JP6075245B2 - Rotating machine with physical quantity measuring device - Google Patents

Rotating machine with physical quantity measuring device Download PDF

Info

Publication number
JP6075245B2
JP6075245B2 JP2013175492A JP2013175492A JP6075245B2 JP 6075245 B2 JP6075245 B2 JP 6075245B2 JP 2013175492 A JP2013175492 A JP 2013175492A JP 2013175492 A JP2013175492 A JP 2013175492A JP 6075245 B2 JP6075245 B2 JP 6075245B2
Authority
JP
Japan
Prior art keywords
phase
phase difference
physical quantity
pulse
difference ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013175492A
Other languages
Japanese (ja)
Other versions
JP2015045517A (en
Inventor
大輔 郡司
大輔 郡司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013175492A priority Critical patent/JP6075245B2/en
Publication of JP2015045517A publication Critical patent/JP2015045517A/en
Application granted granted Critical
Publication of JP6075245B2 publication Critical patent/JP6075245B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、例えば、自動車等の車両の車輪支持用転がり軸受ユニット、自動車用変速機、工作機械の主軸装置等の各種回転機械を構成する回転部材に作用する外力と、この回転部材の変位とのうちの、少なくとも一方の物理量を測定する機能を備えた物理量測定装置付回転機械の改良に関する。特に、本発明は、前記回転部材が一定の角速度で回転していない状況での、前記物理量の測定誤差を低減する事を目的とするものである。   The present invention relates to, for example, an external force acting on rotating members constituting various rotating machines such as a rolling bearing unit for supporting a wheel of a vehicle such as an automobile, a transmission for an automobile, a spindle device of a machine tool, and the displacement of the rotating member. The present invention relates to an improvement in a rotating machine with a physical quantity measuring device having a function of measuring at least one of the physical quantities. In particular, an object of the present invention is to reduce the measurement error of the physical quantity in a situation where the rotating member is not rotating at a constant angular velocity.

自動車の走行安定性確保の為の制御を、より高度に行わせる為に、自動車の車輪支持用転がり軸受ユニットに物理量測定装置を組み込み、各車輪に加わる外力であるアキシアル荷重を測定する事が考えられている(例えば、特許文献1〜3参照)。図4は、これら特許文献1〜3等に記載されて従来から知られている、物理量測定装置付回転機械の従来構造の1例を示している。この物理量測定装置付回転機械は、回転機械である転がり軸受ユニット1と、エンコーダ2と、1対のセンサ3、3と、図示しない演算器とを備える。   In order to make the control for ensuring the running stability of the car more sophisticated, it is considered to incorporate a physical quantity measuring device into the rolling bearing unit for supporting the wheel of the car and measure the axial load that is the external force applied to each wheel. (For example, see Patent Documents 1 to 3). FIG. 4 shows an example of a conventional structure of a rotating machine with a physical quantity measuring device described in Patent Documents 1 to 3 and the like and conventionally known. This rotating machine with a physical quantity measuring device includes a rolling bearing unit 1 that is a rotating machine, an encoder 2, a pair of sensors 3, 3, and a calculator (not shown).

このうちの転がり軸受ユニット1は、使用時に懸架装置に結合固定された状態で回転しない外輪4と、使用時に車輪を支持固定した状態でこの車輪と共に回転する、回転部材であるハブ5と、これら外輪4の内周面とハブ5の外周面との間に複列に設けられた複数個の転動体6、6とを備える。これら各転動体6、6には、背面組み合わせ型の接触角と共に、予圧が付与されている。   Among these, the rolling bearing unit 1 includes an outer ring 4 that does not rotate while being coupled and fixed to a suspension device in use, a hub 5 that is a rotating member that rotates together with the wheel while supporting and fixing the wheel during use, A plurality of rolling elements 6, 6 provided in double rows between the inner peripheral surface of the outer ring 4 and the outer peripheral surface of the hub 5 are provided. A preload is applied to each of the rolling elements 6 and 6 together with the contact angle of the rear combination type.

又、前記エンコーダ2は、前記ハブ5の軸方向内端部(図4の右端部)に、このハブ5と同心に支持固定されている。前記エンコーダ2は、前記ハブ5の軸方向内端部に外嵌固定された、磁性金属製で円環状の芯金7と、この芯金7の外周面に全周に亙り固定された、永久磁石製で円筒状のエンコーダ本体8とから成る。前記ハブ5と同心の被検出部である、このエンコーダ本体8の外周面には、S極とN極とが円周方向に関して交互に且つ等ピッチで配置されている。これらS極とN極との境界は、軸方向中央部が円周方向に関して最も突出した、V字形になっている。   The encoder 2 is supported and fixed concentrically with the hub 5 at the inner end in the axial direction of the hub 5 (the right end in FIG. 4). The encoder 2 is made of a magnetic metal ring-shaped cored bar 7 fitted and fixed to the inner end of the hub 5 in the axial direction. The encoder body 8 is made of a magnet and has a cylindrical shape. On the outer peripheral surface of the encoder body 8, which is a detected part concentric with the hub 5, S poles and N poles are alternately arranged at equal pitches in the circumferential direction. The boundary between these S poles and N poles is V-shaped with the central portion in the axial direction protruding most in the circumferential direction.

又、前記両センサ3、3は、前記外輪4の軸方向内端開口を塞ぐ金属板製のカバー9の内側に保持固定された、合成樹脂製のセンサホルダ10に包埋されている。そして、この状態で、前記両センサ3、3の検出部を、前記エンコーダ2の被検出部の軸方向(幅方向)両半部に、それぞれ1つずつ近接対向させている。尚、前記両センサ3、3の検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子が組み込まれている。   The sensors 3 and 3 are embedded in a sensor holder 10 made of a synthetic resin, which is held and fixed inside a cover 9 made of a metal plate that closes the axially inner end opening of the outer ring 4. In this state, the detection units of the sensors 3 and 3 are placed close to each other in the axial direction (width direction) halves of the detected portion of the encoder 2, respectively. In addition, magnetic detection elements such as a Hall IC, a Hall element, an MR element, and a GMR element are incorporated in the detection portions of the sensors 3 and 3.

又、前記両センサ3、3の出力信号である1対のパルス信号のうち、何れか一方をA相とし、他方をB相とした場合に、前記外輪4と前記ハブ5とがアキシアル方向(軸方向)に相対変位していない中立状態での、これらA相とB相との間の位相差TDは、図5の(a)に示す様に、電気角でπ(rad)=180(度)に設定されている。この為に、前記両センサ3、3及びエンコーダ2の構成や相対位置等が規制されている。 In addition, when one of the pair of pulse signals that are output signals of the sensors 3 and 3 is set to the A phase and the other is set to the B phase, the outer ring 4 and the hub 5 are axially connected ( in a neutral state in the axial direction) is not displaced relative phase difference T D between these a and B phases are, as shown in FIG. 5 (a), an electrical angle of π (rad) = 180 (Degrees) is set. For this reason, the configurations and relative positions of the sensors 3, 3 and the encoder 2 are restricted.

上述の様な構成を有する物理量測定装置付回転機械の場合、前記外輪4と前記ハブ5との間にアキシアル荷重が作用する事により、これら外輪4とハブ5とがアキシアル方向に相対変位し、これに伴って、前記両センサ3、3の検出部による、前記エンコーダ2の被検出部の走査位置が軸方向に変化すると、例えば図5の(a)→(b)の順に示す様に、前記位相差TDが変化する。ここで、この位相差TDとA相のパルス周期TAとの比である位相差比r=TD/TAは、前記アキシアル荷重(アキシアル方向の相対変位)に見合った値をとる。従って、この位相差比rに基づいて、このアキシアル荷重(アキシアル方向の相対変位)を求める事ができる。尚、これらを求める処理は、前記演算器が行う。この為に、この演算器のメモリ中には、予め理論計算や実験により調べておいた、前記位相差比rと前記アキシアル荷重(アキシアル方向の相対変位)との関係(零点及びゲイン)を表す、式やマップが記憶されている。 In the case of the rotating machine with a physical quantity measuring device having the above-described configuration, an axial load acts between the outer ring 4 and the hub 5 so that the outer ring 4 and the hub 5 are relatively displaced in the axial direction. Along with this, when the scanning position of the detected portion of the encoder 2 by the detecting portions of the sensors 3 and 3 changes in the axial direction, for example, as shown in the order of (a) → (b) in FIG. the phase difference T D is changed. Here, the phase difference T D and A phase retardation ratio r = T D / T A which is the ratio of the pulse period T A of takes a value commensurate with the axial load (axial direction of the relative displacement). Therefore, the axial load (relative displacement in the axial direction) can be obtained based on the phase difference ratio r. The processing for obtaining these is performed by the arithmetic unit. For this reason, the memory of this computing unit represents the relationship (zero point and gain) between the phase difference ratio r and the axial load (relative displacement in the axial direction), which has been investigated in advance by theoretical calculation or experiment. , Formulas and maps are stored.

即ち、前記演算器は、自身に入力される、前記A相と前記B相とに含まれる立上りパルスエッジと立下りパルスエッジとのうちの何れか一方である対象パルスエッジ(図示の例では、立下りパルスエッジ)の入力時刻を、順次計測する。そして、前記A相に含まれる対象パルスエッジのうちで、互いに連続して入力される2つの対象パルスエッジEA1、EA2の入力時刻tA1、tA2と、前記B相に含まれる対象パルスエッジのうちで、これら両入力時刻tA1、tA2間に入力される、1つの対象パルスエッジEBの入力時刻tBとを利用して、前記位相差比r=TD/TA=(tB−tA1)/(tA2−tA1)を算出する。そして、この算出した位相差比rに基づき、前記式やマップを利用して、前記アキシアル荷重(アキシアル方向の相対変位)を算出する。この算出処理は、前記演算器に前記A相の対象パルスエッジが1つずつ入力される度に(当該対象パルスエッジをその都度、前記EA2として)行われる。 That is, the computing unit is input to itself, the target pulse edge that is one of the rising pulse edge and the falling pulse edge included in the A phase and the B phase (in the illustrated example, The input time of the falling pulse edge) is sequentially measured. Among the target pulse edges included in the A phase, the input times t A1 and t A2 of the two target pulse edges E A1 and E A2 that are continuously input to each other, and the target pulse included in the B phase of the edge, these two input time t A1, is input between t A2, using the input time t B of one target pulse edge E B, the phase difference ratio r = T D / T a = Calculate (t B −t A1 ) / (t A2 −t A1 ). And based on this calculated phase difference ratio r, the said axial load (relative displacement of an axial direction) is calculated using the said formula and map. This calculation process, the every time the target pulse edge of the A-phase are inputted one by one (each time the target pulse edge, as the E A2) to said computing unit is performed.

ところで、上述した様な物理量測定装置付回転機械の場合には、車両が加速又は減速する事に伴って、前記ハブ5及びエンコーダ2に正又は負の角加速度が生じる。そして、この様な角加速度が生じる事に伴って、測定すべき物理量(アキシアル荷重、アキシアル方向の相対変位)の変化とは無関係に、前記演算器が算出する位相差比rに変化が生じると言った問題が発生する。この点に就いて、以下、具体的に説明する。   Incidentally, in the case of the rotating machine with a physical quantity measuring device as described above, positive or negative angular acceleration occurs in the hub 5 and the encoder 2 as the vehicle accelerates or decelerates. When such angular acceleration occurs, the phase difference ratio r calculated by the computing unit changes regardless of changes in physical quantities to be measured (axial load, relative displacement in the axial direction). The said problem occurs. This point will be specifically described below.

先ず、車両が定速走行している場合、即ち、前記エンコーダ2に角加速度が生じておらず、このエンコーダ2の角速度が一定である場合を考える。図6の(a)(b)は、この場合に於ける、中立状態でのA相及びB相を示している。これらA相及びB相の周期は、前記角速度が小さい場合には(a)に示す様に長くなり、この角速度が大きい場合には(b)に示す様に短くなる。但し、何れの場合も、A相及びB相の周期は時間変化する事なく一定に保たれる為、位相差TDに対応する時間は、パルス周期TAに対応する時間の半分となる。従って、位相差比r=TD/TAは0.5となる。つまり、前記角加速度が生じていない場合には、前記物理量の変化とは無関係に、位相差比rに変化が生じる事はない。 First, consider a case where the vehicle is traveling at a constant speed, that is, a case where no angular acceleration is generated in the encoder 2 and the angular velocity of the encoder 2 is constant. FIGS. 6A and 6B show the A phase and the B phase in the neutral state in this case. The period of the A phase and the B phase becomes longer as shown in (a) when the angular velocity is small, and becomes shorter as shown in (b) when the angular velocity is larger. However, in any case, for the period of the A-phase and B-phase is kept constant without varying time, time corresponding to the phase difference T D is half of the time corresponding to the pulse period T A. Accordingly, the phase difference ratio r = T D / T A is 0.5. That is, when the angular acceleration is not generated, the phase difference ratio r does not change regardless of the change in the physical quantity.

次に、車両が加速又は減速している場合、即ち、前記エンコーダ2に正又は負の角加速度が生じている場合を考える。図7の(a)(b)は、この場合に於ける、中立状態でのA相及びB相を示している。これらA相及びB相のパルス幅(高レベル継続時間)及びパルス間隔(低レベル継続時間)は、前記角加速度が正の場合には(a)に示す様に徐々に減少し、この角加速度が負の場合には(b)に示す様に徐々に増大する。この為、(a)の場合には、位相差TDに対応する時間が、パルス周期TAに対応する時間の半分よりも長くなり、位相差比r=TD/TAが0.5よりも大きく(r>0.5に)なる。これに対し、(b)の場合には、位相差TDに対応する時間が、パルス周期TAに対応する時間の半分よりも短くなり、位相差比r=TD/TAが0.5よりも小さく(r<0.5に)なる。又、何れの場合も、前記角加速度の絶対値が大きくなる程、位相差比rは0.5から遠ざかる値をとる。つまり、前記角加速度が生じている場合には、この角加速度の値(正負の符号を含む)によって、前記物理量の変化とは無関係に、位相差比rに変化が生じる。 Next, a case where the vehicle is accelerating or decelerating, that is, a case where a positive or negative angular acceleration occurs in the encoder 2 will be considered. FIGS. 7A and 7B show the A phase and the B phase in the neutral state in this case. When the angular acceleration is positive, the pulse width (high level duration) and pulse interval (low level duration) of these A and B phases gradually decrease as shown in FIG. When is negative, it gradually increases as shown in (b). Therefore, in the case of (a) the time corresponding to the phase difference T D is longer than half the time corresponding to the pulse period T A, the phase difference ratio r = T D / T A 0.5 (R> 0.5). In contrast, in the case of (b), the time corresponding to the phase difference T D is shorter than half the time corresponding to the pulse period T A, the phase difference ratio r = T D / T A is 0. Less than 5 (r <0.5). In any case, as the absolute value of the angular acceleration increases, the phase difference ratio r takes a value away from 0.5. In other words, when the angular acceleration occurs, the phase difference ratio r changes depending on the value of the angular acceleration (including positive and negative signs) regardless of the change in the physical quantity.

尚、前記角加速度が生じている、図7の(a)(b)の場合でも、A相及びB相を電気角で見れば、位相差TDはπ(rad)であり、パルス周期TAは2π(rad)である為、位相差比r=TD/TAは0.5になる。つまり、位相差TD及びパルス周期TAを電気角で見れば、前記角加速度が生じている場合でも、位相差比rを正確に算出できる。尚、これら位相差TD及びパルス周期TAのうち、パルス周期TAの電気角は、常に2π(rad)であるが、位相差TDの電気角は、前記物理量の変化に伴って変化する。この為、この位相差TDの電気角のみを計測すれば良い。 Even in the case of FIGS. 7A and 7B in which the angular acceleration occurs, the phase difference T D is π (rad) when the A phase and the B phase are viewed as electrical angles, and the pulse period T a since a 2π (rad), the phase difference ratio r = T D / T a becomes 0.5. In other words, if the phase difference T D and the pulse period T A are viewed as electrical angles, the phase difference ratio r can be accurately calculated even when the angular acceleration occurs. Of these phase differences T D and pulse periods T A , the electrical angle of the pulse period T A is always 2π (rad), but the electrical angle of the phase difference T D changes with the change of the physical quantity. To do. For this reason, it is sufficient to measure only the electrical angle of the phase difference T D.

ところが、この位相差TDの電気角を直接計測する事は困難である。この為、上述した従来の物理量測定装置付回転機械の場合には、位相差TD(及びパルス周期TA)を、これらに対応する時間(対象パルスエッジの入力時刻の差)で計測する様にしている。そして、この事に起因して、上述した様な問題が発生する状況になっている。 However, it is difficult to measure the electrical angle of the phase difference T D directly. For this reason, in the case of the above-described conventional rotating machine with a physical quantity measuring device, the phase difference T D (and the pulse period T A ) is measured by the corresponding time (difference in input time of the target pulse edge). I have to. As a result, the above-described problem occurs.

何れにしても、上述した様な従来の物理量測定装置付回転機械の場合、前記エンコーダ2に角加速度が生じる事に伴って発生する位相差比rの変化分は、測定すべき物理量の変化とは無関係に生じる誤差成分である。従って、この様な位相差比rそのものに基づいて前記物理量を求めると、この誤差成分の分だけ、この物理量の測定精度が低下する事になる。   In any case, in the case of the conventional rotating machine with a physical quantity measuring device as described above, the change in the phase difference ratio r generated when the angular acceleration occurs in the encoder 2 is the change in the physical quantity to be measured Is an error component that occurs independently. Therefore, when the physical quantity is obtained based on such a phase difference ratio r itself, the measurement accuracy of the physical quantity is reduced by this error component.

特開2006−317420号公報JP 2006-317420 A 特開2007−225106号公報JP 2007-225106 A 特開2007−212369号公報JP 2007-212369 A

本発明は、上述の様な事情に鑑み、A相及びB相の対象パルスエッジの入力時刻を利用して物理量を算出する場合に、エンコーダに角加速度が生じる事に伴って発生する位相差比の誤差成分を低減できる構造を実現すべく発明したものである。   In view of the above-described circumstances, the present invention provides a phase difference ratio that is generated when angular acceleration is generated in an encoder when a physical quantity is calculated using input times of target pulse edges of A phase and B phase. The invention was invented to realize a structure capable of reducing the error component.

本発明の物理量測定装置付回転機械は、回転機械と、エンコーダと、1対のセンサと、演算器とを備える。
このうちの回転機械は、例えば自動車等の車両の車輪支持用転がり軸受ユニット、自動車用変速機、工作機械の主軸装置等が相当し、使用時に回転する回転部材を備える。
又、前記エンコーダは、前記回転部材に支持固定されていて、この回転部材と同心の被検出部を有すると共に、この被検出部の特性を円周方向に関して交互に且つ等ピッチで変化させている。尚、このエンコーダとしては、永久磁石製で、N極とS極とを円周方向に関して交互に配置したものや、磁性金属板製で、透孔(又は凹部)と柱部(又は凸部)とを円周方向に関して交互に配置したものを利用できる。
又、前記両センサは、それぞれの検出部を前記被検出部のうち互いに異なる部分に対向させた状態で、使用時にも回転しない部分に支持されたものであって、それぞれが前記被検出部のうち自身の検出部を対向させた部分の特性変化に対応したパルス信号を出力する。
又、前記演算器は、前記両センサのパルス信号のうちの何れか一方をA相とし、他方をB相とした場合に、これらA相とB相とに含まれる立上りパルスエッジと立下りパルスエッジとのうちの何れか一方である対象パルスエッジ(A相及びB相の立上りパルスエッジ、又は、A相及びB相の立下りパルスエッジ)の入力時刻(計測時刻)を利用して、前記回転部材の変位と、この回転部材に作用している外力とのうちの、少なくとも一方の物理量を求める機能を有する。
特に、本発明の物理量測定装置付回転機械の場合、前記演算器は、次の機能を有する。即ち、前記A相に含まれる対象パルスエッジのうちで、互いに連続して入力される2つの対象パルスエッジEA1、EA2の入力時刻tA1、tA2と、前記B相に含まれる対象パルスエッジのうちで、互いに連続して前記A相の対象パルスエッジEA1の直前と直後とに入力される2つの対象パルスエッジEB1、EB2(EB1、EA1、EB2、EA2の順に入力されるパルスエッジEB1、EB2)の入力時刻tB1、tB2とを利用して、前記A相のパルス周期TA=(tA2−tA1)と、前記B相のパルス周期TB=(tB2−tB1)と、これらA相とB相との間の位相差比r=(tB2−tA1)/TAとを含む計算式で表される、これらA相とB相との間の補正位相差比rz=r(1−r)TA/TB+r2を算出する。そして、この補正位相差比rzに基づいて、前記少なくとも一方の物理量を求める。
尚、本発明に関して、前記補正位相差比rzを算出する事には、この補正位相差比rzを、「rz=r(1−r)TA/TB+r2」と等価な計算式で算出する事が含まれる。
The rotating machine with a physical quantity measuring device of the present invention includes a rotating machine, an encoder, a pair of sensors, and a computing unit.
Among these, the rotating machine corresponds to, for example, a rolling bearing unit for supporting a wheel of a vehicle such as an automobile, an automobile transmission, a spindle device of a machine tool, and the like, and includes a rotating member that rotates during use.
The encoder is supported and fixed to the rotating member, has a detected portion concentric with the rotating member, and changes the characteristics of the detected portion alternately and at equal pitches in the circumferential direction. . In addition, as this encoder, it is made of a permanent magnet, and N poles and S poles are alternately arranged in the circumferential direction, or made of a magnetic metal plate, and has a through hole (or a concave portion) and a column portion (or a convex portion). Can be used alternately in the circumferential direction.
The two sensors are supported by portions that do not rotate during use in a state where the respective detection portions are opposed to different portions of the detection portion, and each of the detection portions A pulse signal corresponding to a change in the characteristics of the portion of the detector facing the detector is output.
In addition, the arithmetic unit, when any one of the pulse signals of the two sensors is the A phase and the other is the B phase, the rising pulse edge and the falling pulse included in the A phase and the B phase. The input time (measurement time) of the target pulse edge (A phase and B phase rising pulse edge or A phase and B phase falling pulse edge), which is one of the edges, It has a function of obtaining a physical quantity of at least one of the displacement of the rotating member and the external force acting on the rotating member.
In particular, in the case of the rotary machine with a physical quantity measuring device of the present invention, the computing unit has the following functions. That is, among the target pulse edges included in the A phase, the input times t A1 and t A2 of the two target pulse edges E A1 and E A2 that are continuously input to each other, and the target pulse included in the B phase Among the edges, two target pulse edges E B1 , E B2 (E B1 , E A1 , E B2 , E A2) that are input immediately before and immediately after the target pulse edge E A1 of the A phase. Using the input times t B1 and t B2 of the pulse edges E B1 and E B2 ) input in order, the A-phase pulse period T A = (t A2 -t A1 ) and the B-phase pulse period These A phases represented by a calculation formula including T B = (t B2 -t B1 ) and a phase difference ratio r = (t B2 -t A1 ) / T A between these A phases and B phases The correction phase difference ratio r z = r (1−r) T A / T B + r 2 is calculated. The at least one physical quantity is obtained based on the corrected phase difference ratio r z .
With respect to the present invention, the in possible to calculate a corrected phase difference ratio r z is the correction phase difference ratio r z, equivalent to as "r z = r (1-r ) T A / T B + r 2 " It includes calculating with a calculation formula.

上述の様に構成する本発明の物理量測定装置付回転機械によれば、補正位相差比rzに基づいて物理量を求める事により、エンコーダに角加速度が生じる事に伴って発生する誤差成分を低減できる為、前記物理量の測定精度を向上させる事ができる。又、前記補正位相差比rzは、A相のパルス周期TA=(tA2−tA1)と、B相のパルス周期TB=(tB2−tB1)と、これらA相とB相との間の位相差比r=(tB2−tA1)/TAとを含む、単純な四則演算式で表される為、演算器に高度な演算性能を持たせなくても、実時間でデータ処理を行う事が可能となる。 According to the rotating machine with a physical quantity measuring device of the present invention configured as described above, by obtaining the physical quantity based on the corrected phase difference ratio r z , the error component generated when angular acceleration occurs in the encoder is reduced. Therefore, the measurement accuracy of the physical quantity can be improved. The correction phase difference ratio r z includes the A phase pulse period T A = (t A2 -t A1 ), the B phase pulse period T B = (t B2 -t B1 ), and the A phase and B phase. for including a phase difference ratio r = (t B2 -t A1) / T a between the phases, it is represented by a simple arithmetic expression, even without having a high calculation performance calculator, the actual Data processing can be performed in time.

本発明の実施の形態の1例を示す、1対のセンサのパルス信号(A相、B相)を非中立状態で示す線図。The diagram which shows the pulse signal (A phase, B phase) of a pair of sensor which shows an example of embodiment of this invention in a non-neutral state. 本発明の効果を確かめる為に行った計算機シミュレーションの条件(a)(b)及び結果(c)を示す線図。The diagram which shows the conditions (a) (b) and result (c) of the computer simulation performed in order to confirm the effect of this invention. 本発明の効果を確かめる為に行った実験の結果を示す線図。The diagram which shows the result of the experiment conducted in order to confirm the effect of this invention. 従来構造の1例を示す断面図。Sectional drawing which shows an example of a conventional structure. 1対のセンサのパルス信号(A相、B相)を、中立状態(a)と非中立状態(b)とで示す線図。The diagram which shows the pulse signal (A phase, B phase) of a pair of sensor by the neutral state (a) and the non-neutral state (b). 1対のセンサのパルス信号(A相、B相)を、エンコーダの角速度が小さい場合(a)と大きい場合(b)とで示す線図。The diagram which shows the pulse signal (A phase, B phase) of a pair of sensor by the case where the angular velocity of an encoder is small (a) and the case where it is large (b). 1対のセンサのパルス信号(A相、B相)を、エンコーダの角加速度が正の場合(a)と負の場合(b)とで示す線図。The diagram which shows the pulse signal (A phase, B phase) of a pair of sensor by the case where the angular acceleration of an encoder is positive (a) and the case where it is negative (b).

本発明の実施の形態の1例に就いて、図1を参照しつつ説明する。尚、本例の特徴は、前述の図4〜5により説明した、物理量測定装置を車輪支持用転がり軸受ユニットに組み込んで成る物理量測定装置付回転機械に於いて、車両が加速又は減速する際に、エンコーダ2に正又は負の角加速度が生じる事に伴って発生する算出値の誤差成分を低減する事により、物理量(アキシアル荷重、アキシアル方向の相対変位)の測定精度を向上させる機能を、図示しない演算器に付加した点にある。その他の部分の構造及び作用は、前述の図4〜5により説明した従来構造の場合と同様である。この為、重複する図示並びに説明は、できるだけ省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   An example of the embodiment of the present invention will be described with reference to FIG. The feature of this example is that when the vehicle accelerates or decelerates in the rotating machine with a physical quantity measuring device in which the physical quantity measuring device is incorporated in the wheel bearing rolling bearing unit described with reference to FIGS. The function of improving the measurement accuracy of physical quantities (axial load, relative displacement in the axial direction) by reducing the error component of the calculated value that occurs when positive or negative angular acceleration occurs in the encoder 2 is shown in the figure. It is in the point added to the calculator that does not. The structure and operation of the other parts are the same as those of the conventional structure described with reference to FIGS. For this reason, overlapping illustrations and descriptions will be omitted or simplified as much as possible, and the following description will focus on the features of this example.

図1は、外輪4とハブ5との間にアキシアル荷重が作用する事により、これら外輪4とハブ5とがアキシアル方向に相対変位した状態(非中立状態)に於ける、1対のセンサ3、3(図4参照)のパルス信号(A相、B相)を示している。本例の場合、前記演算器は、このうちのA相に含まれる対象パルスエッジ(立下りパルスエッジ)のうちで、互いに連続して入力される2つの対象パルスエッジEA1、EA2の入力時刻tA1、tA2と、B相に含まれる対象パルスエッジ(立下りパルスエッジ)のうちで、互いに連続して前記A相の対象パルスエッジEA1の直前と直後とに入力される2つの対象パルスエッジEB1、EB2の入力時刻tB1、tB2とを利用して、前記物理量を算出する。以下、この様な演算器による物理量の算出機能に就いて、具体的に説明する。 FIG. 1 shows a pair of sensors 3 in a state where the outer ring 4 and the hub 5 are relatively displaced in the axial direction (non-neutral state) due to an axial load acting between the outer ring 4 and the hub 5. 3 (see FIG. 4) pulse signals (A phase, B phase). In the case of this example, the arithmetic unit inputs two target pulse edges E A1 and E A2 that are successively input among the target pulse edges (falling pulse edges) included in the A phase. Of the target pulse edges (falling pulse edges) included in the B phase at the times t A1 and t A2 , two are input immediately before and immediately after the target pulse edge E A1 of the A phase. The physical quantity is calculated using the input times t B1 and t B2 of the target pulse edges E B1 and E B2 . Hereinafter, the physical quantity calculation function by such an arithmetic unit will be described in detail.

A相とB相との間の位相差比rは、A相とB相との間の位相差TDと、A相のパルス周期TAとの比として、次の(1)式で表される。

Figure 0006075245
但し、位相差TD及びパルス周期TAは、TD=(tB2−tA1)、TA=(tA2−tA1)と言った様に、前記演算器に対する対象パルスエッジの入力時刻の差(時間)として計測される為、この(1)式で求められる位相差比rは、車両の加速又は減速に基づいて前記角加速度が生じる事に伴い、前記物理量の変化とは無関係に変化してしまう。 The phase difference ratio r between the A phase and the B phase is expressed by the following equation (1) as the ratio between the phase difference T D between the A phase and the B phase and the pulse period T A of the A phase. Is done.
Figure 0006075245
However, the phase difference T D and the pulse period T A are such that T D = (t B2 −t A1 ), T A = (t A2 −t A1 ), and the input time of the target pulse edge to the arithmetic unit. Therefore, the phase difference ratio r obtained by the equation (1) is independent of the change in the physical quantity due to the occurrence of the angular acceleration based on the acceleration or deceleration of the vehicle. It will change.

一方、A相及びB相を電気角で見ると、位相差TDはβ(rad)であり、パルス周期TAは2π(rad)である為、電気角で定義される位相差比raは、次の(2)式で表される。

Figure 0006075245
この(2)式で求められる位相差比raは、前記角加速度が生じる事に伴って変化する事はない。 On the other hand, looking at the electrical angle of the A-phase and B-phase, phase difference T D is the beta (rad), for a pulse period T A is 2 [pi (rad), the phase difference ratio r a defined by the electrical angle Is expressed by the following equation (2).
Figure 0006075245
Phase difference ratio r a sought equation (2) does not vary with the fact that the angular acceleration occurs.

ところで、前記物理量を測定すべき車両の走行速度範囲(例えば時速5km/h以上の範囲)では、A相及びB相の周期は、十分に短い時間となる。この為、その間の前記エンコーダ2の運動は、角加速度が一定の回転運動とみなす事ができる。このとき、任意に設定した初期位置から或る一定の角度θ(rad)だけ回転するのに要する時間をt(sec)とすると、この角度θ(rad)は、次の(3)式で表される。

Figure 0006075245
尚、この(3)式中、ω0は、前記初期位置に於ける前記エンコーダ2の角速度(rad/sec)であり、αは、このエンコーダ2の角加速度(rad/sec2)である。 By the way, in the travel speed range of the vehicle whose physical quantity is to be measured (for example, a range of 5 km / h or more), the periods of the A phase and the B phase are sufficiently short. For this reason, the motion of the encoder 2 during that time can be regarded as a rotational motion with a constant angular acceleration. At this time, if the time required to rotate by a certain angle θ (rad) from the arbitrarily set initial position is t (sec), this angle θ (rad) is expressed by the following equation (3). Is done.
Figure 0006075245
In this equation (3), ω 0 is the angular velocity (rad / sec) of the encoder 2 at the initial position, and α is the angular acceleration (rad / sec 2 ) of the encoder 2.

図1で、初期位置を電気角θ=0に設定し、この初期位置に於ける角速度をωeとし、角加速度をαeとすると、前記(3)式から、A相のパルス周期TAに関して、次の(4)式が得られる。

Figure 0006075245
同様に、位相差TDに関して、次の(5)式が得られる。
Figure 0006075245
In FIG. 1, when the initial position is set to an electrical angle θ = 0, the angular velocity at the initial position is ω e , and the angular acceleration is α e , the pulse period T A of the A phase is obtained from the above equation (3). With regard to, the following equation (4) is obtained.
Figure 0006075245
Similarly, with respect to the phase difference T D, the following equation (5) is obtained.
Figure 0006075245

ここで、前記(2)式の右辺に、前記(4)式及び(5)式を代入し、更に前記(1)式の変形式である、TD=rTAを代入して整理すると、前記(2)式は、次の(6)式で表す事ができる。

Figure 0006075245
Here, the right side of the equation (2), by substituting the equation (4) and (5), a further modified type of the (1) equation and rearranging by substituting T D = rT A, The formula (2) can be expressed by the following formula (6).
Figure 0006075245

又、前記物理量の変化による中立状態からの位相差比の変化は小さいと仮定すると、電気角θ=0に於ける角速度ωeは、図1に於けるB相のパルス周期TBを用いて、ωe≒2π/TBと近似する事ができる。これを前記(6)式の右辺に代入すると、次の(7)式が得られる。

Figure 0006075245
この(7)式は、電気角で定義される位相差比raの近似値を表す式となる。そして、この(7)式の右辺を見れば明らかな様に、当該近似値は、A相の対象パルスエッジEA1、EA2の入力時刻tA1、tA2と、B相の対象パルスエッジEB1、EB2の入力時刻tB1、tB2とを利用して、A相のパルス周期TA=(tA2−tA1)と、B相のパルス周期TB=(tB2−tB1)と、これらA相とB相との間の位相差比r=(tB2−tA1)/TAとから求められる。 Further, assuming that the change in the phase difference ratio from the neutral state due to a change in the physical quantity is small, in the angular velocity omega e the electrical angle theta = 0, with a pulse period T B of the in phase B in FIG. 1 , Ω e ≈2π / T B. Substituting this into the right side of the equation (6) yields the following equation (7).
Figure 0006075245
The equation (7), the expression for the approximate value of the phase difference ratio r a defined by electrical angle. Then, the equation (7) the right-hand side as clearly seen the, the approximate value is the input time t A1, t A2 of the target pulse edge E A1, E A2 of the A-phase, B-phase target pulse edge E using the input time t B1, t B2 of B1, E B2, and a-phase pulse period T a = (t A2 -t A1 ), the B-phase pulse period T B = (t B2 -t B1 ) And a phase difference ratio r = (t B2 -t A1 ) / T A between the A phase and the B phase.

上述の近似値を、改めて補正位相差比rzと定義すると、次の(8)式が得られる。

Figure 0006075245
この補正位相差比rzは、電気角で定義される位相差比raの近似値であるが、前記角加速度が生じる事に伴って発生する変化分(誤差成分)を含まない位相差比rの近似値であるとも言える。更に別な言い方をすれば、この変化分(誤差成分)を低減された状態での位相差比rであるとも言える。 When the above approximate value is defined again as the corrected phase difference ratio r z , the following equation (8) is obtained.
Figure 0006075245
The corrected phase difference ratio r z are approximations of the phase difference ratio r a defined by the electrical angle phase difference ratios without the variation (error component) generated due to the fact that the angular acceleration occurs It can be said that it is an approximate value of r. In other words, it can be said that the phase difference ratio r is obtained when the amount of change (error component) is reduced.

そこで、本例の物理量測定装置付回転機械の場合、前記演算器は、前記(8)式と、前記各入力時刻tA1、tA2、tB1、tB2を利用して、前記補正位相差比rzを算出し、更に、この様に算出した補正位相差比rzに基づいて、前記物理量を算出する。この為に、前記演算器のメモリ中には、予め理論計算や実験により調べておいた、前記補正位相差比rzと前記物理量との関係を表す、式やマップを記憶させておく。 Therefore, in the case of the rotating machine with a physical quantity measuring device of this example, the computing unit uses the equation (8) and the input times t A1 , t A2 , t B1 , t B2 to calculate the corrected phase difference. The ratio r z is calculated, and the physical quantity is calculated based on the corrected phase difference ratio r z calculated in this way. For this purpose, in the memory of the arithmetic unit, an equation or a map representing the relationship between the corrected phase difference ratio r z and the physical quantity, which has been examined in advance by theoretical calculation or experiment, is stored.

上述の様に構成する本発明の物理量測定装置付回転機械の場合には、上述の様な補正位相差比rzに基づいて物理量を求める為、この物理量の測定精度を向上させる事ができる。又、この補正位相差比rzは、A相のパルス周期TA=(tA2−tA1)と、B相のパルス周期TB=(tB2−tB1)と、これらA相とB相との間の位相差比r=(tB2−tA1)/TAとを含む、単純な四則演算式{前記(8)式}で表される為、演算器に高度な演算性能を持たせなくても、実時間でデータ処理を行う事が可能となる。 In the case of the rotating machine with a physical quantity measuring device of the present invention configured as described above, since the physical quantity is obtained based on the corrected phase difference ratio r z as described above, the measurement accuracy of the physical quantity can be improved. Further, the correction phase difference ratio r z includes the A phase pulse period T A = (t A2 -t A1 ), the B phase pulse period T B = (t B2 -t B1 ), the A phase and B Since it is expressed by a simple four arithmetic expression {expression (8)} including the phase difference ratio r = (t B2 -t A1 ) / T A , the arithmetic unit has high calculation performance. Even if it is not provided, data processing can be performed in real time.

本発明の効果を確認する為に行った計算機シミュレーションに就いて、図2を参照しつつ説明する。
この計算機シミュレーションでは、上述した実施の形態の1例の構造に関して、図2の(a)に示す様に、車両の速度を、正弦波状に変化{周期4(sec)、振幅10(km/h)≒2.8(m/sec)で変化}させる条件を設定した。同図の(b)は、この場合の車両の加速度を表している。又、回転機械である車輪支持用軸受ユニットの状態として、外輪4とハブ5(図4)との間にアキシアル荷重が作用しておらず、これら外輪4とハブ5とがアキシアル方向に相対変位していない中立状態を設定した。
同図の(c)は、上述の様な条件で車両を走行させた場合に、演算器で算出される、位相差比r(破線)と、補正位相差比rz(実線)とを表している。この(c)に表した結果から明らかな様に、位相差比r(破線)には、エンコーダ2(図4)に角加速度が生じる事に伴う、比較的大きな誤差(真の値である0.5からのずれ)が生じている事が分かる。これに対し、補正位相差比rz(実線)では、当該誤差が十分に抑えられている(真の値である0.5に十分に近付いている)事が分かる。
A computer simulation performed to confirm the effect of the present invention will be described with reference to FIG.
In this computer simulation, as shown in FIG. 2 (a), the vehicle speed is changed in a sine wave form {period 4 (sec), amplitude 10 (km / h) with respect to the structure of the example of the embodiment described above. ) = Approx. 2.8 (m / sec)} was set. (B) of the figure represents the acceleration of the vehicle in this case. Further, as a state of the wheel support bearing unit which is a rotating machine, an axial load is not applied between the outer ring 4 and the hub 5 (FIG. 4), and the outer ring 4 and the hub 5 are relatively displaced in the axial direction. The neutral state that has not been set was set.
(C) of the figure represents the phase difference ratio r (broken line) and the corrected phase difference ratio r z (solid line) calculated by the calculator when the vehicle is driven under the above-described conditions. ing. As is apparent from the result shown in (c), the phase difference ratio r (broken line) has a relatively large error (true value 0) due to the occurrence of angular acceleration in the encoder 2 (FIG. 4). It can be seen that there is a deviation from .5. On the other hand, in the corrected phase difference ratio r z (solid line), it can be seen that the error is sufficiently suppressed (close to the true value of 0.5).

次に、本発明の効果を確認する為に行った実験(実機による実測試験)に就いて、図3を参照しつつ説明する。
この実験では、台上試験装置を使用して、上述のシミュレーションと同様の速度変動を与えたときの、位相差比rと、補正位相差比rzとを、演算器により算出した。
図3の(a)は、位相差比rの算出結果を、同図の(b)は、補正位相差比rzの算出結果を、それぞれ表している。これら各算出結果から明らかな様に、(a)の位相差比rには、エンコーダ2(図4)に角加速度が生じる事に伴う、比較的大きな誤差(真の値である0.5からのずれ)が生じている事が分かる。これに対し、(b)の補正位相差比rzでは、当該誤差が抑えられている(真の値である0.5に近付いている)事が分かる。
Next, an experiment (measurement test using an actual machine) performed to confirm the effect of the present invention will be described with reference to FIG.
In this experiment, using a bench test apparatus, the phase difference ratio r and the corrected phase difference ratio r z when the same speed fluctuation as in the above-described simulation was given were calculated by an arithmetic unit.
3A shows the calculation result of the phase difference ratio r, and FIG. 3B shows the calculation result of the correction phase difference ratio r z . As is clear from these calculation results, the phase difference ratio r in (a) has a relatively large error (from a true value of 0.5) due to the occurrence of angular acceleration in the encoder 2 (FIG. 4). It can be seen that there is a deviation. On the other hand, in the corrected phase difference ratio r z in (b), it can be seen that the error is suppressed (approaching the true value of 0.5).

本発明は、自動車等の車両の車輪支持用転がり軸受ユニットに限らず、自動車用変速機や工作機械の主軸装置等の各種回転機械に適用可能である。
又、本発明は、アキシアル方向の変位又は荷重を測定する構造に限らず、ラジアル方向の変位又は荷重を測定する構造や、傾き又はモーメントを測定する構造にも、適用可能である。又、これら各物理量を測定する為のエンコーダとセンサとの組み合せとしては、図4に示したものの他、例えば前記特許文献1〜3等に記載されたものを採用する事ができる。
又、本発明を実施する場合、演算器は、回転機械の一部に取り付けた状態で設置しても良いし、この回転機械から離れた箇所(例えば、この回転機械を車輪支持用転がり軸受ユニットとする場合に、車体の一部)に設置しても良い。
The present invention is not limited to a rolling bearing unit for supporting a wheel of a vehicle such as an automobile, but can be applied to various rotating machines such as a transmission for an automobile and a spindle device of a machine tool.
The present invention is not limited to a structure that measures displacement or load in the axial direction, but can also be applied to structures that measure displacement or load in the radial direction and structures that measure inclination or moment. As a combination of an encoder and a sensor for measuring each physical quantity, for example, those described in Patent Documents 1 to 3 can be adopted in addition to the one shown in FIG.
When the present invention is implemented, the computing unit may be installed in a state of being attached to a part of the rotating machine, or a place away from the rotating machine (for example, the rotating machine is a rolling bearing unit for supporting the wheel. In this case, it may be installed on a part of the vehicle body.

1 転がり軸受ユニット
2 エンコーダ
3 センサ
4 外輪
5 ハブ
6 転動体
7 芯金
8 エンコーダ本体
9 カバー
10 センサホルダ
DESCRIPTION OF SYMBOLS 1 Rolling bearing unit 2 Encoder 3 Sensor 4 Outer ring 5 Hub 6 Rolling body 7 Core metal 8 Encoder main body 9 Cover 10 Sensor holder

Claims (1)

回転機械と、エンコーダと、1対のセンサと、演算器とを備え、
このうちの回転機械は、使用時に回転する回転部材を備えるものであり、
前記エンコーダは、前記回転部材に支持固定されていて、この回転部材と同心の被検出部を有すると共に、この被検出部の特性を円周方向に関して交互に且つ等ピッチで変化させたものであり、
前記両センサは、それぞれの検出部を前記被検出部のうち互いに異なる部分に対向させた状態で、使用時にも回転しない部分に支持されたものであって、それぞれが前記被検出部のうち自身の検出部を対向させた部分の特性変化に対応したパルス信号を出力するものであり、
前記演算器は、前記両センサのパルス信号のうちの何れか一方をA相とし、他方をB相とした場合に、これらA相とB相とに含まれる立上りパルスエッジと立下りパルスエッジとのうちの何れか一方である対象パルスエッジの入力時刻を利用して、前記回転部材の変位と、この回転部材に作用している外力とのうちの、少なくとも一方の物理量を求める機能を有するものである、
物理量測定装置付回転機械であって、
前記演算器は、前記A相に含まれる対象パルスエッジのうちで、互いに連続して入力される2つの対象パルスエッジEA1、EA2の入力時刻tA1、tA2と、前記B相に含まれる対象パルスエッジのうちで、互いに連続して前記A相の対象パルスエッジEA1の直前と直後とに入力される2つの対象パルスエッジEB1、EB2の入力時刻tB1、tB2とを利用して、前記A相のパルス周期TA=(tA2−tA1)と、前記B相のパルス周期TB=(tB2−tB1)と、これらA相とB相との間の位相差比r=(tB2−tA1)/TAとを含む計算式で表される、これらA相とB相との間の補正位相差比rz=r(1−r)TA/TB+r2を算出し、この補正位相差比rzに基づいて、前記少なくとも一方の物理量を求める機能を有する事を特徴とする、
物理量測定装置付回転機械。
A rotating machine, an encoder, a pair of sensors, and a computing unit;
Among these, the rotating machine is provided with a rotating member that rotates during use,
The encoder is supported and fixed to the rotating member, has a detected part concentric with the rotating member, and changes the characteristics of the detected part alternately and at equal pitches in the circumferential direction. ,
Each of the sensors is supported by a portion that does not rotate during use in a state where each detection portion faces a different portion of the detection portion, and each of the sensors is a portion of the detection portion. Output a pulse signal corresponding to the characteristic change of the part facing the detection part of
The arithmetic unit, when any one of the pulse signals of the two sensors is an A phase and the other is a B phase, the rising pulse edge and the falling pulse edge included in the A phase and the B phase, Having the function of obtaining at least one physical quantity of the displacement of the rotating member and the external force acting on the rotating member using the input time of the target pulse edge which is one of Is,
A rotating machine with a physical quantity measuring device,
The arithmetic unit, among the target pulse edges included in the A-phase, the input time t A1, t A2 of the two target pulse edge E A1, E A2 inputted continuous with each other, contained in the B phase Input time t B1 and t B2 of two target pulse edges E B1 and E B2 that are input immediately before and immediately after the target pulse edge E A1 of the A phase, Utilizing the A phase pulse period T A = (t A2 -t A1 ), the B phase pulse period T B = (t B2 -t B1 ), and between these A phase and B phase phase difference ratio r = (t B2 -t A1) / T and a a represented by formula, the correction phase difference ratio r z = r (1-r ) between these a and B phases T a / T B + r 2 is calculated, and based on the corrected phase difference ratio r z , the at least one physical quantity is obtained.
Rotating machine with physical quantity measuring device.
JP2013175492A 2013-08-27 2013-08-27 Rotating machine with physical quantity measuring device Expired - Fee Related JP6075245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175492A JP6075245B2 (en) 2013-08-27 2013-08-27 Rotating machine with physical quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175492A JP6075245B2 (en) 2013-08-27 2013-08-27 Rotating machine with physical quantity measuring device

Publications (2)

Publication Number Publication Date
JP2015045517A JP2015045517A (en) 2015-03-12
JP6075245B2 true JP6075245B2 (en) 2017-02-08

Family

ID=52671138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175492A Expired - Fee Related JP6075245B2 (en) 2013-08-27 2013-08-27 Rotating machine with physical quantity measuring device

Country Status (1)

Country Link
JP (1) JP6075245B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098379B2 (en) * 2007-02-22 2012-12-12 日本精工株式会社 Bearing load measuring device
JP5391969B2 (en) * 2009-09-30 2014-01-15 日本精工株式会社 Rotating shaft load measuring device

Also Published As

Publication number Publication date
JP2015045517A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
US7557569B2 (en) State measuring apparatus for rotary machine
US20170183034A1 (en) Sensing device, sensing system and steering system
JP2006113017A (en) Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument
JP7200634B2 (en) rotating device
JP6075245B2 (en) Rotating machine with physical quantity measuring device
JP2013061200A (en) Physical quantity measuring device for rotary machine
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP4269669B2 (en) Load measuring device for rolling bearing units
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP5098379B2 (en) Bearing load measuring device
JP5251802B2 (en) Physical quantity measuring device for rolling bearing units
JP5939072B2 (en) Rotating machine with physical quantity measuring device
JP5200898B2 (en) Inspection method and inspection device for state quantity measuring device of rolling bearing unit
JP7100677B2 (en) Test system
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP2008224397A (en) Load measuring device for roller bearing unit
JP5007534B2 (en) Load measuring device for rotating machinery
JP2009198427A (en) Rotational speed detector
JP2009014431A (en) Device for measuring physical quantity of rolling bearing unit
JP6075203B2 (en) Rotating machine with physical quantity measuring device
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2009276256A (en) Inspection method for encoder
JP2016038201A (en) Torque measurement method of rotary member
JP2008224298A (en) Method for recording operation information in apparatus for measuring quantity of state of rolling bearing unit
KR20230160215A (en) Absolute position detection device and detection method of rotating body using magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6075245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees