JP6078154B2 - Vacuum refining method - Google Patents

Vacuum refining method Download PDF

Info

Publication number
JP6078154B2
JP6078154B2 JP2015527776A JP2015527776A JP6078154B2 JP 6078154 B2 JP6078154 B2 JP 6078154B2 JP 2015527776 A JP2015527776 A JP 2015527776A JP 2015527776 A JP2015527776 A JP 2015527776A JP 6078154 B2 JP6078154 B2 JP 6078154B2
Authority
JP
Japan
Prior art keywords
slag
ladle
vacuum
liquid steel
reflux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015527776A
Other languages
Japanese (ja)
Other versions
JP2015526598A (en
Inventor
▲烏▼力平
沈昶
胡玉▲暢▼
潘▲遠▼望
浦▲紹▼敏
王勇
解▲養▼国
Original Assignee
▲馬▼▲鋼▼(集▲団▼)控股有限公司
▲馬▼鞍山▲鋼▼▲鉄▼股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210302397.0A external-priority patent/CN102816896B/en
Application filed by ▲馬▼▲鋼▼(集▲団▼)控股有限公司, ▲馬▼鞍山▲鋼▼▲鉄▼股▲分▼有限公司 filed Critical ▲馬▼▲鋼▼(集▲団▼)控股有限公司
Publication of JP2015526598A publication Critical patent/JP2015526598A/en
Application granted granted Critical
Publication of JP6078154B2 publication Critical patent/JP6078154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Description

本発明は、溶鋼炉外精錬分野に関し、特に超低炭素と超低硫鋼とを同時に生産する真空精錬装置に関する。   The present invention relates to the field of smelting outside the furnace and, more particularly, to a vacuum refining apparatus that simultaneously produces ultra-low carbon and ultra-low sulfur steel.

現在、工業的規模で超低炭素や超低硫鋼を生産する炉外精錬方法は、主に、RH真空精錬が採用される。RH真空精錬を採用して超低炭素と超低硫鋼とを同時に生産する工程は、主に以下の問題点がある。   Currently, RH vacuum refining is mainly used as an out-of-core refining method for producing ultra-low carbon and ultra-low sulfur steel on an industrial scale. The process of simultaneously producing ultra-low carbon and ultra-low sulfur steel using RH vacuum refining has the following problems.

1つの問題点は、RH真空脱炭の速度が小さいことである。これは、液鋼の活性酸素、炭素含有量及び真空度が同じ場合、真空脱炭の反応速度が主に液鋼の循環流量により決定されるが、液鋼の循環流量が浸漬管の内径と1.5乗の関係にあり、RH炉が内径小さめの上昇浸漬管と下降浸漬管の両方により構成されるので、脱炭速度が浸漬管の内径尺寸に制限され、且つ工程により脱炭速度を向上させて最適化しにくいためである。   One problem is the low rate of RH vacuum decarburization. This is because, when the active oxygen, carbon content and degree of vacuum of the liquid steel are the same, the reaction rate of vacuum decarburization is mainly determined by the circulating flow rate of the liquid steel, but the circulating flow rate of the liquid steel is equal to the inner diameter of the dip tube. Since the RH furnace is composed of both an ascending dip tube and a descending dip tube with a smaller inner diameter, the decarburization rate is limited to the inner diameter of the dip tube, and the decarburization rate is increased depending on the process. This is because it is difficult to improve and optimize.

別の問題点は、RH炉の真空精錬過程における脱硫率が低め且つ安定しなく、脱硫剤の浸漬管と真空室下部溝の耐火材への侵食がひどいことである。これは、RH炉真空過程における脱硫において、主に添加された脱硫剤の液鋼に従う循環動作により脱硫剤を液鋼の内部に散布させ、反応界面を形成して脱硫の目的を達成するためである。   Another problem is that the desulfurization rate in the vacuum refining process of the RH furnace is low and unstable, and erosion of the desulfurizing agent dip pipe and the vacuum chamber lower groove into the refractory material is severe. This is because in the desulfurization in the RH furnace vacuum process, the desulfurization agent is dispersed inside the liquid steel mainly by the circulation operation according to the liquid steel of the added desulfurization agent to form the reaction interface and achieve the purpose of desulfurization. is there.

これに対して、1)脱硫剤の添加方法は、気体と粉体の両相の流れを混合して真空室の溶融池に噴出して、脱硫剤の液鋼内部への散布に寄与するものであること、2)脱硫剤は、高硫溶融量、低融点の混合物(即ち、現在よく使われる30%CaFと70%CaOを含有する混合物)でなければならないこと、3)同じ粉末の噴出時間の内、さらに多くの液鋼が真空室に入って脱硫剤粉粒に接触するように、液鋼の循環流量を十分に大きくし、脱硫効率を向上すること、という三つの要求がある。これに鑑みて、RH真空過程における脱硫は、1)脱硫率が脱硫剤の液鋼での散布程度によるものであるので、脱硫率が安定しなく、2)脱硫率に対する液鋼の循環流量の影響が大きく、RHの二つの浸漬管による液鋼の循環流量が小さいので、脱硫率が高くなく、3)脱硫剤に30%までのCaFが含有するので、真空室と浸漬管の耐火材への侵食がひどく、その寿命が短縮されるという固有の欠陥がある。 On the other hand, 1) Desulfurizing agent addition method contributes to the spraying of desulfurizing agent into liquid steel by mixing the flow of both phases of gas and powder and ejecting it to the molten pool in the vacuum chamber 2) The desulfurizing agent must be a high-sulfur melt, low-melting mixture (ie, a commonly used mixture containing 30% CaF 2 and 70% CaO), 3) the same powder There are three requirements to increase the circulating flow rate of liquid steel and improve the desulfurization efficiency so that more liquid steel can enter the vacuum chamber and come into contact with the desulfurization agent particles within the ejection time. . In view of this, desulfurization in the RH vacuum process is because 1) the desulfurization rate depends on the degree of spraying of the desulfurizing agent on the liquid steel, so the desulfurization rate is not stable, and 2) the circulation flow rate of the liquid steel relative to the desulfurization rate effect is large, since the circulation flow rate of the liquid steel by two dip tubes RH is small, not have high desulfurization rate, 3) since it contains the CaF 2 up to 30% desulfurization agent, refractory of the immersion pipe and the vacuum chamber There is an inherent flaw in that the erosion is severe and its lifetime is shortened.

従来、中国に公開された特許出願ZL00235854.9における“多機能の複合吹錬単一ノズル付き精錬炉”、特許出願CN101701279B“単一ノズル付き精錬炉による低硫鋼の溶錬方法”及び特許出願CN101792845B“単一ノズル付き精錬炉による超低炭素鋼の溶錬方法”という特許出願には、浸漬管の横断面積の増大、真空精錬過程での液鋼の循環流量の増大により、脱炭効率を向上するようになされる。しかしながら、脱炭反応速度を向上するように十分に大きい真空室内の液鋼露出面を確保するために、これらの特許出願にも、浸漬管を溶鋼に挿入する前に取鍋スラグを浸漬管へ排出して、液鋼露出面を増大し、脱炭反応速度を向上するように要求される。また、脱硫の期間において、吹付けられる脱硫剤を液鋼内部に効果的に散布させ、反応界面を増大して、脱硫効率を向上することができる。したがって、これらの特許出願において、転炉(あるいは、電気炉)の出鋼過程におけるスラグ発生量に要求がかなり厳しい。液鋼表面スラグの層が厚い場合、浸漬管を溶鋼に挿入する前のスラグ排出操作を実施しにくい。これらの特許出願は、真空過程での脱硫原理がRH真空精錬と同じなので、RH真空精錬過程での脱硫と同様に高いCaF含有量(一般には、30%)を有する硫剤を選択する必要があるが、脱硫剤の浸漬管と真空室下部溝の耐火材への侵食がひどく、浸漬管と真空室下部溝の寿命が短縮される。現在、公開された単一ノズル付き精錬炉は、すべて取鍋底吹きを真空過程での液鋼循環流の駆動力として利用するものであり、取鍋底部のパージングプラグに塞ぎが発生すると、真空精錬が進行されなく、生産が中断される。 Conventionally, in the patent application ZL00235854.9 published in China, “Multifunctional complex blowing smelting furnace with single nozzle”, patent application CN101701279B “Method of smelting low-sulfur steel with single nozzle smelting furnace” and patent application The patent application CN101792845B “Method of smelting ultra-low carbon steel using a single-nozzle smelting furnace” includes an increase in the decarburization efficiency by increasing the cross-sectional area of the dip tube and increasing the circulating flow rate of the liquid steel during the vacuum refining process. To be improved. However, in order to ensure a sufficiently large liquid steel exposed surface in the vacuum chamber to improve the decarburization reaction rate, these patent applications also apply ladle slag to the dip tube before inserting the dip tube into the molten steel. It is required to discharge to increase the liquid steel exposed surface and improve the decarburization reaction rate. Further, during the desulfurization period, the sprayed desulfurizing agent can be effectively dispersed inside the liquid steel, the reaction interface can be increased, and desulfurization efficiency can be improved. Therefore, in these patent applications, the requirements for the amount of slag generated in the steelmaking process of the converter (or electric furnace) are quite severe. When the layer of liquid steel surface slag is thick, it is difficult to carry out the slag discharge operation before inserting the dip tube into the molten steel. In these patent applications, the desulfurization principle in the vacuum process is the same as that in the RH vacuum refining, so it is necessary to select a sulfurizing agent having a high CaF 2 content (generally 30%) as in the RH vacuum refining process. However, the erosion of the desulfurizing agent dip tube and the vacuum chamber lower groove to the refractory material is severe, and the life of the dip tube and the vacuum chamber lower groove is shortened. Currently, all of the refining furnaces with a single nozzle that are disclosed use the ladle bottom blow as the driving force for the circulating flow of liquid steel in the vacuum process, and when the purging plug at the bottom of the ladle is clogged, vacuum refining Will not proceed and production will be interrupted.

特許出願“CN101302571A”に公開された単一ノズル付き精錬炉のノズルの外周に、液鋼流速の増大と液鋼の循環流量の向上だけのために、少なくとも一組の進行波磁場発生器が設置されている。取鍋の頂部スラグ層が液鋼面に覆いで液鋼露出面が減少して、脱炭、脱硫効率が低下する問題が解決されない。また、特許出願“CN101302571A”に公開された浸漬管における進行波磁場発生器は、液鋼循環流のある時のみに流れ速度の向上を推進し、取鍋底吹きに塞ぎが発生して、液鋼が静止状態にある場合、進行波磁場発生器が作用されなく、真空精錬が進行されなく、生産が中断される。   At least one set of traveling wave magnetic field generators is installed on the outer circumference of the nozzle of the refining furnace with a single nozzle disclosed in the patent application “CN101302571A” only for increasing the liquid steel flow velocity and improving the circulating flow rate of the liquid steel. Has been. The top slag layer of the ladle covers the liquid steel surface and the exposed surface of the liquid steel is reduced, and the problem that the decarburization and desulfurization efficiency decreases is not solved. In addition, the traveling wave magnetic field generator in the dip tube disclosed in the patent application “CN101302571A” promotes the improvement of the flow velocity only when there is a liquid steel circulation flow, and the ladle bottom blowing is blocked, and the liquid steel Is stationary, the traveling wave magnetic field generator is not activated, vacuum refining does not proceed, and production is interrupted.

ZL00235854.9ZL00235854.9 CN101701279BCN101701279B CN101792845BCN101792845B CN101302571ACN101302571A

従来の技術の課題を解決するために、本発明の目的は、直胴型真空精錬装置を提供することにある。これは、従来の特許出願に公開された単一ノズル付き精錬炉に脱炭と脱硫の効果を確保するために、浸漬管を液鋼へ挿入する前にスラグを排出して、真空室への取鍋頂部スラグをできるだけ少なくする必要があるので、取鍋の液鋼表面スラグ層ができるだけ薄く、つまり出鋼過程でのスラグ発生量ができるだけ少なく、さらにスラグが発生しないように要求される問題を解決するためである。また、従来の特許出願に公開された単一ノズル付き精錬炉及びRHには、フッ素の含有量が高い(30%CaF)脱硫剤を採用する必要があるので、脱硫剤の浸漬管と真空室の下部溝の耐火材への侵食がひどく、その寿命が大いに短縮される問題を解決するためである。さらに、従来の特許出願に公開された単一ノズル付き精錬炉は、取鍋底吹き素子に塞ぎが発生した場合、全体の真空精錬過程が進行されなく、生産が中断される問題を解決するためのものでもある。 In order to solve the problems of the prior art, an object of the present invention is to provide a straight body type vacuum refining apparatus. In order to ensure the effect of decarburization and desulfurization in a single nozzle refining furnace published in a conventional patent application, the slag is discharged before inserting the dip tube into the liquid steel, Since the ladle top slag needs to be reduced as much as possible, the liquid steel surface slag layer of the ladle is as thin as possible, that is, the amount of slag generated in the steelmaking process is as low as possible, and there is a problem that slag is not generated. This is to solve the problem. In addition, in a smelting furnace with a single nozzle and RH disclosed in a conventional patent application, it is necessary to employ a desulfurizing agent having a high fluorine content (30% CaF 2 ). This is to solve the problem that the erosion of the lower groove of the chamber is severely eroded and the lifetime is greatly shortened. Furthermore, the refining furnace with a single nozzle disclosed in the conventional patent application is for solving the problem that the entire vacuum refining process is not advanced and the production is interrupted when the ladle bottom blowing element is blocked. It is also a thing.

上記の技術的な問題を解決するために、本発明は、真空室と、真空精錬の時に取鍋での溶鋼に挿入される浸漬管とを含む直胴型真空精錬装置であって、前記浸漬管の周方向に環流管が設置され、アルゴンガスが環流管の内壁におけるノズルを介して浸漬管へ吹き込まれ、前記環流管が複数の層に設置され、同層の環流管におけるノズルが組別に個別制御され、前記取鍋の底部に偏心パージングプラグが設置され、アルゴンガスが偏心パージングプラグを通じて取鍋に吹き込まれ、取鍋底吹きと環流管吹付けシステムにおける各の個別制御ユニットによる異なる吹きとの流量の組合せによって、取鍋と真空室との間の液鋼の循環流を駆動させることを特徴とする直胴型真空精錬装置を提供する。   In order to solve the above technical problem, the present invention is a straight body type vacuum refining apparatus including a vacuum chamber and a dip tube inserted into molten steel in a ladle at the time of vacuum refining. A reflux tube is installed in the circumferential direction of the tube, argon gas is blown into the dip tube through a nozzle on the inner wall of the reflux tube, the reflux tube is installed in a plurality of layers, and the nozzles in the circulation tube of the same layer are assembled separately. It is individually controlled, an eccentric purging plug is installed at the bottom of the ladle, argon gas is blown into the ladle through the eccentric purging plug, and the ladle bottom blowing and different blowing by each individual control unit in the reflux pipe spraying system Provided is a straight barrel type vacuum refining apparatus characterized by driving a circulating flow of liquid steel between a ladle and a vacuum chamber by a combination of flow rates.

本発明のさらなる側面は、前記環流管は、環流管におけるノズルが同じ中心角で分布され、ノズル間の中心角が10°〜30°であり、あるいは、環流管におけるノズルが同じ距離で分布され、ノズルの数が8〜30個であるように1つの層に設置される。   According to a further aspect of the present invention, in the reflux tube, the nozzles in the reflux tube are distributed at the same central angle, the center angle between the nozzles is 10 ° to 30 °, or the nozzles in the reflux tube are distributed at the same distance. , Are arranged in one layer so that the number of nozzles is 8-30.

本発明のさらなる側面は、前記環流管は、各環流管におけるノズルが同じ距離で分布され、各層におけるノズルの数が6〜15個であり、また、上下層におけるノズルが交互に配列されるように二つの層に設置される。   According to a further aspect of the present invention, in the reflux tube, the nozzles in each reflux tube are distributed at the same distance, the number of nozzles in each layer is 6 to 15, and the nozzles in the upper and lower layers are alternately arranged. Installed in two layers.

本発明のさらなる側面は、前記環流管は、各環流管におけるノズルが同じ距離で分布され、各層におけるノズルの数が6〜12個であり、隣接するノズルが交互に配列され、同層における2〜6個のノズルが一組として個別に制御され、各層が150mm〜400mmの同じ距離で分布されるように三つの層に設置される。   According to a further aspect of the present invention, in the reflux tube, nozzles in each reflux tube are distributed at the same distance, the number of nozzles in each layer is 6 to 12, adjacent nozzles are alternately arranged, and 2 in the same layer. ~ 6 nozzles are individually controlled as a set, and are installed in three layers so that each layer is distributed at the same distance of 150 mm to 400 mm.

本発明のさらなる側面は、前記浸漬管は、大円弧面と小円弧面との両部分により構成される横断面形状が略円形のものであり、大円弧面の曲率半径が真空室と同じ、小円弧面の曲率半径が真空室より大きく、大円弧面と小円弧面との曲率半径の比が1:1〜∞である。   In a further aspect of the present invention, the dip tube has a substantially circular cross-sectional shape constituted by both the large arc surface and the small arc surface, and the radius of curvature of the large arc surface is the same as that of the vacuum chamber. The radius of curvature of the small arc surface is larger than that of the vacuum chamber, and the ratio of the radius of curvature between the large arc surface and the small arc surface is 1: 1 to ∞.

本発明は、真空精錬過程において、取鍋底部の偏心パージングプラグと浸漬管環流管との複合吹付けモードを採用し、脱炭の期間において、底吹きとその同側の環流管が強吹きであり、他の側の環流管が弱吹きであり、脱硫の期間において、底吹きが強吹きであり、浸漬管の周囲の環流管がすべて弱吹きであり、精錬後期において、環流管ガス量と底吹付け量を小さく調整させ、溶鋼を真空室表面スラグの混入なしに清浄循環を行うように制御するとともに、鋼内の含有物が衝突し浮き上がって表面スラグに吸収されることを推進する前記直胴型真空精錬装置の精錬方法をさらに提供する。   The present invention employs a combined spray mode of an eccentric purging plug at the bottom of the ladle and a dip tube reflux pipe in the vacuum refining process, and the bottom blow and the same-side reflux pipe are strong blows during the decarburization period. The other side of the reflux pipe is weakly blown, and during the desulfurization period, the bottom blow is strong blown, and all the reflux pipes around the dip pipe are weakly blown. The straight cylinder type vacuum that controls the molten steel to be cleaned and circulated without contamination of the vacuum chamber surface slag, and promotes that the contents in the steel collide and float and are absorbed by the surface slag. A refining method for a refining apparatus is further provided.

本発明は、取鍋底吹きに塞ぎが発生した場合、又は溶錬の要求に応じて取鍋底吹きを中止する場合、
(1)脱炭の期間において、環流管の一側に大ガス量で吹付け、それに対応する他の側に小ガス量で吹付けるので、それらの二つの半周の領域にRHと類似する上昇管と下降管が形成され、強吹き側に上昇し、弱吹き側に下降するように液鋼を流動させ、真空室と取鍋での液鋼の循環流を駆動させ、また、一側に強吹きであり、他の側に弱吹きであるので、真空室の液鋼面における取鍋スラグが弱吹き側の領域に圧縮されて、真空室中の液鋼の露出面が十分に大きいことを確保して、急速深さ脱炭の目的を達成し、
(2)脱硫の期間において、ノズルがすべて強吹きであり、液鋼を浸漬管の周りより上昇し、中心領域より下降するように駆動させ、真空で取鍋スラグと溶鋼とを十分に混合することにより、液鋼の深さ脱硫を実現し、
(3)精錬後期において、環流管の吹付け量を、一側に若干大きく、他の側にかなり小さいように調整して、溶鋼を真空室の表面スラグの混入なしに循環を行うように制御すると共に、鋼内の含有物が衝突し浮き上がって表面スラグに吸収されることを推進するようにする前記直胴型真空精錬装置の精錬方法をさらに提供する。
The present invention, when clogging occurs in the ladle bottom blowing, or when stopping the ladle bottom blowing in response to a request for smelting,
(1) In the decarburization period, a large amount of gas is sprayed on one side of the reflux pipe and a small amount of gas is sprayed on the other side corresponding to it. A pipe and a downcomer are formed, the liquid steel is made to flow so that it rises to the strong blowing side and descends to the weak blowing side, and the circulating flow of liquid steel in the vacuum chamber and ladle is driven. Because it is a strong blow and weak blow on the other side, the ladle slag on the liquid steel surface in the vacuum chamber is compressed to the area on the weak blow side to ensure that the exposed surface of the liquid steel in the vacuum chamber is sufficiently large To achieve the purpose of rapid depth decarburization,
(2) During the desulfurization period, all nozzles are blown strongly, and the liquid steel is driven to rise from around the dip tube and descend from the central region, and the ladle slag and molten steel are sufficiently mixed by vacuum. Realizes depth desulfurization of liquid steel,
(3) In the latter stage of refining, the amount of spraying of the reflux pipe is adjusted to be slightly larger on one side and considerably smaller on the other side, and the molten steel is controlled to circulate without mixing the surface slag in the vacuum chamber. In addition, the present invention further provides a refining method for the straight body type vacuum refining apparatus, which promotes that the contents in the steel collide, float and are absorbed by the surface slag.

本発明に係る設計要旨は下記の通りである。   The gist of the design according to the present invention is as follows.

本発明は、真空室の下部に単一の直胴型浸漬管が連結され、浸漬管の内径と真空室の内径とが同じ、環流管の内壁の周方向に1つの層又は複数の層の環流管が交互に配列され、取鍋底部の偏心位置にパージングプラグが配列される。環流管に設置される2〜6個のノズルを一組にして、個別に段階に形成して吹付け流量を制御する。真空精錬過程において、取鍋底吹きと環流管吹きを採用して取鍋と真空室との間の溶鋼の循環流を駆動させると共に、真空精錬過程での異なる段階の主な任務(脱炭、脱硫など)に応じて、取鍋底吹きと環流管での各の個別制御ユニットにより段階的に制御される異なる吹きとの組合せにより、真空室の液鋼面における頂部スラグの状態を制御する。   In the present invention, a single straight barrel type dip tube is connected to the lower part of the vacuum chamber, and the inner diameter of the dip tube is the same as the inner diameter of the vacuum chamber. The reflux tubes are alternately arranged, and the purging plugs are arranged at the eccentric position at the bottom of the ladle. A set of 2 to 6 nozzles installed in the reflux pipe is individually formed in stages to control the spray flow rate. In the vacuum refining process, ladle bottom blowing and recirculation pipe blowing are used to drive the circulating flow of molten steel between the ladle and the vacuum chamber, and the main tasks at different stages in the vacuum refining process (decarburization, desulfurization) Etc.), the state of the top slag on the liquid steel surface in the vacuum chamber is controlled by a combination of ladle bottom blowing and different blowing controlled in stages by each individual control unit in the reflux pipe.

本発明に係る直胴型真空精錬装置を採用すると、液鋼の表面スラグを浸漬管へ排出する必要がなく、逆に、真空室に入った溶鋼表面スラグを十分に使用して脱炭、脱硫及び含有物の除去を行うことができる。その精錬方法は、(1)環流管での段階的に個別制御される吹付けシステムと底吹きとの異なる組合せ方式により、真空室での液鋼露出面積を拡大させて急速深さ脱炭を実現し、液鋼面での高酸化性のスラグ中の酸素を利用して液鋼へのさらなる深さ脱炭を行い、(2)脱硫の期間において、底吹が強吹きであり、浸漬管の周囲の環流管がすべて弱吹きであり、これによって、スラグ金属反応面積を効果的に増大し、脱硫効果を向上すると共に、浸漬管の周囲の環流管からの弱吹きガスにより真空室内の鋼のスラグと真空室の内壁との間にガスバリア域を形成して、鋼のスラグの耐火材への侵食を低減して、耐火材の寿命を延長し、(3)精錬後期において、環流管のガス量と底吹付け量を小さく調整し、溶鋼を真空室の表面スラグの混入なしに清浄循環を行うように制御するとともに、鋼の内の含有物が衝突し浮き上がって表面スラグに吸収されることが推進する。   When the straight body type vacuum refining apparatus according to the present invention is adopted, there is no need to discharge the surface slag of the liquid steel to the dip tube, and conversely, decarburization and desulfurization by fully using the molten steel surface slag that has entered the vacuum chamber And the inclusions can be removed. The refining method is as follows: (1) Rapid depth decarburization by expanding the exposed area of liquid steel in the vacuum chamber by using different combinations of spraying system and bottom blowing that are individually controlled in a reflux pipe. Realize and use oxygen in highly oxidizing slag on the surface of the liquid steel to further decarburize the liquid steel. (2) During the desulfurization period, the bottom blow is strong and the dip tube All of the surrounding reflux pipes are weakly blown, which effectively increases the slag metal reaction area and improves the desulfurization effect, and also the steel slag in the vacuum chamber by the weakly blown gas from the reflux pipe around the dip pipe. Gas barrier zone is formed between the slag and the inner wall of the vacuum chamber to reduce the erosion of the steel slag to the refractory material and extend the life of the refractory material. And the bottom spraying amount are adjusted to be small so that the molten steel is not mixed with the surface slag of the vacuum chamber. Cleaning the circulating controls to perform, promoted by the inclusion of the steel is absorbed into the surface slag floats collide with.

本発明に係る直胴型真空精錬装置を採用すると、取鍋底吹きに塞ぎが発生した場合、又は溶錬の要求に応じて取鍋底吹きを中止する場合、真空脱炭、脱硫も生産中断ことなく、依然として正常に進行することができる。その原理は、本発明に係る環流管に配列されるノズルに対して、流量を領域別に個別制御する方法を採用されることである。その精錬方法は、(1)脱炭の期間において、環流管の一側に大ガス量で吹付け、それに対応する他の側に小ガス量で吹付けるので、それらの二つの半周の領域にRHと類似する上昇管と下降管が形成され、強吹き側に上昇し、弱吹き側に下降するように液鋼を流動させ、真空室と取鍋での液鋼の循環流を駆動させると共に、一側に強吹き、他の側に弱吹き、真空室の液鋼面における取鍋スラグが弱吹き側の領域に圧縮されて、真空室中の液鋼露出面が十分に大きいことを確保して、急速深さ脱炭の目的を達成し、(2)脱硫の期間において、ノズルがすべて強吹きであり、液鋼を浸漬管の周りより上昇し、中心領域より下降するように駆動させ、真空で取鍋スラグと溶鋼とを十分に混合することにより、液鋼の深さ脱硫を実現し、(3)精錬後期において、環流管の吹付け量を、一側に若干大きく、他の側にかなり小さいように調整して、溶鋼を真空室の表面スラグの混入なしに清浄循環を行うように制御するとともに、鋼の内の含有物が衝突し浮き上がって表面スラグに吸収されることを推進する。   When the straight barrel type vacuum refining apparatus according to the present invention is adopted, when the ladle bottom blowing is blocked, or when the ladle bottom blowing is stopped according to the smelting requirement, vacuum decarburization and desulfurization are not interrupted. Can still proceed normally. The principle is that a method of individually controlling the flow rate for each region is adopted for the nozzles arranged in the reflux pipe according to the present invention. In the refining method, (1) during the decarburization period, a large amount of gas is sprayed on one side of the reflux pipe and a small amount of gas is sprayed on the other side corresponding thereto. Ascending pipe and descending pipe similar to RH are formed, the liquid steel is flown so that it rises to the strong blowing side and descends to the weak blowing side, driving the circulating flow of liquid steel in the vacuum chamber and ladle Strong blow on one side, weak blow on the other side, ladle slag on the liquid steel surface of the vacuum chamber is compressed into the area on the weak blow side, ensuring that the exposed surface of the liquid steel in the vacuum chamber is sufficiently large And (2) during the desulfurization period, the nozzles are all blown strongly, and the liquid steel is driven to rise from around the dip tube and to fall from the central region, By thoroughly mixing ladle slag and molten steel under vacuum, liquid steel depth desulfurization is realized. In the latter period, the amount of spraying of the reflux pipe is adjusted to be slightly larger on one side and considerably smaller on the other side, and the molten steel is controlled so as to perform clean circulation without contamination of the surface slag in the vacuum chamber, It promotes that the contents of steel collide and float and are absorbed by the surface slag.

従来の技術と比べると、本発明の目的は、直胴型真空精錬装置を提供することにある。これは、従来の特許出願に公開された単一ノズル付き精錬炉に脱炭と脱硫の効果を確保するために、浸漬管を液鋼へ挿入する前にスラグを排出して、真空室への取鍋頂部スラグをできるだけ少なくする必要があるので、取鍋の液鋼表面スラグ層ができるだけ薄く、つまり出鋼過程でのスラグ発生量ができるだけ少なく、さらにスラグが発生しないように要求される問題を解決するためである。本発明には、浸漬管の周方向に設置される環流管での段階的に個別制御されるノズルにより、真空精錬過程での異なる段階に応じて異なる吹き組合せで、真空室の液鋼面におけるスラグの状態を制御し、つまり環流管での段階的に制御されるノズルの吹付け流量を調整することにより、脱炭の期間において、取鍋スラグを一側へ吹き分かれ又は中心へ吹き分かれて、液鋼面を十分に露出させ、液鋼の表面の高酸化性スラグ中の酸素を十分に利用して深さ脱炭をより行い、脱硫の期間において、固定量の石灰とアルミペレット(又は予溶精錬スラグ)を入れて真空室液鋼面における頂部スラグと反応させてカルシウム−アルミニウム系脱硫スラグ系を生成し、真空室での液鋼と頂部スラグと十分に接触反応させて、真空下の深さ脱硫を行う。このため、本発明は取鍋頂部スラグ厚さに対する要求がないだけでなく、浸漬管を溶鋼に挿入する前に液鋼の表面スラグをできるだけ浸漬管に覆い込んで、頂部スラグを十分に利用して深さ脱炭と深さ脱硫を行うことが理想である。また、従来の特許出願に公開された単一ノズル付き精錬炉及びRHには、フッ素の含有量が高い(30%CaF)脱硫剤を採用する必要があるので、脱硫剤の浸漬管と真空室の下部溝の耐火材への侵食がひどく、その寿命が大いに短縮される問題を解決するためである。さらに、従来の特許出願に公開された単一ノズル付き精錬炉は、取鍋底吹き素子に塞ぎが発生した場合、全体の真空精錬過程が進行されなく、生産が中断される問題を解決するためである。 Compared to the prior art, an object of the present invention is to provide a straight body type vacuum refining apparatus. In order to ensure the effect of decarburization and desulfurization in a single nozzle refining furnace published in a conventional patent application, the slag is discharged before inserting the dip tube into the liquid steel, Since the ladle top slag needs to be reduced as much as possible, the liquid steel surface slag layer of the ladle is as thin as possible, that is, the amount of slag generated in the steelmaking process is as low as possible, and there is a problem that slag is not generated. This is to solve the problem. In the present invention, nozzles that are individually controlled step by step in a circulating pipe installed in the circumferential direction of the dip tube, with different blowing combinations according to different stages in the vacuum refining process, on the liquid steel surface of the vacuum chamber By controlling the slag state, that is, adjusting the spray flow rate of the nozzle controlled in stages in the reflux pipe, the ladle slag is blown to one side or blown to the center during the decarburization period. The surface of the liquid steel is sufficiently exposed, and the oxygen in the high-oxidation slag on the surface of the liquid steel is fully utilized for depth decarburization. During the desulfurization period, a fixed amount of lime and aluminum pellets (or Pre-melting slag) is added and reacted with the top slag on the surface of the vacuum chamber liquid steel to produce a calcium-aluminum desulfurization slag system, and the liquid steel in the vacuum chamber and the top slag are fully contacted and reacted under vacuum. Desulfurization of depth. For this reason, the present invention not only has no requirement for ladle top slag thickness, but also fully covers the top slag by covering the surface slag of the liquid steel as much as possible before inserting the dip pipe into the molten steel. It is ideal to perform depth decarburization and depth desulfurization. In addition, in a smelting furnace with a single nozzle and RH disclosed in a conventional patent application, it is necessary to employ a desulfurizing agent having a high fluorine content (30% CaF 2 ). This is to solve the problem that the erosion of the lower groove of the chamber is severely eroded and the lifetime is greatly shortened. Furthermore, the single-nozzle refining furnace disclosed in the conventional patent application solves the problem that the entire vacuum refining process does not proceed and the production is interrupted when the ladle bottom blowing element is blocked. is there.

以下、添付図面を参照しながら本発明を詳細に説明する。
図1は直胴型真空精錬装置の構成を示す模式図である。 図2は図1のA−A線の断面図である。 図3は図1のB−B線の断面図である。図1では、1 頂槍、2 真空引きシステム、4 供給装置、5 真空室、6 接続フランジ、7 浸漬管、8 環流管、9 取鍋、10 取鍋偏心底吹きアルゴンパージングプラグ、11 取鍋車であり、図2では、13 浸漬管の大円弧面、15 浸漬管の小円弧面であり、図3では、12 取鍋の測温サンプリング点である。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing the configuration of a straight body type vacuum refining apparatus. 2 is a cross-sectional view taken along line AA of FIG. 3 is a cross-sectional view taken along line BB in FIG. In FIG. 1, 1 top bowl, 2 vacuuming system, 4 feeding device, 5 vacuum chamber, 6 connection flange, 7 dip pipe, 8 reflux pipe, 9 ladle, 10 ladle eccentric bottom blown argon purging plug, 11 ladle In FIG. 2, a large arc surface of 13 dip tube and a small arc surface of 15 dip tube in FIG. 2, and a temperature measurement sampling point of 12 ladle in FIG. 3.

実施例1
図1、図2、図3から、直胴型真空精錬装置は、主に真空室5、浸漬管7、取鍋9及び取鍋車11により構成され、真空室と浸漬管とがフランジ6により接続され、浸漬管が取鍋の真上に位置され、取鍋が取鍋車上に位置されることが知られる。浸漬管の周りに、液鋼に不活性ガスを吹き込んで多様な機能を実現するための環流管8が設置され、環流管が浸漬管の上方に位置され、浸漬管と垂直の方向に1つの層の環流管が設置され、環流管におけるノズルが同じ中心角で分布され、ノズル間の中心角が10°〜30°であり、あるいは、環流管におけるノズルが同じ距離で分布され、ノズルの数が8〜30個である。取鍋底部の偏心位置に底部パージングプラグ10が設置され、アルゴンガスがパージングプラグを介して液鋼に入る。
Example 1
1, 2, and 3, the straight body type vacuum refining apparatus mainly includes a vacuum chamber 5, a dip tube 7, a ladle 9, and a ladle car 11, and the vacuum chamber and the dip tube are connected by a flange 6. It is known that the dip tube is connected and located directly above the ladle and the ladle is located on the ladle car. Around the dip tube, a recirculation tube 8 for realizing various functions by injecting an inert gas into the liquid steel is installed. The recirculation tube is positioned above the dip tube, and one is perpendicular to the dip tube. The laminar reflux tubes are installed, the nozzles in the reflux tubes are distributed at the same central angle, the central angles between the nozzles are 10 ° to 30 °, or the nozzles in the reflux tube are distributed at the same distance, the number of nozzles Is 8-30. A bottom purging plug 10 is installed at an eccentric position at the bottom of the ladle, and argon gas enters the liquid steel through the purging plug.

溶鋼精錬の際に、取鍋9を取鍋車11の上まで吊り上げ、取鍋車を処理の持ち場に進入させ、浸漬管7を溶鋼に挿入するように取鍋を押し上げ、真空引きシステム2を起動して真空引きを行い、パージングプラグ10からアルゴンガスを吹き込むと同時に、環流管8を開いて溶鋼へアルゴンガスを吹き込み、吹き込まれるアルゴンガスの流量と圧力が必要に応じて調整されてもよく、測温サンプリング手段12が測温サンプリング操作を行い、成分と温度が要求に満たす場合、真空解除を行って、取鍋を本来の位置に戻させ、真空処理による精錬過程を終了する。   During the refining of the molten steel, the ladle 9 is lifted over the ladle 11, the ladle is moved into the processing place, the ladle is pushed up so that the dip tube 7 is inserted into the molten steel, and the vacuum system 2 is installed. Start up, evacuate, and blow argon gas from the purging plug 10, and at the same time open the reflux tube 8 to blow argon gas into the molten steel, and the flow rate and pressure of the blown argon gas may be adjusted as necessary. When the temperature measurement sampling means 12 performs the temperature measurement sampling operation and the components and the temperature satisfy the requirements, the vacuum is released, the ladle is returned to the original position, and the refining process by the vacuum processing is finished.

実施例2
図1、図2、図3から、直胴型真空精錬装置は、主に真空室5、浸漬管7、取鍋9及び取鍋車11により構成され、真空室と浸漬管とがフランジ6により接続され、浸漬管が取鍋の真上に位置され、取鍋が取鍋車上に位置されることが知られる。真空室上に原料を添加する供給装置4が設置され、真空引きシステム2が真空引きを担い、頂槍1が酸素を吹付ける。浸漬管の周りに、液鋼に不活性ガスを吹き込んで多様な機能を実現ための環流管8が設置され、環流管が浸漬管の上方に位置され、脱酸素と脱硫効率を向上するために、浸漬管と垂直の方向に二つの層の環流管が設置され、各環流管におけるノズルが同じ距離で分布され、各層におけるノズルの数が6〜15個であり、且つ上下層におけるノズルが交互に配列される。浸漬管と垂直の方向には、各環流管におけるノズルが同じ距離で分布され、各層におけるノズルの数が6〜12個であり、隣接するノズルが交互に配列され、各層が150mm〜400mmの同じ距離で分布される。最も下の1つの層の前記環流管の浸漬管の底部からの距離が100mm〜500mmであるように、三つの層の環流管も設置されてもよい。取鍋底部の偏心位置に底部パージングプラグ10が設置され、アルゴンガスがパージングプラグを介して液鋼に入る。
Example 2
1, 2, and 3, the straight body type vacuum refining apparatus mainly includes a vacuum chamber 5, a dip tube 7, a ladle 9, and a ladle car 11, and the vacuum chamber and the dip tube are connected by a flange 6. It is known that the dip tube is connected and located directly above the ladle and the ladle is located on the ladle car. A supply device 4 for adding raw materials is installed on the vacuum chamber, the vacuum system 2 is responsible for vacuuming, and the top 1 is sprayed with oxygen. In order to improve the deoxygenation and desulfurization efficiency, a recirculation pipe 8 is installed around the dip pipe to realize various functions by blowing an inert gas into the liquid steel. Two layers of reflux tubes are installed in the direction perpendicular to the dip tube, the nozzles in each reflux tube are distributed at the same distance, the number of nozzles in each layer is 6 to 15, and the nozzles in the upper and lower layers are alternated Arranged. In the direction perpendicular to the dip tube, the nozzles in each reflux tube are distributed at the same distance, the number of nozzles in each layer is 6 to 12, the adjacent nozzles are alternately arranged, and each layer is the same 150 mm to 400 mm Distributed by distance. Three layers of reflux tubes may also be installed such that the distance of the bottom layer of the reflux tube from the bottom of the dip tube is 100 mm to 500 mm. A bottom purging plug 10 is installed at an eccentric position at the bottom of the ladle, and argon gas enters the liquid steel through the purging plug.

溶鋼精錬の際に、取鍋9を取鍋車11の上まで吊り上げ、取鍋車を処理の持ち場に進入させ、浸漬管7を溶鋼に挿入するように取鍋を押し上げ、真空引きシステム2を起動して真空引きを行い、パージングプラグ10からアルゴンガスを吹き込むと同時に、環流管8を開いて溶鋼へアルゴンガスを吹き込み、吹き込まれるアルゴンガスの流量と圧力が必要に応じで調整されてもよく、測温サンプリング手段12が測温サンプリング操作を行い、精錬過程に鋼種の要求に応じて供給装置4を介して必要な合金又はスラグを入れて、成分と温度が要求に満たす場合、真空解除を行って、取鍋を本来の位置に戻させ、真空処理による精錬過程を終了する。   During the refining of the molten steel, the ladle 9 is lifted over the ladle 11, the ladle is moved into the processing place, the ladle is pushed up so that the dip tube 7 is inserted into the molten steel, and the vacuum system 2 is installed. Start up, evacuate, and blow argon gas from the purging plug 10, and at the same time open the reflux tube 8 to blow argon gas into the molten steel, and the flow rate and pressure of the blown argon gas may be adjusted as necessary. Then, the temperature measuring sampling means 12 performs the temperature measuring sampling operation, puts the necessary alloy or slag through the supply device 4 according to the requirements of the steel type in the refining process, and releases the vacuum when the components and temperature meet the requirements. Go to return the ladle to its original position and finish the refining process by vacuum treatment.

実施例3
精錬装置に係る他の構成は実施例1、2と同じであるが、脱炭効率をさらに向上するために、環流管における同層のノズル2〜6を一組として個別制御する。
Example 3
Although the other structure which concerns on a refining apparatus is the same as Example 1, 2, in order to improve a decarburization efficiency further, the nozzles 2-6 of the same layer in a reflux pipe are individually controlled as a set.

溶鋼精錬の際に、取鍋9を取鍋車11の上まで吊り上げ、取鍋車を処理の持ち場に進入させ、浸漬管7を溶鋼に挿入するように取鍋を押し上げ、真空引きシステム2を開いて真空引きを行い、パージングプラグ10からアルゴンガスを吹き込むと同時に、環流管8を開いてアルゴンガスを溶鋼に吹き込み、吹き込まれるアルゴンガスの流量と圧力が必要に応じて調整されてもよく、脱炭の期間において、底吹きとその同側の環流管が強吹きであり、他の側の環流管が弱吹きであり、脱硫の期間において、底吹きが強吹きであり、浸漬管の周囲の環流管がすべて弱吹きであり、測温サンプリング手段12が測温サンプリング操作を行い、精錬過程に鋼種の要求に応じて供給装置4を介して必要な合金又はスラグを入れて、成分と温度が要求に満たす場合、真空解除を行って、取鍋を本来の位置に戻させ、真空処理による精錬過程を終了する。   During the refining of the molten steel, the ladle 9 is lifted over the ladle 11, the ladle is moved into the processing place, the ladle is pushed up so that the dip tube 7 is inserted into the molten steel, and the vacuum system 2 is installed. Open and evacuate and blow argon gas from the purging plug 10 and simultaneously open the reflux tube 8 to blow argon gas into the molten steel, and the flow rate and pressure of the blown argon gas may be adjusted as necessary. In the decarburization period, the bottom blow and the reflux pipe on the same side are strong blow, the other side of the reflux pipe is weak blow, and in the desulfurization period, the bottom blow is strong blow, and the reflux pipe around the dip pipe The temperature measurement sampling means 12 performs the temperature measurement sampling operation, puts the necessary alloy or slag through the supply device 4 in accordance with the requirements of the steel type in the refining process, and the components and temperature satisfy the requirements. If, performing vacuum released, allowed to return to ladle in situ, and ends the refining process by a vacuum process.

実施例4
精錬装置に係る他の構成は実施例1、2又は3と同じであるが、精錬過程での測温、サンプリング操作のために、前記浸漬管は、大円弧13(弧ABC)と小円弧15(弧ADC)との両部分により構成される横断面形状が略円形のものであり、大円弧の半径R1が真空室と同じ、小円弧の半径R2が真空室より大きく、大円弧と小円弧との半径の比が1:1〜∞である。パージングプラグ10の大円弧13中心からの距離rと大円弧半径R1との比が0.2〜0.7である。
Example 4
Although the other structure which concerns on a refining apparatus is the same as Example 1, 2, or 3, for the temperature measurement and sampling operation in a refining process, the said dip tube is large arc 13 (arc ABC) and small arc 15 (Arc ADC) and the cross-sectional shape constituted by both parts are substantially circular, the radius R1 of the large arc is the same as the vacuum chamber, the radius R2 of the small arc is larger than the vacuum chamber, the large arc and the small arc And the ratio of the radii is 1: 1 to ∞. The ratio of the distance r from the center of the large arc 13 of the purging plug 10 to the large arc radius R1 is 0.2 to 0.7.

溶鋼精錬の際に、取鍋9を取鍋車11の上まで吊り上げ、取鍋車を処理の持ち場に進入させ、浸漬管7を溶鋼に挿入するように取鍋を押し上げ、真空引きシステム2を開いて真空引きを行い、パージングプラグ10からアルゴンガスを吹き込むと同時に、環流管8を開いてアルゴンガスを溶鋼に吹き込み、吹き込まれるアルゴンガスの流量と圧力が必要に応じて調整されてもよく、脱炭の期間において、底吹きとその同側の環流管が強吹きであり、他の側の環流管が弱吹きであり、脱硫の期間において、底吹きが強吹きであり、浸漬管の周囲の環流管がすべて弱吹きであり、測温サンプリング手段12が測温サンプリング操作を行い、精錬過程に鋼種の要求に応じて供給装置4を介して必要な合金又はスラグを入れて、成分と温度が要求に満たす場合、真空解除を行って、取鍋を本来の位置に戻させ、真空処理による精錬過程を終了する。   During the refining of the molten steel, the ladle 9 is lifted over the ladle 11, the ladle is moved into the processing place, the ladle is pushed up so that the dip tube 7 is inserted into the molten steel, and the vacuum system 2 is installed. Open and evacuate and blow argon gas from the purging plug 10 and simultaneously open the reflux tube 8 to blow argon gas into the molten steel, and the flow rate and pressure of the blown argon gas may be adjusted as necessary. In the decarburization period, the bottom blow and the reflux pipe on the same side are strong blow, the other side of the reflux pipe is weak blow, and in the desulfurization period, the bottom blow is strong blow, and the reflux pipe around the dip pipe The temperature measurement sampling means 12 performs the temperature measurement sampling operation, puts the necessary alloy or slag through the supply device 4 in accordance with the requirements of the steel type in the refining process, and the components and temperature satisfy the requirements. If, performing vacuum released, allowed to return to ladle in situ, and ends the refining process by a vacuum process.

実施例5
取鍋底部の偏心パージングプラグ吹きに塞ぎが発生した場合、又は溶錬の要求に応じて取鍋底吹きを中止する場合、以下のような精錬方法を使う:
(1)溶鋼精錬の際に、取鍋9を取鍋車11の上まで吊り上げ、取鍋車を直胴型真空精錬装置の処理持ち場へ進入させ、浸漬管における取鍋底吹きと同側の半周の領域が3組に分かれて個別に流量メータで制御される環流管の吹付け量が同じ、合計の吹付け流量が鋼1トン当たり13NL/minに制御され、それに対向する側の半円の領域が3組に分かれて個別に流量メータ制御される環流管の吹付け量が同じ、環流管の合計の吹付け流量が鋼1トンあたり7NL/minに制御され、
(2)浸漬管を挿入深さ400mmで溶鋼に挿入すると同時に、3minの後で真空度を73Paに低下するように真空引きを行う。真空室の撮影画像により真空室の液鋼面における頂部スラグを観察して、浸漬管での取鍋底吹きと同側の環流管の合計の吹付け流量を鋼1トンあたり18NL/minまで調整し、
(3)10minの脱炭の後、浸漬管における個別に流量メータで制御されるすべての環流管の吹付け量も同じように調整させ、合計の流量を鋼1トンあたり28Nl/minに制御し、
(4)15minの脱炭が完了すると、供給装置4を介して脱酸素剤として鋼1トンあたりアルミペレット2.4kgを添加し、3minの後、サンプリング位置12に酸素量の固定を行い、溶鋼の活性酸素が0.32ppmである。吹き付け槍により鋼1トンあたり石灰6.08kgを吹付け、
(5)6minの石灰の吹付けを完了すると、浸漬管における環流管の吹付け流量を小さく調整して、取鍋底吹きと同側の半周の領域が3組に分かれて個別に流量メータで制御される環流管の吹付け量が同じ、合計の吹付け流量を鋼1トンあたり15NL/minまで調整し、それに対向する側の半周の領域が3組に分かれて個別に流量メータで制御される環流管の吹付け量が同じ、環流管の合計の吹付け流量を鋼1トンあたり5NL/minまで調整し、溶鋼が6min循環した後、取鍋底吹きを閉じて、真空解除を行い、サンプリング位置12でサンプリング測温を行う。
Example 5
Use the following refining method when the clogging of the eccentric purging plug at the bottom of the ladle occurs or when the bottom of the ladle is stopped as required by smelting:
(1) At the time of molten steel refining, the ladle 9 is lifted to the top of the ladle car 11, and the ladle car is entered into the processing place of the straight barrel type vacuum refining equipment, and the half circumference on the same side as the ladle bottom blowing in the dip pipe The flow rate of the recirculation pipe controlled by the flow meter is divided into three groups, and the total spray flow rate is controlled to 13 NL / min per 1 ton of steel. The area is divided into 3 groups and the flow rate of the return pipes individually controlled by the flow meter is the same. The total flow rate of the return pipes is controlled to 7 NL / min per ton of steel,
(2) The dip tube is inserted into the molten steel at an insertion depth of 400 mm, and at the same time, vacuuming is performed so that the degree of vacuum is reduced to 73 Pa after 3 minutes. Observe the top slag on the liquid steel surface of the vacuum chamber from the image taken in the vacuum chamber, and adjust the total spraying flow rate of the ladle bottom on the dip tube and the same side of the reflux tube to 18 NL / min per ton of steel. ,
(3) After demineralization for 10 min, the spraying amount of all the recirculation pipes individually controlled by the flow meter in the dip pipe is adjusted in the same way, and the total flow rate is controlled to 28 Nl / min per ton of steel. ,
(4) When demineralization for 15 min is completed, 2.4 kg of aluminum pellets per ton of steel is added as a deoxidizer via the supply device 4, and after 3 min, the oxygen amount is fixed at the sampling position 12, and the molten steel The active oxygen is 0.32 ppm. Spraying 08.08kg of lime per ton of steel with a sprayer,
(5) When 6 minutes of lime spraying is completed, the flow rate of the circulating pipe in the dip tube is adjusted to be small, and the half-circumference area on the same side as the ladle bottom blowing is divided into three groups and individually controlled by a flow meter. The total spraying flow rate is adjusted to 15 NL / min per ton of steel, and the half-circumferential region on the opposite side is divided into three groups and individually controlled by a flow meter. Adjust the total flow rate of the return pipe to the same flow rate of the return pipe to 5 NL / min per ton of steel. After the molten steel circulates for 6 minutes, close the ladle bottom blow, release the vacuum, and then the sampling position. 12 to measure the temperature.

実施の効果:
ある製鋼工場で、86炉の取鍋底吹きと浸漬管での環流管の吹付けとの組合せによる吹付け精錬試験及び23炉の浸漬管での環流管の吹付けだけによる精錬試験を実行し、試験結果が以下の通りである。
Effect of implementation:
At a steelmaking factory, a refining test was conducted by combining the ladle bottom blowing of 86 furnace and the recirculation pipe spraying with a dip pipe, and a refining test by simply spraying the recirculation pipe with a dip pipe of 23 furnaces, The test results are as follows.

86炉の取鍋底吹きと浸漬管での環流管の吹付けとの組合せによる吹付け試験の結果は、直胴型真空精錬装置に入る前に初期液鋼での活性酸素(a[O])が0.0459〜0.0823%の間にあり、平均が0.0589%であり、[C]が0.025〜0.050%の間にあり、平均が0.032%であり、[S]が0.004〜0.009%の間にあり、平均が0.0069%であり、直胴型真空精錬装置における真空精錬30〜45min(平均が39min)の精錬周期の中に、鋼1トンあたりの石灰添加量が3〜8kg/t−1であり、平均が5.32 kg/t−1であり、鋼1トンあたりのアルミペレット添加量が0.8〜3.1 kg/t−1であり、平均が1.78 kg/t−1であり、真空精錬終期の液鋼[C]が0.0005〜0.0011%の間にあり、平均が0.0008%であり、液鋼[S]の含有量が0.0008〜0.0021%であり、平均が0.0013%であり、脱硫率が73〜87%であり、平均脱硫率が81.1%に達する。 The result of the spray test by combining the ladle bottom spray of 86 furnace and the spray pipe in the dip tube shows that the active oxygen (a [O]) in the initial liquid steel before entering the straight barrel vacuum refining equipment Is between 0.0459 and 0.0823%, the average is 0.0589%, [C] is between 0.025 and 0.050%, the average is 0.032%, S] is between 0.004 and 0.009%, the average is 0.0069%, and during the refining cycle of vacuum refining 30 to 45 min (average is 39 min) in the straight body vacuum refining equipment, 1 lime per ton is 3~8kg / t -1, the average is 5.32 kg / t -1, aluminum pellets amount per steel 1 ton from .8 to 3.1 kg / t −1 , the average is 1.78 kg / t −1 , and the liquid steel [C] at the end of vacuum refining is 0 .0005 to 0.0011%, the average is 0.0008%, the content of the liquid steel [S] is 0.0008 to 0.0021%, and the average is 0.0013%, The desulfurization rate is 73 to 87%, and the average desulfurization rate reaches 81.1%.

23炉の浸漬管での環流管の吹付けによる試験結果は、直胴型真空精錬装置に入る前に初期液鋼中の活性酸素(a[O])が0.0572〜0.0792%の間にあり、平均が0.0578%であり、[C]が0.023〜0.048%の間にあり、平均が0.031%、[S]が0.005〜0.008%の間にあり、平均が0.0062%であり、直胴型真空精錬装置における真空精錬30〜45min(平均が42min)の精錬周期の中に、鋼1トンあたりの石灰添加量が3〜8kg/t−1であり、平均が5.64 kg/t−1、鋼1トンあたりのアルミペレット添加量が1.1〜3.2 kg/t−1であり、平均が1.92 kg/t−1であり、真空精錬終期の液鋼[C]が0.0007〜0.0013%の間にあり、平均が0.0009%であり、液鋼[S]の含有量が0.0007〜0.0025%であり、平均が0.0014%であり、脱硫率が69〜82%であり、平均脱硫率が75.2%に達する。 The test result by spraying the reflux tube in the 23 dip tube shows that the active oxygen (a [O]) in the initial liquid steel is 0.0572 to 0.0792% before entering the straight barrel type vacuum refining equipment. The average is 0.0578%, [C] is between 0.023 and 0.048%, the average is 0.031%, and [S] is 0.005 to 0.008%. The average is 0.0062%, and the amount of lime added to 1 ton of steel is 3-8 kg / t in the refining cycle of vacuum refining 30-45 min (average is 42 min) in the straight body type vacuum refining equipment. t −1 , the average is 5.64 kg / t −1 , the added amount of aluminum pellets per ton of steel is 1.1 to 3.2 kg / t −1 , and the average is 1.92 kg / t is -1, vacuum refining end of the liquid steel [C] is between .0007 to .0013%, Rights Is 0.0009%, the content of liquid steel [S] is 0.0007 to 0.0025%, the average is 0.0014%, the desulfurization rate is 69 to 82%, and the average desulfurization rate Reaches 75.2%.

Claims (7)

精錬前に液鋼表面のスラグを浸漬管に覆い込み、浸漬管の周方向に設置される環流管での段階的に個別制御されるノズルにより、真空精錬過程での異なる段階に応じて異なる吹き組合せで、真空室の液鋼面におけるスラグの状態を制御し、頂部スラグを十分に利用して深さ脱炭と深さ脱硫を行い、脱炭の期間において、取鍋スラグを一側へ吹き分かれ又は中心へ吹き分かれて、液鋼面を十分に露出させ、液鋼の表面の高酸化性スラグ中の酸素を十分に利用して深さ脱炭をより行い、脱硫の期間において、固定量の石灰とアルミペレット又は予溶精錬スラグを入れて真空室液鋼面における頂部スラグと反応させてカルシウム−アルミニウム系脱硫スラグ系を生成し、真空室での液鋼と頂部スラグとを十分に接触反応させて、真空下の深さ脱硫を行い、前記吹き組合せは、真空精錬過程において、取鍋底部に当該取鍋底部中心から偏心して配置された偏心パージングプラグと浸漬管環流管との複合吹付けモードを採用し、脱炭の期間において、底吹きとその同側の環流管が強吹きであり、他の側の環流管がその強吹きよりも弱い弱吹きであり、脱硫の期間において、底吹きが強吹きであり、浸漬管の周囲の環流管がすべて弱吹きであり、精錬後期において、環流管ガス量と底吹付け量を小さく調整させ、溶鋼を真空室の表面スラグの混入なしに清浄循環を行うように制御するとともに、鋼内の含有物が衝突し浮き上がって表面スラグに吸収されることを推進することを特徴とする真空精錬方法。   Before refining, the slag on the surface of the liquid steel is covered with a dip tube, and nozzles that are individually controlled step by step in a circulating pipe installed in the circumferential direction of the dip tube are blown at different stages in the vacuum refining process. The combination controls the state of the slag on the liquid steel surface in the vacuum chamber, makes full use of the top slag, performs depth decarburization and depth desulfurization, and blows ladle slag to one side during the decarburization period. Divided or blown to the center, the liquid steel surface is fully exposed, oxygen in the highly oxidizing slag on the surface of the liquid steel is fully utilized for depth decarburization, and during the desulfurization period, a fixed amount Lime and aluminum pellets or pre-melting slag are added to react with the top slag on the vacuum chamber liquid steel surface to produce a calcium-aluminum desulfurization slag system, and the liquid steel in the vacuum chamber and the top slag are in full contact React and depth desulfurization under vacuum In the vacuum refining process, the blowing combination employs a combined blowing mode of an eccentric purging plug and a dip pipe reflux pipe arranged eccentrically from the center of the ladle bottom in the ladle bottom, and during the decarburization period. The bottom blow and the reflux pipe on the same side are strong blow, the other side of the reflux pipe is weaker than the strong blow, and during the desulfurization period, the bottom blow is strong blow and the reflux around the dip pipe All the pipes are weakly blown, and in the latter stage of refining, the circulating pipe gas amount and bottom blowing amount are adjusted to be small, and the molten steel is controlled to perform clean circulation without mixing the surface slag in the vacuum chamber. A vacuum refining method characterized by promoting that an object collides, floats and is absorbed by a surface slag. 精錬前に液鋼表面のスラグを浸漬管に覆い込み、浸漬管の周方向に設置される環流管での段階的に個別制御されるノズルにより、真空精錬過程での異なる段階に応じて異なる吹き組合せで、真空室の液鋼面におけるスラグの状態を制御し、頂部スラグを十分に利用して深さ脱炭と深さ脱硫を行い、脱炭の期間において、取鍋スラグを一側へ吹き分かれ又は中心へ吹き分かれて、液鋼面を十分に露出させ、液鋼の表面の高酸化性スラグ中の酸素を十分に利用して深さ脱炭をより行い、脱硫の期間において、固定量の石灰とアルミペレット又は予溶精錬スラグを入れて真空室液鋼面における頂部スラグと反応させてカルシウム−アルミニウム系脱硫スラグ系を生成し、真空室での液鋼と頂部スラグとを十分に接触反応させて、真空下の深さ脱硫を行い、真空精錬の途中、取鍋底吹きに塞ぎが発生した場合、又は溶錬の要求に応じて取鍋底吹きを中止する場合、前記吹き組合せは、
(1)脱炭の期間において、環流管の一側に大ガス量で吹付け、それに対応する他の側にその大ガス量よりも少ない小ガス量で吹付けるので、それらの二つの半周の領域にRHと類似する上昇管と下降管が形成され、強吹き側に上昇し、その強吹きよりも弱い弱吹き側に下降するように液鋼を流動させ、真空室と取鍋での溶鋼の循環流を駆動させ、また、一側に強吹きであり、他の側に弱吹きであるので、真空室の液鋼面における取鍋スラグが弱吹き側の領域に圧縮されて、真空室中の液鋼の露出面が十分に大きいことを確保して、急速深さ脱炭の目的を達成し、
(2)脱硫の期間において、ノズルがすべて強吹きであり、液鋼を浸漬管の周りより上昇し、中心領域より下降するように駆動させ、真空で取鍋スラグと溶鋼とを十分に混合することにより、液鋼の深さ脱硫を実現し、
(3)精錬後期において、環流管の吹付け量を、一側に若干大きく、他の側にかなり小さいように調整して、溶鋼を真空室の表面スラグの混入なしに循環を行うように制御すると共に、鋼内の含有物が衝突し浮き上がって表面スラグに吸収されることを推進するようにすることを特徴とする真空精錬方法。
Before refining, the slag on the surface of the liquid steel is covered with a dip tube, and nozzles that are individually controlled step by step in a circulating pipe installed in the circumferential direction of the dip tube are blown at different stages in the vacuum refining process. The combination controls the state of the slag on the liquid steel surface in the vacuum chamber, makes full use of the top slag, performs depth decarburization and depth desulfurization, and blows ladle slag to one side during the decarburization period. Divided or blown to the center, the liquid steel surface is fully exposed, oxygen in the highly oxidizing slag on the surface of the liquid steel is fully utilized for depth decarburization, and during the desulfurization period, a fixed amount Lime and aluminum pellets or pre-melting slag are added to react with the top slag on the vacuum chamber liquid steel surface to produce a calcium-aluminum desulfurization slag system, and the liquid steel in the vacuum chamber and the top slag are in full contact React and depth desulfurization under vacuum There, during the vacuum refining, preparative if pan bottom blown in closing occurs, or to cancel the blow pan bottom preparative depending on the smelting request, the blown combinations,
(1) During the decarburization period, one side of the reflux pipe is sprayed with a large amount of gas, and the other side corresponding thereto is sprayed with a small amount of gas smaller than the large amount of gas. An ascending pipe and a descending pipe similar to RH are formed in the region, the liquid steel is flown so that it rises to the strong blowing side and descends to the weak blowing side that is weaker than the strong blowing, and the molten steel in the vacuum chamber and ladle In addition, the ladle slag on the liquid steel surface of the vacuum chamber is compressed into the region on the weakly blown side, so that it is strongly blown on one side and weakly blown on the other side. Ensure that the exposed surface of the liquid steel is large enough to achieve the purpose of rapid depth decarburization,
(2) During the desulfurization period, all nozzles are blown strongly, and the liquid steel is driven to rise from around the dip tube and descend from the central region, and the ladle slag and molten steel are sufficiently mixed by vacuum. Realizes depth desulfurization of liquid steel,
(3) In the latter stage of refining, the amount of spraying of the reflux pipe is adjusted to be slightly larger on one side and considerably smaller on the other side, and the molten steel is controlled to circulate without mixing the surface slag in the vacuum chamber. And a vacuum refining method characterized in that the inclusion in the steel collides, floats and is absorbed by the surface slag.
真空室と、真空精錬の時に取鍋での溶鋼に挿入される浸漬管とを含む直胴型真空精錬装置であって、前記浸漬管の周方向に環流管が設置され、アルゴンガスが環流管の内壁におけるノズルを介して浸漬管へ吹き込まれ、前記環流管が複数の層に設置され、同層の環流管におけるノズルが個別制御され、前記取鍋の底部に、前記取鍋の底部中心から偏心した偏心パージングプラグが設置され、アルゴンガスが偏心パージングプラグを通じて取鍋に吹き込まれ、取鍋底吹きと環流管吹付けシステムの各の個別制御ユニットでの異なる吹きとの流量の組合せによって、取鍋と真空室との間の溶鋼の循環流を駆動させ、前記浸漬管外径と前記取鍋内径との間の距離が100mm〜400mmである直胴型真空精錬装置を使用したことを特徴とする請求項1または2に記載の真空精錬方法。 A straight barrel type vacuum refining apparatus including a vacuum chamber and a dip tube inserted into molten steel in a ladle at the time of vacuum refining, wherein a reflux tube is installed in the circumferential direction of the dip tube, and argon gas is returned to the reflux tube. It is blown into the dip pipe through the nozzle in the inner wall of the slab, the reflux pipe is installed in a plurality of layers, the nozzles in the reflux pipe of the same layer are individually controlled, and from the bottom center of the ladle to the bottom of the ladle An eccentric eccentric purging plug is installed, argon gas is blown into the ladle through the eccentric purging plug, and the combination of the flow rate of the ladle bottom blowing and the different blowing in each individual control unit of the reflux pipe spraying system A circulating flow of molten steel between the vacuum chamber and the dip tube outer diameter and the ladle inner diameter used a straight barrel type vacuum refining apparatus having a distance of 100 mm to 400 mm. Claim Vacuum refining method according to 1 or 2. 前記環流管は、前記環流管におけるノズルが同じ中心角で分布され、ノズル間の中心角が10°〜30°であり、あるいは、前記環流管におけるノズルが同じ距離で分布され、ノズルの数が8〜30個であるように1つの層に設置されることを特徴とする請求項3に記載の真空精錬方法In the reflux tube, the nozzles in the reflux tube are distributed at the same center angle, and the center angle between the nozzles is 10 ° to 30 °, or the nozzles in the reflux tube are distributed at the same distance, and the number of nozzles is The vacuum refining method according to claim 3, wherein the vacuum refining method is installed in one layer so that there are 8 to 30 pieces. 前記環流管は、各環流管におけるノズルが同じ距離で分布され、各層におけるノズルの数が6〜15個であり、また、上下層におけるノズルが交互に配列され、最も下の1つの層の前記環流管の浸漬管の底部からの距離が100mm〜500mmであるように二つの層に設置されることを特徴とする請求項3に記載の真空精錬方法In the reflux tube, the nozzles in each reflux tube are distributed at the same distance, the number of nozzles in each layer is 6 to 15, and the nozzles in the upper and lower layers are alternately arranged. The vacuum refining method according to claim 3, wherein the reflux pipe is installed in two layers so that the distance from the bottom of the dip pipe is 100 mm to 500 mm. 前記環流管は、各環流管におけるノズルが同じ距離で分布され、各層におけるノズルの数が6〜12個であり、隣接するノズルが交互に配列され、各層が150mm〜400mmの同じ距離で分布され、最も下の1つの層の前記環流管の浸漬管の底部からの距離が100mm〜500mmであるように三つの層に設置されることを特徴とする請求項3に記載の真空精錬方法In the reflux tube, nozzles in each reflux tube are distributed at the same distance, the number of nozzles in each layer is 6 to 12, adjacent nozzles are alternately arranged, and each layer is distributed at the same distance of 150 mm to 400 mm. The vacuum refining method according to claim 3, wherein the lowermost layer is installed in three layers such that the distance from the bottom of the dip tube of the reflux tube is 100 mm to 500 mm. 前記浸漬管は、大円弧と小円弧との両部分により構成される横断面形状が略円形のものであり、大円弧の半径が真空室と同じで、小円弧の半径が真空室より大きく、大円弧と小円弧との半径の比が1:1〜∞であることを特徴とする請求項3に記載の真空精錬方法The dip tube has a substantially circular cross-sectional shape composed of both a large arc and a small arc, the radius of the large arc is the same as the vacuum chamber, and the radius of the small arc is larger than the vacuum chamber, The vacuum refining method according to claim 3, wherein the ratio of the radius of the large arc to the small arc is 1: 1 to ∞.
JP2015527776A 2012-08-24 2013-08-20 Vacuum refining method Active JP6078154B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210302397.0A CN102816896B (en) 2012-08-24 Straight barrel type equipment for vacuum refining and using method thereof
CN201210302397.0 2012-08-24
PCT/CN2013/081890 WO2014029325A1 (en) 2012-08-24 2013-08-20 Straight barrel type vacuum refining device and method for use the same

Publications (2)

Publication Number Publication Date
JP2015526598A JP2015526598A (en) 2015-09-10
JP6078154B2 true JP6078154B2 (en) 2017-02-08

Family

ID=47301340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015527776A Active JP6078154B2 (en) 2012-08-24 2013-08-20 Vacuum refining method

Country Status (7)

Country Link
US (1) US9809868B2 (en)
EP (1) EP2889385B1 (en)
JP (1) JP6078154B2 (en)
BR (1) BR112015003817A2 (en)
ES (1) ES2666848T3 (en)
PL (1) PL2889385T3 (en)
WO (1) WO2014029325A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793734B (en) * 2020-06-29 2023-11-17 洛阳利尔功能材料有限公司 3D printing air brick and preparation method thereof
CN112646954B (en) * 2020-11-23 2022-12-13 首钢集团有限公司 RH refining method for improving removal rate of ultra-low carbon steel inclusions
CN115026273B (en) * 2022-06-16 2023-10-13 莱芜钢铁集团银山型钢有限公司 Ladle argon blowing nozzle pocket brick and argon blowing metallurgical method thereof
CN117604311B (en) * 2024-01-24 2024-04-19 北京航空航天大学 Aluminum alloy rotary blowing refining method based on three-channel rotor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252110A (en) * 1975-10-24 1977-04-26 Nippon Steel Corp Equipment for refining molten metal outside furnace
JPH04325622A (en) * 1991-04-26 1992-11-16 Nippon Steel Corp Production of ultralow carbon steel
JPH0649528A (en) 1992-08-05 1994-02-22 Nippon Steel Corp Vacuum decarburization refining method of extra-low carbon steel
JPH0741834A (en) 1993-06-28 1995-02-10 Nippon Steel Corp Method for vacuum-refining molten steel having high circulating flow characteristic
JPH0754034A (en) * 1993-08-18 1995-02-28 Nippon Steel Corp Production of ultralow carbon steel
JPH08120324A (en) * 1994-10-25 1996-05-14 Sumitomo Metal Ind Ltd Apparatus and method for vacuum-refining molten steel
US5603749A (en) * 1995-03-07 1997-02-18 Bethlehem Steel Corporation Apparatus and method for vacuum treating molten steel
CN2432219Y (en) 2000-06-09 2001-05-30 北京科技大学 Multifunctional multiple blowing single nozzle refining furnace
CN101302571A (en) 2008-07-03 2008-11-12 山西太钢不锈钢股份有限公司 Method for improving circular flow of single snorkel refining furnace
CN101792845B (en) 2009-11-20 2012-10-03 北京科大三泰科技发展有限公司 Method for smelting ultra-low-carbon steel by using single-nozzle refining furnace
CN101701279B (en) 2009-11-20 2011-04-13 北京科大三泰科技发展有限公司 Method for smelting low-sulfur steel by single-mouth refining furnace
CN202830077U (en) 2012-08-24 2013-03-27 马钢(集团)控股有限公司 Straight barrel type vacuum refining device

Also Published As

Publication number Publication date
BR112015003817A2 (en) 2017-07-04
US9809868B2 (en) 2017-11-07
JP2015526598A (en) 2015-09-10
EP2889385B1 (en) 2018-04-04
ES2666848T3 (en) 2018-05-08
US20150240323A1 (en) 2015-08-27
EP2889385A4 (en) 2016-04-13
PL2889385T3 (en) 2018-07-31
EP2889385A1 (en) 2015-07-01
CN102816896A (en) 2012-12-12
WO2014029325A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP6078154B2 (en) Vacuum refining method
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
WO2015058660A1 (en) Single-impregnating-tube vacuum refining device and use thereof
CN104561452B (en) Dust the device and method of single mouth vacuum deaeration refining molten steel at a kind of end
KR102300458B1 (en) Molten iron desulfurization method and desulfurization device
CN202830077U (en) Straight barrel type vacuum refining device
JP2008510883A (en) A device for injecting gas and / or gas and powder into liquid metal through a rotary heat-resistant lance
KR101424638B1 (en) Lance and the converter operation method using the same
JP6953714B2 (en) Method of raising the temperature of molten steel
CN205687963U (en) RH vacuum tank flow-guiding type mass-impregnation pipe and equipment for vacuum refining thereof
JP2019214057A (en) Continuous casting method
KR102074358B1 (en) Apparatus for repairing converter
JP4360270B2 (en) Method for refining molten steel
CN109706288B (en) Device and method for refining molten steel by blowing powder to side of steel ladle
KR101423604B1 (en) Molten steel processing apparatus and the method thereof
JP5987813B2 (en) Method for decarburizing and refining molten steel in vacuum degassing equipment
JP6358039B2 (en) Desulfurization method for molten steel
JP6790796B2 (en) Vacuum degassing equipment
Isaev Improving the technology for the tundish refining of steel in order to elevate the quality of continuous-cast semifinished products and rolled plates
CN102816896B (en) Straight barrel type equipment for vacuum refining and using method thereof
JPH0953109A (en) Method for temperature-raising and refining molten steel
JP6888492B2 (en) Molten steel refining equipment and molten steel refining method
CN105886703A (en) RH vacuum channel guide type integrated dipping tube and vacuum refining device with same
JP6098572B2 (en) Hot metal pretreatment method
JP6347199B2 (en) Hot metal refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170113

R150 Certificate of patent or registration of utility model

Ref document number: 6078154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250