JP6083789B2 - Thermosetting resin composition - Google Patents

Thermosetting resin composition Download PDF

Info

Publication number
JP6083789B2
JP6083789B2 JP2012227493A JP2012227493A JP6083789B2 JP 6083789 B2 JP6083789 B2 JP 6083789B2 JP 2012227493 A JP2012227493 A JP 2012227493A JP 2012227493 A JP2012227493 A JP 2012227493A JP 6083789 B2 JP6083789 B2 JP 6083789B2
Authority
JP
Japan
Prior art keywords
peroxide
thermosetting resin
resin composition
acid
furan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012227493A
Other languages
Japanese (ja)
Other versions
JP2014080464A (en
Inventor
小山 直之
直之 小山
昭人 後藤
昭人 後藤
昌敏 久保内
昌敏 久保内
才子 青木
才子 青木
宏羽 田中
宏羽 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Tokyo Institute of Technology NUC
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Tokyo Institute of Technology NUC, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012227493A priority Critical patent/JP6083789B2/en
Publication of JP2014080464A publication Critical patent/JP2014080464A/en
Application granted granted Critical
Publication of JP6083789B2 publication Critical patent/JP6083789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、地球環境保全を考慮した熱硬化性樹脂材料に関し、さらに詳しくは、フラン樹脂を含有する熱硬化性樹脂組成物に関するものである。   The present invention relates to a thermosetting resin material considering global environment conservation, and more particularly to a thermosetting resin composition containing a furan resin.

近年、化石資源を焼却することで発生する二酸化炭素量の増加に伴い、地球温暖化の問題が関心を集めるようになった。そこで地球温暖化防止の観点からバイオマス(生物資源)の有効活用が見直されている。近年、包装資材、家電製品の部材、自動車用部材などのプラスチックを植物由来樹脂(バイオプラスチック)に置き換える動きが活発化している。   In recent years, with the increase in the amount of carbon dioxide generated by incineration of fossil resources, the issue of global warming has attracted attention. Therefore, effective use of biomass (biological resources) has been reviewed from the viewpoint of preventing global warming. In recent years, there has been an active movement to replace plastics such as packaging materials, household appliances, and automobiles with plant-derived resins (bioplastics).

前記植物由来樹脂の具体例としては、ジャガイモやサトウキビやトウモロコシ等の糖質を醗酵させて得られた乳酸をモノマーとし、これを用いて化学重合を行い作製したポリ乳酸:PLA(PolyLactic Acid)や、澱粉を主成分としたエステル化澱粉、微生物が体内に生産するポリエステルである微生物産生樹脂:PHA(PolyHydroxy Alkanoate)、発酵法で得られる1,3−プロパンジオールと石油由来のテレフタル酸とを原料とするPTT(Poly Trimethylene Telephtalate)等が挙げられる。
また、PBS(Poly Butylene Succinate)は、現在は石油由来の原料が用いられているが、今後においては、植物由来樹脂として作製する研究が開発されており、主原料の一つであるコハク酸を植物由来で作製する技術についての開発がなされている。
Specific examples of the plant-derived resin include polylactic acid: PLA (Polylactic Acid) produced by chemical polymerization using lactic acid obtained by fermenting sugars such as potato, sugarcane, and corn as a monomer. , Starch-based esterified starch, microorganism-produced resin that is a polyester produced by microorganisms in the body: PHA (PolyHydroxy Alkanoate), 1,3-propanediol obtained by fermentation, and petroleum-derived terephthalic acid And PTT (Poly Trimethylene Telephthalate).
In addition, PBS (Poly Butylene Succinate) is currently used as a raw material derived from petroleum, but in the future, research to produce it as a plant-derived resin has been developed, and succinic acid, one of the main raw materials, has been developed. Developments have been made on technologies that are derived from plants.

これらの植物由来原料を用いた樹脂は、サニタリー分野、雑貨などに加え、OA関連用部品または自動車用内装部品等の幅広い分野に導入されている。一方、電器・電子機器、自動車内部部品のような用途においては、安全上の問題から機械的強度、耐熱性、電気絶縁性が要求される。耐熱性に関してはこれまでにも、植物由来原料を用いた樹脂、特にポリ乳酸樹脂において種々の試みがなされてきた。しかし、植物由来樹脂はいずれも熱可塑性であり(非特許文献1参照)、耐熱性において課題がある。   Resins using these plant-derived raw materials have been introduced into a wide range of fields such as OA-related parts and automobile interior parts in addition to the sanitary field and miscellaneous goods. On the other hand, mechanical strength, heat resistance, and electrical insulation are required for safety and other applications in applications such as electrical appliances / electronic devices and automobile internal parts. With respect to heat resistance, various attempts have been made so far for resins using plant-derived materials, particularly polylactic acid resins. However, all plant-derived resins are thermoplastic (see Non-Patent Document 1), and there is a problem in heat resistance.

一方、古くから植物由来の熱硬化性樹脂として知られている樹脂としてフラン樹脂を挙げることができる。フラン樹脂の前駆体であるフルフラールは、ヘミセルロースを豊富に有する植物原料(コーンコブ、バガス、籾殻等)を酸とともに加熱処理することで得ることができる。このフルフラールをフルフリルアルコールに変換し、縮合したものがフラン樹脂である。フラン樹脂は耐熱性、耐食性、電気絶縁性を兼ね備えているため、耐食性のライニング材として利用されている。また、上記用途のほか、鋳型用の粘結材としても広く利用されている(非特許文献2参照)。   On the other hand, furan resin can be cited as a resin that has been known as a plant-derived thermosetting resin for a long time. Furfural, a precursor of furan resin, can be obtained by heat-treating plant raw materials (corn cob, bagasse, rice husk, etc.) rich in hemicellulose together with acid. This furfural is converted to furfuryl alcohol and condensed to furan resin. Since furan resin has heat resistance, corrosion resistance, and electrical insulation, it is used as a corrosion-resistant lining material. In addition to the above uses, it is also widely used as a binder for molds (see Non-Patent Document 2).

一般的にはフラン樹脂は150℃以上の高温であれば単独でも硬化し、硬化剤としてスルホン酸等の酸を添加することで常温付近でも硬化可能である。フラン樹脂の硬化反応には酸素が必要であるため、一般的には表面から硬化反応が進行することから(非特許文献3参照)、ライニング等の加工で厚い被膜を得るには、薄い被膜を形成・硬化反応後に再度被膜の形成と硬化を行う必要があった。
そのため、一度に厚膜を形成しようとする場合は内部の樹脂成分は硬化不足となる。また、金型内で板状の成形体を成形すると内部だけでなく表面の酸素の供給も制限され、樹脂が硬化不足となり高強度の成形物を得ることは困難であるという問題があった。
Generally, a furan resin can be cured by itself at a high temperature of 150 ° C. or higher, and can be cured at about room temperature by adding an acid such as sulfonic acid as a curing agent. Since oxygen is required for the curing reaction of the furan resin, since the curing reaction generally proceeds from the surface (see Non-Patent Document 3), a thin film is required to obtain a thick film by processing such as lining. It was necessary to form and cure the film again after the formation / curing reaction.
Therefore, when it is going to form a thick film at once, the resin component inside becomes insufficiently cured. Further, when a plate-shaped molded body is molded in the mold, the supply of oxygen not only inside but also on the surface is limited, and the resin is insufficiently cured, making it difficult to obtain a high-strength molded product.

土肥義治(編) 生分解性高分子材料、工業調査会 1990年発行Yoshiharu Toi (ed.) Biodegradable polymer materials, industrial research group, published in 1990 庄野利之(著) フラン樹脂、高分子化学刊行会 1960年発行Toshiyuki Shono (Author) Furan resin, published in 1960 高野憲三ら、プラスチックス、vol.9、p34 (1958)Kenzo Takano et al., Plastics, vol. 9, p34 (1958)

そこで本発明においては、環境負荷低減化の観点から、フラン樹脂を利用した熱硬化性樹脂組成物を提供することを目的とする。特に成形の際に、従来得られなかった厚膜状または板状の熱硬化性樹脂硬化物を提供することにある。   Then, in this invention, it aims at providing the thermosetting resin composition using a furan resin from a viewpoint of environmental load reduction. In particular, an object of the present invention is to provide a thick film or plate-like thermosetting resin cured product that has not been obtained in the past.

本発明者らは、フラン樹脂に従来からの硬化剤に加えて過酸化物を添加することにより、上記課題を解決できることを見いだし、本発明を完成した。本発明は以下の通りである。
(1) フラン樹脂、硬化剤、及び過酸化物を含有する熱硬化性樹脂組成物。
(2) 過酸化物が過酸化水素水、過炭酸ナトリウム、過酸化酢酸、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、次亜塩素酸、及び亜塩素酸から選ばれる1種以上のものである(1)に記載の熱硬化性樹脂組成物。
(3) 過酸化物の含有量がフラン樹脂100質量部に対して0.01質量部以上5質量部未満である(1)または(2)に記載の熱硬化性樹脂組成物。
(4) フラン樹脂に過酸化物を添加することを特徴とするフラン樹脂の硬化方法。
(5) (1)〜(3)のいずれかに記載の熱硬化性樹脂組成物を加熱加圧下で硬化するフラン樹脂の硬化方法。
The present inventors have found that the above problems can be solved by adding a peroxide to a furan resin in addition to a conventional curing agent, and have completed the present invention. The present invention is as follows.
(1) A thermosetting resin composition containing a furan resin, a curing agent, and a peroxide.
(2) The peroxide is one or more selected from hydrogen peroxide, sodium percarbonate, acetic acid peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, hypochlorous acid, and chlorous acid. The thermosetting resin composition according to (1).
(3) The thermosetting resin composition according to (1) or (2), wherein the peroxide content is 0.01 parts by mass or more and less than 5 parts by mass with respect to 100 parts by mass of the furan resin.
(4) A method for curing a furan resin, comprising adding a peroxide to the furan resin.
(5) A method for curing a furan resin, wherein the thermosetting resin composition according to any one of (1) to (3) is cured under heat and pressure.

本発明によれば、植物由来の熱硬化性樹脂であるフラン樹脂を用いて、従来得られなかった薄膜以外の厚膜状や板状の熱硬化性樹脂硬化物を提供することができ、そのため化石資源使用量の削減、及び二酸化炭素の排出量の低減効果が達成され、環境負荷低減化に好適な熱硬化性樹脂材料が提供できた。   According to the present invention, using a furan resin that is a plant-derived thermosetting resin, it is possible to provide a thermosetting resin cured product having a thick film shape or a plate shape other than a thin film that has not been obtained conventionally. The effect of reducing fossil resource usage and carbon dioxide emissions was achieved, and a thermosetting resin material suitable for reducing environmental impact could be provided.

以下、本発明をさらに詳細に説明する。
本発明で用いるフラン樹脂はフラン環を有する樹脂であればよいが、フラン樹脂として現在産業化されているものはフルフリルアルコールを主原料としたものである。フルフリルアルコールの原料は、ヘミセルロースを含む植物原料であるコーンコブ、バガス、籾殻が代表的なものである。これらを無機酸の存在下で加熱すると、五炭糖が生成し、さらに脱水反応を経てフルフラールとなる。フルフラールは蒸留にて分離され、さらに水素添加することでフルフリルアルコールを得ることができる。このフルフリルアルコールを初期縮合したものがフラン樹脂であり、常温で褐色かつ液状の樹脂である。
Hereinafter, the present invention will be described in more detail.
The furan resin used in the present invention may be a resin having a furan ring. However, what is currently industrialized as a furan resin is based on furfuryl alcohol. Typical raw materials for furfuryl alcohol are corn cob, bagasse, and rice husk, which are plant raw materials containing hemicellulose. When these are heated in the presence of an inorganic acid, a pentose sugar is produced and further dehydrated to furfural. Furfural is separated by distillation, and further furfuryl alcohol can be obtained by hydrogenation. A furan resin obtained by initial condensation of this furfuryl alcohol is a brown and liquid resin at room temperature.

また、フラン樹脂としては、上記のフルフリルアルコールの縮合物に限らず、フルフリルアルコール・フルフラールの共縮合樹脂、フルフラール・フェノール樹脂、フルフラール・ケトン樹脂、フルフリルアルコール・尿素共縮合樹脂、フルフリルアルコール・ジメチロールユリア樹脂、フルフリルアルコール・アンモニウムチオシアネート・アルデヒド樹脂等のフルフリルアルコールの縮合樹脂を変性したものも使用することができるが、フルフリルアルコールの縮合物の含有量としては、30モル%以上存在しているものが硬化性の点で好ましい。   The furan resin is not limited to the above-mentioned furfuryl alcohol condensate, but furfuryl alcohol / furfural co-condensation resin, furfural / phenol resin, furfural / ketone resin, furfuryl alcohol / urea co-condensation resin, furfuryl. An alcohol / dimethylol urea resin, furfuryl alcohol / ammonium thiocyanate / aldehyde resin, etc. modified with a furfuryl alcohol condensation resin can also be used, but the content of the furfuryl alcohol condensate is 30 mol. % Or more is preferable from the viewpoint of curability.

本発明で用いる硬化剤としては、フラン樹脂を硬化できるものであればよく、例えば、硫酸、塩酸などの無機酸、p−トルエンスルホン酸、シュウ酸等の有機酸、あるいはこれらの酸のアミン塩、金属塩などがあげられる。これらのうちでも、p−トルエンスルホン酸が硬化性の点で好ましいものである。   The curing agent used in the present invention is not limited as long as it can cure the furan resin. For example, inorganic acids such as sulfuric acid and hydrochloric acid, organic acids such as p-toluenesulfonic acid and oxalic acid, or amine salts of these acids And metal salts. Among these, p-toluenesulfonic acid is preferable in terms of curability.

硬化剤の配合量としては、フラン樹脂100質量部に対して、0.1質量部から10質量部であることが好ましく、0.3質量部から5質量部の範囲であることがより好ましい。配合量が少なすぎると迅速に硬化しない。配合量が多すぎると急激な反応に伴い発熱するため取り扱いが困難となる。   As a compounding quantity of a hardening | curing agent, it is preferable that it is 0.1 mass part to 10 mass parts with respect to 100 mass parts of furan resins, and it is more preferable that it is the range of 0.3 mass part to 5 mass parts. If the amount is too small, it will not cure quickly. If the amount is too large, heat is generated due to a rapid reaction, making handling difficult.

フラン樹脂の硬化方法としては、一般的に、使用する前に硬化剤となるスルホン酸等の酸と木粉、パルプ、植物繊維、炭素繊維、タールピッチ等の有機系充填材、ガラス繊維、シリカ、タルク、炭酸カルシウム等の無機系充填材を混合して得た熱硬化性樹脂組成物を塗工、または金型に流し込み、加熱する方法が知られている。本発明では、この熱硬化性樹脂組成物に対し過酸化物を添加することを特徴とするものである。   As a curing method for furan resin, in general, acid such as sulfonic acid that becomes a curing agent before use and wood flour, pulp, vegetable fiber, carbon fiber, tarp pitch and other organic fillers, glass fiber, silica A method is known in which a thermosetting resin composition obtained by mixing inorganic fillers such as talc and calcium carbonate is applied or poured into a mold and heated. In the present invention, a peroxide is added to the thermosetting resin composition.

本発明に用いる前記過酸化物は無機過酸化物や有機過酸化物のいずれでも使用でき、無機過酸化物としては、例えば過酸化水素水、過炭酸ナトリウム、過酸化酢酸、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、次亜塩素酸、亜塩素酸などを使用することができる。また、有機過酸化物としては、例えばハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシケタール、ケトンパーオキサイドなどを使用しても良い。これらのうちでも、無機過酸化物である過酸化水素水、過炭酸ナトリウム、過酸化酢酸、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、次亜塩素酸、亜塩素酸が酸素を発生させる点で好ましく、特に過酸化水素が好ましいものである。   The peroxide used in the present invention can be either an inorganic peroxide or an organic peroxide. Examples of the inorganic peroxide include hydrogen peroxide, sodium percarbonate, acetic peroxide, ammonium persulfate, and persulfate. Potassium, sodium persulfate, hypochlorous acid, chlorous acid, etc. can be used. Further, as the organic peroxide, for example, hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, peroxydicarbonate, peroxyketal, ketone peroxide and the like may be used. Among these, hydrogen peroxide water, which is an inorganic peroxide, sodium percarbonate, acetic acid peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, hypochlorous acid, and chlorous acid generate oxygen. Hydrogen peroxide is particularly preferable.

前記過酸化物の配合量の範囲としては、フラン樹脂100質量部に対して0.01質量部から5質量部とすることが好ましい。より好ましくは0.05質量部から3質量部、さらに好ましくは0.1質量部から2質量部である。過酸化物の配合量が少なすぎると、内部のフラン樹脂の硬化が進行しない。過酸化物の配合量が多すぎると過酸化物の分解に伴う副生成物例えば水の影響で硬化物内に気泡等の欠陥が発生してしまう。また反応が急激に進行して発熱を制御できなくなる可能性がある。過酸化物の配合量が上記の範囲であると、フラン樹脂の硬化が進み、内部に欠陥を生じるようなことがなく、機械的強度に優れた成形体が得られる。   The range of the amount of the peroxide is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the furan resin. More preferably, it is 0.05 mass part to 3 mass parts, More preferably, it is 0.1 mass part to 2 mass parts. If the amount of peroxide is too small, curing of the internal furan resin will not proceed. If the amount of the peroxide is too large, defects such as bubbles are generated in the cured product due to the influence of by-products such as water associated with the decomposition of the peroxide. In addition, the reaction may proceed rapidly and the exotherm may not be controlled. When the amount of the peroxide is within the above range, the furan resin is hardened and a molded article having excellent mechanical strength can be obtained without causing defects inside.

こうして得られたフラン樹脂を主成分とする熱硬化性樹脂組成物は、厚膜に塗工または金型に充填され圧力をかけながら加熱処理をすることで成形可能である。最適な成形温度は硬化剤である酸の添加量に依存し、30℃〜150℃の範囲が好適に使用できる。また、金型に充填された前記熱硬化性樹脂組成物に対し圧力をかけながら、例えば30℃、60℃、115℃、145℃というように段階的に昇温させる方法を用いると、より均一な硬化物を成形可能となる。   The thermosetting resin composition containing the furan resin as a main component thus obtained can be molded by coating a thick film or filling a mold and performing a heat treatment while applying pressure. The optimum molding temperature depends on the amount of the acid that is a curing agent, and a range of 30 ° C to 150 ° C can be suitably used. Further, it is more uniform by using a method of raising the temperature stepwise, for example, 30 ° C., 60 ° C., 115 ° C., and 145 ° C. while applying pressure to the thermosetting resin composition filled in the mold. It becomes possible to mold a cured product.

本発明の熱硬化性樹脂組成物において、難燃性を高めるため、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物や、芳香族リン酸エステル、赤リン等のリン系難燃剤、ハロゲン系難燃剤を添加しても良い。また、植物繊維、ガラス繊維、炭素繊維等の織布、不織布等を基材として、前記熱硬化性樹脂組成物を含浸させて繊維強化樹脂としても利用することができる。   In the thermosetting resin composition of the present invention, in order to enhance flame retardancy, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, phosphorus-based flame retardants such as aromatic phosphates and red phosphorus, halogen-based A flame retardant may be added. Moreover, it can be used as a fiber reinforced resin by impregnating the thermosetting resin composition using a woven fabric, a nonwoven fabric or the like such as plant fiber, glass fiber or carbon fiber as a base material.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples.

(実施例1)
(熱硬化性樹脂組成物の調製)
フラン樹脂(日立化成工業株式会社製、VF−303)180gに対し、硬化剤としてp−トルエンスルホン酸0.945gと34.5質量%の過酸化水素水1.26g(フラン樹脂100質量部に対して過酸化水素0.24質量部)を添加し、混合後に真空脱泡して熱硬化性樹脂組成物を得た。
(Example 1)
(Preparation of thermosetting resin composition)
For 180 g of furan resin (manufactured by Hitachi Chemical Co., Ltd., VF-303), 0.945 g of p-toluenesulfonic acid and 1.26 g of 34.5% by mass hydrogen peroxide (as 100 parts by mass of furan resin). (0.24 parts by mass of hydrogen peroxide) was added thereto, and after mixing, vacuum degassing was performed to obtain a thermosetting resin composition.

(硬化物の調製)
ステンレス製の金型(縦横200mm、深さ2mm)に離型剤(ナガセケムテックス株式会社製、Mould Release Agents QZ 13)を塗布した後、前記熱硬化性樹脂組成物を金型に充填した。その後加熱プレス装置に金型を設置し、20MPaの圧力にて、30℃で2時間、65℃で3時間、115℃で4時間、最後に145℃で4時間加熱加圧し、フラン樹脂を含む成形体を得た。
(Preparation of cured product)
A mold release agent (Nagase Chemtex Co., Ltd., Mold Release Agents QZ 13) was applied to a stainless steel mold (length and width: 200 mm, depth: 2 mm), and the mold was filled with the thermosetting resin composition. After that, a mold was installed in the heating press apparatus, and heated and pressurized at 20 MPa pressure for 2 hours at 30 ° C., 3 hours at 65 ° C., 4 hours at 115 ° C., and finally 4 hours at 145 ° C. A molded body was obtained.

得られた成形体について、以下に示す試験を行い、曲げ強度と曲げ弾性率とを評価した。
(曲げ試験)
前記成形体を幅25mm、厚み2.0mm、長さ60mmに切り出し、試験片とした。試験片を少なくとも5本作製し、曲げ試験を実施した。インストロン型万能試験機(株式会社島津製作所製 オートグラフ、AGS-J)を用い、ヘッド速度を1.0mm/min、支点間距離を40mmとして前記試験片の3点曲げ試験を行った。5本の試験片の曲げ強度と曲げ弾性率の平均値を表1に示す。
About the obtained molded object, the test shown below was done and bending strength and a bending elastic modulus were evaluated.
(Bending test)
The molded body was cut into a width of 25 mm, a thickness of 2.0 mm, and a length of 60 mm to obtain a test piece. At least five test pieces were prepared and subjected to a bending test. Using an Instron universal testing machine (manufactured by Shimadzu Corp., Autograph, AGS-J), a head speed of 1.0 mm / min and a distance between fulcrums of 40 mm were subjected to a three-point bending test. Table 1 shows the average values of the bending strength and the flexural modulus of the five test pieces.

(実施例2)
配合する過酸化水素水の量を2.07g(フラン樹脂100質量部に対して過酸化水素0.40質量部)とした以外は実施例1と同様の方法で熱硬化性樹脂組成物の調製、熱硬化物の成形、曲げ試験を実施した。得られた曲げ強度及び曲げ弾性率の平均値を表1に示す。
(Example 2)
Preparation of thermosetting resin composition in the same manner as in Example 1 except that the amount of hydrogen peroxide solution to be blended was 2.07 g (0.40 parts by mass of hydrogen peroxide with respect to 100 parts by mass of furan resin). The thermosetting product was molded and subjected to a bending test. Table 1 shows the average values of the obtained bending strength and bending elastic modulus.

(実施例3)
配合する過酸化水素水の量を4.50g(フラン樹脂100質量部に対して過酸化水素0.86質量部)とした以外は実施例1と同様の方法で熱硬化性樹脂組成物の調製、熱硬化物の成形、曲げ試験を実施した。得られた曲げ強度及び曲げ弾性率の平均値を表1に示す。
(Example 3)
Preparation of thermosetting resin composition in the same manner as in Example 1 except that the amount of hydrogen peroxide solution to be blended was 4.50 g (hydrogen peroxide 0.86 parts by mass with respect to 100 parts by mass of furan resin). The thermosetting product was molded and subjected to a bending test. Table 1 shows the average values of the obtained bending strength and bending elastic modulus.

(実施例4)
配合する過酸化水素水の量を6.10g(フラン樹脂100質量部に対して過酸化水素1.17質量部)とした以外は実施例1と同様の方法で熱硬化性樹脂組成物の調製、熱硬化物の成形、曲げ試験を実施した。得られた曲げ強度及び曲げ弾性率の平均値を表1に示す。
Example 4
Preparation of thermosetting resin composition in the same manner as in Example 1, except that the amount of hydrogen peroxide solution to be blended was 6.10 g (1.17 parts by mass of hydrogen peroxide per 100 parts by mass of furan resin). The thermosetting product was molded and subjected to a bending test. Table 1 shows the average values of the obtained bending strength and bending elastic modulus.

(比較例1)
過酸化水素水を配合しない以外は実施例1と同様の方法で熱硬化性樹脂組成物の調製、熱硬化物の成形、曲げ試験を実施した。得られた曲げ強度及び曲げ弾性率の平均値を表1に示す。
(Comparative Example 1)
A thermosetting resin composition was prepared, a thermoset was molded, and a bending test was performed in the same manner as in Example 1 except that no hydrogen peroxide solution was added. Table 1 shows the average values of the obtained bending strength and bending elastic modulus.

Figure 0006083789
Figure 0006083789

表1に示すように過酸化水素を添加した熱硬化性樹脂組成物を成形した試験片は曲げ強度において85から122MPa程度のものとなった。一方、過酸化水素を添加していない比較例の熱硬化性樹脂組成物を成形した試験片の曲げ強度は42MPa程度であり、実施例より大きく劣っていた。本発明の過酸化物を添加した熱硬化性樹脂組成物を使用することで、表面以外の樹脂も硬化が進行し、高強度な成形体を得ることができる。   As shown in Table 1, the test piece formed from the thermosetting resin composition added with hydrogen peroxide had a bending strength of about 85 to 122 MPa. On the other hand, the bending strength of the test piece formed from the thermosetting resin composition of the comparative example to which hydrogen peroxide was not added was about 42 MPa, which was greatly inferior to the examples. By using the thermosetting resin composition to which the peroxide of the present invention is added, curing of the resin other than the surface proceeds, and a high-strength molded product can be obtained.

Claims (2)

フラン樹脂、硬化剤、及び過酸化物を含有する熱硬化性樹脂組成物であって、
前記過酸化物が過酸化水素水、過炭酸ナトリウム、過酸化酢酸、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、次亜塩素酸、及び亜塩素酸から選ばれる1種以上のものであり、
前記過酸化物の含有量がフラン樹脂100質量部に対して0.1質量部から2質量部である熱硬化性樹脂組成物。
A thermosetting resin composition containing a furan resin, a curing agent, and a peroxide ,
The peroxide is at least one selected from hydrogen peroxide, sodium percarbonate, acetic acid peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, hypochlorous acid, and chlorous acid;
The thermosetting resin composition whose content of the said peroxide is 0.1 to 2 mass parts with respect to 100 mass parts of furan resins .
請求項1に記載の熱硬化性樹脂組成物を加熱加圧下で硬化するフラン樹脂の硬化方法。 A method for curing a furan resin, wherein the thermosetting resin composition according to claim 1 is cured under heat and pressure.
JP2012227493A 2012-10-12 2012-10-12 Thermosetting resin composition Active JP6083789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227493A JP6083789B2 (en) 2012-10-12 2012-10-12 Thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227493A JP6083789B2 (en) 2012-10-12 2012-10-12 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JP2014080464A JP2014080464A (en) 2014-05-08
JP6083789B2 true JP6083789B2 (en) 2017-02-22

Family

ID=50784975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227493A Active JP6083789B2 (en) 2012-10-12 2012-10-12 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP6083789B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3290465A4 (en) * 2015-04-30 2019-01-02 Hitachi Chemical Co., Ltd. Thermosetting resin material, cured product and method for producing same
CN110272610A (en) * 2019-07-16 2019-09-24 安徽升隆电气有限公司 A kind of electrical monitoring device material of flame-proof explosion-proof and preparation method thereof
CN113385634A (en) * 2020-03-14 2021-09-14 江苏华岗材料科技发展有限公司 Preparation method of energy-saving environment-friendly furan resin casting alcohol-based curing agent
CN113234327A (en) * 2021-05-22 2021-08-10 云南柒捌玖农业发展有限公司 Method for producing degradable plastic from bagasse

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145323A (en) * 1978-05-04 1979-11-13 Mitsubishi Heavy Ind Ltd Production of cast mold of furan resin or phenol resin
JPH07165469A (en) * 1993-12-13 1995-06-27 Hitachi Chem Co Ltd Production of glassy carbon
AUPR309101A0 (en) * 2001-02-14 2001-03-08 Styrophen International Pty Ltd Polymeric composite foam
JP2008247963A (en) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp Lignocellulose material molding and its molding method

Also Published As

Publication number Publication date
JP2014080464A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
Ma et al. Research progress on bio‐based thermosetting resins
Chan et al. Composites of wood and biodegradable thermoplastics: A review
JP5652646B2 (en) Wood-based film
Dai et al. Fully biobased composites of an itaconic acid derived unsaturated polyester reinforced with cotton fabrics
JP6083789B2 (en) Thermosetting resin composition
Rorrer et al. Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites
Sangregorio et al. All ‘green’composites comprising flax fibres and humins' resins
Alhanish et al. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review
US6682673B1 (en) Method for producing fiber reinforced materials
Nabinejad et al. Effect of filler load on the curing behavior and mechanical and thermal performance of wood flour filled thermoset composites
Lu et al. Environmental degradability of self-reinforced composites made from sisal
Liu et al. Improvement of toughness and mechanical properties of furfurylated wood by biosourced epoxidized soybean oil
Ramires et al. Composites based on renewable materials: Polyurethane‐type matrices from forest byproduct/vegetable oil and reinforced with lignocellulosic fibers
Sarika et al. Progress in Bio‐Based Phenolic Foams: Synthesis, Properties, and Applications
Bassett et al. Richard P. Wool's contributions to sustainable polymers from 2000 to 2015
Rodríguez‐Núñez et al. Composite materials based on PLA and its applications in food packaging
JP6631889B2 (en) Thermosetting resin material, cured product and method for producing the same
Yamada et al. Improved preparation of recycled polymers in chemical recycling of fiber-reinforced plastics and molding of test product using recycled polymers
Zhang Lightweight materials from biofibers and biopolymers
Wu et al. Plant oil‐based biofoam composites with balanced performance
Yang et al. Solvent-free preparation of thermoplastic bio-materials from microcrystalline cellulose (MCC) through reactive extrusion
Rahman et al. Micro and nano effects of recycled plastic waste to reinforce and enhance in biocomposites
Nafissa et al. Various Types of Natural Fibers Reinforced Poly-Lactic Acid Composites
Zuhri et al. Oil palm fibre reinforced polymer composites: A review
Ugryumov et al. Investigation of curing processes of modified phenol-formaldehyde resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6083789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250