JP6075348B2 - Voltage regulator - Google Patents

Voltage regulator Download PDF

Info

Publication number
JP6075348B2
JP6075348B2 JP2014203078A JP2014203078A JP6075348B2 JP 6075348 B2 JP6075348 B2 JP 6075348B2 JP 2014203078 A JP2014203078 A JP 2014203078A JP 2014203078 A JP2014203078 A JP 2014203078A JP 6075348 B2 JP6075348 B2 JP 6075348B2
Authority
JP
Japan
Prior art keywords
voltage
amount
power generation
solar radiation
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014203078A
Other languages
Japanese (ja)
Other versions
JP2016073153A (en
Inventor
祐志 谷
祐志 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2014203078A priority Critical patent/JP6075348B2/en
Publication of JP2016073153A publication Critical patent/JP2016073153A/en
Application granted granted Critical
Publication of JP6075348B2 publication Critical patent/JP6075348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電圧調整装置に関する。   The present invention relates to a voltage regulator.

近年、自然エネルギーを利用した発電システムの導入が進み、太陽光発電装置や太陽光発電装置が各地に建設されている。自然エネルギーを利用した発電システムは、自然現象の変化に応じて急激に発電量が変動するため、配電系統における配電線の電圧を適正範囲(低圧配電線の電圧が101±6V)に維持することが、困難であるという問題点を有している。特に、太陽光発電装置や太陽光発電装置が、分散型電源として各地に設置された場合、分散型電源からの発電量は、配電線の電圧上昇及び電圧降下に著しい影響を与える。このような状況下、配電線の電圧の安定化対策としては、過去に計測された気象情報等をもとに、予め、発電量の変動を予測する等の方法がとられている(例えば、特許文献1を参照)。   In recent years, the introduction of power generation systems using natural energy has progressed, and solar power generation devices and solar power generation devices are being constructed in various places. In a power generation system using natural energy, the amount of power generation changes rapidly in response to changes in natural phenomena, so the voltage of the distribution line in the distribution system must be maintained within an appropriate range (the voltage of the low-voltage distribution line is 101 ± 6 V). However, it has a problem that it is difficult. In particular, when a photovoltaic power generation device or a photovoltaic power generation device is installed in various places as a distributed power source, the amount of power generated from the distributed power source significantly affects the voltage rise and voltage drop of the distribution line. Under such circumstances, as a countermeasure for stabilizing the voltage of the distribution line, a method of predicting fluctuations in the amount of power generation in advance based on weather information measured in the past has been taken (for example, (See Patent Document 1).

特開2004−019583号公報JP 2004-019583 A

しかし、太陽光発電に用いられる太陽光の日射量は、ゲリラ豪雨等により天候が急変する場合がある。そのため、特許文献1のような風速等の気象情報の予測データを用いて電圧調整をする方法では、太陽光発電の発電量の変動速度に追従しきれず、一時的に、配電線の電圧が適正範囲から逸脱するという事態が生じている。   However, the amount of solar radiation used for photovoltaic power generation may change suddenly due to guerrilla heavy rain. Therefore, in the method of adjusting the voltage using the forecast data of weather information such as wind speed as in Patent Document 1, it is impossible to follow the fluctuation rate of the power generation amount of solar power generation, and the voltage of the distribution line is temporarily appropriate. There is a situation that deviates from the scope.

一方、太陽光発電装置等の分散型電源の発電量の変化に起因して、配電線の電圧の変動が生じた場合、その変動を即座に検出するのは困難である。加えて、一般に、配電線の電圧を調整するためには、電圧調整用変圧器(例えば、負荷時タップ切換用変圧器)が用いられるが、電圧調整用変圧器がタップを切り換えるためには、数十秒程度、時間がかかることもあり、電圧調整用変圧器は、急激な電圧の変化には対応しきれないという問題を有している。   On the other hand, when a fluctuation in the voltage of the distribution line occurs due to a change in the power generation amount of a distributed power source such as a solar power generation device, it is difficult to immediately detect the fluctuation. In addition, generally, in order to adjust the voltage of the distribution line, a voltage adjustment transformer (for example, a load tap switching transformer) is used, but in order for the voltage adjustment transformer to switch the tap, Since it may take several tens of seconds, the voltage regulating transformer has a problem that it cannot cope with a sudden voltage change.

そこで、本発明は、太陽光発電装置により供給される発電量の変動に追従を可能とする、配電線の電圧を調整する電圧調整装置を提供することを目的とする。   Then, an object of this invention is to provide the voltage adjustment apparatus which adjusts the voltage of a distribution line which enables tracking of the fluctuation | variation of the electric power generation amount supplied by a solar power generation device.

前述した課題を解決する主たる本発明は、電圧調整用変圧器が二次側に出力する電圧の目標電圧を制御することにより、所定の条件により複数の区域に区分けされる太陽光発電装置と系統連系する配電線の電圧を調整する電圧調整装置であって、太陽光発電装置に応じた太陽光の日射量を検出し、日射量が前の時点よりも大きくなった場合、電圧調整用変圧器の目標電圧が低くなるように制御し、日射量が前の時点よりも小さくなった場合、電圧調整用変圧器の目標電圧が高くなるように制御する制御部を備え、制御部は、複数の区域のいずれかの区域の太陽光発電装置に、太陽光発電装置から送電を受ける電力負荷が接続されている場合、太陽光発電装置の設置位置に対応する区域で検出された日射量と、日射量と太陽光発電装置の発電量の関係を示す発電特性と、に基づいて、区域ごとの太陽光発電装置の発電量を算出し、区域ごとの太陽光発電装置の発電量を区域ごとの電力負荷を重みとして加重平均した値と、電圧調整用変圧器のシフト制御量の関係を示す電圧変動特性と、に基づいて、電圧調整用変圧器の目標電圧を制御することを特徴とする電圧調整装置である。本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。 The main present invention that solves the above-mentioned problems is a photovoltaic power generation apparatus and a system that are divided into a plurality of areas according to predetermined conditions by controlling a target voltage of a voltage that is output to a secondary side by a voltage regulating transformer. This is a voltage regulator that adjusts the voltage of the power distribution line, and detects the amount of solar radiation corresponding to the solar power generation device.If the amount of solar radiation is greater than the previous time, the voltage adjustment transformer A control unit that controls so that the target voltage of the voltage adjustment transformer becomes higher when the amount of solar radiation becomes lower than the previous time point , and the control unit includes a plurality of control units. When a power load that receives power from the solar power generation device is connected to the solar power generation device in any of the areas, the amount of solar radiation detected in the area corresponding to the installation position of the solar power generation device, Solar radiation and solar power generation Based on the power generation characteristics indicating the relationship, the power generation amount of the solar power generation device for each area is calculated, and the power generation amount of the solar power generation device for each area is weighted and averaged with the power load for each area as a weight, A voltage adjusting device that controls a target voltage of a voltage adjusting transformer based on a voltage fluctuation characteristic indicating a relationship of a shift control amount of the voltage adjusting transformer . Other features of the present invention will become apparent from the accompanying drawings and the description of this specification.

本発明によれば、太陽光発電装置の発電量の変動に追従するように、配電線の電圧を調整することができる。   ADVANTAGE OF THE INVENTION According to this invention, the voltage of a distribution line can be adjusted so that the fluctuation | variation of the electric power generation amount of a solar power generation device may be followed.

本発明の第1実施形態における電力系統の構成を示す図である。It is a figure which shows the structure of the electric power grid | system in 1st Embodiment of this invention. 本発明の第1実施形態における線路電圧調整用変圧器の構成を示す図である。It is a figure which shows the structure of the transformer for line voltage adjustment in 1st Embodiment of this invention. 本発明の第1実施形態における太陽光発電装置の設置位置を示す図である。It is a figure which shows the installation position of the solar power generation device in 1st Embodiment of this invention. 本発明の第1実施形態における電圧調整装置の構成を示す図である。It is a figure which shows the structure of the voltage regulator in 1st Embodiment of this invention. 本発明の第1実施形態における日射量データを示す図である。It is a figure which shows the solar radiation amount data in 1st Embodiment of this invention. 本発明の第1実施形態における発電特性データを示す図である。It is a figure which shows the electric power generation characteristic data in 1st Embodiment of this invention. 本発明の第1実施形態における電圧変動特性データを示す図である。It is a figure which shows the voltage fluctuation characteristic data in 1st Embodiment of this invention. 本発明の第1実施形態における配電線の電圧変動を説明する図である。It is a figure explaining the voltage fluctuation of the distribution line in 1st Embodiment of this invention. 本発明の第1実施形態における電圧調整装置の制御を説明する図である。It is a figure explaining control of the voltage regulator in 1st Embodiment of this invention. 本発明の第1実施形態における電圧調整装置の制御を説明する図である。It is a figure explaining control of the voltage regulator in 1st Embodiment of this invention. 本発明の第2実施形態における日射量の変化の傾向を説明する図である。It is a figure explaining the tendency of the change of the solar radiation amount in 2nd Embodiment of this invention.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of this specification and the accompanying drawings.

<第1実施形態>
===電力系統の構成について===
本実施形態は、太陽光発電装置と系統連系する配電線において、日射量が急変した場合でも、配電線中の電圧が適正範囲(例えば、需要家への供給電圧が101±6V)に維持されるように、電圧調整装置が、日射量に基づいて、電圧調整用変圧器(系統電圧調整用変圧器、線路電圧調整用変圧器)の目標電圧を制御する点に特徴を有する。
<First Embodiment>
=== About power system configuration ===
In this embodiment, in a distribution line interconnected with a photovoltaic power generation apparatus, the voltage in the distribution line is maintained in an appropriate range (for example, the supply voltage to the customer is 101 ± 6 V) even when the amount of solar radiation changes suddenly. As described above, the voltage adjustment device is characterized in that it controls the target voltage of the voltage adjustment transformer (system voltage adjustment transformer, line voltage adjustment transformer) based on the amount of solar radiation.

以下、図1、図2、図3を参照して本実施形態における電力系統の構成の一例について説明する。   Hereinafter, an example of the configuration of the power system in the present embodiment will be described with reference to FIGS. 1, 2, and 3.

図1に、本実施形態に係る電力系統の一例を示す。本実施形態に係る電力系統は、連系変電所の系統電圧調整用変圧器100から、高圧母線LL、高圧配電線L1を介して、下流側の需要家R1〜R4に送電する構成となっている。又、本実施形態に係る電力系統は、高圧配電線L1中の各点に太陽光発電装置G1〜G4が接続され、太陽光発電装置G1〜G4の発電による高圧配電線L1の電圧変動を、系統電圧調整用変圧器100、線路電圧調整用変圧器200及び電圧調整装置300により調整する構成となっている(図1中の点線は信号経路を表す)。   FIG. 1 shows an example of a power system according to the present embodiment. The electric power system which concerns on this embodiment becomes a structure which transmits to the downstream consumers R1-R4 via the high voltage bus-line LL and the high voltage distribution line L1 from the system voltage adjustment transformer 100 of a connection substation. Yes. Further, in the power system according to this embodiment, the photovoltaic power generation devices G1 to G4 are connected to the respective points in the high voltage distribution line L1, and voltage fluctuations of the high voltage distribution line L1 due to power generation by the solar power generation devices G1 to G4 are The system voltage adjustment transformer 100, the line voltage adjustment transformer 200, and the voltage adjustment device 300 are used for adjustment (the dotted line in FIG. 1 represents a signal path).

尚、図1中のメッシュN1、N2、N3、N4は、夫々、高圧配電線L1のA点、B点、D点、E点から分岐して接続された太陽光発電装置G1〜G4及び需要家R1〜R4の群である。メッシュN1、N2、N3、N4は、太陽光発電装置G1〜G4の発電に起因する高圧配電線L1(及び低圧配電線)の電圧変動を推定するため、所定の条件で区分けされた領域であり、例えば、図3に示すように、日本列島における中国地方を、20km四方の略矩形で区画した区域である。尚、図1中のA点、B点、C点、D点、E点は、系統電圧調整用変圧器100に近い上流側から下流側に向かう途中において、高圧配電線L1から分岐する地点を表す。   In addition, the meshes N1, N2, N3, and N4 in FIG. 1 are respectively connected to the photovoltaic power generators G1 to G4 that are branched and connected from the points A, B, D, and E of the high-voltage distribution line L1. It is a group of houses R1 to R4. The meshes N1, N2, N3, and N4 are regions that are divided under predetermined conditions in order to estimate voltage fluctuations of the high-voltage distribution lines L1 (and low-voltage distribution lines) caused by the power generation of the photovoltaic power generation apparatuses G1 to G4. For example, as shown in FIG. 3, the Chugoku region in the Japanese archipelago is an area divided by a 20 km square rectangle. Note that points A, B, C, D, and E in FIG. 1 are points branched from the high-voltage distribution line L1 on the way from the upstream side to the downstream side near the system voltage regulating transformer 100. Represent.

系統電圧調整用変圧器100は、連系変電所に設置され、下流側の高圧配電線の全体の電圧を調整する装置である。系統電圧調整用変圧器100は、例えば、負荷時タップ切換器付変圧器であり、発電機又は他の変電所(図示せず)から受電した特別高圧(例えば、110kV)の電力を高圧(例えば、6.6kV)の電力に変電して、高圧母線LLを介して高圧配線線L1及びその他の配電線(図示せず)に送電する。尚、系統電圧調整用変圧器100は、系統電圧調整用変圧器100が二次側に出力する電圧(以下、「系統電圧調整用変圧器100の出力電圧」と言う)を、計器用変圧器(図示せず)を介して監視する電圧継電器110(図示せず)からの指示に応じて、タップ切換により変圧比を変更して、下流側の電圧を調整している。   The system voltage adjusting transformer 100 is a device that is installed in the interconnection substation and adjusts the overall voltage of the downstream high-voltage distribution line. The system voltage adjusting transformer 100 is, for example, a transformer with a load tap changer, and a high-voltage (for example, 110 kV) electric power received from a generator or other substation (not shown). , 6.6 kV), and transmits power to the high-voltage wiring line L1 and other distribution lines (not shown) via the high-voltage bus LL. Note that the system voltage adjusting transformer 100 is a voltage transformer (hereinafter referred to as “the output voltage of the system voltage adjusting transformer 100”) output to the secondary side of the system voltage adjusting transformer 100. In accordance with an instruction from a voltage relay 110 (not shown) to be monitored via (not shown), the transformation ratio is changed by tap switching to adjust the downstream voltage.

高圧配電線L1は、系統電圧調整用変圧器100が送電する下流側の電線であり、各地域に鉄塔により延設されている。高圧配電線L1は、連系変電所から受電した高電圧(6.6kV)の電力を柱上変圧器Tr1〜Tr4を介して、低電圧(100V) の電力に変換して、低圧配電線により、各地域の需要家R1〜R4に送電している。尚、高圧配電線L1及び低圧配電線は、三相交流の電力を送電する三相三線式の電線である。   The high-voltage distribution line L1 is a downstream-side electric wire transmitted by the system voltage regulating transformer 100, and is extended by a steel tower in each region. The high-voltage distribution line L1 converts high-voltage (6.6 kV) power received from the interconnection substation into low-voltage (100 V) power via pole transformers Tr1 to Tr4. The power is transmitted to the consumers R1 to R4 in each region. The high-voltage distribution line L1 and the low-voltage distribution line are three-phase three-wire electric wires that transmit three-phase AC power.

柱上変圧器Tr1〜Tr4は、高圧側に高圧配電線L1が接続され、低圧側に低圧配電線が接続され、例えば、6.6kVの高電圧と、100Vの低電圧とを相互に変圧する。尚、柱上変圧器Tr1〜Tr4は、夫々、高圧配電線L1のA点、B点、D点、E点から分岐して、需要家R1〜R4に電力を供給している。   The pole transformers Tr1 to Tr4 have a high voltage distribution line L1 connected to the high voltage side and a low voltage distribution line connected to the low voltage side. For example, the high voltage of 6.6 kV and the low voltage of 100 V are mutually transformed. . The pole transformers Tr1 to Tr4 branch from the points A, B, D, and E of the high-voltage distribution line L1, and supply power to the consumers R1 to R4.

需要家R1〜R4は、例えば、家電製品や誘導型電動機を電力負荷として有し、柱上変圧器Tr1〜Tr4を介して低圧配電線に受電した電力を、それらの電力負荷に使用する。尚、柱上変圧器Tr1〜Tr4の変圧比は一定値に固定されており、高圧配電線L1に電圧変動が生じた場合、需要家R1〜R4が使用する低圧配電線の電圧も変動し、使用する家電製品や誘導型電動機に電気的に悪影響を及ぼすことになる。柱上変圧器Tr1〜Tr4の変圧比は、通常時、系統電圧調整用変圧器100から送電される電力の電圧降下を考慮して、各々、低圧配電線への供給電圧が適正範囲(101±6V)となるように設定されている。   The consumers R1 to R4 have, for example, home appliances and induction motors as power loads, and use the power received by the low-voltage distribution lines via the pole transformers Tr1 to Tr4 for those power loads. In addition, the transformation ratio of the pole transformers Tr1 to Tr4 is fixed to a constant value, and when the voltage fluctuation occurs in the high voltage distribution line L1, the voltage of the low voltage distribution line used by the consumers R1 to R4 also fluctuates. It will adversely affect the home appliances and induction motors used. The transformation ratios of the pole transformers Tr1 to Tr4 are set so that the supply voltage to the low-voltage distribution line is in an appropriate range (101 ±±) in consideration of the voltage drop of the power transmitted from the system voltage adjustment transformer 100 in normal times. 6V).

太陽光発電装置G1〜G4は、太陽光を利用して発電を行い、発電した電力を、需要家R1〜R4等に向けて送電する装置である。太陽光発電装置G1〜G4は、例えば、フォトダイオードにより構成され、太陽光発電装置G1〜G4夫々が設置された位置に照射される太陽光を、電気エネルギーに変換して発電を行う。そして、太陽光発電装置G1〜G4は、発電した電力をパワーコンディショナーにより所定の電圧(例えば、100V)、所定の周波数(例えば、60Hz)の交流電力に変換して、夫々の装置に接続された低圧配電線を介して需要家R1〜R4に送電する。太陽光発電装置G1〜G4が発電した電力は、主に、需要家R1〜R4の有する電力負荷で消費され、需要家R1〜R4の消費電力が少ないときは、高圧配電線L1に向けて送電される。   The solar power generation devices G1 to G4 are devices that generate power using sunlight and transmit the generated power to the consumers R1 to R4 and the like. The solar power generation devices G1 to G4 are configured by, for example, photodiodes, and generate sunlight by converting sunlight irradiated to positions where the solar power generation devices G1 to G4 are installed into electric energy. And the solar power generation devices G1-G4 were converted into the alternating current power of the predetermined voltage (for example, 100V) and a predetermined frequency (for example, 60 Hz) by the power conditioner, and the generated electric power was connected to each device. Power is transmitted to the consumers R1 to R4 via the low-voltage distribution line. The power generated by the solar power generation devices G1 to G4 is mainly consumed by the power load of the consumers R1 to R4, and when the power consumption of the consumers R1 to R4 is low, the power is transmitted toward the high voltage distribution line L1. Is done.

日射量検出装置T1〜T4は、例えば、フォトダイオードにより構成され、日射量により生ずる起電力の電圧値を測定することにより、日射量を検出する。そして、日射量検出装置T1〜T4は、検出した日射量(例えば、1分間の平均値)を、電圧調整装置300に対して出力する。尚、本実施形態では、太陽光発電装置G1〜G4の夫々の設置位置に応じた発電量の変動を推定するため、メッシュN1〜N4ごとに日射量検出装置T1〜T4が設置されている。   The solar radiation amount detection devices T1 to T4 are configured by, for example, photodiodes, and detect the solar radiation amount by measuring a voltage value of an electromotive force generated by the solar radiation amount. And solar radiation amount detection apparatus T1-T4 outputs the detected solar radiation amount (for example, average value for 1 minute) with respect to the voltage regulator 300. FIG. In addition, in this embodiment, in order to estimate the fluctuation | variation of the electric power generation amount according to each installation position of solar power generation device G1-G4, the solar radiation amount detection apparatus T1-T4 is installed for every mesh N1-N4.

日射量検出装置T1〜T4は、CPU等から構成される制御部、不揮発性メモリ、揮発性メモリ等から構成される記憶部、通信コントローラ等から構成される通信部を備え、それらにより、電圧調整装置300とデータ通信が可能となっている。そして、日射量検出装置T1〜T4は、制御部が所定のプログラムを実行することで、日射量を検出し、検出した日射量を記憶部に格納するとともに、所定のタイミングで(例えば、1秒間隔)、通信部を用いて電圧調整装置300に対して、当該日射量に関するデータを送信する。尚、日射量検出装置T1〜T4は、太陽光発電装置G1〜G4と一体として構成され、太陽光発電装置G1〜G4の発電量に応じて、日射量を検出する装置であっても良い。   The solar radiation amount detection devices T1 to T4 include a control unit configured by a CPU, a storage unit configured by a non-volatile memory, a volatile memory, and a communication unit configured by a communication controller. Data communication with the apparatus 300 is possible. The solar radiation amount detection devices T1 to T4 detect the solar radiation amount by the control unit executing a predetermined program, store the detected solar radiation amount in the storage unit, and at a predetermined timing (for example, 1 second). Interval), data on the amount of solar radiation is transmitted to the voltage regulator 300 using the communication unit. The solar radiation amount detection devices T1 to T4 may be configured integrally with the solar power generation devices G1 to G4, and may be a device that detects the solar radiation amount according to the power generation amount of the solar power generation devices G1 to G4.

図2に、本実施形態に係る線路電圧調整用変圧器200の一例を示す。線路電圧調整用変圧器200は、高圧配電線L1のC点に設置され、電圧継電器210により変圧比が制御されて、その下流側の電圧を調整する装置である。そして、電圧継電器210は、電圧調整装置300とデータ通信して、基準とする目標電圧が電圧調整装置300に制御される構成となっている。尚、本実施形態では、特に、下流側のE地点の電圧変動を調整する必要があるため、線路電圧調整用変圧器200について説明するが、電圧継電器110も、電圧継電器210と同様の構成を備え、電圧調整装置300の制御により系統電圧調整用変圧器100の出力電圧の調整もなされる。   FIG. 2 shows an example of a line voltage adjusting transformer 200 according to this embodiment. The line voltage adjusting transformer 200 is a device that is installed at the point C of the high-voltage distribution line L1 and that controls the voltage transformation ratio by the voltage relay 210 and adjusts the voltage on the downstream side thereof. The voltage relay 210 is configured to perform data communication with the voltage regulator 300 so that a reference target voltage is controlled by the voltage regulator 300. In addition, in this embodiment, since it is necessary to adjust the voltage fluctuation of the downstream E point especially, the line voltage adjustment transformer 200 is demonstrated, However, The voltage relay 110 also has the same structure as the voltage relay 210. In addition, the output voltage of the system voltage adjusting transformer 100 is also adjusted under the control of the voltage adjusting device 300.

線路電圧調整用変圧器200は、例えば、系統電圧調整用変圧器100と同様に、負荷時タップ切換器付変圧器であり、高圧配電線L1の上流側から高圧(例えば、6.5kV)の電力を受電し、下流側の電圧が適正値(例えば、6.6kV)を維持するように変圧して、下流側に送電する。尚、図2中では、三相の配電線のうち一相分の単巻変圧器のみを表しているが、線路電圧調整用変圧器200は、三相の電線の一次側と二次側を夫々がY結線で構成されるとともに、三相夫々に単巻変圧器を備え、各相で同一レベルとなるように三相のタップが一括して切り換えられる構成となっている。   The line voltage adjusting transformer 200 is, for example, a transformer with a load tap changer, similar to the system voltage adjusting transformer 100, and has a high voltage (for example, 6.5 kV) from the upstream side of the high voltage distribution line L1. The power is received, transformed so that the downstream voltage maintains an appropriate value (for example, 6.6 kV), and transmitted downstream. In FIG. 2, only a single-phase transformer for one phase of the three-phase distribution lines is shown, but the line voltage adjusting transformer 200 has a primary side and a secondary side for the three-phase wires. Each is composed of a Y-connection, and each of the three phases is provided with a single transformer, and the three-phase taps are collectively switched so that each phase has the same level.

電圧継電器210は、例えば、デジタル電圧継電器であり、計器用変圧器PTを介して、線路電圧調整用変圧器200が二次側に出力する電圧(以下、「線路電圧調整用変圧器200の出力電圧」と言う)を検出し、線路電圧調整用変圧器200の出力電圧が目標電圧に近づくように、線路電圧調整用変圧器200を制御する装置である。電圧継電器210は、CPU等から構成される制御部、不揮発性メモリ、揮発性メモリ等から構成される記憶部、通信コントローラ等から構成される通信部を備え、所定のプログラムを実行することで、各種機能を実現している。   The voltage relay 210 is, for example, a digital voltage relay, and the voltage output to the secondary side by the line voltage adjusting transformer 200 via the instrument transformer PT (hereinafter referred to as “the output of the line voltage adjusting transformer 200”). This is a device that controls the line voltage adjusting transformer 200 so that the output voltage of the line voltage adjusting transformer 200 approaches the target voltage. The voltage relay 210 includes a control unit configured by a CPU and the like, a storage unit configured by a nonvolatile memory, a volatile memory, and the like, a communication unit configured by a communication controller, and the like, by executing a predetermined program, Various functions are realized.

電圧継電器210は、具体的には、計器用変圧器PTを介して検出した電圧を、入力信号変換回路を介して適当な電圧に変換し、A/D変換回路を介してデジタル情報として取得して、基準電圧(目標電圧+0.5V(上限値)、目標電圧−0.5V(下限値))と比較する。そして、当該検出した電圧が目標電圧の上限値よりも大きいときは、線路電圧調整用変圧器200に対して1タップ下げの指示信号を出力し、当該検出した電圧が目標電圧の下限値よりも小さいときは、線路電圧調整用変圧器200に対して1タップ上げの指示信号を出力することにより、線路電圧調整用変圧器200の出力電圧が目標電圧に近づくように、線路電圧調整用変圧器200を制御する。   Specifically, the voltage relay 210 converts the voltage detected via the instrument transformer PT into an appropriate voltage via the input signal conversion circuit, and acquires it as digital information via the A / D conversion circuit. And a reference voltage (target voltage +0.5 V (upper limit value), target voltage -0.5 V (lower limit value)). When the detected voltage is larger than the upper limit value of the target voltage, an instruction signal for one tap reduction is output to the line voltage adjusting transformer 200, and the detected voltage is lower than the lower limit value of the target voltage. When the output voltage is small, the line voltage adjusting transformer 200 outputs a one-tap instruction signal to the line voltage adjusting transformer 200 so that the output voltage of the line voltage adjusting transformer 200 approaches the target voltage. 200 is controlled.

又、電圧継電器210は、電圧調整装置300とデータ通信して、調整指示に応じた目標電圧となるように設定する。即ち、基準とする目標電圧が電圧調整装置300に制御されることにより、日射量変化に起因する太陽光発電装置G1〜G4の発電量の変動に対応することを可能としている。   In addition, the voltage relay 210 performs data communication with the voltage adjustment device 300 and sets the target voltage according to the adjustment instruction. That is, the reference target voltage is controlled by the voltage adjustment device 300, so that it is possible to cope with fluctuations in the power generation amount of the solar power generation devices G1 to G4 due to the change in the amount of solar radiation.

尚、電圧調整装置300は、太陽光発電装置G1〜G4に応じた日射量を日射量検出装置T1〜T4から取得して、日射量が前の時点よりも小さくなった場合には、線路電圧調整用変圧器200の出力電圧が高くなるように、日射量が前の時点よりも大きくなった場合には、線路電圧調整用変圧器200の出力電圧が低くなるように、電圧継電器210の目標電圧を制御する装置である(電圧調整装置300の構成及び動作の詳細については、後述する)。そして、系統電圧調整用変圧器100、及び線路電圧調整用変圧器200は、電圧調整装置300によって、太陽光発電装置G1〜G4の発電量の変動に起因して、高圧配電線L1の電圧変動が生じる前に、又は、即座にタップ切換をすることが可能となる。   In addition, the voltage adjustment apparatus 300 acquires the solar radiation amount according to the solar power generation devices G1-G4 from the solar radiation amount detection apparatuses T1-T4, and when the solar radiation amount becomes smaller than the previous time, line voltage The target of the voltage relay 210 is set so that the output voltage of the line voltage adjusting transformer 200 becomes lower when the amount of solar radiation becomes larger than the previous time so that the output voltage of the adjusting transformer 200 becomes higher. This is a device that controls the voltage (details of the configuration and operation of the voltage regulator 300 will be described later). And the system voltage adjustment transformer 100 and the line voltage adjustment transformer 200 are caused by the voltage adjustment device 300 due to fluctuations in the power generation amount of the solar power generation devices G1 to G4, and the voltage fluctuation of the high-voltage distribution line L1. It becomes possible to switch the tap before or immediately occurs.

===電圧調整装置の構成について===
以下、図4、図5A〜図5Cを参照して、本実施形態における電圧調整装置の構成について説明する。図4に、本実施形態に係る電圧調整装置300の内部構成の一例を示す。電圧調整装置300は、制御部310、記憶部320、通信部330、表示部340、入力部350を備えるコンピュータである。
=== Configuration of voltage regulator ===
Hereinafter, with reference to FIG. 4 and FIGS. 5A to 5C, the configuration of the voltage regulator in the present embodiment will be described. FIG. 4 shows an example of the internal configuration of the voltage regulator 300 according to the present embodiment. The voltage adjustment device 300 is a computer including a control unit 310, a storage unit 320, a communication unit 330, a display unit 340, and an input unit 350.

制御部310は、バス360を介して、記憶部320、通信部330、表示部340、入力部350を構成するハードウェアとデータ通信を行うとともに、それらの動作を制御する。又、制御部310は、検出された日射量に応じて線路電圧調整用変圧器200及び系統電圧調整用変圧器100の目標電圧を制御する機能を有する(機能の詳細は後述する)。制御部310は、例えば、CPUが記憶部320に記憶されたコンピュータプログラムを実行することにより実現される。   The control unit 310 performs data communication with the hardware configuring the storage unit 320, the communication unit 330, the display unit 340, and the input unit 350 via the bus 360, and controls their operations. The control unit 310 has a function of controlling the target voltage of the line voltage adjusting transformer 200 and the system voltage adjusting transformer 100 according to the detected amount of solar radiation (details of the function will be described later). The control unit 310 is realized, for example, when the CPU executes a computer program stored in the storage unit 320.

記憶部320は、電圧調整装置300を制御するコンピュータプログラム及び演算処理の中間データを記憶するとともに、制御部310による線路電圧調整用変圧器200及び系統電圧調整用変圧器100の目標電圧の制御を実現するため、日射量データM1、発電特性データM2、電圧変動特性データM3、電力系統データM4を記憶する領域を有する(データの内容の詳細は後述する)。記憶部320は、例えば、不揮発性メモリ(磁気ディスク、フラッシュメモリ、ROM)、揮発性メモリ(RAM)によって構成される。   The storage unit 320 stores a computer program for controlling the voltage regulator 300 and intermediate data of arithmetic processing, and controls the target voltage of the line voltage regulator 200 and the system voltage regulator 100 by the controller 310. In order to realize, it has an area for storing solar radiation amount data M1, power generation characteristic data M2, voltage fluctuation characteristic data M3, and power system data M4 (details of data contents will be described later). The storage unit 320 is configured by, for example, a nonvolatile memory (magnetic disk, flash memory, ROM), and volatile memory (RAM).

通信部330は、通信回線400を介して、日射量検出装置T1〜T4、及び線路電圧調整用変圧器200の出力電圧を制御する電圧継電器210、系統電圧調整用変圧器100の出力電圧を制御する電圧継電器110とデータ通信する。通信部330は、例えば、通信コントローラによって構成され、電圧調整装置300は、LAN(通信回線400)を介して、日射量検出装置T1〜T4から、各点で検出された日射量及び風向に関するデータを取得する。又、電圧調整装置300は、電圧継電器110とLAN(通信回線N)を介して接続され、これらの装置の目標電圧の制御を行う。   The communication unit 330 controls the solar radiation amount detection devices T1 to T4, the voltage relay 210 that controls the output voltage of the line voltage adjusting transformer 200, and the output voltage of the system voltage adjusting transformer 100 via the communication line 400. Data communication with the voltage relay 110 is performed. The communication unit 330 is configured by, for example, a communication controller, and the voltage adjustment device 300 is data regarding the amount of solar radiation and the wind direction detected at each point from the solar radiation amount detection devices T1 to T4 via the LAN (communication line 400). To get. The voltage regulator 300 is connected to the voltage relay 110 via a LAN (communication line N), and controls the target voltage of these devices.

表示部340は、制御部310により演算処理された結果(例えば、日射量に基づいて数秒後に予測される太陽光発電装置の発電量や、高圧配電線L1の電圧の変動量)を、電圧調整装置300の使用者に識別可能に表示する。表示部340は、例えば、液晶ディスプレイによって構成される。   The display unit 340 performs voltage adjustment on the result of the arithmetic processing performed by the control unit 310 (for example, the power generation amount of the solar power generation apparatus predicted after a few seconds based on the solar radiation amount or the voltage fluctuation amount of the high-voltage distribution line L1) It is displayed so as to be identifiable to the user of the device 300. The display unit 340 is configured by a liquid crystal display, for example.

入力部350は、電圧調整装置300の使用者がデータ(例えば、電力系統に関するデータ)を入力した場合、記憶部320に記憶させる。入力部350は、例えば、キーボードによって構成される。   The input unit 350 causes the storage unit 320 to store data when the user of the voltage adjustment device 300 inputs data (for example, data related to the power system). The input unit 350 is configured by a keyboard, for example.

=記憶部のデータ構成について=
ここで、記憶部320が有する日射量データM1、発電特性データM2、電圧変動特性データM3、電力系統データM4について説明する。
= Data structure of the storage unit =
Here, the solar radiation amount data M1, the power generation characteristic data M2, the voltage fluctuation characteristic data M3, and the power system data M4 included in the storage unit 320 will be described.

日射量データM1は、日射量検出装置T1〜T4夫々と対応付けて記憶された、日射量検出装置T1〜T4から取得した日射量に関するデータ、及び日射量検出装置T1〜T4の設置位置に関するデータである。図5Aに、本実施形態に係る日射量データM1の一例を示す。日射量データM1は、例えば、1秒間隔で、日射量検出装置T1〜T4夫々から取得した日射量(1分間の平均日射量)に関するデータである。そして、記憶部320は、日射量検出装置T1〜T4から日射量に関するデータを取得するごとに、日射量データM1の更新を行う。尚、記憶部320は、過去に日射量検出装置T1〜T4から取得した日射量に関するデータを日射量データM1として蓄積している。又、日射量に関するデータは、太陽光発電装置G1〜G4の発電量を判断するためのデータであり、具体的な日射量の数値に代えて、日射量のレベルを示すデータであってもよい。又、太陽光発電装置G1〜G4夫々の、太陽方向を向く方向に応じた発電量を算出するため、あわせて太陽光に対する検出角度をデータとして保持していてもよい。又、日射量検出装置T1〜T4の日射量データが中央管理装置に記憶されている場合、中央管理装置を介して日射量データを取得してもよい。   The solar radiation amount data M1 is data relating to the solar radiation amount acquired from the solar radiation amount detecting devices T1 to T4 and stored in association with the solar radiation amount detecting devices T1 to T4, and data relating to the installation positions of the solar radiation amount detecting devices T1 to T4. It is. FIG. 5A shows an example of the solar radiation amount data M1 according to the present embodiment. The solar radiation amount data M1 is data relating to the solar radiation amount (average solar radiation amount per minute) acquired from each of the solar radiation amount detection devices T1 to T4 at intervals of 1 second, for example. And the memory | storage part 320 updates the solar radiation amount data M1 whenever it acquires the data regarding solar radiation amount from the solar radiation amount detection apparatus T1-T4. In addition, the memory | storage part 320 accumulate | stores the data regarding the solar radiation amount acquired from the solar radiation amount detection apparatus T1-T4 in the past as solar radiation amount data M1. Moreover, the data regarding the solar radiation amount is data for determining the power generation amount of the solar power generation devices G1 to G4, and may be data indicating the level of the solar radiation amount instead of a specific numerical value of the solar radiation amount. . Moreover, in order to calculate the electric power generation amount according to the direction which faces the solar direction of each solar power generation device G1-G4, you may hold | maintain the detection angle with respect to sunlight as data together. Moreover, when the solar radiation amount data of the solar radiation amount detection devices T1 to T4 are stored in the central management device, the solar radiation amount data may be acquired via the central management device.

又、日射量検出装置T1〜T4の設置位置に関するデータは、日射量検出装置T1〜T4夫々の設置位置が、区分けされたメッシュのうち、どのメッシュに対応するかを表すデータである。尚、日射量検出装置T1〜T4の設置位置に関するデータは、太陽光発電装置G1〜G4夫々の設置位置における日射量を検出するためのデータであり、太陽光発電装置G1〜G4夫々の設置位置と対応づけることができればよく、例えば、緯度経度等の座標データであってもよい。   The data regarding the installation positions of the solar radiation amount detection devices T1 to T4 is data representing which mesh the installation positions of the solar radiation amount detection devices T1 to T4 correspond to among the divided meshes. In addition, the data regarding the installation position of the solar radiation amount detection apparatuses T1 to T4 is data for detecting the solar radiation amount at the installation positions of the solar power generation apparatuses G1 to G4, and the installation positions of the solar power generation apparatuses G1 to G4. For example, coordinate data such as latitude and longitude may be used.

発電特性データM2は、日射量と太陽光発電装置G1〜G4の発電特性の関係を示すデータである。図5Bに、本実施形態に係る発電特性データM2の一例をグラフ化して示す。ここで、図5Bの横軸は、日射量(W/m2)を表し、縦軸は、太陽光発電装置G1〜G4の発電量(kW)を表す。図5Bは、日射量が増加するに応じて、発電量もリニアに増加することを表している。電圧調整装置300は、発電特性データM2を用いて、太陽光発電装置G1〜G4の発電量の変動を推定する。尚、太陽光発電装置の発電量とは、太陽光発電装置の出力電力(W)、又は、出力電力と発電時間の積(W・s)を表す。尚、発電特性データM2は、太陽光発電装置G1〜G4ごとに保持しておき、夫々の設置位置の日射量(W/m2)に応じて、太陽光発電装置G1〜G4ごとの発電量を算出するのが望ましい。 The power generation characteristic data M2 is data indicating the relationship between the amount of solar radiation and the power generation characteristics of the solar power generation devices G1 to G4. FIG. 5B is a graph showing an example of the power generation characteristic data M2 according to this embodiment. Here, the horizontal axis of FIG. 5B represents the solar radiation amount (W / m 2 ), and the vertical axis represents the power generation amount (kW) of the solar power generation devices G1 to G4. FIG. 5B shows that the amount of power generation increases linearly as the amount of solar radiation increases. The voltage adjustment apparatus 300 estimates the fluctuation | variation of the electric power generation amount of the solar power generation devices G1-G4 using the electric power generation characteristic data M2. The power generation amount of the solar power generation device represents the output power (W) of the solar power generation device or the product (W · s) of the output power and the power generation time. The power generation characteristic data M2 is stored for each of the solar power generation devices G1 to G4, and the power generation amount for each of the solar power generation devices G1 to G4 is determined according to the amount of solar radiation (W / m 2 ) at each installation position. It is desirable to calculate

電圧変動特性データM3は、太陽光発電装置G1〜G4の発電量に応じて線路電圧調整用変圧器200、系統電圧調整用変圧器100で変更するべき目標電圧の関係を示すデータである。図5Cに、本実施形態に係る電圧変動特性データM3の一例をグラフ化して示す。図5Cは、太陽光発電装置G1〜G4の発電量と、線路電圧調整用変圧器200の目標電圧を低下させるべき量(以下、「シフト制御量」と言う)の関係を表している。尚、図5Cの横軸は、太陽光発電装置G1〜G4の合計の発電量(kW)を表し、縦軸は、線路電圧調整用変圧器200のシフト制御量(V)を表す。   The voltage fluctuation characteristic data M3 is data indicating the relationship of the target voltage to be changed in the line voltage adjusting transformer 200 and the system voltage adjusting transformer 100 in accordance with the power generation amount of the photovoltaic power generation apparatuses G1 to G4. FIG. 5C is a graph showing an example of the voltage variation characteristic data M3 according to this embodiment. FIG. 5C represents the relationship between the amount of power generated by the photovoltaic power generation devices G1 to G4 and the amount by which the target voltage of the line voltage adjusting transformer 200 is to be reduced (hereinafter referred to as “shift control amount”). 5C represents the total power generation amount (kW) of the photovoltaic power generation devices G1 to G4, and the vertical axis represents the shift control amount (V) of the line voltage adjusting transformer 200.

電圧変動特性データM3は、太陽光発電装置の接続された配電線の電力系統に基づいて設定される。本実施形態では、太陽光発電装置G1〜G4は、夫々高圧配電線L1のA点、B点、D点、E点に接続されているから、太陽光発電装置G1〜G4の発電に伴うA点、B点、D点、E点における電圧変動を算出することにより、シフト制御量を算出することができる。本実施形態では、高圧配電線L1の最も下流側に位置するE点の電圧が適正範囲(例えば、需要家への供給電圧が101±6V)に維持されるように、線路電圧調整用変圧器200及び系統電圧調整用変圧器100のシフト制御量が設定されている。   The voltage fluctuation characteristic data M3 is set based on the power system of the distribution line to which the photovoltaic power generator is connected. In this embodiment, since the solar power generation devices G1 to G4 are connected to the A point, the B point, the D point, and the E point of the high-voltage distribution line L1, A associated with the power generation of the solar power generation devices G1 to G4. The shift control amount can be calculated by calculating voltage fluctuations at points B, D, E, and E. In the present embodiment, the transformer for line voltage adjustment is performed so that the voltage at the point E located on the most downstream side of the high-voltage distribution line L1 is maintained in an appropriate range (for example, the supply voltage to the consumer is 101 ± 6 V). 200 and the shift control amount of the system voltage adjusting transformer 100 are set.

電圧変動特性データM3は、太陽光発電装置G3、G4の発電量(kW)を、需要家R3、R4の電力負荷(kW)で加重平均した値と、シフト制御量の関係を表すデータであってもよい。これにより、高圧配電線L1に流入してD点、E点に電圧変動を生じさせる発電量を、D点、E点の電力負荷(kW)に応じた値として算出することができる。尚、太陽光発電装置G3、G4の発電量(kW)を、需要家R3、R4の電力負荷(kW)で加重平均した値とは、例えば、以下の式(1)を用いて算出される。   The voltage fluctuation characteristic data M3 is data representing a relationship between a value obtained by weighted averaging the power generation amounts (kW) of the solar power generation devices G3 and G4 with the power loads (kW) of the consumers R3 and R4 and the shift control amount. May be. Thereby, the power generation amount that flows into the high-voltage distribution line L1 and causes voltage fluctuations at the points D and E can be calculated as a value corresponding to the power load (kW) at the points D and E. In addition, the value which carried out the weighted average of the electric power generation amount (kW) of the solar power generation devices G3 and G4 with the electric power load (kW) of the consumers R3 and R4 is calculated using the following formula (1), for example. .

Figure 0006075348
(但し、W3、W4は需要家R3、R4の電力負荷(kW)を表し、Q3、Q4は太陽光発電装置G3、G4の発電量(kW)を表す)
この場合、電圧調整装置300は、式(1)で算出した調整対象の発電量Q’が、高圧配電線L1に流入してE点に電圧変動を生じさせる調整対象の発電量であるとして、当該発電量Q’に基づいて、電圧変動特性データM3から線路電圧調整用変圧器200のシフト制御量を算出する。式(1)を用いることによって、電力負荷R1〜R4を考慮した高圧配電線L1の電圧変動を簡易に算出することができる。尚、電力負荷W3、W4は、各メッシュN3、N4内に設けられている需要家R3、R4の電力負荷の電力消費量に応じた量を示している。例えば、電力負荷W3、W4は、需要家R3、R4と電気事業者との間の電気契約に基づいて定められている契約電力量に応じて予め定められていることとしてもよい。又、例えば、電力負荷W3、W4は、柱上変圧器Tr3,Tr4の容量に応じて予め定められていることとしてもよい。又、例えば、電力負荷W3、W4は、電力負荷W3、W4の電力消費量を所定時間毎に測定するスマートメータ等の測定結果に基づいて算出されることとしてもよい。
Figure 0006075348
(W3 and W4 represent the power loads (kW) of the consumers R3 and R4, and Q3 and Q4 represent the power generation amounts (kW) of the solar power generation devices G3 and G4)
In this case, the voltage adjustment apparatus 300 assumes that the adjustment target power generation amount Q ′ calculated by the equation (1) is the adjustment target power generation amount that flows into the high-voltage distribution line L1 and causes voltage fluctuation at the E point. Based on the power generation amount Q ′, the shift control amount of the line voltage adjusting transformer 200 is calculated from the voltage fluctuation characteristic data M3. By using Formula (1), the voltage fluctuation of the high voltage distribution line L1 in consideration of the power loads R1 to R4 can be easily calculated. In addition, electric power load W3, W4 has shown the quantity according to the electric power consumption of the electric power load of consumer R3, R4 provided in each mesh N3, N4. For example, the power loads W3 and W4 may be determined in advance according to a contract power amount determined based on an electric contract between the consumers R3 and R4 and the electric power company. Further, for example, the power loads W3 and W4 may be determined in advance according to the capacities of the pole transformers Tr3 and Tr4. Further, for example, the power loads W3 and W4 may be calculated based on measurement results of a smart meter or the like that measures the power consumption of the power loads W3 and W4 every predetermined time.

そして、電圧変動特性データM3のシフト制御量は、例えば、太陽光発電装置G1〜G4の調整対象の発電量Q’(出力電力)、高圧配電線L1の線路インピーダンス、高圧配電線L1のE点の電圧(目標電圧)等から求まる係数に基づいて、式(2)により算出することができる。   The shift control amount of the voltage fluctuation characteristic data M3 is, for example, the power generation amount Q ′ (output power) to be adjusted by the solar power generation devices G1 to G4, the line impedance of the high-voltage distribution line L1, and the E point of the high-voltage distribution line L1. Based on a coefficient obtained from the voltage (target voltage) or the like, it can be calculated by equation (2).

Figure 0006075348
尚、本実施形態では、線路電圧調整用変圧器200は、主に、高圧配電線L1のD点、E点の電圧変動を調整する役割を担い、系統電圧調整用変圧器100が、主に、高圧配電線L1のA点、B点の電圧変動を調整する。そのため、電圧変動特性データM3は、太陽光発電装置G1〜G4の発電量と線路電圧調整用変圧器200のシフト制御量の関係を示すデータと、太陽光発電装置G1〜G4の発電量と系統電圧調整用変圧器100のシフト制御量の関係を示すデータとは別個に記憶されている。このとき、系統電圧調整用変圧器100の電圧変動特性データM3については、線路電圧調整用変圧器200と同様の手法により、太陽光発電装置G1、G2の発電量(kW)及び需要家R1、R2の電力負荷(kW)に基づいて、系統電圧調整用変圧器100の目標電圧を算出してもよい。又、線路電圧調整用変圧器200の電圧変動特性データM3は、上流側の電圧変動も考慮するため、太陽光発電装置G1、G2の発電量(kW)及び需要家R1、R2の電力負荷(kW)による影響も加味して、線路電圧調整用変圧器200の目標電圧を算出するデータであってもよい。尚、電圧変動特性データM3は、太陽光発電装置G1〜G4の発電量(W)からシフト制御量を算出可能とするように演算式の形式で記憶されてもよいし、データテーブルとして記憶されてもよい。
Figure 0006075348
In the present embodiment, the line voltage adjusting transformer 200 mainly plays a role of adjusting voltage fluctuations at the points D and E of the high-voltage distribution line L1, and the system voltage adjusting transformer 100 is mainly used. The voltage fluctuations at points A and B of the high-voltage distribution line L1 are adjusted. Therefore, the voltage fluctuation characteristic data M3 includes data indicating the relationship between the power generation amount of the solar power generation devices G1 to G4 and the shift control amount of the line voltage adjustment transformer 200, and the power generation amount and system of the solar power generation devices G1 to G4. It is stored separately from data indicating the relationship of the shift control amount of the voltage adjusting transformer 100. At this time, with respect to the voltage fluctuation characteristic data M3 of the system voltage adjusting transformer 100, the power generation amount (kW) of the photovoltaic power generation devices G1 and G2 and the customer R1, by the same method as the line voltage adjusting transformer 200, The target voltage of the system voltage adjusting transformer 100 may be calculated based on the power load (kW) of R2. Further, the voltage fluctuation characteristic data M3 of the line voltage adjusting transformer 200 considers the voltage fluctuation on the upstream side, so that the power generation amount (kW) of the photovoltaic power generation devices G1 and G2 and the power load of the consumers R1 and R2 ( Data for calculating the target voltage of the line voltage adjusting transformer 200 may be used in consideration of the influence of kW). The voltage fluctuation characteristic data M3 may be stored in the form of an arithmetic expression so that the shift control amount can be calculated from the power generation amount (W) of the solar power generation devices G1 to G4, or stored as a data table. May be.

電力系統データM4(図示せず)は、電力系統、電力需要量に基づいて算出された各点における目標電圧、電力系統内の配電線、電力系統内に設置された装置に関するデータである。具体的には、電力系統データM4は、最上流の発電機(図示せず)から、各点の需要家に電力を送電する現在の電力系統や、事故発生時等において電力系統が切り替えられた場合の電力系統に関するデータを有する。又、電力系統データM4は、当該電力系統における配電線の線路インピーダンス、太陽光発電装置G1〜G4の設置位置、遮断器(図示せず)の配電線における設置位置、柱上変圧器Tr1〜Tr4の配電線における設置位置及び変圧比、静止型無効電力補償装置(図示せず)の設置位置及び投入状態等に関するデータを有する。尚、各装置の設置位置とは、配電線における接続位置を表す。又、太陽光発電装置G1〜G4の設置位置に関するデータは、太陽光発電装置G1〜G4の対応するメッシュ領域(N1、N2、N3、N4)に関するデータを含む。又、電力系統データM4は、各装置と通信回線400を介して通信するため、各装置の通信アドレスに関するデータを含む。そして、電力系統データM4は、これらの情報を、各装置の装置識別情報と関連付けて、装置ごとに記憶する。   The power system data M4 (not shown) is data relating to the power system, the target voltage calculated at each point based on the power demand, the distribution lines in the power system, and the devices installed in the power system. Specifically, in the power system data M4, the current power system that transmits power to the consumers at each point from the most upstream generator (not shown), or the power system is switched in the event of an accident, etc. Data on the power system of the case. Further, the power system data M4 includes the line impedance of the distribution line in the power system, the installation position of the photovoltaic power generation devices G1 to G4, the installation position of the circuit breaker (not shown) in the distribution line, and the pole transformers Tr1 to Tr4. Data on the installation position and transformation ratio of the distribution line, the installation position and the input state of the static reactive power compensator (not shown). In addition, the installation position of each apparatus represents the connection position in a distribution line. Moreover, the data regarding the installation positions of the solar power generation devices G1 to G4 include data regarding the mesh regions (N1, N2, N3, and N4) corresponding to the solar power generation devices G1 to G4. The power system data M4 includes data related to the communication address of each device in order to communicate with each device via the communication line 400. The power system data M4 stores these pieces of information for each device in association with the device identification information of each device.

又、電力系統データM4は、電力系統内の配電線の電圧を適正範囲(低圧配電線の電圧が101±6V)に保つべく、高圧配電線L1の各点で維持すべき適正電圧に関するデータを有する。   In addition, the power system data M4 is data on the proper voltage to be maintained at each point of the high-voltage distribution line L1 in order to keep the voltage of the distribution line in the power system within an appropriate range (the voltage of the low-voltage distribution line is 101 ± 6V). Have.

===電圧調整装置の動作について===
以下、図6〜図7を参照して、電圧調整装置300の動作について説明する。
=== About the operation of the voltage regulator ===
Hereinafter, the operation of the voltage regulator 300 will be described with reference to FIGS.

始めに、図6を参照して、電圧調整装置300が動作しない場合の配電線の電圧変動について説明する。図6は、高圧配電線L1の各点における電圧を、風速が変化する前後で比較したものである。尚、図6の縦軸は、高圧配電線L1の電圧(線間電圧)を表し、かっこ内の数値は、柱上変圧器Tr1〜Tr4で変圧された後の低圧配電線の電圧(需要家に供給される電力の電圧)を表す。   First, with reference to FIG. 6, the voltage fluctuation of the distribution line when the voltage regulator 300 does not operate will be described. FIG. 6 compares the voltage at each point of the high-voltage distribution line L1 before and after the wind speed changes. In addition, the vertical axis | shaft of FIG. 6 represents the voltage (line voltage) of the high voltage distribution line L1, and the numerical value in a parenthesis is the voltage (customer) of the low voltage distribution line after being transformed by the pole transformers Tr1-Tr4. Represents the voltage of the power supplied to.

本実施形態に係る電力系統においては、系統電圧調整用変圧器100、線路電圧調整用変圧器200は、予め定められた目標電圧に近づくように出力電圧が制御されている。尚、高圧配電線L1の電圧は、図6に示すように、系統電圧調整用変圧器100から離れるに従って需要家R1〜R4の使用する電力負荷と配電線インピーダンスにより電圧降下が生じることから、C点に設置された線路電圧調整用変圧器200の出力電圧を調整することで、下流側(D点、E点)の電圧を適正範囲に維持している。しかし、太陽光発電装置G1〜G4の発電量の変化に起因して、高圧配電線L1の電圧が急激に変化した場合、特に、線路電圧調整用変圧器200の下流側の電圧が適正範囲(D点、E点に接続された低圧配電線の電圧が101±6V)を逸脱してしまう。例えば、図6(上図)に示すにように晴天の状態では、高圧配電線L1と太陽光発電装置G1〜G4の連結点には、多量の電力が送電されるため、D点、E点の電圧は、一定の電圧上昇が生じている。一方、ゲリラ豪雨等が発生した場合(図6の下図)、太陽光発電装置G1〜G4の発電量は急激に減少する結果、線路電圧調整用変圧器200が受電する電圧も低下することも相俟って、D点、E点の電圧も急激に低下し、適正範囲(低圧配電線の電圧が101±6V)を逸脱し、ひいては電力系統全体で、電圧崩壊を招くことにもなり得る。   In the power system according to this embodiment, the output voltage of the system voltage adjusting transformer 100 and the line voltage adjusting transformer 200 is controlled so as to approach a predetermined target voltage. As shown in FIG. 6, the voltage of the high-voltage distribution line L1 has a voltage drop due to the power load used by the consumers R1 to R4 and the distribution line impedance as the distance from the system voltage adjustment transformer 100 increases. By adjusting the output voltage of the line voltage adjusting transformer 200 installed at the point, the voltage on the downstream side (point D, point E) is maintained in an appropriate range. However, when the voltage of the high-voltage distribution line L1 changes suddenly due to the change in the power generation amount of the solar power generation devices G1 to G4, the voltage on the downstream side of the line voltage adjusting transformer 200 is particularly in an appropriate range ( The voltage of the low-voltage distribution line connected to the point D and the point E deviates from 101 ± 6V). For example, as shown in FIG. 6 (upper figure), in a fine weather state, a large amount of power is transmitted to the connection point between the high voltage distribution line L1 and the solar power generation devices G1 to G4. A constant voltage rise occurs in the voltage of. On the other hand, when guerrilla heavy rain or the like occurs (the lower diagram in FIG. 6), the power generation amount of the solar power generation devices G1 to G4 rapidly decreases, so that the voltage received by the line voltage adjusting transformer 200 may also decrease. As a result, the voltages at points D and E also drop sharply and deviate from the proper range (the voltage of the low-voltage distribution line is 101 ± 6 V), which can lead to voltage collapse in the entire power system.

この点、下流側の電圧の変動に対応するべく、線路電圧降下補償器(Line-Drop Compensator:LDC)を用いて線路電圧調整用変圧器の目標電圧を自動で調整する方法や、下流側の各地点に計測器を設置して配電線の電圧を計測するという方法も考えられる。しかし、本実施形態のように、分散型電源(太陽光発電装置G1〜G4)が接続されている場合、電流の変化を正確に把握することができないため、線路電圧降下補償器では、対処することは困難である。又、下流側の各地点で配電線の電圧を計測するという方法であっても、線路電圧調整用変圧器200の出力電圧が変更されるまでの間には、各地点の計測器による電圧変動の計測、計測器から線路電圧調整用変圧器200への通知、線路電圧調整用変圧器200のタップ切換が行われる必要があり、一定時間(少なくとも数十秒以上)を要するため、配電線の急激な電圧変動には対応することができない。   In this regard, in order to cope with fluctuations in the voltage on the downstream side, a method of automatically adjusting the target voltage of the line voltage adjusting transformer using a line-drop compensator (LDC), A method of installing a measuring instrument at each point and measuring the voltage of the distribution line is also conceivable. However, when a distributed power source (photovoltaic power generation devices G1 to G4) is connected as in this embodiment, the line voltage drop compensator copes with it because the change in current cannot be accurately grasped. It is difficult. Moreover, even if the method is to measure the voltage of the distribution line at each point on the downstream side, the voltage fluctuation by the measuring instrument at each point until the output voltage of the line voltage adjusting transformer 200 is changed. Measurement, notification from the measuring instrument to the line voltage adjusting transformer 200, and tap switching of the line voltage adjusting transformer 200 need to be performed, and a certain time (at least several tens of seconds) is required. It cannot cope with sudden voltage fluctuations.

そこで、本実施形態に係る電圧調整装置300は、太陽光発電装置G1〜G4に応じた日射量を検出することにより、太陽光発電装置G1〜G4の発電量の変動を事前に、又は即座に検出する。そして、電圧調整装置300は、高圧配電線L1の電圧変動の前段階で、電圧継電器210及び電圧継電器110の目標電圧を変化させることにより、線路電圧調整用変圧器200及び系統電圧調整用変圧器100の出力電圧を制御し、上記の事態を防止する。   Therefore, the voltage adjustment device 300 according to the present embodiment detects the amount of solar radiation according to the solar power generation devices G1 to G4, thereby changing the power generation amount of the solar power generation devices G1 to G4 in advance or immediately. To detect. The voltage regulator 300 changes the target voltage of the voltage relay 210 and the voltage relay 110 before the voltage fluctuation of the high-voltage distribution line L1, thereby changing the line voltage adjusting transformer 200 and the system voltage adjusting transformer. The output voltage of 100 is controlled to prevent the above situation.

ここで、図7、図8を参照して、本実施形態に係る電圧調整装置300による線路電圧調整用変圧器200の目標電圧の制御について説明する。   Here, with reference to FIG. 7, FIG. 8, control of the target voltage of the transformer 200 for line voltage adjustment by the voltage regulator 300 which concerns on this embodiment is demonstrated.

図7は、日射量の変化のタイミングと、電圧調整装置300が目標電圧を制御するタイミングを表した図である。又、図8は、電圧調整装置300による目標電圧の制御方法を表した図である。尚、図7の下図において、横軸(t)は時間軸、左側の縦軸(VE)はE点における電圧(低圧配電線の電圧に換算した値)、右側の縦軸(V200)は線路電圧調整用変圧器200の目標電圧を表す。 FIG. 7 is a diagram illustrating the timing of change in the amount of solar radiation and the timing at which the voltage regulator 300 controls the target voltage. FIG. 8 is a diagram showing a method for controlling the target voltage by the voltage regulator 300. In the lower diagram of FIG. 7, the horizontal axis (t) is the time axis, the left vertical axis (V E ) is the voltage at point E (value converted to the voltage of the low-voltage distribution line), and the right vertical axis (V 200 ). Represents the target voltage of the line voltage adjusting transformer 200.

図7の線路電圧調整用変圧器200の目標電圧は、t1までは、晴天(例えば、250W/m2)が検出されていることから低め(シフト制御量を高め)に設定されている。そして、目標電圧は、t1のタイミングからt3のタイミングの間に、日射量が急速に減少する(例えば、250W/m2から50W/m2)ことが検出されたことから、目標電圧は、これに応じて、即座に、高め(シフト制御量を低め)になるように変更されることを表している。 The target voltage of the line voltage adjusting transformer 200 in FIG. 7 is set to be low (increase the shift control amount) because fine weather (for example, 250 W / m 2 ) is detected until t1. The target voltage is detected from the fact that the amount of solar radiation decreases rapidly (for example, 250 W / m 2 to 50 W / m 2 ) between the timing t1 and the timing t3. In response to this, the change is instantly made higher (lower shift control amount).

一方、図7の太陽光発電装置G1〜G4の下流側のE点の配電線電圧は、t1のタイミング前から、日射量の減少により、太陽光発電装置G1〜G4の発電が徐々に減少し、電圧降下が生じる。しかし、E点の配電線電圧は、日射量の減少に応じて、線路電圧調整用変圧器200の目標電圧が高くなるように制御されるため、即座に、t2のタイミングからt4のタイミングにかけて、線路電圧調整用変圧器200のタップ切換(タップ上げ)がなされる。これによって、E点の配電線の電圧は、日射量変化に追従するように制御され、大幅な電圧降下を生じることなく、適正範囲(低圧配電線の電圧が101±6V)に維持される。   On the other hand, the distribution line voltage at point E on the downstream side of the solar power generation devices G1 to G4 in FIG. 7 gradually decreases the power generation of the solar power generation devices G1 to G4 due to the decrease in the amount of solar radiation before the timing t1. A voltage drop occurs. However, since the distribution line voltage at the point E is controlled so that the target voltage of the line voltage adjusting transformer 200 is increased in accordance with the decrease in the amount of solar radiation, immediately from the timing t2 to the timing t4, Tap switching (tapping up) of the line voltage adjusting transformer 200 is performed. Thereby, the voltage of the distribution line at point E is controlled so as to follow the change in the amount of solar radiation, and is maintained in an appropriate range (the voltage of the low-voltage distribution line is 101 ± 6 V) without causing a significant voltage drop.

図8は、電圧調整装置300が、図7に示した動作を行うための具体的な制御方法を表す。図8のS0〜S4は、電圧調整装置300の制御部310がコンピュータプログラムに従って順に実行する工程を表す。尚、ここで、太陽光発電装置G1〜G4の発電量に応じて電圧変動が発生するのは、特に下流側のE点の配電線電圧であることから、線路電圧調整用変圧器200の動作について主に説明する。   FIG. 8 shows a specific control method for the voltage regulator 300 to perform the operation shown in FIG. S0 to S4 in FIG. 8 represent steps that the control unit 310 of the voltage regulator 300 executes in order according to the computer program. Here, the voltage fluctuation occurs according to the power generation amount of the solar power generation devices G1 to G4, in particular, the distribution line voltage at the point E on the downstream side, so that the operation of the line voltage adjusting transformer 200 is performed. Is mainly described.

S0は、線路電圧調整用変圧器200に設定すべき予測目標電圧を算出するための初期工程である。具体的には、電圧調整装置300は、電力系統データM4、現在の電力系統(各装置の高圧配電線L1における接続位置等)、電力需要量の予測値、高圧配電線L1の線路インピーダンス、高圧配電線L1の各点の適正電圧等を設定する。これにより、電圧調整装置300は、太陽光発電装置G1〜G4を考慮しない場合における、各時間帯における線路電圧調整用変圧器200(及び系統電圧調整用変圧器100)の予測目標電圧を算出し、予め設定する。   S0 is an initial step for calculating a predicted target voltage to be set in the line voltage adjusting transformer 200. Specifically, the voltage adjustment device 300 includes the power system data M4, the current power system (connection position of each device in the high-voltage distribution line L1, etc.), the predicted value of power demand, the line impedance of the high-voltage distribution line L1, the high voltage The appropriate voltage etc. of each point of the distribution line L1 are set. Thereby, the voltage adjustment apparatus 300 calculates the prediction target voltage of the line voltage adjustment transformer 200 (and the system voltage adjustment transformer 100) in each time zone when the photovoltaic power generation apparatuses G1 to G4 are not considered. , Set in advance.

即ち、電圧調整装置300は、S4の工程においては、本工程で事前に設定した各時間帯の予測目標電圧から、太陽光発電装置G1〜G4の発電量に応じたシフト制御量を減じた値を、線路電圧調整用変圧器200(及び系統電圧調整用変圧器100)の正規の目標電圧として設定して、線路電圧調整用変圧器200(及び系統電圧調整用変圧器100)の出力電圧の制御を行う。又、このとき、演算処理に必要な変数の初期設定等を行う。   That is, in the step S4, the voltage adjustment device 300 is obtained by subtracting the shift control amount corresponding to the power generation amount of the solar power generation devices G1 to G4 from the predicted target voltage of each time zone set in advance in this step. Is set as a normal target voltage of the line voltage adjusting transformer 200 (and the system voltage adjusting transformer 100), and the output voltage of the line voltage adjusting transformer 200 (and the system voltage adjusting transformer 100) is set. Take control. At this time, initialization of variables necessary for arithmetic processing is performed.

S1は、日射量検出装置T1〜T4から日射量データを取得する工程である。本工程は、例えば、電圧調整装置300が、日射量検出装置T1〜T4に対して1秒間隔で日射量データを要求して、日射量検出装置T1〜T4が、当該要求に応じて日射量データを電圧調整装置300に送信することにより行われる。そして、電圧調整装置300は、日射量検出装置T1〜T4から取得した日射量データを、記憶部320に記憶する。   S1 is a step of acquiring solar radiation amount data from the solar radiation amount detecting devices T1 to T4. In this step, for example, the voltage adjustment device 300 requests the solar radiation amount data from the solar radiation amount detection devices T1 to T4 at intervals of 1 second, and the solar radiation amount detection devices T1 to T4 respond to the request. This is done by sending data to the voltage regulator 300. And the voltage regulator 300 memorize | stores the solar radiation amount data acquired from the solar radiation amount detection apparatus T1-T4 in the memory | storage part 320. FIG.

S2は、発電特性データM2を用いて、日射量から太陽光発電装置G1〜G4の発電量を算出する工程である。即ち、電圧調整装置300は、日射量が、前の時点の日射量と比較して大きくなった場合、太陽光発電装置G1〜G4の発電量が増加すると推定されるため、線路電圧調整用変圧器200の目標電圧を低くするべく、本工程を行う。又、日射量が、前の時点の日射量と比較して小さくなった場合、太陽光発電装置G1〜G4の発電量が減少すると推定されるため、線路電圧調整用変圧器200の目標電圧を高くするべく、本工程を行う。   S2 is a step of calculating the power generation amount of the solar power generation devices G1 to G4 from the solar radiation amount using the power generation characteristic data M2. That is, since the voltage adjustment device 300 is estimated to increase the power generation amount of the solar power generation devices G1 to G4 when the solar radiation amount becomes larger than the solar radiation amount at the previous time point, the line voltage adjustment transformer This step is performed to lower the target voltage of the vessel 200. In addition, when the solar radiation amount is smaller than the solar radiation amount at the previous time point, it is estimated that the power generation amount of the solar power generation devices G1 to G4 is reduced. Therefore, the target voltage of the line voltage adjusting transformer 200 is set to This step is performed in order to increase the height.

このとき、電圧調整装置300が基準とする前の時点とは、日射量検出装置T1〜T4から直前に取得した日射量、又は、日射量検出装置T1〜T4から直前に取得した日射量を含む一定期間(例えば、1分間)の平均値等を意味する。又、電圧調整装置300は、タップ切換のチャタリングを防止するため、前の時点の日射量から一定値以上の変化がない場合(例えば、日射量レベルが同じ)は、本工程を行うことなく、S1の工程に戻って、一定期間の日射量を加算して、日射量に一定量変化があるまで待機処理を行ってもよい。尚、発電特性データM2と電圧変動特性データM3に基づいて、予め、日射量と線路電圧調整用変圧器200のシフト制御量の対応関係を算出している場合、本工程は省略することができる。   At this time, the time point before the voltage adjustment device 300 serves as a reference includes the solar radiation amount acquired immediately before from the solar radiation amount detection devices T1 to T4 or the solar radiation amount acquired immediately before from the solar radiation amount detection devices T1 to T4. It means the average value for a certain period (for example, 1 minute). Further, the voltage adjusting device 300 prevents chattering of tap switching, when there is no change of a certain value or more from the solar radiation amount at the previous time (for example, the solar radiation level is the same) without performing this process. You may return to the process of S1, add the amount of solar radiation of a fixed period, and perform standby processing until there is a fixed amount change in the amount of solar radiation. If the correspondence between the amount of solar radiation and the shift control amount of the line voltage adjusting transformer 200 is calculated in advance based on the power generation characteristic data M2 and the voltage fluctuation characteristic data M3, this step can be omitted. .

S3は、電圧変動特性データM3を用いて、太陽光発電装置G1〜G4の発電量から、線路電圧調整用変圧器200の目標電圧の変更すべき値を算出する工程である。本工程で、電圧調整装置300は、S2の工程で算出した太陽光発電装置G1〜G4の発電量から、電圧変動特性データM3を用いて、換算される線路電圧調整用変圧器200のシフト制御量を算出する。そして、算出したシフト制御量と前の時点のシフト制御量の差を算出することにより、目標電圧の変更すべき値を算出することができる。即ち、本工程では、日射量の変化に応じて、太陽光発電装置G1〜G4の発電量が変動するため、これに応じて変更するべき目標電圧の値を算出する。尚、本工程は、電圧継電器210で変更すべき目標電圧の値を算出する代わりに、電圧継電器210で設定すべき目標電圧自体を算出するものであってもよい。又、その際、現在の高圧配電線L1の各点の電圧、電流、有効電力、無効電力等を取得し、これらと電圧変動特性データM3に基づいて、現時点の電力負荷の消費電力量等を考慮した最適な目標電圧を再度算出してもよい。   S3 is a step of calculating a value to be changed of the target voltage of the line voltage adjusting transformer 200 from the power generation amount of the photovoltaic power generation apparatuses G1 to G4 using the voltage fluctuation characteristic data M3. In this step, the voltage adjustment device 300 is converted from the power generation amount of the solar power generation devices G1 to G4 calculated in the step S2, using the voltage variation characteristic data M3, and the shift control of the line voltage adjustment transformer 200 is converted. Calculate the amount. Then, by calculating the difference between the calculated shift control amount and the shift control amount at the previous time point, it is possible to calculate the value to be changed of the target voltage. That is, in this process, since the power generation amount of the solar power generation devices G1 to G4 varies according to the change in the amount of solar radiation, the value of the target voltage to be changed according to this is calculated. In this step, instead of calculating the value of the target voltage to be changed by the voltage relay 210, the target voltage itself to be set by the voltage relay 210 may be calculated. At that time, the voltage, current, active power, reactive power, etc. of each point of the current high-voltage distribution line L1 are acquired, and based on these and the voltage fluctuation characteristic data M3, the current power consumption of the power load, etc. is obtained. The optimum target voltage in consideration may be calculated again.

尚、電圧調整装置300は、太陽光発電装置G1〜G4の発電量の変動が一定以上であり、C点の電圧調整も必要であると判断した場合、系統電圧調整用変圧器100の出力電圧(目標電圧)も変更する。この場合、電圧調整装置300は、上記と同様に、電圧変動特性データM3の太陽光発電装置G1〜G4の発電量と系統電圧調整用変圧器100のシフト制御量の関係を示すデータに基づいて、系統電圧調整用変圧器100の目標電圧を制御する。   In addition, when the voltage regulator 300 determines that the variation in the amount of power generated by the photovoltaic power generators G1 to G4 is greater than or equal to a certain level and the voltage adjustment at the point C is also necessary, the output voltage of the system voltage regulator 100 (Target voltage) is also changed. In this case, the voltage adjustment device 300 is based on data indicating the relationship between the power generation amount of the photovoltaic power generation devices G1 to G4 in the voltage fluctuation characteristic data M3 and the shift control amount of the system voltage adjustment transformer 100, as described above. The target voltage of the system voltage adjusting transformer 100 is controlled.

S4は、S3で算出した変更すべき目標電圧となるように、電圧継電器210の目標電圧を制御する工程である。本工程で、電圧調整装置300は、S3で算出した変更すべき目標電圧の値だけ、電圧継電器210が目標電圧を変更するように、電圧継電器210に指示信号を出力する。そして、電圧継電器210が、目標電圧を当該指示信号に応じた電圧に設定することにより、線路電圧調整用変圧器200の出力電圧は目標電圧に近づくように制御される。これにより、電圧継電器210は、高圧配電線L1の電圧変動が生じる前に、線路電圧調整用変圧器200にタップ切換を行わせる。尚、このとき、電圧調整装置300は、上流側の系統電圧調整用変圧器100の目標電圧も変更すべきと判断した場合、S4の工程で算出した目標電圧に応じて、同様に、電圧継電器110の目標電圧も制御する。   S4 is a step of controlling the target voltage of the voltage relay 210 so as to be the target voltage to be changed calculated in S3. In this step, the voltage regulator 300 outputs an instruction signal to the voltage relay 210 so that the voltage relay 210 changes the target voltage by the value of the target voltage to be changed calculated in S3. Then, the voltage relay 210 sets the target voltage to a voltage corresponding to the instruction signal, so that the output voltage of the line voltage adjusting transformer 200 is controlled to approach the target voltage. As a result, the voltage relay 210 causes the line voltage adjusting transformer 200 to perform tap switching before the voltage fluctuation of the high-voltage distribution line L1 occurs. At this time, if the voltage regulator 300 determines that the target voltage of the upstream system voltage regulator transformer 100 should also be changed, the voltage relay is similarly applied according to the target voltage calculated in the step S4. The target voltage of 110 is also controlled.

電圧調整装置300は、以上の工程を繰り返すことにより、太陽光発電装置G1〜G4の発電量の急激に変動した場合でも、高圧配電線L1の電圧を適正範囲に維持することができる。   The voltage adjustment device 300 can maintain the voltage of the high-voltage distribution line L1 within an appropriate range by repeating the above steps, even when the power generation amount of the solar power generation devices G1 to G4 changes rapidly.

以上、本実施形態に係る電圧調整装置300によれば、線路電圧調整用変圧器200は、日射量変化に追従するように、早急に制御されることにより、大幅な電圧降下を生じさせることなく、配電線の電圧を適正範囲(低圧配電線の電圧が101±6V)に維持することができる。特に、電圧調整装置300は、発電特性データM2、電圧変動特性データM3を用いて、太陽光発電装置G1〜G4の発電量の変動分を、即座に、線路電圧調整用変圧器200の出力電圧に変換することにより、配電線の電圧を常に適正範囲(低圧配電線の電圧が101±6V)に維持することができる。   As described above, according to the voltage regulating apparatus 300 according to the present embodiment, the line voltage regulating transformer 200 is quickly controlled so as to follow the change in the amount of solar radiation without causing a significant voltage drop. The voltage of the distribution line can be maintained in an appropriate range (the voltage of the low-voltage distribution line is 101 ± 6 V). In particular, the voltage adjustment device 300 uses the power generation characteristic data M2 and the voltage fluctuation characteristic data M3 to immediately calculate the amount of fluctuation in the power generation amount of the solar power generation devices G1 to G4, and the output voltage of the line voltage adjustment transformer 200. By converting to, the voltage of the distribution line can always be maintained in an appropriate range (the voltage of the low-voltage distribution line is 101 ± 6 V).

又、本実施形態に係る電圧調整装置300は、線路電圧調整用変圧器200に加えて、系統電圧調整用変圧器100等の上流側の電圧変動にも対処することが可能であり、夫々の装置が順に電圧降下を認識して、電圧調整を行っていく場合に比して、早急な対処が可能である。   In addition to the line voltage adjusting transformer 200, the voltage adjusting apparatus 300 according to the present embodiment can cope with voltage fluctuations on the upstream side of the system voltage adjusting transformer 100 and the like. Compared with the case where the apparatus recognizes the voltage drop in order and adjusts the voltage, an immediate response can be made.

<第2実施形態>
本実施形態に係る電圧調整装置300’は、一定時間内に検出された日射量の変化の傾向と、過去に検出された日射量等を統計処理して求めた日射量の変化の傾向と、に基づいて、線路電圧調整用変圧器200の目標電圧を制御する。尚、第1実施形態と共通する構成については説明を省略する。
Second Embodiment
The voltage adjustment device 300 ′ according to the present embodiment has a tendency of a change in the amount of solar radiation detected within a predetermined time, a tendency of a change in the amount of solar radiation obtained by statistically processing the amount of solar radiation detected in the past, and the like. Based on the above, the target voltage of the line voltage adjusting transformer 200 is controlled. In addition, description is abbreviate | omitted about the structure common to 1st Embodiment.

本実施形態は、日射量は、季節、時間帯、天候等に応じて、同様の変化の傾向を示すという理解に基づく。そこで、本実施形態に係る電圧調整装置300’は、太陽光発電装置G1〜G4の設置位置における過去の複数の日時の日照量、季節、時間帯、天候、気圧等の気象情報(日射量に関するデータ)に基づいて、日照量、季節、時間帯、天候、気圧等の気象情報の関係を、統計処理(例えば、回帰分析)により算出する。そして、電圧調整装置300’は、季節、時間帯、天候、気圧等の気象情報を設定することにより、数パターンの1日の日射量の変化の傾向を示すデータの推定データが設定し得るように、日射量変化傾向データM5として記憶部320’に記憶しておく。   This embodiment is based on the understanding that the amount of solar radiation shows a similar tendency of change depending on the season, time zone, weather, and the like. Therefore, the voltage adjustment device 300 ′ according to the present embodiment provides weather information (related to the amount of solar radiation) such as the amount of sunshine, season, time zone, weather, and atmospheric pressure at a plurality of past dates and times at the installation positions of the photovoltaic power generation devices G1 to G4. Based on (data), the relationship of weather information such as the amount of sunlight, season, time zone, weather, and atmospheric pressure is calculated by statistical processing (for example, regression analysis). Then, the voltage adjustment device 300 ′ can set the estimated data of the data indicating the tendency of the change in the daily solar radiation amount of several patterns by setting the weather information such as the season, the time zone, the weather, and the atmospheric pressure. In addition, it is stored in the storage unit 320 ′ as the solar radiation amount change tendency data M5.

図9に、本実施形態に係る日射量変化傾向データM5の一例をグラフ化して示す。図9は、天候が晴れた春の日の一日の日射量の変化の傾向と、途中でゲリア豪雨等が発生した場合における1日の日射量の変化の傾向を表している。当該データによると、日射量が急速に小さくなるときの傾向を把握することが可能となる。そのため、電圧調整装置300’は、例えば、図9に示す傾向データを予め設定しておくことにより、日射量が急速に小さくなったことを検出した場合、次の時点(例えば、1分後)においても同様の変化の傾向を示すものと推定する。即ち、電圧調整装置300’は、取得した現時点の日射量を含む一定時間の日射量の傾向から次の時点の日射量を推定し、当該推定した次の時点の日射量に基づいて、線路電圧調整用変圧器200の目標電圧を制御することにより、早急に、線路電圧調整用変圧器200の目標電圧を制御して、高圧配電線L1の電圧調整を行うことが可能となる。   FIG. 9 is a graph showing an example of the solar radiation amount change tendency data M5 according to the present embodiment. FIG. 9 shows the trend of change in the amount of solar radiation per day on a spring day when the weather is clear, and the trend of change in the amount of solar radiation per day when a heavy rain or the like occurs on the way. According to the data, it is possible to grasp the tendency when the amount of solar radiation decreases rapidly. Therefore, when the voltage adjustment device 300 ′ detects that the amount of solar radiation has decreased rapidly by, for example, setting the trend data shown in FIG. 9 in advance, the next time point (for example, after one minute) It is presumed that the same change tendency is shown in Fig. 1. That is, the voltage adjustment device 300 ′ estimates the solar radiation amount at the next time point from the tendency of the solar radiation amount for a certain time including the acquired current solar radiation amount, and the line voltage based on the estimated solar radiation amount at the next time point. By controlling the target voltage of the adjustment transformer 200, it is possible to quickly control the target voltage of the line voltage adjustment transformer 200 and adjust the voltage of the high-voltage distribution line L1.

尚、日射量の変化の傾向の近似度は、一定時間の日射量データと、例えば、季節、気圧、天候、時間帯等の情報に基づいて設定した日射量変化傾向データM5とを周知の近似計算することにより行うことができる。又、日射量変化傾向データM5についても、重回帰分析等、周知の統計分析により算出することができる。そのため、これらの説明は省略する。   The degree of approximation of the trend of change in the amount of solar radiation is a well-known approximation of the amount of solar radiation for a certain time and the amount of solar radiation trend data M5 set based on information such as season, atmospheric pressure, weather, time zone, etc. This can be done by calculating. Also, the solar radiation amount change tendency data M5 can be calculated by well-known statistical analysis such as multiple regression analysis. Therefore, these descriptions are omitted.

以上、本実施形態によれば、電圧調整装置300’は、太陽光発電装置G1〜G4の発電量が変動する前段階で、線路電圧調整用変圧器200の目標電圧を調整することが可能となり、線路電圧調整用変圧器200のタップ切換が、高圧配電線L1の電圧変動に追従できず、高圧配電線L1の電圧が適正範囲を逸脱するという事態を確実に防止することができる。   As described above, according to the present embodiment, the voltage adjustment device 300 ′ can adjust the target voltage of the line voltage adjustment transformer 200 before the power generation amount of the photovoltaic power generation devices G1 to G4 fluctuates. Further, the tap switching of the line voltage adjusting transformer 200 cannot follow the voltage fluctuation of the high voltage distribution line L1, and the situation where the voltage of the high voltage distribution line L1 deviates from the appropriate range can be reliably prevented.

<その他の実施形態>
尚、第1実施形態では、電圧調整装置300は、複数の日射量検出装置T1〜T4から日射量に関するデータを取得し、当該データと太陽光発電装置G1〜G4の位置関係とに基づいて、各太陽光発電装置G1〜G4の発電量を算出して、線路電圧調整用変圧器200のシフト制御量を算出した。しかし、高圧配電線L1に系統連系する太陽光発電装置の設置されている領域が狭い場合、電圧調整装置300は、一の日射量検出装置のみを用いて、線路電圧調整用変圧器200のシフト制御量を算出してもよい。
<Other embodiments>
In the first embodiment, the voltage adjustment device 300 acquires data on the amount of solar radiation from the plurality of solar radiation amount detection devices T1 to T4, and based on the data and the positional relationship between the solar power generation devices G1 to G4. The power generation amount of each of the solar power generation devices G1 to G4 was calculated, and the shift control amount of the line voltage adjusting transformer 200 was calculated. However, when the area where the photovoltaic power generation apparatus connected to the high voltage distribution line L1 is installed is small, the voltage adjustment apparatus 300 uses only one solar radiation amount detection apparatus, and the line voltage adjustment transformer 200 A shift control amount may be calculated.

又、上記各実施形態では、電圧調整装置300は、線路電圧調整用変圧器200の目標電圧を変更することにより、線路電圧調整用変圧器200の下流側の高圧配電線L1の電圧変動を調整する態様を示した。しかし、静止型無効電力補償装置(Static Var Compensator:SVC)が、線路電圧調整用変圧器200の下流側の高圧配電線L1に設置されている場合、電圧調整装置300は、前の時点との日射量の変化が所定量以上のときには、線路電圧調整用変圧器200の目標電圧の調整に代えて、静止型無効電力補償装置の投入により、電圧変動に対処してもよい。静止型無効電力補償装置は、サイリスタ等の半導体スイッチを用いて配電線の無効電力を調整する装置であり、負荷時タップ切替器付変圧器のタップ切換動作に比して短時間で動作が可能である(数100ms程度)。そのため、電圧調整装置300は、図8のS0工程において、静止型無効電力補償装置の設置位置、投入可能状態を予め設定しておき、検出した日射量と前の時点の日射量の変化が所定量以上のときには、静止型無効電力補償装置により高圧配電線L1の電圧調整を行う。この場合、電圧調整装置300は、線路電圧調整用変圧器200による電圧調整が間に合わない場合でも、高圧配電線L1の電圧が適正範囲を逸脱するという事態を確実に防止することができる。尚、その際、電圧調整装置300が静止型無効電力補償装置に対して調整指示を出力してもよいし、静止型無効電力補償装置が電圧変動を検出して、即座に自動で動作する場合は、電圧調整装置300から調整指示を出力しなくともよい。   In each of the above embodiments, the voltage adjustment device 300 adjusts the voltage fluctuation of the high-voltage distribution line L1 on the downstream side of the line voltage adjustment transformer 200 by changing the target voltage of the line voltage adjustment transformer 200. The mode to do was shown. However, when a static var compensator (SVC) is installed in the high-voltage distribution line L1 on the downstream side of the line voltage adjusting transformer 200, the voltage adjusting device 300 is connected to the previous time point. When the change in the amount of solar radiation is greater than or equal to a predetermined amount, voltage fluctuations may be dealt with by introducing a static reactive power compensator instead of adjusting the target voltage of the line voltage adjusting transformer 200. A static reactive power compensator is a device that adjusts the reactive power of a distribution line using a semiconductor switch such as a thyristor, and can be operated in a shorter time than the tap switching operation of a transformer with a tap changer at load. (About several hundred ms). Therefore, in step S0 of FIG. 8, the voltage adjustment device 300 sets in advance the installation position of the static reactive power compensator and the state where it can be turned on, and changes in the detected amount of solar radiation and the amount of solar radiation at the previous time are given. When the amount is more than the fixed amount, the voltage of the high voltage distribution line L1 is adjusted by the static reactive power compensator. In this case, the voltage regulator 300 can reliably prevent a situation in which the voltage of the high-voltage distribution line L1 deviates from the appropriate range even when the voltage regulation by the line voltage regulation transformer 200 is not in time. At this time, the voltage regulator 300 may output an adjustment instruction to the static reactive power compensator, or the static reactive power compensator detects voltage fluctuation and immediately and automatically operates. May not output an adjustment instruction from the voltage adjustment device 300.

又、上記各実施形態では、太陽光発電装置G1〜G4が高圧配電線L1に接続されている場合に、電圧調整装置300が線路電圧調整用変圧器200の目標電圧を制御することで、高圧配電線L1の電圧調整を行う態様について説明した。しかし、電圧調整装置300は、太陽光発電装置G1〜G4が系統電圧調整用変圧器100の母線LLに接続されている場合に、系統電圧調整用変圧器100の目標電圧を制御することで、母線LLの電圧調整を行う態様についても、同様に適用し得る。   Moreover, in each said embodiment, when the solar power generation device G1-G4 is connected to the high voltage distribution line L1, the voltage regulator 300 controls the target voltage of the transformer 200 for line voltage regulation, so that the high voltage The aspect which performs the voltage adjustment of the distribution line L1 was demonstrated. However, when the photovoltaic power generation apparatuses G1 to G4 are connected to the bus LL of the system voltage adjustment transformer 100, the voltage adjustment apparatus 300 controls the target voltage of the system voltage adjustment transformer 100, The same applies to the mode of adjusting the voltage of the bus LL.

又、上記各実施形態では、電圧調整装置300と電圧継電器210を別体の装置としたが、電圧調整装置300と電圧継電器210を一体として構成されてもよく、その場合、電圧継電器210に、上記した電圧調整装置300の制御部の機能を備えさせればよい。   Further, in each of the above embodiments, the voltage regulator 300 and the voltage relay 210 are separate devices, but the voltage regulator 300 and the voltage relay 210 may be configured as an integral unit. What is necessary is just to provide the function of the control part of the voltage regulator 300 mentioned above.

上記各実施形態は、以下の記載により特定される発明を開示するものである。   Each of the above embodiments discloses an invention specified by the following description.

前述した課題を解決する主たる本発明は、電圧調整用変圧器100、200が二次側に出力する電圧の目標電圧を制御することにより、太陽光発電装置G1〜G4と系統連系する配電線L1の電圧を調整する電圧調整装置300であって、太陽光発電装置G1〜G4に応じた太陽光の日射量を検出し、日射量が前の時点よりも大きくなった場合、電圧調整用変圧器100、200の目標電圧が低くなるように制御し、日射量が前の時点よりも小さくなった場合、電圧調整用変圧器100、200の目標電圧が高くなるように制御する制御部310、を備えることを特徴とする電圧調整装置300を開示した。これによって、電圧調整用変圧器100、200は、日射量変化に追従するように、早急に制御されることにより、大幅な電圧降下を生じさせることなく、配電線の電圧を適正範囲(低圧配電線の電圧が101±6V)に維持することができる。   The main present invention that solves the above-described problems is a distribution line that is connected to the photovoltaic power generators G1 to G4 by controlling the target voltage of the voltage output from the voltage regulating transformers 100 and 200 to the secondary side. A voltage adjustment device 300 that adjusts the voltage of L1, detects the amount of solar radiation according to the photovoltaic power generation devices G1 to G4, and when the amount of solar radiation becomes larger than the previous time point, the voltage adjustment transformer The control unit 310, which controls the target voltage of the voltage regulators 100, 200 so that the target voltage of the voltage adjusting transformers 100, 200 becomes higher when the amount of solar radiation becomes smaller than the previous time point. Disclosed is a voltage regulator 300 characterized by comprising: As a result, the voltage regulating transformers 100 and 200 are quickly controlled so as to follow the change in the amount of solar radiation, so that the voltage of the distribution line can be set within an appropriate range (low voltage distribution) without causing a significant voltage drop. The voltage of the electric wire can be maintained at 101 ± 6V).

ここで、制御部310は、日射量、日射量と太陽光発電装置G1〜G4の発電量の関係を示す発電特性、及び発電量と電圧調整用変圧器100、200のシフト制御量の関係を示す電圧変動特性とに基づいて、電圧調整用変圧器100、200の目標電圧を制御するものであってもよい。これによって、電圧調整装置300は、検出された日射量に応じた目標電圧を設定することができる。   Here, the control unit 310 determines the solar radiation amount, the solar radiation amount and the power generation characteristics indicating the relationship between the solar power generation devices G1 to G4, and the relationship between the power generation amount and the shift control amount of the voltage adjusting transformers 100 and 200. The target voltage of the voltage adjusting transformers 100 and 200 may be controlled based on the voltage fluctuation characteristics shown. Thereby, the voltage regulator 300 can set the target voltage according to the detected amount of solar radiation.

ここで、電圧調整装置300は、過去の複数の日時の日射量に関するデータに基づいて作成された、日射量の変化の傾向を示すデータM5を記憶部320に備え、制御部310は、一定期間に検出された日射量の変化の傾向と、日射量の変化の傾向を示すデータM5とに基づいて、電圧調整用変圧器100、200の目標電圧を制御するものであってもよい。これによって、電圧調整装置300は、太陽光発電装置G1〜G4の発電量が変動する前段階で、電圧調整用変圧器100、200の目標電圧を調整することが可能となり、電圧調整用変圧器100、200のタップ切換が、高圧配電線L1の電圧変動に追従できず、高圧配電線L1の電圧が適正範囲を逸脱するという事態を確実に防止することができる。   Here, the voltage adjustment device 300 includes, in the storage unit 320, data M5 that is created based on data on the amount of solar radiation at a plurality of past dates and times, and that indicates a tendency of change in the amount of solar radiation. The target voltage of the voltage adjusting transformers 100 and 200 may be controlled based on the detected change in the amount of solar radiation and the data M5 indicating the change in the amount of solar radiation. As a result, the voltage adjustment device 300 can adjust the target voltage of the voltage adjustment transformers 100 and 200 before the power generation amount of the solar power generation devices G1 to G4 fluctuates. The tap switching between 100 and 200 cannot follow the voltage fluctuation of the high voltage distribution line L1, and can reliably prevent the situation where the voltage of the high voltage distribution line L1 deviates from the appropriate range.

ここで、太陽光発電装置G1〜G4の設置位置は、所定の条件により複数の区域N1〜N4に区分けされ、制御部310は、太陽光発電装置G1〜G4の設置位置に対応する区域N1〜N4で検出された日射量を、太陽光発電装置G1〜G4に応じた太陽光の日射量として、電圧調整用変圧器100、200の目標電圧を制御するものであってもよい。これによって、電圧調整装置300は、すべての太陽光発電装置かと通信して日射量を取得する必要がなくなる。   Here, the installation positions of the photovoltaic power generation apparatuses G1 to G4 are divided into a plurality of areas N1 to N4 according to predetermined conditions, and the control unit 310 includes the areas N1 to N1 corresponding to the installation positions of the photovoltaic power generation apparatuses G1 to G4. The target voltage of the voltage adjusting transformers 100 and 200 may be controlled by using the solar radiation amount detected at N4 as the solar radiation amount corresponding to the solar power generation devices G1 to G4. This eliminates the need for the voltage adjustment device 300 to communicate with all the solar power generation devices to acquire the amount of solar radiation.

ここで、複数の区域N1〜N4のいずれかの区域で、太陽光発電装置から送電を受ける電力負荷が接続されている場合、制御部310は、対応する区域で検出された日射量と、日射量と太陽光発電装置の発電量の関係を示す発電特性と、に基づいて、区域ごとの太陽光発電装置の発電量を算出し、区域ごとの太陽光発電装置の発電量を太陽光発電装置に接続された電力負荷R1〜R4を重みとして加重平均した値と、電圧調整用変圧器のシフト制御量の関係を示す電圧変動特性と、に基づいて、電圧調整用変圧器の目標電圧を制御するものであってもよい。これによって、電力負荷R1〜R4を考慮した配電線L1の電圧変動を簡易に算出することができる。   Here, when an electric load that receives power transmission from the photovoltaic power generation apparatus is connected in any one of the plurality of areas N1 to N4, the control unit 310 detects the amount of solar radiation detected in the corresponding area, and the solar radiation. Based on the power generation characteristics indicating the relationship between the amount and the power generation amount of the solar power generation device, the power generation amount of the solar power generation device for each area is calculated, and the power generation amount of the solar power generation device for each area is calculated. The target voltage of the voltage adjusting transformer is controlled based on the weighted average value using the power loads R1 to R4 connected to the power and the voltage fluctuation characteristics indicating the relationship between the shift control amount of the voltage adjusting transformer. You may do. Thereby, the voltage fluctuation of the distribution line L1 in consideration of the power loads R1 to R4 can be easily calculated.

ここで、電圧調整用変圧器100、200の上流側に、電圧調整用変圧器100、200に電力供給する第2の電圧調整用変圧器100、200が設置されている場合、制御部310は、日射量、日射量と太陽光発電装置G1〜G4の発電量の関係を示す発電特性M2、及び発電量と第2の電圧調整用変圧器100、200のシフト制御量の関係を示す第2の電圧変動特性M3とに基づいて、第2の電圧調整用変圧器100、200の目標電圧を制御するものであってもよい。これによって、電圧調整装置300は、太陽光発電装置G1〜G4の発電量の変動に伴う系統電圧調整用変圧器100等の上流側の電圧変動にも対処することが可能であり、夫々の装置が順に電圧降下を認識して、電圧調整を行っていく場合に比して、早急な対処が可能である。   Here, when the second voltage adjustment transformers 100 and 200 that supply power to the voltage adjustment transformers 100 and 200 are installed on the upstream side of the voltage adjustment transformers 100 and 200, the control unit 310 , The solar radiation amount, the solar radiation amount and the power generation characteristic M2 indicating the relationship between the solar power generation devices G1 to G4, and the second relationship between the power generation amount and the shift control amount of the second voltage regulating transformers 100 and 200. The target voltage of the second voltage regulating transformer 100, 200 may be controlled based on the voltage fluctuation characteristic M3. As a result, the voltage regulator 300 can cope with upstream voltage fluctuations of the system voltage regulating transformer 100 and the like accompanying fluctuations in the amount of power generated by the photovoltaic power generators G1 to G4. Compared with the case where the voltage drop is recognized in turn and the voltage adjustment is performed, it is possible to deal with it immediately.

ここで、制御部310は、日射量、日射量と太陽光発電装置G1〜G4の発電量の関係を示す発電特性M2、及び発電量と電圧調整用変圧器100、200のシフト制御量の関係を示す電圧変動特性M3とに基づいて、段階的に電圧調整用変圧器100、200の目標電圧を制御するものであってもよい。これによって、電圧調整装置300は、太陽光発電装置G1〜G4の発電量が変動するタイミングにあわせて、配電線L1の電圧調整を行うことが可能となる。   Here, the control unit 310 includes the solar radiation amount, the solar radiation amount and the power generation characteristic M2 indicating the relationship between the solar power generation devices G1 to G4, and the relationship between the power generation amount and the shift control amounts of the voltage adjusting transformers 100 and 200. The target voltage of the voltage adjusting transformers 100 and 200 may be controlled stepwise based on the voltage fluctuation characteristic M3 indicating As a result, the voltage adjustment device 300 can adjust the voltage of the distribution line L1 in accordance with the timing at which the power generation amount of the solar power generation devices G1 to G4 varies.

ここで、太陽光発電装置G1〜G4と系統連系する配電線L1に静止型無効電力補償装置が設置されている場合、制御部310は、日射量が前の時点から所定量以上変化したとき、電圧調整用変圧器100、200の目標電圧を制御することに代えて、静止型無効電力補償装置の投入により配電線L1の電圧が調整されるように制御するものであってもよい。これによって、電圧調整装置300は、電圧調整用変圧器100、200による電圧調整が間に合わない場合でも、高圧配電線L1の電圧が適正範囲を逸脱するという事態を確実に防止することができる。   Here, when the static reactive power compensator is installed in the distribution line L1 that is connected to the photovoltaic power generation apparatuses G1 to G4, the control unit 310 changes the solar radiation amount by a predetermined amount or more from the previous time point. Instead of controlling the target voltage of the voltage adjusting transformers 100 and 200, control may be performed so that the voltage of the distribution line L1 is adjusted by turning on the static reactive power compensator. As a result, the voltage regulator 300 can reliably prevent a situation where the voltage of the high-voltage distribution line L1 deviates from the appropriate range even when the voltage regulation by the voltage regulation transformers 100 and 200 is not in time.

ここで、制御部310は、電圧調整用変圧器100、200が二次側に出力する電圧を監視するとともに、タップ切換信号を出力する電圧継電器110、210の目標電圧を制御することにより、電圧調整用変圧器100、200が二次側に出力する電圧を制御するものであってもよい。   Here, the control unit 310 monitors the voltage output from the voltage adjustment transformers 100 and 200 to the secondary side, and controls the target voltage of the voltage relays 110 and 210 that outputs the tap switching signal, thereby controlling the voltage. The voltage which the adjustment transformers 100 and 200 output to the secondary side may be controlled.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

100 系統電圧調整用変圧器
200 線路電圧調整用変圧器
110 電圧継電器
210 電圧継電器
300 電圧調整装置
400 通信回線
G1〜G4 太陽光発電装置
Tr1〜Tr4 柱上変圧器
R1〜R4 需要家
T1〜T4 日射量検出装置
LL 高圧母線
L1 高圧配電線
100 Voltage Regulator Transformer 200 Line Voltage Adjuster Transformer 110 Voltage Relay 210 Voltage Relay 300 Voltage Regulator 400 Communication Lines G1-G4 Photovoltaic Generator Tr1-Tr4 Pillar Transformer R1-R4 Consumer T1-T4 Solar Radiation Quantity detection device LL High voltage bus L1 High voltage distribution line

Claims (6)

電圧調整用変圧器が二次側に出力する電圧の目標電圧を制御することにより、所定の条件により複数の区域に区分けされる太陽光発電装置と系統連系する配電線の電圧を調整する電圧調整装置であって、
前記太陽光発電装置に応じた太陽光の日射量を検出し、前記日射量が前の時点よりも大きくなった場合、前記電圧調整用変圧器の目標電圧が低くなるように制御し、前記日射量が前の時点よりも小さくなった場合、前記電圧調整用変圧器の目標電圧が高くなるように制御する制御部を備え、
前記制御部は、
前記複数の区域のいずれかの区域の前記太陽光発電装置に、前記太陽光発電装置から送電を受ける電力負荷が接続されている場合、
前記太陽光発電装置の設置位置に対応する区域で検出された前記日射量と、日射量と前記太陽光発電装置の発電量の関係を示す発電特性と、に基づいて、区域ごとの前記太陽光発電装置の発電量を算出し、
前記区域ごとの前記太陽光発電装置の発電量を前記区域ごとの前記電力負荷を重みとして加重平均した値と、前記電圧調整用変圧器のシフト制御量の関係を示す電圧変動特性と、に基づいて、前記電圧調整用変圧器の目標電圧を制御する
ことを特徴とする電圧調整装置。
Voltage that adjusts the voltage of the distribution line that is connected to the photovoltaic power generators that are divided into multiple areas according to predetermined conditions by controlling the target voltage of the voltage output to the secondary side by the voltage adjustment transformer An adjustment device,
The solar radiation amount corresponding to the solar power generation device is detected, and when the solar radiation amount is larger than the previous time point, the target voltage of the voltage adjusting transformer is controlled to be low, and the solar radiation amount is controlled. When the amount is smaller than the previous time point, comprising a control unit for controlling the target voltage of the voltage adjusting transformer to be high ,
The controller is
When a power load receiving power transmission from the solar power generation device is connected to the solar power generation device in any one of the plurality of areas,
Based on the solar radiation amount detected in the area corresponding to the installation position of the solar power generation device, and the power generation characteristics indicating the relationship between the solar radiation amount and the power generation amount of the solar power generation device, the solar light for each region Calculate the power generation amount of the power generator,
Based on a value obtained by weighted averaging the power generation amount of the photovoltaic power generation device for each area with the power load for each area as a weight, and a voltage fluctuation characteristic indicating a relationship between shift control amounts of the voltage adjustment transformer And controlling a target voltage of the voltage adjusting transformer .
過去の複数の日時の日射量に関するデータに基づいて作成された、日射量の変化の傾向を示すデータを記憶部に備え、
前記制御部は、一定期間に検出された前記日射量の変化の傾向と、前記日射量の変化の傾向を示すデータとに基づいて、前記電圧調整用変圧器の目標電圧を制御する
ことを特徴とする請求項1に記載の電圧調整装置。
The storage unit is provided with data indicating a tendency of change in the amount of solar radiation, which is created based on data on the amount of solar radiation at a plurality of past dates and times,
The control unit controls a target voltage of the voltage adjusting transformer based on a trend of change in the amount of solar radiation detected in a certain period and data indicating a tendency of change in the amount of solar radiation. The voltage regulator according to claim 1 .
前記電圧調整用変圧器の上流側に、前記電圧調整用変圧器に電力供給する第2の電圧調整用変圧器が設置されている場合、
前記制御部は、前記日射量、日射量と前記太陽光発電装置の発電量の関係を示す発電特性、及び発電量と前記第2の電圧調整用変圧器のシフト制御量の関係を示す第2の電圧変動特性とに基づいて、前記第2の電圧調整用変圧器の目標電圧を制御する
ことを特徴とする請求項1又は2に記載の電圧調整装置。
When a second voltage adjusting transformer for supplying power to the voltage adjusting transformer is installed on the upstream side of the voltage adjusting transformer,
The control unit includes the solar radiation amount, a power generation characteristic indicating a relationship between the solar radiation amount and a power generation amount of the solar power generation device, and a second relationship indicating a relationship between the power generation amount and a shift control amount of the second voltage regulating transformer. based of the voltage variation characteristic, the voltage adjustment device according to claim 1 or 2, characterized in that controlling the target voltage of said second voltage adjusting transformer.
前記制御部は、前記日射量、日射量と前記太陽光発電装置の発電量の関係を示す発電特性、及び発電量と前記電圧調整用変圧器のシフト制御量の関係を示す電圧変動特性とに基づいて、段階的に前記電圧調整用変圧器の目標電圧を制御する
ことを特徴とする請求項1乃至いずれか一項に記載の電圧調整装置。
The control unit includes the solar radiation amount, the solar radiation amount and a power generation characteristic indicating a relationship between the solar power generation amount and the voltage fluctuation characteristic indicating a relationship between the power generation amount and the shift control amount of the voltage adjusting transformer. based on, the voltage regulating device according to any one of claims 1 to 3, characterized in that to control the stepwise target voltage of the voltage adjusting transformers.
前記太陽光発電装置と系統連系する配電線に静止型無効電力補償装置が設置されている場合、
前記制御部は、前記日射量が前の時点から所定量以上変化したとき、前記電圧調整用変圧器の目標電圧を制御することに代えて、前記静止型無効電力補償装置の投入により配電線の電圧が調整されるように制御する
ことを特徴とする請求項1乃至いずれか一項に記載の電圧調整装置。
When a static reactive power compensator is installed on a distribution line interconnected with the solar power generation device,
The control unit, instead of controlling the target voltage of the voltage adjustment transformer when the amount of solar radiation has changed by a predetermined amount or more from the previous time point, by turning on the static reactive power compensator, It controls so that a voltage may be adjusted. The voltage regulator as described in any one of Claims 1 thru | or 4 characterized by the above-mentioned.
前記制御部は、前記電圧調整用変圧器が二次側に出力する電圧を監視する電圧継電器の目標電圧を制御することにより、前記電圧調整用変圧器が二次側に出力する電圧を制御する
ことを特徴とする請求項1乃至いずれか一項に記載の電圧調整装置。
The control unit controls a voltage output from the voltage adjusting transformer to the secondary side by controlling a target voltage of a voltage relay that monitors a voltage output from the voltage adjusting transformer to the secondary side. The voltage regulator according to any one of claims 1 to 5, wherein:
JP2014203078A 2014-10-01 2014-10-01 Voltage regulator Active JP6075348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014203078A JP6075348B2 (en) 2014-10-01 2014-10-01 Voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014203078A JP6075348B2 (en) 2014-10-01 2014-10-01 Voltage regulator

Publications (2)

Publication Number Publication Date
JP2016073153A JP2016073153A (en) 2016-05-09
JP6075348B2 true JP6075348B2 (en) 2017-02-08

Family

ID=55867601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014203078A Active JP6075348B2 (en) 2014-10-01 2014-10-01 Voltage regulator

Country Status (1)

Country Link
JP (1) JP6075348B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048709B2 (en) * 2016-09-19 2018-08-14 General Electric Company System and method for regulation of voltage on an electric power system
JP6829115B2 (en) * 2017-03-10 2021-02-10 東芝エネルギーシステムズ株式会社 Voltage controller and program
JP7002991B2 (en) * 2018-04-27 2022-01-20 株式会社日立製作所 Distribution system voltage adjustment device, voltage adjustment system, voltage adjustment method and distribution equipment design support system
JP7086820B2 (en) * 2018-11-07 2022-06-20 三菱重工業株式会社 Reactive power control device and reactive power control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258698B2 (en) * 2009-08-05 2013-08-07 サンケン電気株式会社 Voltage adjusting device and voltage adjusting method
JP5601521B2 (en) * 2010-11-22 2014-10-08 中部電力株式会社 Automatic voltage adjusting device and method for distribution line
WO2012114582A1 (en) * 2011-02-24 2012-08-30 三菱電機株式会社 Voltage control apparatus
JP5939894B2 (en) * 2012-06-08 2016-06-22 株式会社日立製作所 Distribution system voltage regulator, voltage regulation method, and power control system
JP5912957B2 (en) * 2012-07-20 2016-04-27 株式会社日立製作所 Power control system and power control method
JP5461717B1 (en) * 2013-01-11 2014-04-02 中国電力株式会社 Power prediction device

Also Published As

Publication number Publication date
JP2016073153A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
US8531173B2 (en) System and method for operating a tap changer
JP6081125B2 (en) Photovoltaic power generation apparatus and power management system, and power load and measuring apparatus therefor
US9553454B2 (en) Method and device for stabilizing network operation of a power supply network
JP6191229B2 (en) Tap plan value calculation method, tap command value determination method, control target value calculation method, tap plan value calculation device, tap command value determination device, and tap plan value calculation program
JP6075348B2 (en) Voltage regulator
US11322940B2 (en) System for frequency regulation on a power distribution network
JP4266003B2 (en) Control method and apparatus for distributed power generator
GB2569910A (en) System for frequency regulation on a power distribution network
JP5951747B2 (en) Power system controller
JP5931991B2 (en) Voltage regulator
US20210064073A1 (en) Centralized voltage control apparatus and centralized voltage control system
JPWO2013172012A1 (en) Power control apparatus, power control method, and program
EP3660998A1 (en) System for frequency regulation on a power distribution network
JP6070077B2 (en) Voltage control apparatus and voltage control method
JP5897678B1 (en) Voltage regulator
JP5897518B2 (en) Voltage regulator
AU2019239703B2 (en) System for controlling power consumption on a distribution grid
EP3661000A1 (en) System for controlling power consumption on a distribution grid
US20220231507A1 (en) System for frequency regulation on a power distribution network
WO2023058533A1 (en) Air conditioner and control system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6075348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150