JP6071643B2 - Etalon - Google Patents

Etalon Download PDF

Info

Publication number
JP6071643B2
JP6071643B2 JP2013038615A JP2013038615A JP6071643B2 JP 6071643 B2 JP6071643 B2 JP 6071643B2 JP 2013038615 A JP2013038615 A JP 2013038615A JP 2013038615 A JP2013038615 A JP 2013038615A JP 6071643 B2 JP6071643 B2 JP 6071643B2
Authority
JP
Japan
Prior art keywords
metal film
hollow member
metal
transparent
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013038615A
Other languages
Japanese (ja)
Other versions
JP2014167503A (en
Inventor
若林 小太郎
小太郎 若林
古堅 由紀子
由紀子 古堅
詩織 宮崎
詩織 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2013038615A priority Critical patent/JP6071643B2/en
Publication of JP2014167503A publication Critical patent/JP2014167503A/en
Application granted granted Critical
Publication of JP6071643B2 publication Critical patent/JP6071643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)

Description

本発明は、光学機器に用いられるエタロンに関する。   The present invention relates to an etalon used in an optical instrument.

従来より、光通信、測定機器、半導体レーザなどの光学機器にはエタロンが用いられている。
このエタロンは、キューブ状に形成されたソリッド型と平行平板となる透明部材の間に中空部材を接合して構成されるエアギャップ型とがある。
これらエタロンは、光学機器において、光が通過する経路内に設けられており、光の進行方向とエタロンの長さ方向とを一致させて用いられる(例えば、特許文献1参照)。このようなエアギャップ型のエタロンは、波長温度特性を考慮して、透明部材の間に設けられる中空部材の長さが決められている。
Conventionally, an etalon has been used for optical equipment such as optical communication, measuring equipment, and semiconductor laser.
This etalon includes a solid type formed in a cube shape and an air gap type configured by joining a hollow member between transparent members that are parallel flat plates.
These etalons are provided in a path through which light passes in an optical apparatus, and are used with the traveling direction of the light and the length direction of the etalon matched (for example, refer to Patent Document 1). In such an air gap type etalon, the length of the hollow member provided between the transparent members is determined in consideration of the wavelength temperature characteristic.

特許2835068号公報Japanese Patent No. 283068

しかしながら、従来のエタロンは、温度変化により使用雰囲気中の屈折率と中空部材の厚みが変化して共振器長が変化し、これにより波長温度特性が変化することが懸念される。   However, in the conventional etalon, there is a concern that the refractive index in the use atmosphere and the thickness of the hollow member change due to a temperature change and the resonator length changes, thereby changing the wavelength temperature characteristic.

そこで、本発明では、前記した問題を解決し、温度変化が起きても波長温度特性が変化しにくいエタロンを提供することを課題とする。   Therefore, an object of the present invention is to solve the above-described problems and provide an etalon in which the wavelength temperature characteristic is not easily changed even when a temperature change occurs.

前記課題を解決するため、本発明は、2つ一対の透明部材の間に環状の中空部材と環状の金属薄板部材とが挟まれた状態で接合されて構成されるエタロンであって、前記中空部材側を向く面に金属膜が設けられる前記透明部材と、前記透明部材側を向く面に金属膜が設けられている環状の前記中空部材と、前記中空部材と接合される環状の前記金属薄板部材と、を備えており、前記中空部材が石英ガラスからなり、前記金属薄板部材が金からなり、前記金属膜は下地金属膜と主金属膜とから構成され、前記下地金属膜がクロム、主金属膜が金からなり、前記透明部材の間に接合される前記中空部材と前記金属薄板部材と前記金属膜との厚みの総和の、所定の熱雰囲気における前記中空部材と前記金属薄板部材と前記金属膜との単位温度当たりの膨張する長さの総和に対する比率と、空気の屈折率温度係数との積が1又は1に近似となることを特徴とする。 In order to solve the above-mentioned problem, the present invention is an etalon configured by joining an annular hollow member and an annular metal thin plate member between two pairs of transparent members, The transparent member provided with a metal film on the surface facing the member side, the annular hollow member provided with a metal film on the surface facing the transparent member side, and the annular metal thin plate joined to the hollow member The hollow member is made of quartz glass, the metal thin plate member is made of gold, the metal film is composed of a base metal film and a main metal film, and the base metal film is chromium, a main metal film A metal film is made of gold, and the total thickness of the hollow member, the metal thin plate member, and the metal film joined between the transparent members, the hollow member, the metal thin plate member, and the Per unit temperature with metal film A ratio of the sum of the length of the expansion, the product of the refractive index temperature coefficient of the air, characterized in that the the approximation to 1 or 1.

このようなエタロンによれば、温度変化により使用雰囲気中の屈折率が変化しても、透明部材に挟まれる中空部材と金属薄板部材と金属膜とが屈折率の変化を補正するように共振器長の変化に対応して変化することができるので、波長温度特性を変化しにくくすることができる。   According to such an etalon, even if the refractive index in the working atmosphere changes due to a temperature change, the resonator so that the hollow member, the metal thin plate member, and the metal film sandwiched between the transparent members correct the change in the refractive index. Since it can change corresponding to the change in length, the wavelength temperature characteristic can be made difficult to change.

また、金属薄板部材が金からなることにより、温度変化への対応が良く熱膨張による共振器長の変化に対応しやすくすることができる。
また、前記透明部材の間に接合される前記中空部材と前記金属薄板部材と前記金属膜との厚みの総和の、所定の熱雰囲気における前記中空部材と前記金属薄板部材と前記金属膜との単位温度当たりの膨張する長さの総和に対する比率と、屈折率温度係数との積が1又は1に近似となるように構成したので、雰囲気温度における屈折率と熱膨張における伸び量の比率が一致するので、熱膨張で共振器長が変化しても波長温度特性を変化しにくくすることができる。
In addition, since the metal thin plate member is made of gold, it is possible to easily cope with a change in the resonator length due to thermal expansion because of good response to a temperature change.
Further, a unit of the hollow member, the thin metal plate member, and the metal film in a predetermined thermal atmosphere of the total thickness of the hollow member, the thin metal plate member, and the metallic film joined between the transparent members. Since the product of the ratio of the expansion length per temperature and the refractive index temperature coefficient is close to 1 or 1, the ratio of the refractive index at the ambient temperature and the amount of elongation in the thermal expansion match. Therefore, even if the resonator length changes due to thermal expansion, the wavelength temperature characteristic can be made difficult to change.

(a)は本発明の実施形態に係るエタロンの一例を示す斜視図であり、(b)は本発明の実施形態に係るエタロンの一例を示す断面図である。(A) is a perspective view which shows an example of the etalon which concerns on embodiment of this invention, (b) is sectional drawing which shows an example of the etalon which concerns on embodiment of this invention.

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。なお、各構成要素について、状態をわかりやすくするために、誇張して図示している。   Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate. Note that each component is exaggerated for easy understanding of the state.

図1(a)及び(b)に示すように、本発明の実施形態に係るエタロン10は、2つ一対の透明部材11、中空部材12、金属薄板部材13、金属膜11c,金属膜12aで主に構成されている。   As shown in FIGS. 1A and 1B, an etalon 10 according to an embodiment of the present invention includes two pairs of a transparent member 11, a hollow member 12, a metal thin plate member 13, a metal film 11c, and a metal film 12a. It is mainly composed.

透明部材11は、例えば、ガラスや水晶などの無色透明の材料が用いられ、また、2つ一対で用いられる。これら透明部材11は、所定の厚さの平行平板に形成されており、例えば、平面視で四角形状に形成されている。これら2つの透明部材11の向かい合う主面の間が共振器長L(図1(b)参照)となる。また、これら透明部材11は、一方の主面に反射防止膜11aが設けられ、他方の主面に反射膜11bが設けられている。なお、主面という場合は、光が入射・出射する面を主面とする。
なお、透明部材11は、ウエッジ形状に形成されていても良い。ウエッジ形状に形成されたこの透明部材11は、11a面が11b面に対して傾斜した構成となっている。このように透明部材11を構成すると、11a面からの不要な反射を防ぐことが出来る。
なお、反射防止膜11aは、例えば、従来周知の蒸着により透明部材11の一方の主面に設けられる。また、反射膜11bは、例えば、従来周知の蒸着により透明部材11の他方の主面に設けられる。
For the transparent member 11, for example, a colorless and transparent material such as glass or quartz is used, and two pairs are used. These transparent members 11 are formed in parallel flat plates having a predetermined thickness, and are formed, for example, in a quadrangular shape in plan view. A space between the principal surfaces of the two transparent members 11 facing each other is a resonator length L (see FIG. 1B). In addition, these transparent members 11 are provided with an antireflection film 11a on one main surface and a reflection film 11b on the other main surface. In addition, when calling it a main surface, let the surface which light injects and radiate | emits be a main surface.
The transparent member 11 may be formed in a wedge shape. The transparent member 11 formed in a wedge shape has a configuration in which the 11a surface is inclined with respect to the 11b surface. If the transparent member 11 is configured in this manner, unnecessary reflection from the surface 11a can be prevented.
The antireflection film 11a is provided on one main surface of the transparent member 11 by, for example, conventionally known vapor deposition. Moreover, the reflective film 11b is provided on the other main surface of the transparent member 11 by, for example, conventionally known vapor deposition.

なお、反射膜11bは、中空部材12側を向く主面に設けられる。また、反射防止膜11aは、反射膜11bとは反対側の主面に設けられる。よって、透明部材11を中空部材12に接合した状態では、外側に反射防止膜11aが設けられ、接合により挟まれる位置に反射膜11bが設けられている。
この反射膜11bの上には、環状に金属膜11cが設けられる。よって、透明部材11の中空部材12側を向く面には金属膜11cが設けられた状態となる。この金属膜11cは、例えば、下地金属膜がクロム、主金属膜が金で構成されており、フォトリソグラフィ技術とスパッタ技術や蒸着技術で環状に設けることができる。
The reflective film 11b is provided on the main surface facing the hollow member 12 side. The antireflection film 11a is provided on the main surface opposite to the reflection film 11b. Therefore, when the transparent member 11 is bonded to the hollow member 12, the antireflection film 11a is provided on the outer side, and the reflection film 11b is provided at a position sandwiched by the bonding.
An annular metal film 11c is provided on the reflection film 11b. Therefore, the metal film 11c is provided on the surface of the transparent member 11 facing the hollow member 12 side. The metal film 11c is formed of, for example, chromium as a base metal film and gold as a main metal film, and can be provided annularly by a photolithography technique, a sputtering technique, or a vapor deposition technique.

中空部材12は、例えば石英ガラスが用いられ、図1(b)に示すように、例えば、環状に形成されており、内部の空間の中心を中心軸線Cとしたとき、この中心軸線Cに沿って環が厚みを有している。この中空部材12は、中心軸線Cに対して直交する方向に切断した断面が四角形の環状の断面となっている。つまり中空部材12は、この四角形の環状の断面を維持したまま厚みを有した構造となっている。
なお、断面は、円環の断面でもよい。
The hollow member 12 is made of, for example, quartz glass, and is formed in, for example, an annular shape as shown in FIG. 1B. When the center of the internal space is defined as the central axis C, the hollow member 12 extends along the central axis C. The ring has a thickness. The hollow member 12 has a quadrangular annular cross section cut in a direction orthogonal to the central axis C. That is, the hollow member 12 has a structure having a thickness while maintaining the rectangular annular cross section.
The cross section may be an annular cross section.

中空部材12は、この板の所定の位置をウェットエッチングにより貫通部が形成され、外形形状に沿って加工することにより環状に形成される。環状の形状は、円環形状や四角い環状の形状となっていても良い。
例えば、ウェットエッチングを用いて貫通部を形成する場合は、中空部材12となる中空部材ウェハ(図示せず)の表面にレジストを設け、所定のパターンで露光し、現像を行って中空部材ウェハの表面を露出させ、中空部材ウェハの露出した部分をウェットエッチングで除去して貫通部を形成する。なお、ドリルなどの穿孔により貫通部を設けても良い。
The hollow member 12 is formed in an annular shape by forming a penetrating portion at a predetermined position of the plate by wet etching and processing it along the outer shape. The annular shape may be an annular shape or a square annular shape.
For example, when forming a penetration part using wet etching, a resist is provided on the surface of a hollow member wafer (not shown) to be the hollow member 12, exposed in a predetermined pattern, developed, and developed. The surface is exposed, and the exposed portion of the hollow member wafer is removed by wet etching to form a penetrating portion. In addition, you may provide a penetration part by drilling, such as a drill.

この四角形の環状の断面は、中心軸線C方向から見ると、中空部材12の端面の形状と同一となっている。したがって、中空部材12の端面は、四角形の環状の形状となっており、両側のこの端面に金属膜12aが設けられる。また、中空部材12は、透明部材11側を向く面、つまり、前記端面が透明部材11の方を向いた状態で用いられる。   When viewed from the central axis C direction, this quadrangular annular cross section has the same shape as the end face of the hollow member 12. Therefore, the end face of the hollow member 12 has a quadrangular annular shape, and the metal film 12a is provided on this end face on both sides. The hollow member 12 is used in a state where the surface facing the transparent member 11, that is, the end surface faces the transparent member 11.

金属薄板部材13は、例えば、所定の厚さの金(Au)からなり環状に形成されている。この金属薄板部材13は、例えば、フォトリソグラフィ技術とエッチング技術を用いて形成することができる。金属薄板部材13となる金属薄板部材ウェハ(図示せず)にレジストを設け、所定のパターンで露光し、現像を行って金属薄板部材ウェハの表面を露出させ、金属薄板部材ウェハの露出した部分をウェットエッチングで除去して貫通部を形成する。これにより金属薄板部材を形成することができる。
この金属薄板部材13は、前記中空部材12の一方の端面に接合されている。つまり、金属薄板部材13は、中空部材12に設けられた金属膜12aに接合されている。
The thin metal plate member 13 is made of, for example, gold (Au) having a predetermined thickness and is formed in an annular shape. The thin metal plate member 13 can be formed using, for example, a photolithography technique and an etching technique. A resist is provided on a metal thin plate member wafer (not shown) to be the metal thin plate member 13, exposed in a predetermined pattern, developed to expose the surface of the metal thin plate member wafer, and the exposed portion of the metal thin plate member wafer is exposed. A penetration part is formed by removing by wet etching. Thereby, a metal thin plate member can be formed.
The thin metal plate member 13 is joined to one end face of the hollow member 12. That is, the metal thin plate member 13 is joined to the metal film 12 a provided on the hollow member 12.

このように構成されるエタロン10は、一方の透明部材11の金属膜11cと中空部材12の金属膜12aとが接合され、他方の透明部材11の金属膜11cと金属薄板部材13とが接合され、中空部材12の金属膜12aと金属薄板部材13とが接合された状態となっている。   In the etalon 10 configured as described above, the metal film 11c of one transparent member 11 and the metal film 12a of the hollow member 12 are joined, and the metal film 11c of the other transparent member 11 and the metal thin plate member 13 are joined. The metal film 12a of the hollow member 12 and the metal thin plate member 13 are joined.

例えば、本発明の実施形態に係るエタロン10は、以下のように製造される。
一方の主面に反射防止膜11aが設けられ他方の主面に反射膜11bが設けられた透明部材11となる透明部材ウェハ(図示せず)に金属膜11cを設け、透明部材ウェハの金属膜11cと金属薄板部材ウェハとを重ねて原子拡散接合により接合する。次に、中空部材12となる中空部材ウェハに貫通部を形成して表面に金属膜12aを形成する。環状の面となる両端部に金属膜12aが設けられた中空部材12となる中空部材ウェハを透明部材ウェハと接合された金属薄板部材ウェハを重ねて原子拡散接合により接合する。一方の主面に反射防止膜11aが設けられ他方の主面に反射膜11bが設けられた透明部材11となる他の透明部材ウェハ(図示せず)に金属膜11cを設け、この透明部材ウェハの金属膜11cと中空部材ウェハとを重ねて原子拡散接合により接合する。中空部材ウェハに設けられた貫通部の間を切断して個々のエタロン10を形成する。
For example, the etalon 10 according to the embodiment of the present invention is manufactured as follows.
A metal film 11c is provided on a transparent member wafer (not shown) to be a transparent member 11 provided with an antireflection film 11a on one main surface and a reflection film 11b on the other main surface, and the metal film of the transparent member wafer 11c and the metal thin plate member wafer are overlapped and bonded by atomic diffusion bonding. Next, a penetration part is formed in the hollow member wafer used as the hollow member 12, and the metal film 12a is formed in the surface. A hollow member wafer, which is a hollow member 12 provided with metal films 12a on both ends of the annular surface, is overlapped with a transparent member wafer and joined by atomic diffusion bonding. A metal film 11c is provided on another transparent member wafer (not shown) to be a transparent member 11 provided with an antireflection film 11a on one main surface and a reflection film 11b on the other main surface. The metal film 11c and the hollow member wafer are overlapped and bonded by atomic diffusion bonding. Individual etalons 10 are formed by cutting between the through portions provided in the hollow member wafer.

ここで、透明部材11の金属膜11cと中空部材12の金属膜12aと金属薄板部材13との厚みをd1、中空部材12の厚みをd2、透明部材11の金属膜11cと中空部材12の金属膜との厚みをd3、厚みd1の熱膨張係数をα1、厚みd2の熱膨張率をα2、厚みd3の熱膨張率をα3、屈折率の熱膨張係数を(dn/dT)、空気の屈折率をnとしたとき、透明部材11の金属膜11cの厚み、中空部材12の金属膜12aの厚み、金属薄板部材の厚み、中空部材12の厚み、は、以下の式1又は式2を満たす値で用いられる。
(dn/dT)×((d1+d2+d3)/(n×α1×d1+n×α2×d2+n×α3×d3))=1 式1
(dn/dT)×((d1+d2+d3)/(n×α1×d1+n×α2×d2+n×α3×d3))≒1 式2
d1+d2+d3は、2つの透明部材11の金属膜11cの厚みと中空部材12の2面に設けられた金属膜12cの厚みと中空部材12の厚みと金属薄板部材13との合計を意味する。
n×α1×d1とn×α2×d2とn×α3×d3とは、屈折率nにおける熱膨張での伸縮量を意味している。
よって、式1は、透明部材11の間に接合される中空部材12と金属薄板部材13と金属膜11c,12aとの厚みの総和の、所定の熱雰囲気における中空部材12と金属薄板部材13と金属膜11c,12aとの単位温度当たりの膨張する長さの総和に対する比率と、屈折率温度係数との積が1となることを意味する。
つまり、式1は、屈折率温度係数と透明部材11の間に介在する部材の屈折率nにおける膨張比率の逆数との積が1となる。よって、所定の熱雰囲気で共振器長Lが変化してL´となっても、透明部材11の間に介在する各部材が熱膨張により伸縮するため、変化した共振器長L´に対応した厚みに中空部材12と金属薄板部材13と金属膜11c,12aが変化した状態となる。
なお、所定の熱雰囲気での熱膨張の割合が不均一となっても、式2のように、「1」に近い値であれば、共振器長Lの変化に追従した中空部材12と金属薄板部材13と金属膜11c,12aの変化とみなすことができる。
Here, the thickness of the metal film 11c of the transparent member 11, the metal film 12a of the hollow member 12 and the metal thin plate member 13 is d1, the thickness of the hollow member 12 is d2, the metal film 11c of the transparent member 11 and the metal of the hollow member 12 The thickness of the film is d3, the thermal expansion coefficient of the thickness d1 is α1, the thermal expansion coefficient of the thickness d2 is α2, the thermal expansion coefficient of the thickness d3 is α3, the thermal expansion coefficient of the refractive index is (dn / dT), and the refraction of air When the rate is n, the thickness of the metal film 11 c of the transparent member 11, the thickness of the metal film 12 a of the hollow member 12, the thickness of the metal thin plate member, and the thickness of the hollow member 12 satisfy the following formula 1 or formula 2. Used by value.
(Dn / dT) × ((d1 + d2 + d3) / (n × α1 × d1 + n × α2 × d2 + n × α3 × d3)) = 1 Equation 1
(Dn / dT) × ((d1 + d2 + d3) / (n × α1 × d1 + n × α2 × d2 + n × α3 × d3)) ≈1 Equation 2
d1 + d2 + d3 means the sum of the thickness of the metal film 11c of the two transparent members 11, the thickness of the metal film 12c provided on the two surfaces of the hollow member 12, the thickness of the hollow member 12, and the metal thin plate member 13.
n × α1 × d1, n × α2 × d2, and n × α3 × d3 mean the amount of expansion / contraction due to thermal expansion at the refractive index n.
Therefore, Formula 1 is the sum of the thicknesses of the hollow member 12, the metal thin plate member 13, and the metal films 11c and 12a joined between the transparent members 11, and the hollow member 12 and the metal thin plate member 13 in a predetermined thermal atmosphere. It means that the product of the ratio of the expansion length per unit temperature of the metal films 11c and 12a to the total sum and the refractive index temperature coefficient is 1.
That is, in Equation 1, the product of the refractive index temperature coefficient and the reciprocal of the expansion ratio at the refractive index n of the member interposed between the transparent members 11 is 1. Therefore, even if the resonator length L changes to L ′ in a predetermined thermal atmosphere, each member interposed between the transparent members 11 expands and contracts due to thermal expansion, and therefore corresponds to the changed resonator length L ′. The hollow member 12, the thin metal plate member 13, and the metal films 11c and 12a are changed in thickness.
Even if the rate of thermal expansion in a predetermined thermal atmosphere is not uniform, if the value is close to “1” as shown in Equation 2, the hollow member 12 and the metal following the change in the resonator length L It can be regarded as a change of the thin plate member 13 and the metal films 11c and 12a.

このように、本発明のエタロン10を、d1、d2、d3を決定して透明部材11の金属膜11cの厚み、中空部材12の金属膜12aの厚み、金属薄板部材13の厚み、中空部材12の厚みを決定したので、温度変化により使用雰囲気中の屈折率が変化しても、透明部材11に挟まれる中空部材12と金属薄板部材13と金属膜11c,12aとが屈折率の変化を補正するように変化することができ、共振器長Lの変化に対応して波長温度特性を変化しにくくすることができる。   Thus, the etalon 10 of the present invention is determined by determining d1, d2, and d3, the thickness of the metal film 11c of the transparent member 11, the thickness of the metal film 12a of the hollow member 12, the thickness of the thin metal plate member 13, and the hollow member 12. Therefore, even if the refractive index in the working atmosphere changes due to a temperature change, the hollow member 12, the metal thin plate member 13, and the metal films 11c and 12a that are sandwiched between the transparent members 11 correct the change in the refractive index. The wavelength temperature characteristic can be made difficult to change corresponding to the change of the resonator length L.

また、金属薄板部材13が金からなることにより、温度変化への対応が良く共振器長Lの変化に対応しやすくすることができる。
また、透明部材11の間に接合される中空部材12と金属薄板部材13と金属膜11c,12aとの厚みの総和の、所定の熱雰囲気における中空部材12と金属薄板部材13と金属膜11c,12aとの単位温度当たりの膨張する長さの総和に対する比率と、屈折率温度係数との積が1又は1に近似となるように構成したので、雰囲気温度における屈折率と熱膨張における伸び量の比率が一致するので、熱膨張による共振器長Lの変化に対応させることができるので波長温度特性を変化しにくくすることができる。
Further, since the thin metal plate member 13 is made of gold, it is possible to cope with a change in temperature and to easily cope with a change in the resonator length L.
Further, the total thickness of the hollow member 12, the metal thin plate member 13, and the metal films 11c, 12a joined between the transparent members 11, the hollow member 12, the metal thin plate member 13, and the metal film 11c in a predetermined thermal atmosphere. Since the product of the ratio of the expansion length per unit temperature to the total sum of 12a and the refractive index temperature coefficient is close to 1 or 1, the refractive index at the ambient temperature and the elongation at thermal expansion Since the ratios coincide with each other, it is possible to cope with a change in the resonator length L due to thermal expansion, so that it is possible to make the wavelength temperature characteristic difficult to change.

次に比較例と実施例について説明する。
まず、比較例1は、以下の状態となっている。
屈折率温度係数dn/dTをdn/dT=−8.4×10−7とする。
金属薄板部材13と透明部材11の金属膜11cと中空部材12の金属膜12aの厚みd1が、150nm、
中空部材12の厚みd2がd2=2993300nm、
透明部材11の金属膜11cと中空部材12の金属膜12aの厚みd3がd3=50nm、
となっている。
中空部材12について、石英ガラスの熱膨張係数α2は、α2=4.9×10−7となる。中空部材12の内部に空気が入っている。このとき、空気の屈折率nをn=1.0003とする。
透明部材11に設けられる金属膜11cと中空部材12に設けられる金属膜12aは、材質が金(Au)であり、金の熱膨張係数α1,α3をα1=α3=1.4×10−5とする。なお、金属膜の下地金属膜は極めて薄いので考慮しなくても良い。
Next, comparative examples and examples will be described.
First, Comparative Example 1 is in the following state.
The refractive index temperature coefficient dn / dT is set to dn / dT = −8.4 × 10 −7 .
The thickness d1 of the metal thin plate member 13, the metal film 11c of the transparent member 11, and the metal film 12a of the hollow member 12 is 150 nm,
The thickness d2 of the hollow member 12 is d2 = 2993300 nm,
The thickness d3 of the metal film 11c of the transparent member 11 and the metal film 12a of the hollow member 12 is d3 = 50 nm,
It has become.
For the hollow member 12, the thermal expansion coefficient α2 of quartz glass is α2 = 4.9 × 10−7. Air is contained in the hollow member 12. At this time, the refractive index n of air is set to n = 1.0003.
The metal film 11c provided on the transparent member 11 and the metal film 12a provided on the hollow member 12 are made of gold (Au), and the thermal expansion coefficients α1 and α3 of gold are α1 = α3 = 1.4 × 10 −5. And Note that the base metal film of the metal film is extremely thin and need not be considered.

このとき、前記式1に各値を代入して計算を行うと、
式1=(dn/dT)×((d1+d2+d3)/(n×α1×d1+n×α2×d2+n×α3×d3))
=1.7
となり、式1=1とはならない。
また、式2≒1の適用もできない状態となる。
このときの、波長温度係数は0.55(pm/℃)となり、このようなエタロンは、熱の影響を受けて共振器波長の変化と、中空部材と金属薄板部材と金属膜とが熱膨張による変化とが一致しなかったために、波長温度係数が悪くなったと考察できる。
At this time, if the calculation is performed by substituting each value into the equation 1,
Formula 1 = (dn / dT) × ((d1 + d2 + d3) / (n × α1 × d1 + n × α2 × d2 + n × α3 × d3))
= 1.7
Therefore, Formula 1 = 1 is not satisfied.
In addition, the expression 2≈1 cannot be applied.
At this time, the wavelength temperature coefficient is 0.55 (pm / ° C.), and such an etalon is affected by heat, and the resonator wavelength changes, and the hollow member, the metal thin plate member, and the metal film thermally expand. It can be considered that the wavelength temperature coefficient was deteriorated because the change due to the difference was not consistent.

次に実施例1は以下の状態となっている。
屈折率温度係数dn/dTをdn/dT=−8.4×10−7とする。
金属薄板部材13と透明部材11の金属膜11cと中空部材12の金属膜12aの厚みd1が、75950nm、
中空部材12の厚みd2がd2=2917500nm、
透明部材11の金属膜11cと中空部材12の金属膜12aの厚みd3がd3=50nm、
となっている。
中空部材12について、石英ガラスの熱膨張係数α2は、α2=4.9×10−7となる。中空部材12の内部に空気が入っている。このとき、空気の屈折率nをn=1.0003とする。
透明部材11に設けられる金属膜11cと中空部材12に設けられる金属膜12aは、材質が金(Au)であり、金の熱膨張係数α1,α3をα1=α3=1.4×10−5とする。なお、金属膜の下地金属膜は極めて薄いので考慮しなくても良い。
Next, Example 1 is in the following state.
The refractive index temperature coefficient dn / dT is set to dn / dT = −8.4 × 10 −7 .
The thickness d1 of the metal thin plate member 13, the metal film 11c of the transparent member 11, and the metal film 12a of the hollow member 12 is 75950 nm,
The thickness d2 of the hollow member 12 is d2 = 2917500 nm,
The thickness d3 of the metal film 11c of the transparent member 11 and the metal film 12a of the hollow member 12 is d3 = 50 nm,
It has become.
For the hollow member 12, the thermal expansion coefficient α2 of quartz glass is α2 = 4.9 × 10 −7 . Air is contained in the hollow member 12. At this time, the refractive index n of air is set to n = 1.0003.
The metal film 11c provided on the transparent member 11 and the metal film 12a provided on the hollow member 12 are made of gold (Au), and the thermal expansion coefficients α1 and α3 of gold are α1 = α3 = 1.4 × 10 −5. And Note that the base metal film of the metal film is extremely thin and need not be considered.

このとき、前記式1に各値を代入して計算を行うと、
式1=(dn/dT)×((d1+d2+d3)/(n×α1×d1+n×α2×d2+n×α3×d3))
=1.0
となり、式1=1となる。
このときの、波長温度係数は0.01(pm/℃)となり、このようなエタロンは、熱の影響を受けて共振器波長の変化と、中空部材と金属薄板部材と金属膜とが熱膨張による変化とが一致ししたため、波長温度係数の変化が軽微なものとなったと考察できる。
At this time, if the calculation is performed by substituting each value into the equation 1,
Formula 1 = (dn / dT) × ((d1 + d2 + d3) / (n × α1 × d1 + n × α2 × d2 + n × α3 × d3))
= 1.0
Thus, Expression 1 = 1.
At this time, the wavelength temperature coefficient is 0.01 (pm / ° C.). Such an etalon is affected by heat, and changes in the resonator wavelength, and the hollow member, the metal thin plate member, and the metal film thermally expand. It can be considered that the change of the wavelength temperature coefficient is slight because the change due to.

10 エタロン
11 透明部材
11c 金属膜
12 中空部材
12a 金属膜
13 金属薄板部材
DESCRIPTION OF SYMBOLS 10 Etalon 11 Transparent member 11c Metal film 12 Hollow member 12a Metal film 13 Metal thin plate member

Claims (1)

2つ一対の透明部材の間に環状の中空部材と環状の金属薄板部材とが挟まれた状態で接合されて構成されるエタロンであって、
前記中空部材側を向く面に金属膜が設けられる前記透明部材と、
前記透明部材側を向く面に金属膜が設けられている環状の前記中空部材と、
前記中空部材と接合される環状の前記金属薄板部材と、
を備えており、
前記中空部材が石英ガラスからなり、
前記金属薄板部材が金からなり、
前記金属膜は下地金属膜と主金属膜とから構成され、前記下地金属膜がクロム、主金属膜が金からなり、
前記透明部材の間に接合される前記中空部材と前記金属薄板部材と前記金属膜との厚みの総和の、所定の熱雰囲気における前記中空部材と前記金属薄板部材と前記金属膜との単位温度当たりの膨張する長さの総和に対する比率と、空気の屈折率温度係数との積が1又は1に近似となる
ことを特徴とするエタロン。
An etalon configured to be joined in a state where an annular hollow member and an annular metal thin plate member are sandwiched between a pair of transparent members,
The transparent member provided with a metal film on the surface facing the hollow member side;
The annular hollow member provided with a metal film on the surface facing the transparent member;
The annular thin metal plate member joined to the hollow member;
Equipped with a,
The hollow member is made of quartz glass,
The metal sheet member is made of gold,
The metal film is composed of a base metal film and a main metal film, the base metal film is made of chromium, and the main metal film is made of gold,
The total thickness of the hollow member, the metal thin plate member, and the metal film joined between the transparent members per unit temperature of the hollow member, the metal thin plate member, and the metal film in a predetermined thermal atmosphere. An etalon in which the product of the ratio of the expansion length to the sum of the total length and the refractive index temperature coefficient of air approximates 1 or 1 .
JP2013038615A 2013-02-28 2013-02-28 Etalon Expired - Fee Related JP6071643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038615A JP6071643B2 (en) 2013-02-28 2013-02-28 Etalon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038615A JP6071643B2 (en) 2013-02-28 2013-02-28 Etalon

Publications (2)

Publication Number Publication Date
JP2014167503A JP2014167503A (en) 2014-09-11
JP6071643B2 true JP6071643B2 (en) 2017-02-01

Family

ID=51617235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038615A Expired - Fee Related JP6071643B2 (en) 2013-02-28 2013-02-28 Etalon

Country Status (1)

Country Link
JP (1) JP6071643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474618A (en) * 2020-05-20 2020-07-31 腾景科技股份有限公司 Wide-band temperature tuning filter of air gap etalon structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232386A (en) * 1986-10-06 1988-09-28 Iwatsu Electric Co Ltd Fabry-perot interferometer
JPH0786673A (en) * 1993-09-16 1995-03-31 Nec Corp Gas laser oscillator
JP4104802B2 (en) * 2000-01-26 2008-06-18 富士通株式会社 Gain equalization apparatus, wavelength characteristic variable apparatus and optical amplifier using air gap type etalon
JP2003215473A (en) * 2002-01-21 2003-07-30 Yokogawa Electric Corp Fabry-perot filter
JP4561728B2 (en) * 2006-11-02 2010-10-13 セイコーエプソン株式会社 Optical device, optical device manufacturing method, tunable filter, tunable filter module, and optical spectrum analyzer
JP2012078474A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Etalon filter

Also Published As

Publication number Publication date
JP2014167503A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP7125640B2 (en) Manufacturing method of transmission type diffraction grating
KR101325413B1 (en) Vertically emitting, optically pumped semiconductor comprising an external resonator and frequency doubling on a separate substrate
KR101280752B1 (en) Vertically emitting, optically pumped semiconductor having an external resonator on a separate substrate
JP2008233528A (en) Reflection type diffraction grating and spectral device
JP6491646B2 (en) Manufacturing method of grating element mounting structure
JP6071643B2 (en) Etalon
JP2014239222A (en) External resonator light-emitting device
CN109565141A (en) Planar waveguide laser apparatus
JP6613238B2 (en) Grating element
JP5543525B2 (en) Optical device and manufacturing method thereof
US20170093126A1 (en) External-resonator-type light-emitting device
JP2012078475A (en) Etalon filter
JP6142429B2 (en) Etalon and etalon equipment
JP2012078474A (en) Etalon filter
JP2013097150A (en) Etalon filter
US20140169739A1 (en) Waveguide lens for coupling laser light source and optical element
JP5267247B2 (en) Optical element for small laser
JP2001221914A (en) Etalon filter
TWI565992B (en) Optical waveguide lens and manufacturing method for same
JP6484779B1 (en) Tunable filter and optical communication device
TWI572914B (en) Optical coupler
JP2014098756A (en) Optical component
US20120132349A1 (en) Method for producing tunable interference filter
JP2001281443A (en) Air gap type fabry-perot etalon
JP5969193B2 (en) Etalon filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees