembly, and method for manufacturing cable connection structure
JP2009200987A (en) Image sensing module
JP4411893B2 (en) Solid circuit board and imaging device
WO2017072862A1 (en) Image pickup unit and endoscope
JP6655710B2 (en) Imaging device, endoscope, and method of manufacturing imaging device
JP2010205773A (en) Solid-state imaging device and method for manufacturing the same
JP5776197B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R151 Written notification of patent or utility model registration

Ref document number: 6084004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250