JP6074978B2 - Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell - Google Patents

Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell Download PDF

Info

Publication number
JP6074978B2
JP6074978B2 JP2012211098A JP2012211098A JP6074978B2 JP 6074978 B2 JP6074978 B2 JP 6074978B2 JP 2012211098 A JP2012211098 A JP 2012211098A JP 2012211098 A JP2012211098 A JP 2012211098A JP 6074978 B2 JP6074978 B2 JP 6074978B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst ink
fuel cell
catalyst
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012211098A
Other languages
Japanese (ja)
Other versions
JP2014067537A (en
Inventor
早織 岡田
早織 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2012211098A priority Critical patent/JP6074978B2/en
Publication of JP2014067537A publication Critical patent/JP2014067537A/en
Application granted granted Critical
Publication of JP6074978B2 publication Critical patent/JP6074978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子形燃料電池に用いられる膜電極接合体の製造方法と該方法により製造された膜電極接合体を備えた固体高分子形燃料電池の製造方法に関する。 The present invention relates to a method for producing a membrane electrode assembly used in a polymer electrolyte fuel cell and a method for producing a polymer electrolyte fuel cell including the membrane electrode assembly produced by the method .

原料ガスの反応エネルギーを電気エネルギーに直接的に変換する燃料電池の一つには、イオン伝導体として高分子電解質膜を用いる固体高分子形燃料電池が知られている。固体高分子型燃料電池は、他の燃料電池と比べて起動時間が短く、また常温で作動することが可能でもあるため、自動車、鉄道、コージェネレーションシステム等のエネルギー源として期待されている。   A solid polymer fuel cell using a polymer electrolyte membrane as an ion conductor is known as one of fuel cells that directly convert the reaction energy of a raw material gas into electric energy. Solid polymer fuel cells are expected as energy sources for automobiles, railways, cogeneration systems, and the like because they have a shorter start-up time than other fuel cells and can operate at room temperature.

図1は固体高分子形燃料電池の内部構造の一例を示す分解斜視図であり、図1に示されるように、固体高分子形燃料電池50を構成する高分子電解質膜51の両面(図中の上面と下面)には、一対の電極触媒層52A,52Fが高分子電解質膜51を挟持するように互いに向き合って形成されている。そして、電極触媒層52Aの上にはガス拡散層53Aが形成され、電極触媒層52Fの上にはガス拡散層53Fが形成されている。
これらの高分子電解質膜51、電極触媒層52A,52F及びガス拡散層53A,53Fは固体高分子形燃料電池50の膜電極接合体(Membrane Electrode
FIG. 1 is an exploded perspective view showing an example of the internal structure of a polymer electrolyte fuel cell. As shown in FIG. 1, both surfaces of a polymer electrolyte membrane 51 constituting a polymer electrolyte fuel cell 50 (in the drawing) A pair of electrode catalyst layers 52A and 52F are formed to face each other so as to sandwich the polymer electrolyte membrane 51 therebetween. A gas diffusion layer 53A is formed on the electrode catalyst layer 52A, and a gas diffusion layer 53F is formed on the electrode catalyst layer 52F.
The polymer electrolyte membrane 51, the electrode catalyst layers 52A and 52F, and the gas diffusion layers 53A and 53F are membrane electrode assemblies (Membrane Electrode) of the polymer electrolyte fuel cell 50.

Assembly:MEA)を構成し、ガス拡散層53A,53Fの上には、セパレーター54A,54Fが膜電極接合体を挟持するように配置されている。
なお、セパレーター54A,54Fはガス流路55A,55Fを有し、これらのガス流路55A,55Fはセパレーター54A,54Fの両面(図中の上面と下面)のうちガス拡散層53A,53Fと向かい合う側の表面に凹設されている。また、セパレーター54A,54Fは冷却水通路56A,56Fを有し、これらの冷却水通路56A,56Fはセパレーター54A,54Fの両面のうちガス流路55A,55Fと反対側の表面に凹設されている。
The separators 54A and 54F are arranged on the gas diffusion layers 53A and 53F so as to sandwich the membrane electrode assembly.
The separators 54A and 54F have gas flow paths 55A and 55F, and these gas flow paths 55A and 55F face the gas diffusion layers 53A and 53F on both surfaces (the upper surface and the lower surface in the drawing) of the separators 54A and 54F. It is recessed on the side surface. Further, the separators 54A and 54F have cooling water passages 56A and 56F, and these cooling water passages 56A and 56F are recessed on the surface opposite to the gas flow paths 55A and 55F on both surfaces of the separators 54A and 54F. Yes.

上述した固体高分子形燃料電池50では、一対の冷却水通路56A,56Fの各々に冷却水が流され、且つ、一方のガス流路55Aに例えば酸素ガスが流され、他方のガス流路55Fに例えば水素ガスが流される。そして、触媒の存在下で酸素ガスと水素ガスとが電極反応を進めることによって、一対のガス拡散層53A,53Fの間に起電力が生成される。   In the above-described polymer electrolyte fuel cell 50, cooling water is caused to flow through each of the pair of cooling water passages 56A and 56F, and for example, oxygen gas is caused to flow through one gas passage 55A, and the other gas passage 55F. For example, hydrogen gas is allowed to flow. And an electromotive force is produced | generated between a pair of gas diffusion layers 53A and 53F when oxygen gas and hydrogen gas advance electrode reaction in presence of a catalyst.

このような固体高分子形燃料電池は、上述のように起動時間や動作温度の観点で優れている一方、さらなる実用化に際しては、発電効率が低いという問題を有している。そのため、固体高分子形燃料電池の製造技術には、従来から、出力電圧を高めるための各種の提案がなされている。例えば、特許文献1には、電極触媒層の形成に用いられる触媒インクとして、触媒インク材料を剪断力分散、および超音波分散の2種の分散手法を組みわせることにより、均一性に優れ、かつ、脱泡された触媒インクの製造方法が開示されている。   Such a polymer electrolyte fuel cell is excellent in terms of start-up time and operating temperature as described above, but has a problem of low power generation efficiency in further practical use. For this reason, various proposals for increasing the output voltage have been made in the conventional polymer electrolyte fuel cell manufacturing technology. For example, in Patent Document 1, as a catalyst ink used for forming an electrode catalyst layer, the catalyst ink material is excellent in uniformity by combining two dispersion methods of shearing force dispersion and ultrasonic dispersion, And the manufacturing method of the defoamed catalyst ink is disclosed.

特開2010−86859号公報JP 2010-86859 A

特許文献1に開示される技術は、超音波分散と剪断力分散の長所を活かし、短所は相互補完すべく、せん断力分散を十分行った後に、キャビテーション効果(超音波振動)による超音波分散を行って触媒インクを製造する。その結果、均一性に優れ、かつ、脱泡された安定した触媒インクが製造することができる。
しかしながら、触媒インクを基材に塗工する際、触媒インクに十分な剪断力がかからない場合、少なからず触媒インク中の高分子電解質が局所的に生じることが課題であった。
The technology disclosed in Patent Document 1 makes use of the advantages of ultrasonic dispersion and shear force dispersion, and in order to complement each other, after sufficiently dispersing shear force, ultrasonic dispersion by cavitation effect (ultrasonic vibration) is performed. To produce a catalyst ink. As a result, a stable catalyst ink which is excellent in uniformity and defoamed can be produced.
However, when the catalyst ink is applied to the substrate, if the catalyst ink is not subjected to a sufficient shearing force, there is a problem that a polymer electrolyte in the catalyst ink is locally generated.

本発明は、上記の実情に鑑みてなされたものであり、固体高分子形燃料電池の膜電極接合体として好適な膜電極接合体を製造することのできる燃料電池用膜電極接合体の製造方法を提供することを目的とする。また、本発明の他の目的は、出力電圧の向上を図ることのできる固体高分子形燃料電池の製造方法を提供することである。 The present invention has been made in view of the above circumstances, and a method for producing a membrane electrode assembly for a fuel cell capable of producing a membrane electrode assembly suitable as a membrane electrode assembly for a polymer electrolyte fuel cell The purpose is to provide. Another object of the present invention is to provide a method for producing a polymer electrolyte fuel cell capable of improving the output voltage.

上記課題を解決するために、本発明の一態様は、高分子電解質、触媒物質担持炭素体及び溶媒を含有する触媒インクを基材上に塗工する触媒インク塗工工程と、前記基材上に塗工された触媒インクを乾燥させて触媒電極層を形成する触媒インク乾燥工程とを含み、前記触媒インクの塗工時に粘度が0.005(Pa・s)以上0.1(Pa・s)以下の触媒インクを10℃以上50℃以下の温度に保ちながら150(1/s)以上10000(1/s)以下の剪断速度で塗工することを特徴とする。 In order to solve the above problems, an embodiment of the present invention includes a catalyst ink coating step of coating a catalyst ink containing a polymer electrolyte, a catalyst substance-supporting carbon body, and a solvent on a substrate; A catalyst ink drying step of drying the catalyst ink coated on the substrate to form a catalyst electrode layer, and the viscosity is 0.005 (Pa · s) or more and 0.1 (Pa · s) when the catalyst ink is applied. ) The following catalyst ink is applied at a shear rate of 150 (1 / s) or more and 10,000 (1 / s) or less while maintaining a temperature of 10 to 50 ° C.

上記の一態様において、前記触媒インクを作製する触媒インク作製工程を含み、該触媒インク作製工程は、前記触媒物質担持炭素体と前記溶媒を混錬してペーストを作製する第1工程と、前記高分子電解質が分散した高分子電解質分散溶液を前記ペーストに添加して混練する第2工程とを有することが好ましい。   In the above aspect, the method includes a catalyst ink preparation step of preparing the catalyst ink, the catalyst ink preparation step including a first step of kneading the catalyst substance-supporting carbon body and the solvent to prepare a paste; It is preferable to include a second step of adding and kneading the polymer electrolyte dispersion solution in which the polymer electrolyte is dispersed to the paste.

発明の他の態様は、上記の方法により膜電極接合体を製造する工程と、当該膜電極接合体の両面を一対のセパレータで挟持する工程と、を備えることを特徴とする固体高分子形燃料電池の製造方法である。 Another aspect of the present invention, solid high, characterized in that it comprises a step of producing a Limak electrode assembly by the above method, the step of sandwiching the both sides of the membrane electrode assembly by a pair of separators, the This is a method of manufacturing a molecular fuel cell.

本発明によれば、触媒インクの塗工時に触媒インクにかかる剪断力のおかげで非ニュートン流体である触媒インクの粘度が下がり、触媒インク中の高分子電解質と触媒物質担持炭素体との均一性が高められる。これにより、固体高分子形燃料電池の出力電圧を高めることが可能な電極触媒層を基材上に形成できるので、固体高分子形燃料電池の膜電極接合体として好適な膜電極接合体を製造することができる。また、出力電圧の向上を図ることのできる固体高分子形燃料電池を得ることができる。   According to the present invention, the viscosity of the catalyst ink, which is a non-Newtonian fluid, decreases due to the shearing force applied to the catalyst ink when the catalyst ink is applied, and the uniformity between the polymer electrolyte in the catalyst ink and the catalyst substance-supporting carbon body is reduced. Is increased. As a result, an electrode catalyst layer capable of increasing the output voltage of the polymer electrolyte fuel cell can be formed on the substrate, so that a membrane electrode assembly suitable as a membrane electrode assembly of the polymer electrolyte fuel cell is manufactured can do. In addition, a solid polymer fuel cell capable of improving the output voltage can be obtained.

固体高分子形燃料電池の内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of a polymer electrolyte fuel cell. 触媒インクの剪断速度に対する粘度依存性を示す図である。It is a figure which shows the viscosity dependence with respect to the shear rate of a catalyst ink.

以下、本発明に係る燃料電池用膜電極接合体の製造方法と固体高分子形燃料電池の一実施形態について説明する。なお、本発明に係る固体高分子形燃料電池の一実施形態は、図1に示した固体高分子形燃料電池と同様の構造であるが、電極触媒層が異なるものである。そのため、以下の説明では、電極触媒層を主に説明するとともに、その説明の便宜上、先に説明された部材には同じ符号を付し、その重複した説明を省略する。また、本発明は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づく設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれるものである。   Hereinafter, an embodiment of a method for producing a membrane electrode assembly for a fuel cell and a polymer electrolyte fuel cell according to the present invention will be described. One embodiment of the polymer electrolyte fuel cell according to the present invention has the same structure as the polymer electrolyte fuel cell shown in FIG. 1, but the electrode catalyst layer is different. Therefore, in the following description, the electrode catalyst layer will be mainly described, and for the sake of convenience of description, the members described above are denoted by the same reference numerals, and redundant description thereof will be omitted. The present invention is not limited to the embodiments described below, and modifications such as design changes based on the knowledge of those skilled in the art can be added. The form is also included in the scope of the present invention.

本発明に係る燃料電池用膜電極接合体の製造方法の一実施形態は、高分子電解質、触媒物質担持炭素体及び溶媒を含有し、かつ粘度が0.005(Pa・s)以上0.1(Pa・s)以下の触媒インクを作製する触媒インク作製工程と、作製された触媒インクを所定の剪断速度で基材上に塗工する触媒インク塗工工程と、基材上に塗工された触媒インクを乾燥させて触媒電極層を形成する触媒インク乾燥工程とを含むものである。   One embodiment of a method for producing a membrane electrode assembly for a fuel cell according to the present invention comprises a polymer electrolyte, a catalytic substance-supporting carbon body, and a solvent, and has a viscosity of 0.005 (Pa · s) or more and 0.1. (Pa · s) A catalyst ink preparation step for preparing the following catalyst ink, a catalyst ink application step for applying the prepared catalyst ink on the substrate at a predetermined shear rate, and a coating on the substrate. A catalyst ink drying step of drying the catalyst ink to form a catalyst electrode layer.

ここで、上記触媒インク作製工程は、触媒物質担持炭素体と溶媒を混錬してペーストを作製する第1工程と、高分子電解質が分散した高分子電解質分散溶液を上記ペーストに添加して混練する第2工程とを有し、触媒インクの粘度を所定の値に調整すると共に、触媒インク中の粒子のサイズを所定の値に調整するために、高分子電解質の分散処理が必要に応じて行われる。
高分子電解質の分散処理には、例えばボールミル、ロールミル、剪断ミル、湿式ミル、超音波分散機等の分散機を用いた分散処理の他に、遠心力で攪拌を行うホモジナイザーなどを利用した分散処理も用いることができる。
Here, the catalyst ink preparation step includes a first step of kneading a catalyst substance-supporting carbon body and a solvent to prepare a paste, and a polymer electrolyte dispersion solution in which a polymer electrolyte is dispersed is added to the paste and kneaded. In order to adjust the viscosity of the catalyst ink to a predetermined value and adjust the size of the particles in the catalyst ink to a predetermined value. Done.
For the dispersion treatment of the polymer electrolyte, in addition to the dispersion treatment using, for example, a ball mill, a roll mill, a shear mill, a wet mill, an ultrasonic disperser, a dispersion treatment using a homogenizer that stirs by centrifugal force Can also be used.

触媒インクの高分子電解質には、プロトン伝導性を有する高分子材料、例えばフッ素系高分子電解質や炭化水素系高分子電解質を用いることができ、フッ素系高分子電解質としては、例えばデュポン社製NAFION(登録商標)、旭硝子(株)製FLEMION(登録商標)、旭化成(株)製ACIPLEX(登録商標)、ゴア社製GORE−SELECT(登録商標)などが挙げられる。これらの中でも、固体高分子形燃料電池の出力電圧を高めるうえでは、デュポン社製NAFION(登録商標)を触媒インクの高分子電解質として用いることが望ましい。
炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質膜が挙げられる。
As the polymer electrolyte of the catalyst ink, a polymer material having proton conductivity, for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used, and examples of the fluorine-based polymer electrolyte include NAFION manufactured by DuPont. (Registered trademark), FLEMION (registered trademark) manufactured by Asahi Glass Co., Ltd., ACPLEX (registered trademark) manufactured by Asahi Kasei Co., Ltd., GORE-SELECT (registered trademark) manufactured by Gore, and the like. Among these, in order to increase the output voltage of the polymer electrolyte fuel cell, it is desirable to use NAFION (registered trademark) manufactured by DuPont as a polymer electrolyte of the catalyst ink.
Examples of the hydrocarbon polymer electrolyte membrane include electrolyte membranes such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene.

インク溶媒としては、触媒物質担持炭素体および高分子電解質を浸食しない溶媒であって、流動性を有した状態で高分子電解質を溶解する、又は微細ゲルとして高分子電解質を分散する溶媒を用いることが望ましい。このようなインク溶媒は、揮発性の有機溶媒を含むことが好ましく、インク溶媒に含まれる有機溶媒としては、例えばメタノール、エタノール、1−プロパノ―ル、2−プロパノ―ル、1−ブタノ−ル、2−ブタノ−ル、イソブチルアルコール、tert−ブチルアルコール、ペンタノ−ルなどのアルコール類、アセトン、メチルエチルケトン、ペンタノン、メチルイソブチルケトン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジイソブチルケトンなどのケトン系溶剤、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテルなどのエーテル系溶剤、その他ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1−メトキシ−2−プロパノールなどの極性溶剤、これらの溶剤のうち二種以上が混合された有機溶媒を用いることができる。   As the ink solvent, a solvent that does not erode the catalyst substance-supporting carbon body and the polymer electrolyte and dissolves the polymer electrolyte in a fluid state or disperses the polymer electrolyte as a fine gel is used. Is desirable. Such an ink solvent preferably contains a volatile organic solvent, and examples of the organic solvent contained in the ink solvent include methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol. , 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentaanol and other alcohols, acetone, methyl ethyl ketone, pentanone, methyl isobutyl ketone, heptanone, cyclohexanone, methylcyclohexanone, acetonyl acetone, diisobutyl ketone and other ketones Solvents, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, dibutyl ether, and other ether solvents, dimethylformamide, dimethylacetamide, N-methylpyrrolidone Ethylene glycol, diethylene glycol, diacetone alcohol, 1-methoxy-2-propanol polar solvent such as, an organic solvent may be used which two or more are mixed among these solvents.

有機溶媒として低級アルコールを用いる場合には、インク溶媒の発火温度を高めるうえで、インク溶媒を水との混合溶媒とすることが好ましい。また、高分子電解質との親和性を高める上でも、高分子電解質がインク溶媒から分離して白濁が生じたり、高分子電解質がゲル化したりしない程度に、インク溶媒が水を含むものであることが好ましい。
触媒インクに含まれる触媒物質担持炭素体や高分子電解質などの固形分の含有量が過大になると、触媒インクの粘度が高くなり、電極触媒層の表面にクラックが生じやすくなる。反対に、固形分の含有量が過小になると、電極触媒層の成膜速度が遅くなり、電極触媒層の生産性が低下してしまう。そのため、触媒インクの固形分含有量は、1質量%以上50質量%以下であることが好ましい。
When a lower alcohol is used as the organic solvent, the ink solvent is preferably a mixed solvent with water in order to increase the ignition temperature of the ink solvent. Further, in order to increase the affinity with the polymer electrolyte, it is preferable that the ink solvent contains water to the extent that the polymer electrolyte is separated from the ink solvent to cause white turbidity or the polymer electrolyte does not gel. .
If the solid content of the catalyst substance-carrying carbon body or polymer electrolyte contained in the catalyst ink is excessive, the viscosity of the catalyst ink increases and cracks are likely to occur on the surface of the electrode catalyst layer. On the other hand, if the solid content is too small, the deposition rate of the electrode catalyst layer is slowed, and the productivity of the electrode catalyst layer is reduced. Therefore, the solid content of the catalyst ink is preferably 1% by mass or more and 50% by mass or less.

ちなみに、触媒物質担持炭素体と高分子電解質の含有量が互いに等しい触媒インクであっても、炭素粒子の割合が大きくなるほど触媒インクの粘度は高くなり、反対に、炭素粒子の割合が小さくなるほど触媒インクの粘度は低くなる。そのため、触媒インクに含まれる炭素粒子の濃度は、10質量%以上80質量%以下であることが好ましい。
なお、触媒インクの固形分含有量の調整、固形分における炭素粒子の濃度の調整、これらの他、上記分散処理の際に触媒インクに分散剤が添加されることにより、触媒インクの粘度を所定の値に調整することも可能である。また、触媒物質担持炭素体に対する高分子電解質の質量比率は、0.04質量%以上3.00質量%以下であることが好ましい。
Incidentally, even in the case of a catalyst ink in which the contents of the catalyst material-supporting carbon body and the polymer electrolyte are equal to each other, the viscosity of the catalyst ink increases as the proportion of carbon particles increases, and conversely, the catalyst decreases as the proportion of carbon particles decreases. The viscosity of the ink is lowered. Therefore, the concentration of carbon particles contained in the catalyst ink is preferably 10% by mass or more and 80% by mass or less.
In addition, adjustment of the solid content of the catalyst ink, adjustment of the concentration of carbon particles in the solid content, and addition of a dispersant to the catalyst ink at the time of the dispersion treatment, the viscosity of the catalyst ink is set to a predetermined value. It is also possible to adjust to the value of. Moreover, it is preferable that the mass ratio of the polymer electrolyte with respect to a catalyst substance carrying | support carbon body is 0.04 mass% or more and 3.00 mass% or less.

触媒インク塗工工程では、上記のようにして作製された触媒インクが基材上に塗工される。この際、触媒インクに150(1/s)以上10000(1/s)以下の剪断速度を加えて塗工することにより、触媒インクの触媒物質担持炭素体と高分子電解質との均一性が高められることになり、触媒物質担持炭素体と高分子電解質との均一性が高い電極触媒層を形成することが可能となる。   In the catalyst ink coating process, the catalyst ink produced as described above is coated on the substrate. At this time, by applying a shear rate of 150 (1 / s) or more and 10,000 (1 / s) or less to the catalyst ink, the uniformity of the catalyst substance-supporting carbon body of the catalyst ink and the polymer electrolyte is improved. As a result, it is possible to form an electrode catalyst layer having high uniformity between the catalyst substance-supporting carbon body and the polymer electrolyte.

触媒インク作製工程で作製された触媒インクを基材上に所定の剪断速度で基材上に塗工する場合、触媒インクのインク温度が10℃より低くなると触媒インクの粘度が高くなり、均一な電極触媒を得ることが難しくなる。また、インク温度が50℃を超えると触媒インクの溶媒が塗工中に揮発してしまう。従って、触媒インクを基材上に所定の剪断速度で塗工する場合には、インク温度を10℃以上50℃以下に保ちながら塗工することが好ましい。   When the catalyst ink prepared in the catalyst ink preparation process is applied onto the substrate at a predetermined shear rate, the viscosity of the catalyst ink increases when the ink temperature of the catalyst ink is lower than 10 ° C. It becomes difficult to obtain an electrode catalyst. If the ink temperature exceeds 50 ° C., the solvent of the catalyst ink volatilizes during coating. Therefore, when the catalyst ink is applied onto the substrate at a predetermined shear rate, it is preferable to apply the ink while maintaining the ink temperature at 10 ° C. or more and 50 ° C. or less.

触媒インクが塗工される基材としては、図1に示した高分子電解質膜51やガス拡散層53A,53Fあるいは転写シートを用いることができる。基材として転写シートを用いる場合には、転写シートに形成された電極触媒層が高分子電解質膜の両面に接合され、その後、電極触媒層から転写シートが剥がされる。一方、高分子電解質膜51やガス拡散層53A,53Fを基材として用いる場合には、電極触媒層から基材を剥離する工程を省略することができる。   As the base material to which the catalyst ink is applied, the polymer electrolyte membrane 51, the gas diffusion layers 53A and 53F shown in FIG. 1, or a transfer sheet can be used. When a transfer sheet is used as the substrate, the electrode catalyst layer formed on the transfer sheet is bonded to both surfaces of the polymer electrolyte membrane, and then the transfer sheet is peeled off from the electrode catalyst layer. On the other hand, when the polymer electrolyte membrane 51 and the gas diffusion layers 53A and 53F are used as the base material, the step of peeling the base material from the electrode catalyst layer can be omitted.

高分子電解質膜51は、プロトン伝導性を有する高分子膜であり、この高分子電解質膜51の材料としては、例えばフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えばデュポン社製NAFION(登録商標)、旭硝子(株)製FLEMION(登録商標)、旭化成(株)製ACIPLEX(登録商標)、ゴア社製GORE−SELECT(登録商標)を用いることができる。なかでも、固体高分子形燃料電池の出力電圧を高めるうえでは、デュポン社製NAFION(登録商標)を好適に用いることができる。   The polymer electrolyte membrane 51 is a polymer membrane having proton conductivity, and as the material of the polymer electrolyte membrane 51, for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used. Examples of the fluoropolymer electrolyte include NAFION (registered trademark) manufactured by DuPont, FLEMION (registered trademark) manufactured by Asahi Glass Co., Ltd., ACIPLEX (registered trademark) manufactured by Asahi Kasei Co., Ltd., and GORE-SELECT (registered trademark) manufactured by Gore. Can be used. Among them, NAFION (registered trademark) manufactured by DuPont can be suitably used for increasing the output voltage of the polymer electrolyte fuel cell.

炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質膜を用いることができる。なお、電極触媒層と高分子電解質膜51との密着性を確保するうえでは、電極触媒層と高分子電解質膜51とが同一の材料から形成されていることが好ましい。   As the hydrocarbon polymer electrolyte membrane, electrolyte membranes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used. In order to secure adhesion between the electrode catalyst layer and the polymer electrolyte membrane 51, the electrode catalyst layer and the polymer electrolyte membrane 51 are preferably formed from the same material.

ガス拡散層53A,53Fは、ガス拡散性と導電性とを有する材料からなるシートであり、例えばカーボンクロス、カーボンペーパー、不織布などのポーラスカーボン材をガス拡散層53A,53Fのシート材料として用いることができる。ガス拡散層53A,53Fが基材として用いられる場合には、触媒インクが塗布される塗布面に、予め目処め層を形成しておくことが好ましい。   The gas diffusion layers 53A and 53F are sheets made of a material having gas diffusibility and conductivity. For example, a porous carbon material such as carbon cloth, carbon paper, or nonwoven fabric is used as the sheet material of the gas diffusion layers 53A and 53F. Can do. When the gas diffusion layers 53A and 53F are used as a base material, it is preferable to form a coating layer in advance on the application surface to which the catalyst ink is applied.

目処め層とは、触媒インクがガス拡散層53A,53Fの中に染み込むことを抑える層のことであり、触媒インクの塗布量が少ない場合には、目処め層上に触媒インクが堆積して該目処め層が三相界面を形成するため、特に好ましい。このような目処め層には、例えば炭素粒子の分散したフッ素系樹脂溶液がフッ素系樹脂の融点以上の温度で焼結された層を用いることができる。なお、フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)などが用いられる。   The mesh layer is a layer that prevents the catalyst ink from permeating into the gas diffusion layers 53A and 53F. When the amount of the catalyst ink applied is small, the catalyst ink is deposited on the mesh layer. The mesh layer is particularly preferred because it forms a three-phase interface. As such a sealing layer, for example, a layer obtained by sintering a fluorine resin solution in which carbon particles are dispersed at a temperature equal to or higher than the melting point of the fluorine resin can be used. Note that polytetrafluoroethylene (PTFE) or the like is used as the fluorine-based resin.

転写シートは、電極触媒層を剥離可能な材料からなるシートであり、例えばエチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂を転写シートの材料として用いることができる。
また、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレートなどの高分子シート、高分子フィルムも転写シートの材料として用いることができる。
The transfer sheet is a sheet made of a material from which the electrode catalyst layer can be peeled off, for example, ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether. A fluorine-based resin such as a copolymer (PFA) or polytetrafluoroethylene (PTFE) can be used as a material for the transfer sheet.
In addition, polymer sheets such as polyimide, polyethylene terephthalate, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate are also transferred. It can be used as a sheet material.

触媒インクを基材上に塗布する場合には、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などを用いて触媒インクを基材上に塗布することができる。これらのうち、加圧スプレー法、超音波スプレー法、静電噴霧法などのスプレー法が好ましく、このような方法によれば、塗工された触媒インクが乾燥する際に触媒インクの凝集が起こり難いため、空孔率の高い均質な電極触媒層を得ることが可能となる。   When the catalyst ink is applied onto the substrate, the catalyst ink can be applied onto the substrate using a doctor blade method, a dipping method, a screen printing method, a roll coating method, a spray method, or the like. Among these, a spray method such as a pressure spray method, an ultrasonic spray method, and an electrostatic spray method is preferable. According to such a method, aggregation of the catalyst ink occurs when the coated catalyst ink is dried. Since it is difficult, a homogeneous electrode catalyst layer having a high porosity can be obtained.

[固体高分子形燃料電池の製造方法]
固体高分子形燃料電池の製造方法では、まず、上記の方法により形成された2つの電極触媒層を高分子電解質膜51の両面と向き合うように配置する。
ここで、電極触媒層が形成される基材として高分子電解質膜51を用いた場合には、高分子電解質膜51の両面に電極触媒層が形成されることにより、上記の配置が実現される。また、基材としてガス拡散層53A,53Fあるいは転写シートを用いた場合には、高分子電解質膜51の両面側にガス拡散層53A,53Fあるいは転写シートを配置することにより、上記の配置が実現される。
[Method for producing polymer electrolyte fuel cell]
In the method for producing a polymer electrolyte fuel cell, first, the two electrode catalyst layers formed by the above method are arranged so as to face both surfaces of the polymer electrolyte membrane 51.
Here, when the polymer electrolyte membrane 51 is used as a base material on which the electrode catalyst layer is formed, the above arrangement is realized by forming the electrode catalyst layers on both surfaces of the polymer electrolyte membrane 51. . Further, when the gas diffusion layers 53A, 53F or the transfer sheet are used as the base material, the above arrangement is realized by disposing the gas diffusion layers 53A, 53F or the transfer sheet on both sides of the polymer electrolyte membrane 51. Is done.

2つの電極触媒層を高分子電解質膜51の両面と向き合うように配置したならば、次に、2つの電極触媒層と高分子電解質膜51とを加熱すると共に加圧する。これにより、電極触媒層と高分子電解質膜51が接合され、一つの膜電極接合体が形成される。
なお、電極触媒層が形成される基材として高分子電解質膜51を用いた場合には、高分子電解質膜51の両面側にガス拡散層53A,53Fを配置した後、これらを加熱及び加圧することにより膜電極接合体が形成される。そして、基材としてガス拡散層53A,53Fを用いた場合には、ガス拡散層53A,53Fの間に高分子電解質膜51を配置した後、これらを加熱及び加圧することにより膜電極接合体が形成される。
If the two electrode catalyst layers are arranged so as to face both surfaces of the polymer electrolyte membrane 51, then the two electrode catalyst layers and the polymer electrolyte membrane 51 are heated and pressurized. As a result, the electrode catalyst layer and the polymer electrolyte membrane 51 are joined to form a single membrane / electrode assembly.
When the polymer electrolyte membrane 51 is used as a base material on which the electrode catalyst layer is formed, the gas diffusion layers 53A and 53F are disposed on both sides of the polymer electrolyte membrane 51 and then heated and pressurized. Thereby, a membrane electrode assembly is formed. When the gas diffusion layers 53A and 53F are used as the base material, the polymer electrolyte membrane 51 is disposed between the gas diffusion layers 53A and 53F, and then heated and pressurized to form a membrane electrode assembly. It is formed.

また、基材として転写シートを用いた場合には、電極触媒層が形成された2枚の転写シートを高分子電解質膜51の両面側に配置した後、これらを加熱すると共に加圧して電極触媒層を高分子電解質膜51の両面に圧着させる。そして、高分子電解質膜51の両面に圧着した電極触媒層から転写シートを引き剥がした後、高分子電解質膜51の両面側にガス拡散層53A,53Fを配置し、これらを加熱すると共に加圧することにより一つの膜電極接合体が得られる。その後、得られた膜電極接合体の両面を一対のセパレーター54A,54Fで挟持することにより固体高分子形燃料電池が製造される。   When a transfer sheet is used as the base material, two transfer sheets on which electrode catalyst layers are formed are arranged on both sides of the polymer electrolyte membrane 51, and then heated and pressurized to form an electrode catalyst. The layer is pressed on both sides of the polymer electrolyte membrane 51. Then, after peeling off the transfer sheet from the electrode catalyst layer pressure-bonded to both surfaces of the polymer electrolyte membrane 51, gas diffusion layers 53A and 53F are disposed on both surfaces of the polymer electrolyte membrane 51, and these are heated and pressurized. Thereby, one membrane electrode assembly is obtained. Thereafter, a solid polymer fuel cell is manufactured by sandwiching both surfaces of the obtained membrane electrode assembly with a pair of separators 54A and 54F.

なお、セパレーター54A,54Fには、例えばカーボンタイプあるいは金属タイプが用いられる。ちなみに、セパレーター54A,54Fは、上記ガス拡散層53A,53Fと一体的に構成されてもよい。また、セパレーター54A,54F、又は電極触媒層が、ガス拡散層と同じくガスの拡散機能を有する場合には、上記ガス拡散層53A,53Fが省略されてもよい。   For the separators 54A and 54F, for example, a carbon type or a metal type is used. Incidentally, the separators 54A and 54F may be configured integrally with the gas diffusion layers 53A and 53F. Further, when the separators 54A and 54F or the electrode catalyst layer have a gas diffusion function similar to the gas diffusion layer, the gas diffusion layers 53A and 53F may be omitted.

上述した燃料電池用膜電極接合体及び固体高分子形燃料電池の製造方法について、以下に挙げる具体的な実施例及び比較例を用いて説明する。
(実施例1)
触媒物質担持炭素体として、白金担持カーボン(商品名:TEC10E50E、田中貴金属社製)と溶媒を、遊星ボールミル(商品名:P−7、フリッチュ・ジャパン社製)を用いて混練した。この際、ボールミルのポット及びボールにはジルコニア製のものを用いた。次に、高分子電解質として20質量%の高分子電解質溶液であるナフィオン(登録商標、デュポン社製)を添加し、再び混錬し触媒インクを作製した。作製された触媒インクの剪断速度に対する粘度依存性を図2に示す。
The manufacturing method of the fuel cell membrane electrode assembly and the polymer electrolyte fuel cell described above will be described with reference to the following specific examples and comparative examples.
Example 1
As a catalytic substance-supporting carbon body, platinum-supporting carbon (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku) and a solvent were kneaded using a planetary ball mill (trade name: P-7, manufactured by Fritsch Japan). At this time, the ball mill pot and balls were made of zirconia. Next, Nafion (registered trademark, manufactured by DuPont), which is a 20% by mass polymer electrolyte solution, was added as a polymer electrolyte, and kneaded again to prepare a catalyst ink. The viscosity dependence of the prepared catalyst ink on the shear rate is shown in FIG.

次いで、実施例1の触媒インクの温度を25℃に保温し、ドクターブレード法により、触媒インクにかかる剪断速度が1500(1/s)で、転写シートに塗布し、該転写シート上に塗布された触媒インクを温度が80℃の大気雰囲気中で5分間乾燥させることにより実施例1の電極触媒層を得た。この際、触媒物質の担持量が0.4mg/cm2になるように、電極触媒層の厚さを調節した。 Next, the temperature of the catalyst ink of Example 1 was kept at 25 ° C., and applied to the transfer sheet at a shear rate of 1500 (1 / s) applied to the catalyst ink by the doctor blade method, and applied onto the transfer sheet. The resulting catalyst ink was dried in an air atmosphere at a temperature of 80 ° C. for 5 minutes to obtain an electrode catalyst layer of Example 1. At this time, the thickness of the electrode catalyst layer was adjusted so that the amount of the catalyst substance supported was 0.4 mg / cm 2 .

続いて、高分子電解質膜51としてナフィオン(登録商標)212(デュポン社製)を用い、5cm2の正方形状に打ち抜かれた実施例1の電極触媒層と高分子電解質膜51の両面とが互いに向い合うように、2つの転写シートと高分子電解質膜51とを配置した。その後、これら2つの転写シートで挟まれた高分子電解質膜51を130℃に加熱すると共に加圧下で10分間保持するホットプレスを行うことにより、実施例1の膜電極接合体を得た。さらに、ガス拡散層として目処め層が形成された2つのカーボンクロスを用い、実施例1の膜電極接合体の両面に該カーボンクロスを配置し、これらを一対のセパレーターで挟持することにより、実施例1における単セルの固体高分子形燃料電池を得た。そして、燃料電池測定装置(東陽テクニカ社製APMT−02)を用い、実施例1の固体高分子形燃料電池におけるI−V特性を計測した。この際、燃料ガスとして純水素、酸化剤ガスとして空気、参照電極に可逆水素電極(RHE)を用い、0.5A/cm2出力時の出力電圧を計測した。その計測結果を表1に示す。 Subsequently, Nafion (registered trademark) 212 (manufactured by DuPont) was used as the polymer electrolyte membrane 51, and the electrode catalyst layer of Example 1 punched into a square shape of 5 cm 2 and both surfaces of the polymer electrolyte membrane 51 were mutually connected. Two transfer sheets and a polymer electrolyte membrane 51 were arranged so as to face each other. Then, the membrane electrode assembly of Example 1 was obtained by performing the hot press which heats the polymer electrolyte membrane 51 pinched | interposed between these two transfer sheets to 130 degreeC, and hold | maintains under pressure for 10 minutes. Furthermore, using two carbon cloths having a sealing layer formed as a gas diffusion layer, arranging the carbon cloths on both surfaces of the membrane electrode assembly of Example 1, and sandwiching them with a pair of separators A single-cell polymer electrolyte fuel cell in Example 1 was obtained. And the IV characteristic in the polymer electrolyte fuel cell of Example 1 was measured using the fuel cell measuring device (APMT-02 by Toyo Technica Co., Ltd.). At this time, pure hydrogen was used as the fuel gas, air was used as the oxidant gas, and a reversible hydrogen electrode (RHE) was used as the reference electrode, and the output voltage at 0.5 A / cm 2 output was measured. The measurement results are shown in Table 1.

(実施例2)
触媒インクにかかる剪断速度が1000(1/s)で、転写シートに塗工する以外、実施例1と同様の工程を経て、それ以外の工程は実施例と同じくして、燃料電池用膜電極接合体及び固体高分子形燃料電池を得た。実施例2の固体高分子形燃料電池における出力電圧の測定結果を表1に示す。
(Example 2)
The fuel cell membrane electrode was subjected to the same steps as in Example 1 except that the catalyst ink had a shear rate of 1000 (1 / s) and was applied to the transfer sheet, and the other steps were the same as in Example 1. A joined body and a polymer electrolyte fuel cell were obtained. Table 1 shows the measurement results of the output voltage in the polymer electrolyte fuel cell of Example 2.

(実施例3)
触媒インクにかかる剪断速度が10(1/s)で、転写シートに塗工する、実施例1と同様の工程を経て、それ以外の工程は実施例と同じくして、燃料電池用膜電極接合体及び固体高分子形燃料電池を得た。実施例3の固体高分子形燃料電池における出力電圧の測定結果を表1に示す。
(Example 3)
The shear rate applied to the catalyst ink is 10 (1 / s), and the coating is applied to the transfer sheet. The other steps are the same as in Example 1, and the other steps are the same as in Example. And a polymer electrolyte fuel cell were obtained. Table 1 shows the measurement results of the output voltage in the polymer electrolyte fuel cell of Example 3.

(比較例)
触媒インクを冷暗所に保管してインク温度を5℃に保ち、それ以外の工程を実施例2と同じくして、比較例の電極触媒層及び固体高分子形燃料電池を得た。比較例の固体高分子形燃料電池における出力電圧の測定結果を表1に示す。
(Comparative example)
The catalyst ink was stored in a cool and dark place, the ink temperature was kept at 5 ° C., and the other steps were the same as in Example 2 to obtain an electrode catalyst layer and a polymer electrolyte fuel cell of Comparative Example. Table 1 shows the measurement results of the output voltage in the polymer electrolyte fuel cell of the comparative example.

Figure 0006074978
Figure 0006074978

表1に示されるように、実施例1−3の固体高分子形燃料電池では、比較例の固体高分子形燃料電池に比べて出力電圧が高くなることがわかる。したがって、固体高分子形燃料電池の出力電圧を高めることが可能な電極触媒層を基材上に形成することができ、固体高分子形燃料電池の膜電極接合体として好適な膜電極接合体を製造できると共に、出力電圧の向上を図ることのできる固体高分子形燃料電池を得ることができる。   As shown in Table 1, it can be seen that the output voltage of the polymer electrolyte fuel cell of Example 1-3 is higher than that of the polymer electrolyte fuel cell of the comparative example. Therefore, an electrode catalyst layer capable of increasing the output voltage of the polymer electrolyte fuel cell can be formed on the substrate, and a membrane electrode assembly suitable as a membrane electrode assembly of the polymer electrolyte fuel cell is obtained. A polymer electrolyte fuel cell that can be manufactured and that can improve the output voltage can be obtained.

50…固体高分子形燃料電池
51…高分子電解質膜
52A,52F…電極触媒層
53A,53F…ガス拡散層
54A,54F…セパレーター
55A,55F…ガス流路
56A,56F…冷却水通路
DESCRIPTION OF SYMBOLS 50 ... Polymer electrolyte fuel cell 51 ... Polymer electrolyte membrane 52A, 52F ... Electrode catalyst layer 53A, 53F ... Gas diffusion layer 54A, 54F ... Separator 55A, 55F ... Gas flow path 56A, 56F ... Cooling water path

Claims (3)

高分子電解質、触媒物質担持炭素体及び溶媒を含有する触媒インクを基材上に塗工する触媒インク塗工工程と、
前記基材上に塗工された触媒インクを乾燥させて触媒電極層を形成する触媒インク乾燥工程とを含み、
前記触媒インクの塗工時に粘度が0.005(Pa・s)以上0.1(Pa・s)以下の触媒インクを10℃以上50℃以下の温度に保ちながら150(1/s)以上10000(1/s)以下の剪断速度で塗工することを特徴とする燃料電池用膜電極接合体の製造方法。
A catalyst ink coating step of coating a catalyst ink containing a polymer electrolyte, a catalyst substance-supporting carbon body and a solvent on a substrate;
A catalyst ink drying step of drying the catalyst ink coated on the substrate to form a catalyst electrode layer,
150 (1 / s) or more and 10000 while keeping the catalyst ink having a viscosity of 0.005 (Pa · s) or more and 0.1 (Pa · s) or less at the time of application of the catalyst ink at a temperature of 10 to 50 ° C. (1 / s) The manufacturing method of the membrane electrode assembly for fuel cells characterized by applying with the shear rate below.
前記触媒インクを作製する触媒インク作製工程を含み、該触媒インク作製工程は、前記触媒物質担持炭素体と前記溶媒を混錬してペーストを作製する第1工程と、前記高分子電解質が分散した高分子電解質分散溶液を前記ペーストに添加して混練する第2工程とを有することを特徴とする請求項1に記載の燃料電池用膜電極接合体の製造方法。   A catalyst ink preparation step for preparing the catalyst ink, wherein the catalyst ink preparation step is a first step of kneading the catalyst material-supporting carbon body and the solvent to prepare a paste; and the polymer electrolyte is dispersed. The method for producing a membrane electrode assembly for a fuel cell according to claim 1, further comprising a second step of adding a polymer electrolyte dispersion solution to the paste and kneading the paste. 請求項1又は2に記載された方法により膜電極接合体を製造する工程と、
当該膜電極接合体の両面を一対のセパレータで挟持する工程と、
を備えることを特徴とする固体高分子形燃料電池の製造方法
A step of producing by Limak electrode assembly to the method described in claim 1 or 2,
Sandwiching both surfaces of the membrane electrode assembly with a pair of separators;
A method for producing a polymer electrolyte fuel cell , comprising:
JP2012211098A 2012-09-25 2012-09-25 Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell Active JP6074978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012211098A JP6074978B2 (en) 2012-09-25 2012-09-25 Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012211098A JP6074978B2 (en) 2012-09-25 2012-09-25 Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2014067537A JP2014067537A (en) 2014-04-17
JP6074978B2 true JP6074978B2 (en) 2017-02-08

Family

ID=50743742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012211098A Active JP6074978B2 (en) 2012-09-25 2012-09-25 Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP6074978B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638675B2 (en) * 2017-03-03 2020-01-29 トヨタ自動車株式会社 Fuel cell catalyst ink, fuel cell catalyst layer, and membrane electrode assembly
FR3085800B1 (en) * 2018-09-12 2021-06-04 Commissariat Energie Atomique PROCESS FOR MANUFACTURING AN ELECTROCHEMICAL REACTOR FLOW GUIDE

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954362B2 (en) * 2000-07-03 2012-06-13 パナソニック株式会社 Method for producing polymer electrolyte fuel cell
JP2004139899A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Electrode ink for solid polymer electrolyte fuel cell and manufacturing method of the same
JP4318316B2 (en) * 2006-01-20 2009-08-19 日立マクセル株式会社 Manufacturing method of fuel cell
JP5423062B2 (en) * 2009-03-05 2014-02-19 凸版印刷株式会社 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2012142151A (en) * 2010-12-28 2012-07-26 Equos Research Co Ltd Production apparatus of catalyst paste and production method of catalyst paste

Also Published As

Publication number Publication date
JP2014067537A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP4655168B1 (en) Method for producing electrode catalyst layer for fuel cell
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP6070564B2 (en) Catalyst particles, catalyst ink, production method thereof, and production method of each of fuel cell electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP6364821B2 (en) Catalyst ink production method, polymer electrolyte fuel cell production method, and platinum-supported carbon particles
JP4798306B2 (en) Electrocatalyst layer production method, electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP5463833B2 (en) Method for producing electrode catalyst layer for polymer electrolyte fuel cell, method for producing membrane electrode assembly, and membrane electrode assembly
JP6074978B2 (en) Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell
KR20090132214A (en) Membrane and electrode assembly for fuel cell, manufacturing method, and fuel cell using the same
Purwanto et al. Effects of the addition of flourinated polymers and carbon nanotubes in microporous layer on the improvement of performance of a proton exchange membrane fuel cell
JP5515902B2 (en) Polymer electrolyte fuel cell, membrane / electrode assembly, electrode catalyst layer, and production method thereof
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP6459429B2 (en) Catalyst ink for forming electrode catalyst layer for polymer electrolyte fuel cell, and method for producing polymer electrolyte fuel cell
JP5885007B2 (en) Manufacturing method of electrode sheet for fuel cell
WO2014155929A1 (en) Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell
WO2015146980A1 (en) Membrane electrode assembly and solid polymer fuel cell
JP6201398B2 (en) Transfer sheet with mask film / base film, method for producing transfer sheet with mask film / base film, and method for producing catalyst layer sheet
JP5369580B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2015090851A (en) Method for manufacturing catalyst ink for formation of electrode catalyst layer for solid polymer fuel cell, method for manufacturing solid polymer fuel cell, and platinum-supporting carbon particle included in electrode catalyst layer for solid polymer fuel cell
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2014192017A (en) Transfer sheet with mask film/base film, catalyst layer sheet employing the same, solid polymer fuel cell, and manufacturing method of transfer sheet with mask film/base film
JP2010062062A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly, and polymer electrolyte fuel cell
EP4303966A1 (en) Membrane electrode assembly and solid-polymer fuel cell
JP2010027271A (en) Fuel cell catalyst layer forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6074978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250